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Abstract

A wide variety of fundamental data analyses in machine learning, such as linear and logistic regres-
sion, require minimizing a convex function defined by the data. Since the data may contain sensitive
information about individuals, and these analyses can leak that sensitive information, it is important
to be able to solve convex minimization in a privacy-preserving way.

A series of recent results show how to accurately solve a single convex minimization problem in
a differentially private manner. However, the same data is often analyzed repeatedly, and little is
known about solving multiple convex minimization problems with differential privacy. For simpler
data analyses, such as linear queries, there are remarkable differentially private algorithms such as
the private multiplicative weights mechanism (Hardt and Rothblum, FOCS 2010) that accurately an-
swer exponentially many distinct queries. In this work, we extend these results to the case of convex
minimization and show how to give accurate and differentially private solutions to exponentially many
convex minimization problems on a sensitive dataset.
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1 Introduction

Consider a dataset D = (x1, . . . ,xn) ∈ X n in which each of the n rows corresponds to an individual’s
record, and each record consists of an element of some data universe X . The goal of privacy-preserving
data analysis is to enable rich statistical analyses on such a dataset while protecting the privacy of the
individuals. It is especially desirable to achieve differential privacy [DMNS06], which guarantees that no
individual’s data has a significant influence on the information released about the dataset.

In this work we consider differentially private algorithms that answer convex minimization (CM)
queries on the sensitive dataset. A CM query is specified by a convex loss function ` : Θ ×X → R, where
Θ is a convex set, and the corresponding query q` : X ∗ → Θ selects the point θ ∈ Θ that minimizes the
average loss on the rows of D. That is,

q`(D) = argmin
θ∈Θ

1
n

n∑
i=1

`(θ;xi).

These queries capture fundamental data analyses such as linear and logistic regression and support
vector machines. For example, we may have a dataset consisting of n labeled examples (x1, y1), . . . , (xn, yn)
from the data universe X = R

d ×R (corresponding to d attributes and a single label per individual), and
wish to compute the linear regression

θ∗ = argmin
θ∈Rd

1
n

n∑
i=1

(〈θ,xi〉 − yi)2

Starting with the results of Dwork and Lei [DL09] and Chaudhuri, Monteleone, and Sarwate [CMS11],
there has been a long line of work [KST12, TS13, JT14, BST14] showing how to compute an accurate and
differentially private answer to a single CM query. However, in practice the same sensitive dataset will
be analyzed by many different analysts, and together these analysts will need answers to a large num-
ber of distinct CM queries on the dataset. Any algorithm for solving a single CM query can be applied
repeatedly to answer multiple CM queries using the well known composition properties of differential
privacy. However, this straightforward approach incurs a significant loss of accuracy, and renders the
answers meaningless after a small number of queries (roughly n2 in most natural settings).

Fortunately, for many interesting types of queries, there are remarkable differentially private al-
gorithms [BLR08, DNR+09, DRV10, RR10, HR10, GRU12, HLM12] that are capable of giving accurate
answers to exponentially many different queries—far greater than what can be achieved using straightfor-
ward composition. The most extensively studied case is linear queries, which are specified by a property
p and ask “What fraction of rows in D satisfy p?” It is also known how to answer exponentially many
arbitrary Lipschitz, real-valued queries [DRV10], which generalize linear queries. There are, however,
no known non trivial algorithms for privately and accurately answering large sets of CM queries.

In this work we show for the first time that it is possible to give accurate and differentially private
answers to exponentially many convex minimization queries. We do so via an extension of the simple
and elegant private multiplicative-weights framework of Hardt and Rothblum [HR10], which is known
to achieve asymptotically optimal worst-case accuracy [BUV14] and worst-case running time [Ull13] for
answering large families of linear queries. Moreover, private multiplicative weights was shown to have
a number of practical advantages [HLM12], including good accuracy and running time in practice on
low-dimensional datasets, parallelism, and simple implementation, all of which are preserved by our
extension. We believe that our technique for adapting the private multiplicative weights framework
beyond linear queries may be useful in the future design of differentially private algorithms for other
types of non linear queries.

1.1 Our Results

We can now state our results for answering large numbers of CM queries. In order to answer even a
single CM query, we need to place some sort of restrictions on the loss function `. In particular, we
consider the following types of restrictions on `:
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Restrictions n Needed for a Single Query n Needed for k Queries

Linear Queries O
(

1
α

)
[DMNS06] Õ

(√
log |X |·logk

α2

)
[HR10]

Lipschitz, d-Bounded Õ
(√

d
α

)
[BST14] Õ

(
max

{√
d·log |X |
α2 ,

logk·
√

log |X |
α2

})
Lipschitz, d-Bounded,
UGLM Õ

(
1
α2

)
[JT14] Õ

(
max

{√
log |X |
α3 ,

logk·
√

log |X |
α2

})
Lipschitz, d-Bounded, σ -
Strongly Convex Õ

(√
d
σα

)
[BST14] Õ

(
max

{√
d·log |X |
σα3 ,

logk·
√

log |X |
α2

})
Table 1: Accuracy guarantees for answering various families of CM queries under differential privacy. New results are shown
in green. Error bounds for linear queries, which are a special case of Lipschitz, 1-bounded CM queries are shown for comparison.
Error bounds for answering a single CM query under each restriction is also shown for comparison. All results are stated for
(ε,δ)-differential privacy for ε constant and δ a negligible function of n.

• Lipschitz. ‖∇`(θ;x)‖2 ≤ 1 for every θ ∈ Θ,x ∈ X (where the gradient is taken with respect to θ for
fixed x).

• d-Bounded. Θ ⊆ {θ ∈Rd | ‖θ‖2 ≤ 1}.

• σ -Strongly Convex. `(θ′ ;x) ≥ `(θ;x)+〈∇`(θ;x),θ′−θ〉+ σ
2 ‖θ

′−θ‖22 for every θ,θ′ ∈Θ,x ∈ X (where,
again, the gradient is taken with respect to θ for fixed x).

• Unconstrained Generalized Linear Models (UGLM). Θ = R
d , X ⊆ R

d and `(θ;x) = `′(〈θ,x〉) for a
convex function `′ : R→R.

The constant 1 in the the Lipschitz and boundedness conditions is arbitrary. One can obtain more
general statements in terms of these parameters by rescaling. For simplicity, we will assume throughout
that all loss functions ` are differentiable, and thus will freely use the gradient operator. However, for
all our algorithms and theorems, the assumption that ` is differentiable is unnecessary and ∇` can be
replaced with an arbitrary subgradient of `.

Table 1 summarizes our results for these different restrictions on the loss functions. In all cases our
algorithms are interactive. They take a datasetD ∈ X n as input, interact with a data analyst who chooses
a sequence of loss functions `1, . . . , `k , and return answers θ̂1, . . . , θ̂k ∈Θ such that for every j = 1, . . . , k

1
n

n∑
i=1

`j (θ̂j ;xi) ≤

min
θ∈Θ

1
n

n∑
i=1

`j (θ;xi)

+α

for some error parameter α. We note that the data analyst may be adaptive, meaning the choice of `j can
depend on the previous losses and answers `1, θ̂1, . . . , `j−1, θ̂j−1. Differential privacy becomes easier to
achieve as n becomes larger. Thus, we ask how big n has to be to achieve a given level of accuracy α for
answering k queries from a family of loss functions L.

Our results are summarized in the following table. We emphasize that if one were to use an al-
gorithm for answering a single CM query repeatedly via composition, then required database size n
would depend polynomially on k, whereas the error depends only polylogarithmically on k in each of
our results.

Our algorithms have running time poly(n, |X |, k) assuming oracle access to ` and its gradient for every
`. Thus, our algorithms are not generally efficient, as |X | will often be exponential in the dimensional-
ity of the data. For example, if X = {0,1}d , then the dataset consists of nd bits yet our algorithms run
in time 2d , even when k is polynomial and every loss function and its gradient can be efficiently com-
puted. Unfortunately this exponential running time is inherent, under widely believed cryptographic
assumptions. Even answering n2+o(1) linear queries, which are a special case of Lipschitz, 1-Bounded
CM queries, requires exponential time [Ull13].
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Additionally, our algorithms require significantly more error than answering a single CM query. For
example, in the case of Lipschitz, d-Bounded CM queries, a single query can be answered with a dataset
of size n = Õ(

√
d/α), whereas answering poly(n) queries with our algorithm requires a dataset of size

n = Õ(
√

log |X | · logk/α2). By the results of Kasiviswanathan, Rudelson, and Smith [KRS13], a database
of size at least n = Ω(1/α2) is necessary when answering � 1/α2 queries. See Section 4.3 for a more
detailed discussion of the lower bounds and computational complexity issues that arise.

Since the error bounds and running time of our algorithm both depend on |X |, our error guar-
antees may appear vacuous when X is infinite. For example, in many common applications X ={
θ ∈Rd | ‖θ‖2 ≤ 1

}
is the d-dimensional unit ball. However, in many settings it is essentially without

loss of generality (up to, say, a factor of 2 in the error) to round the data points to some finite, data
universe. Typically if the data points lie in a d-dimensional space, the size of such a data universe will
be (d/α)O(d). We leave it for future work to find algorithms that apply to continuous data universes in a
more natural way.

1.2 Techniques

In order to describe our algorithms, it will be helpful to start by sketching the private multiplicative
weights framework of Hardt and Rothblum [HR10] for answering linear queries. Here, we focus on
the “offline” variant from [GHRU11, GRU12, HLM12], in which the k loss functions L =

{
`1, . . . , `k

}
are

specified in advance by the analyst. The offline variant contains the main novel ideas, although we will
present our algorithm for the online case.

The algorithm receives as input a dataset D ∈ X n and a set of queries Q. It will be useful to represent
D as a “histogram” over X , which is a vector indexed by X where the x-th entry is the probability that a
random row of D has type x. In this representation, a linear query q can be written as 〈q,D〉.

The algorithm begins with a hypothesis dataset D1, which represents an uneducated guess about D.
It then produces a sequence of T differentially private hypotheses D1, . . . ,DT that are increasingly good
approximations to D. In each round t = 1, . . . ,T , the algorithm will privately find the query qt ∈ Q such
that Dt gives a maximally inaccurate answer. That is, |〈qt ,Dt〉 − 〈qt ,D〉| is as large as possible. Finding
this query can be done privately using a standard application of the exponential mechanism [MT07].
The algorithm then generates Dt+1 using Dt and qt via the multiplicative weights update rule.

One can show that after a small number of rounds T , the hypothesis DT answers every query accu-
rately. The key to the analysis is the following standard fact about the multiplicative-weights update
rule: if one can find a vector ut such that |〈ut ,Dt〉 − 〈ut ,D〉| is large, then the distance between Dt+1 and
D decreases significantly. Notice that this condition on ut is precisely that ut is a linear query for which
Dt is inaccurate. Thus, when answering linear queries, we can simply take ut to be qt .

In the case of CM queries, we can still use the exponential mechanism to find a loss function `t ∈ L
such that the minimizer of `t on Dt is not a good minimizer of the loss on the true dataset D. However,
since CM queries are non linear, this information does not immediately give us a suitable vector ut for
the multiplicative-weights update. The key new step in our algorithm is a differentially private way to
find a suitable vector ut . Specifically, we show how to take a query q` such that q`(Dt) is inaccurate
for the true dataset D, and a differentially private approximation to the correct answer q`(D), and use
it to find a differentially private vector ut such that the error |〈ut ,Dt〉 − 〈ut ,D〉| is large. As with linear
queries, having such vectors is sufficient to argue accuracy of the algorithm.

Our approach is inspired by the work of Kasiviswanathan, Rudelson, and Smith [KRS13] who prove
lower bounds on the error required for answering certain CM queries. Specifically, they use sufficiently
accurate answers to non linear CM queries to extract linear constraints on the dataset, and these linear
constraints can then be combined with linear reconstruction attacks to violate privacy. For our results,
we use the information thatDt gives an inaccurate answer to a non linear CM query to find a linear query
that Dt also answers inaccurately. To do so, we make use of the “dual certificate” style of argument from
convex optimization. That is, we derive and analyze the linear query using the first-order optimality
conditions on the gradient of `.
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1.3 Connection to Generalization Error in Adaptive Data Analysis

Very recently, Dwork et al. [DFH+15] and Hardt and Ullman [HU14] showed a connection between
differential privacy and generalization error in adaptive data analysis, in which the analyst asks an adap-
tively chosen sequence of queries. By generalization error, we mean the difference between the answers
to the queries on the datasetD and the answers to the queries on the unknown population from whichD
was drawn. Dwork et al. showed that differentially private algorithms that have low error with respect
to the dataset D also have low generalization error. Surprisingly, using known differentially private
algorithms for answer linear queries yields state-of-the-art bounds on the generalization error required
to answer an interactive sequence of linear queries. Bassily et al. [BSSU15] extended the connection be-
tween differential privacy and generalization error to the more general family of CM queries. Plugging
the results of this paper into their theorem yields state-of-the-art bounds on the generalization error
required to answer adaptively chosen CM queries.

2 Preliminaries

2.1 Datasets ,Histograms, and Differential Privacy

We define a dataset D ∈ X n to be a vector of n rows D = (x1, . . . ,xn) ∈ X n from a data universe X . We
say that two datasets D,D′ ∈ X n are adjacent if they differ on only a single row, and we denote this by
D ∼D′ .

Definition 2.1 (Differential Privacy [DMNS06]). An algorithm A : X n→R is (ε,δ)-differentially private
if for every two adjacent datasets D ∼D′ and every subset S ⊆R,

Pr(A(D) ∈ S) ≤ eε ·Pr(A(D′) ∈ S) + δ.

In our algorithm and analysis it will be useful to represent a dataset by its histogram. In the his-
togram representation, the dataset D is viewed as a probability distribution over X . We represent this
probability distribution as a vector in D ∈RX where for every x ∈ X , D(x) = Prx′←RD (x′ = x) . The condi-
tion that D ∼ D′ implies that their histograms satisfy ‖D −D ′‖1 ≤ 1/n. In the technical sections of this
work we will assume all datasets are represented as histograms.

2.2 Convex Minimization (CM) Queries and Accuracy

In this work we are interested in algorithms that answer convex minimization (CM) queries on the dataset.
A CM query is defined by a convex loss function ` : Θ × X → R, where Θ ⊆ R

d is a convex set. The
associated query q` : X ∗→Θ seeks to find θ ∈Θ that minimizes the expected loss. Formally,

q`(D) = argmin
θ∈Θ

E

x←RD
(`(θ;x)) = argmin

θ∈Θ

∑
x∈X

D(x) · `(θ;x)

We will use L = {`1, `2, . . . } to denote a set of convex loss functions and QL =
{
q`1
,q`2

, . . .
}

to denote
the associated set of convex minimization queries. We will often want to think of ` as a function of θ,
with x fixed. To this end, we will write `x(θ) = `(θ;x). We will also abuse notation and write `(θ;D) =∑
x∈X D(x) · `(θ;x) and `D (θ) = `(θ;D).

In order to define what it means to answer a CM query accurately, we define the following notion of
error, also known as “excess empirical risk”.

Definition 2.2 (Error of an Answer). For a loss function ` : Θ × X → R, database D ∈ X ∗, and answer
θ̂ ∈Θ, we define the error of θ̂ on ` with respect to D to be

err`(D,θ̂) = `(θ̂;D)−min
θ∈Θ

`(θ;D).
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It will also be useful in describing an analyzing out algorithm to define the notion of error of a
database as follows.

Definition 2.3 (Error of a Database). For a loss function ` : Θ ×X → R, database D ∈ X ∗, and another
database D ′ ∈ X ∗, we define the error of D ′ on ` with respect to D to be

err`(D,D
′) = `D

(
argmin
θ′∈Θ

`D ′ (θ
′)
)
−min
θ∈Θ

`D (θ).

We now define what it means for an algorithm A to be accurate for answering a sequence of CM
queries from a family L. We do so by means of a game between A and an adversary B, defined in
Figure 1.

B chooses D ∈ X n.
For j = 1, . . . , |L|
B outputs a loss function `j ∈ L.
A(D,`j ) outputs θ̂j .
(As B and A are stateful, `j and θ̂j may depend on the history `1, θ̂1, . . . , `j−1, θ̂j−1.)

Figure 1: The Sample Accuracy Game Accn,k,L[A,B]

Definition 2.4 (Accuracy). Let L be a set of convex loss functions and QL be the associated set of CM
queries. Let 0 < α,β ≤ 1 and k,n ∈ N be parameters. We say that an algorithm A is (α,β)-accurate for
answering k CM queries from QL given a database of size n if for every adversary B,

Pr
Accn,k,L

(
max
j=1,...,k

err`j (D,θ̂
j ) ≤ α

)
≥ 1− β.

3 Online Private Multiplicative Weights for CM Queries

In this section we present and analyze a differentially private algorithm that answers any family of CM
queries provided black-box access to a differentially private algorithm that answers any single CM query
from the family.

3.1 The Online Sparse Vector Algorithm

Just like when using private multiplicative weights to answer linear queries, a key ingredient in our
algorithm is the online sparse vector algorithm. At a high level, the online sparse vector algorithm takes
a database D ∈ X n and a sequence of queries q1, . . . , qk , but it provides only a very weak accuracy guar-
antee. Each query is answered with a single bit in {>,⊥}. For a given query q and some threshold α, if
q(D) ≥ α then the algorithm answering > and if q(D) ≤ α/2 it answers ⊥. If the answer is in (α/2,α) any
answer is allowed. The key feature of the online sparse vector algorithm is that the size of the dataset n
only needs to be proportional to

√
T · logk, where T is the number of queries whose answer is above the

threshold. In contrast, approximately answering every query requires n to grow like
√
k.

To maintain brevity, and since the algorithm is standard (see [DR14] for a textbook treatment), we
will not specify the algorithm. Instead we will define its properties as a black box. We define the guar-
antees of the sparse vector algorithm via the following game between the online sparse vector algorithm
SV and an adversary B.

The requirement that B outputs a (3/n)-sensitive query means that q satisfies |q(D) − q(D ′)| ≤ 3S/n
for every pair of neighboring databases D ∼ D ′ ∈ X n. The choice of (3S/n) can be replaced with any
parameter ∆, but we fix it to 3S/n to cut down on notation, since we’ll use that choice in the next
section.

7



B chooses a dataset D ∈ X n.
For j = 1, . . . , k:
B outputs a (3S/n)-sensitive query qj

(The query qj may depend on the previous queries and answers q1, a1, . . . , qj−1, aj−1.)
SV returns an answer aj ∈ {>,⊥}.

Figure 2: ThresholdGamen,T ,k,α[SV ,B]

Theorem 3.1. There is an algorithm SV = SV (T ,k,α,ε,δ) such that for every T ,k ∈ N and α,ε,δ > 0, the
following three conditions hold.

1. SV is (ε,δ)-differentially private.

2. SV halts if T queries are answered with >.

3. If

n ≥
256 · S ·

√
T · log(2/δ) · log(4k/β)

εα
,

then

Pr
ThresholdGamen,T ,k,τ [SV ,B]

(
∀j ∈ [k],

qj (D) ≥ α =⇒ aj =>
qj (D) ≤ α/2 =⇒ aj =⊥

)
≥ 1− β.

3.2 The Algorithm

We are now ready to describe our algorithm for answering exponentially many convex minimization
queries from some family L = {` : Θ ×X →R}. Assume every ` ∈ L satisfies the scaling condition

max
x∈X ,θ,θ′∈Θ

∣∣∣〈θ −θ′ ,∇`x(θ)
〉∣∣∣ ≤ S.

The algorithm is defined in Figure 3. Note that in the algorithm there are two sequences of queries
that it will be useful to distinguish. The first is the set of queries actually issued by the analyst, which
are index by the letter j and are `1, . . . , `k . There is also the subsequence of queries such that aj = > and
lead to updates. We use the letter t to index these queries, which are `1, . . . , `T (there cannot be more
than T such queries, since SV would halt, though there may be fewer). Sometimes it will be useful
to consider only the subsequence of queries that are used for updates, which is why we use a separate
index for this sequence.

3.3 Accuracy Analysis

In this section, we prove that our algorithm is accurate for any family of CM queries L, provided that
the oracle A′ is accurate for any single CM query from L. As with previous variants of private multi-
plicative weights [HR10, GHRU11, GRU12, HLM12], we will derive the accuracy guarantee using the
well known “bounded regret” property of the multiplicative weights update rule, combined with the
utility guarantees of the online sparse vector algorithm.

To start the analysis we will assume that two conditions are satisfied. First, we assume that SV
answered accurately—formally, we assume that

∀j ∈ [k],
err`j (D;D̂t) ≥ α =⇒ aj =>

err`j (D;D̂t) ≤ α/2 =⇒ aj =⊥
(1)

where D̂t is the current dataset D̂t that is in use at the time the loss function `j is considered. By the
accuracy of the online sparse vector algorithm SV (Theorem 3.1), the event (1) holds with probability at
least 1− β/2 as long as n is sufficiently large.
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Input and parameters: A dataset D ∈ X n, parameters ε,δ,α,β,S,k > 0, and oracle access to A′ ,
an (ε0,δ0)-differentially private algorithm that is (α0,β0)-accurate for one convex minimization
query in L on datasets of size n′ , for parameters ε0,δ0,α0,β0.

T =
64S2 log |X |

α2 η =

√
log |X |
T

ε0 =
ε√

8T log(4/δ)
δ0 =

δ
4T

α0 =
α
4

β0 =
β

2T

Let SV = SV (T ,k,α,ε/2,δ/2) be the online sparse vector algorithm (Section 3.1).
Let t = 1. Let D̂t ∈RX be the uniform histogram over X .
For j = 1, . . . , k:

Receive loss function ` = `j ∈ L.
Let qj be the (3/n)-sensitive query qj (D) = err`(D,D̂t).
Run SV on qj , to obtain an answer aj ∈ {>,⊥}. (If SV halts, then halt.)
If aj =⊥:

Output the answer θ̂j = argminθ∈Θ `(θ;D̂t).
Else if aj =>:

Let `t = `.
Let θt←R A′(D,`t) be a private estimate of the minimizer of `t on D.
Output the answer θ̂j = θt .
Update D̂t :

Let θ̂t = argminθ∈Θ `(θ;D̂t) and let ut ∈ [−S,S]X be the vector

ut(x) =
〈
θt − θ̂t ,∇`tx(θ̂t)

〉
Let D̂t+1(x) ∝ exp(η ·ut(x)) · D̂t(x)
Let t = t + 1. (Note that t ≤ T , otherwise SV would have halted.)

Figure 3: Online Private Multiplicative Weights for CM Queries

Second, we will assume that every time aj => andA′(D,`j ) is called, it returns an accurate answer—
formally,

∀j such that aj =>, err`j (D,θ
t) ≤ α0. (2)

SinceA′ is assumed to be (α0,β0) accurate for one query provided that n ≥ n′ , andA′ is called at most T
times, we can conclude that the event (2) holds with probability at least 1− β/2. The following claim is
immediate.

Claim 3.2. If

n ≥max

n′ , 512 ·
√
T · log(4/δ) · log(8k/β)

εα

 ,
then with probability at least 1− β, the events (1) and (2) both hold.

Thus, we are justified proving that the online private multiplicative weights algorithm is accurate
conditioned on (1) and (2). We start by observing that the algorithm can only fail to be accurate if it halts
before the entire sequence of k queries has been asked (because t = T updates have been performed and
SV halted).
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Claim 3.3. Assume that the algorithm does not terminate before answering k queries, and that (1) and (2)
both hold. Then the algorithm answers every query with error at most α. That is,

∀j ∈ [k], err`j (D,θ̂
j ) ≤ α.

Proof of Claim 3.3. If the algorithm has not terminated, then each query `j is answered in one of two
ways. If aj =⊥, then we answer with θ̂j = argminθ∈Θ `(θ;D̂t). In this case, since (1) holds, and aj =⊥, we
have err`j (D,θ̂

j ) ≤ α. But, by definition, err`j (D,D̂
t) = err`j (D,θ̂

j ). So the algorithm answers accurately
in the case where aj =⊥. err`j (D,θ̂

j ) ≤ α
If aj =>, then we answer with θ̂j = θj =A′(D,`j ). Since (2) holds, we have

err`j (D,θ̂
j ) = err`j (D,θ

t) ≤ α0 ≤ α,

as desired.

To complete the proof, it suffices to show that the algorithm does not terminate early. Here is where
we rely on the “bounded regret” property of the multiplicative weights update rule.

Lemma 3.4. [See e.g. [AHK12]] For every sequence u1, . . . ,uT ∈ [−S,S]X ,

1
T

T∑
t=1

〈
ut , D̂t −D

〉
≤ 2S

√
log |X |
T

Recall that the algorithm only terminates early if there are T queries `j such that aj = >, and by (1),
aj = > only if the error of D̂t on `j is at least α/2. Thus, in light of the preceding lemma, we would like
to show that if D̂t has error α/2 for a query `, then 〈ut , D̂t −D〉 is also large, say α/4. If we can show such
a statement, then by our choice of T , it will be impossible to perform a sequence of T updates, and thus
the algorithm will not terminate early.

The key lemma, and the main novelty in our analysis, is to relate 〈ut , D̂t −D〉 to the error of D̂t on a
query `j . We show that 〈ut , D̂t −D〉 is at least the additional loss incurred by θ̂t over that of θt .

Claim 3.5. For every t = 1, . . . ,T , 〈
ut , D̂t −D

〉
≥ `tD (θ̂t)− `tD (θt)

Recall that θt is an approximation to the optimal solution for `tD , whereas θ̂t has large error with
respect to D. Thus we expect the right hand side of the expression to be positive and large.

Proof of Claim 3.5. Recall that we chose

θ̂t = argmin
θ∈Θ

`t
D̂t

(θ).

By the first-order optimality condition, and the fact that θt , θ̂t ∈ Θ for a convex set Θ, the directional
derivative of `t

D̂t
at θ̂t in the direction of θt − θ̂t will be positive. So we have

0 ≤
〈
θt − θ̂t ,∇`t

D̂t
(θ̂t)

〉
=

∑
x∈X

D̂t(x) ·
〈
θt − θ̂t ,∇`tx(θ̂t)

〉
=

〈
ut , D̂t

〉
. (3)

The first equality uses linearity of the gradient and the definition `t
D̂t

(·) =
∑
x∈X D̂

t(x) · `tx(·)
Similarly, we can look at the directional derivative of `tD again taken at θ̂t and in the direction of

θt − θ̂t . 〈
θt − θ̂t ,∇`tD (θ̂t)

〉
=

∑
x∈X

D(x) ·
〈
θt − θ̂t ,∇`tx(θ̂t)

〉
=

〈
ut ,D

〉
. (4)
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If θ̂t is far from optimal for the input dataset D, then moving in the direction of θt − θ̂t should sig-
nificantly decrease the loss. Thus, since ` is convex, this directional derivative must be significantly
negative. Specifically, since `tD is convex, `tD lies above all of its tangent lines. Thus,

`tD (θt) ≥ `tD (θ̂t) +
〈
θt − θ̂t ,∇`tD (θ̂t)

〉
= `tD (θ̂t) +

〈
ut ,D

〉
.

where the equality is from (4) Rearranging terms, we have

−
〈
ut ,D

〉
≥ `tD (θ̂t)− `tD (θt). (5)

Combining (3) and (5), we have 〈
ut , D̂t −D

〉
≥ `tD (θ̂t)− `tD (θt),

which completes the proof.

Using Claim 3.5, and the guarantees (1) and (2), we can now lower bound 〈ut , D̂t −D〉.

Claim 3.6. For every t = 1, . . . ,T , if the algorithm has not terminated, and (1) and (2) both hold, then

〈ut , D̂t −D〉 > α/4.

Proof of Claim 3.6. Our goal is to lower bound 〈ut , D̂t−D〉 by the quantity err`t (D,D̂t) = `tD (θ̂t)−minθ∈Θ `
t
D (θ).

This condition is almost implied by Claim 3.5, except with `tD (θt) in place of the minimum. In the next
claim, we extend the previous claim to handle an approximate minimizer.

However, by (2), θt =A′(D,`t) is an approximate minimizer. That is,

`tD (θt) ≤min
θ∈Θ

`tD (θ) +α0. (6)

Combining Claim 3.5 with (6) we conclude that if n ≥ n′ , then for every t = 1, . . . ,T , with probability at
least 1− β0, 〈

ut , D̂t −D
〉
≥ `tD (θ̂t)−

(
min
θ∈Θ

`tD (θ) +α0

)
= err`t (D,D̂

t)−α0 (7)

Given (7) we would like to show that err`t (D,D̂t) is large. But, by (1), we would only do an update if
err`t (D,D̂t) > α/2. Therefore we must have〈

ut , D̂t −D
〉
≥ `tD (θ̂t)−

(
min
θ∈Θ

`tD (θ) +α0

)
> α/2−α0 = α/4,

as desired.

We are now ready to show that the online private multiplicative weights algorithm does not termi-
nate early.

Claim 3.7. If (1) and (2) both hold, then the algorithm does not terminate before answering k queries.

Proof of Claim 3.7. Assume for the sake of contradiction that the algorithm does terminate early because
of the condition t = T . Then, by Claim 3.6, there is a sequence of T queries such that for every query

〈ut , D̂t −D〉 ≥ α/4.

Then, using the bounded-regret property of multiplicative weights (Lemma 3.4), we must have

α/4 <
1
T

T∑
t=1

〈
ut , D̂t −D

〉
≤ 2S

√
log |X |
T

(Lemma 3.4)

≤ α/4,

which is a contradiction.
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The analysis of this section immediately implies the following theorem

Theorem 3.8. The online private multiplicative weights algorithm is (α,β)-accurate for answering k CM
queries from QL given a dataset of size n for

n = max

n′ , 4096 · S2 ·
√

log |X | · log(4/δ) · log(8k/β)
εα2

 .
3.4 Privacy Analysis

In this section we show that our algorithm (Figure 3) is differentially private. Privacy will follow rather
easily from privacy of the online sparse vector algorithm, privacy of A′ , and well known composition
properties of differential privacy.

Theorem 3.9. If A′ is (ε0,δ0)-differentially private, for ε0,δ0 as stated, then the algorithm in Figure 3 is
(ε,δ)-differentially private.

3.4.1 Composition of Differential Privacy

Before proceeding to the privacy analysis of our algorithm, we recall the composition properties of
differential privacy.

A well-known fact about differential privacy is that the parameters ε,δ degrade gracefully under
composition. Specifically, we will make use of the strong composition theorem due to Dwork, Rothblum,
and Vadhan [DRV10]. Formally, we say that an algorithm A is a T -fold adaptive composition of (ε0,δ0)-
differentially private algorithms if A can be expressed as an instance of the following game for some
adversary B:

Let D be a database, let B be an adversary, T be a parameter
For t = 1, . . . ,T
B(z1, . . . , zt−1) outputs an (ε0,δ0)-DP At
Let zt =At(D)

Output z1, . . . , zT

Figure 4: T -Fold Adaptive Composition

Theorem 3.10 ([DRV10]). For every T ∈N and 0 ≤ ε0,δ0,δ
′ ≤ 1/2, if A is a T -fold adaptive composition of

(ε0,δ0)-differentially private algorithms, then A is (ε,δ′ + T δ0)-differentially private for

ε =
√

2T log(1/δ′) · ε0 + 2T · ε2
0.

In particular, if A is a T -fold adaptive composition of (ε0,δ0)-differentially private algorithms, where

ε0 =
ε√

8T log(2/δ)
δ0 =

δ
2T

,

then A is (ε,δ)-differentially private.

3.4.2 Proof of Theorem 3.9

There are only two places where the algorithm uses the private dataset D: (1) when using the online
sparse vector algorithm to answer the queries qj = err`j (D,D̂

t), and (2) when usingA′ to obtain a private
approximation to the minimizer of some loss function `t . First, we will show that the online sparse vec-
tor algorithm is (ε/2,δ/2)-differentially private. This claim will follow immediately from Theorem 3.1

12



provided that the queries qj are indeed (3S/n)-sensitive. To show this, first, observe that if ` : Θ×X →R

satisfies
max

x∈X ,θ,θ′∈Θ

∣∣∣〈θ −θ′ ,∇`x(θ)
〉∣∣∣ ≤ S,

then for every x ∈ X , there exists bx ∈ R such that for every θ ∈ Θ, `(θ,x) ∈ [bx,S]. That is, for every
x, there is some interval of width S that bounds the loss `(θ,x). With this information we can bound
the sensitivity of the error function in the following way: Fix any ` ∈ L. Let `(θ,x) = `(θ,x) − bx. Let
θ = argminθ∈Θ `D̂t (θ).

max
D,D ′∈X n

∣∣∣err`(D,D̂
t)− err`(D

′ , D̂t)
∣∣∣

= max
D,D ′∈X n

∣∣∣∣∣(`D (θ)−min
θ∈Θ

`D (θ)
)
−
(
`D ′ (θ)−min

θ∈Θ
`D ′ (θ)

)∣∣∣∣∣
= max
D,D ′∈X n

∣∣∣∣∣(`D (θ)−min
θ∈Θ

`D (θ)
)
−
(
`D ′ (θ)−min

θ∈Θ
`D ′ (θ)

)∣∣∣∣∣
= max
D,D ′∈X n

∣∣∣∣(`D (θ)− `D ′ (θ)
)∣∣∣∣+

∣∣∣∣∣(min
θ∈Θ

`D (θ)−min
θ∈Θ

`D ′ (θ)
)∣∣∣∣∣

≤ S
n

+
2S
n

=
3S
n
.

Since this bound holds for every ` ∈ L, we have

max
`∈L

max
D,D ′∈X n

∣∣∣err`(D,D̂
t)− err`(D

′ , D̂t)
∣∣∣ ≤ 3S

n
.

Thus, the queries given to SV are indeed (3S/n)-sensitive and we are justified in assuming that SV
is an (ε/2,δ/2)-differentially private algorithm.

Now, we return to analyzing the privacy loss of A′ . By assumption, for every fixed `t , the choice of
θt =A′(D,`t) is (ε0,δ0)-differentially private with respect to the input D. Moreover, the choice of `t de-
pends only on the output of SV , which we have already argued is (ε/2,δ/2)-differentially private. There-
fore, we can view all of the calls to A′ as a single T -fold adaptive composition of (ε0,δ0)-differentially
private algorithms. For ε0,δ0 as specified in the online private multiplicative weights algorithm, the
result will be (ε/2,δ/2)-differentially private. Since these are the only two ways in which the private
dataset D is used, we have proven that the entire algorithm is (ε,δ)-differentially private.

4 Applications of Theorem 3.8

In this section we give some interpretation of Theorem 3.8 and show how it can be applied to specific in-
teresting cases that have been considered in the literature on differentially private convex minimization
in order to obtain the results stated in the introduction.

4.1 Interpreting Theorem 3.8

In Theorem 3.8, we have assumed that there exists an (ε0,δ0)-differentially private algorithm A′ that is
(α0,β0)-accurate for any one ` from L given n′ samples. By a standard argument, if there exists a (1,δ0)-
differentially private algorithm A′′ that is (α0,β0)-accurate for ` given n′′ samples, then there exists
an (ε0,δ0)-differentially private algorithm with the same accuracy given O(n′′/ε0) samples. Applying
this observation, simplifying, and dropping the dependence on β,ε,δ, we can write the requirement in
Theorem 3.8 as

n & max
{
n′′

ε0
,
S2 · logk
α2

}
.
S ·

√
log |X | · logk
α

·max
{
n′′ ,

S
α

}
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The first term in the max is just the size of dataset required to answer a single convex minimization
query in L with ε = 1. The second term in the max can be either larger or smaller than n′′ . However,
for the most basic setting of a single, Lipschitz loss function over a bounded domain, n′′ � S/α, so the
second term will be dominated by the first term.

Thus, in some cases, Theorem 3.8 can be interpreted as saying that the amount of data required to
answer k queries from L is only a factor of ≈ (S ·

√
log |X |·logk)/α larger than the amount of data required

to both answer a single query in L. Using the simple composition approach where each of the k queries
is answered independently would require a factor of ≈

√
k more data than answering a single query.

Thus our algorithm is a substantial improvement when
√
k� (S ·

√
log |X | · logk)/α.

4.2 Applications

We now show how to instantiate Theorem 3.8 with various differentially private algorithms for answer-
ing convex minimization queries to obtain the results in the Introduction.

4.2.1 Lipschitz and Bounded Loss Functions.

In much of the work on differentially private convex minimization, the queries are normalized so that
the parameter θ lies in a unit L2 ball, and the loss function ` satisfies a Lipschitz condition. Bassily,
Smith, and Thakurta [BST14] recently showed optimal upper and lower bounds for answering a single
query from this family. Formally,

Theorem 4.1 ([BST14]). Let ` : Θ ×X → R be a convex loss function where Θ ⊆
{
θ ∈Rd | ‖θ‖2 ≤ 1

}
and for

every θ ∈Θ, x ∈ X , ‖∇`x(θ)‖2 ≤ 1. Let q` be the associated CM query. There is a (ε0,δ0)-differentially private
algorithm that is (α0,β0)-accurate for q` on datasets of size n for

n =O
( √

d
α0ε0

)
·polylog

(
1
δ0
,

1
β0

)
.

Note that if Θ is contained in a unit L2 ball and ` is 1-Lipschitz, then the scaling parameter S is at
most 2. Combining Theorem 3.8 and Theorem 4.1 yields the following result.

Theorem 4.2. Let L be the set of convex loss functions ` : Θ ×X → R for Θ ⊆
{
θ ∈Rd | ‖θ‖2 ≤ 1

}
such that

for every ` ∈ L, θ ∈ Θ, x ∈ X , ‖∇`x(θ)‖2 ≤ 1. Let QL be the associated family of CM queries. There is an
(ε,δ)-differentially private algorithm that is (α,β)-accurate for k CM queries from QL on datasets of size n for

n = Õ

√log |X |
α2ε

·max
{√
d, logk

} ·polylog
(

1
δ
,
1
β

)
.

4.2.2 Generalized Linear Models.

Using the algorithm of Theorem 4.1, n must grow polynomially with d to solve even a single CM query
in dimension d, and this was shown to be inherent by Bassily et al. [BST14] (building on [BUV14]).
However, the work of Jain and Thakurta [JT14] shows that dependence on d can be avoided for the
important class of unconstrained generalized linear models. For example, logistic regression and linear
regression are generalized linear models. A convex loss function ` : Θ ×X → R is a generalized linear
model if Θ ⊆R

d , X ⊆R
d , and `(θ,x) depends only on the inner product of θ and x. That is, there exists

a convex function `′ : R→ R such that `(θ,x) = `′(〈θ,x〉). We say that the generalized linear model is
unconstrained if there are no constraints other than boundedness. That is, Θ =

{
θ ∈Rd | ‖θ‖2 ≤ 1

}
.

Theorem 4.3 ([JT14]). Let ` : Θ × X → R be an unconstrained generalized linear model with the domain
Θ =

{
θ ∈Rd | ‖θ‖2 ≤ 1

}
and for every θ ∈ Θ, x ∈ X , ‖∇`x(θ)‖2 ≤ 1. Let q` be the associated CM query. There
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is a (ε0,δ0)-differentially private algorithm that is (α0,β0)-accurate for q` on datasets of size n for

n =O
(

1

α2
0ε0

)
·polylog

(
1
δ0
,

1
β0

)
.

Combining Theorem 3.8 and Theorem 4.3 yields the following result.

Theorem 4.4. Let L be the set of unconstrained generalized linear models ` : Θ × X → R with the domain
Θ ⊆

{
θ ∈Rd | ‖θ‖2 ≤ 1

}
such that for every ` ∈ L, θ ∈Θ, x ∈ X , ‖∇`x(θ)‖2 ≤ 1. LetQL be the associated family

of CM queries. There is an (ε,δ)-differentially private algorithm that is (α,β)-accurate for k CM queries from
QL given n records for

n = Õ

√log |X |
α2ε

·max
{ 1
α
, logk

} ·polylog
(

1
δ
,
1
β

)
.

4.2.3 Strongly Convex Loss Functions.

Stronger accuracy guarantees for answering a single CM query are also achievable in the common special
case where ` is strongly convex. Informally, ` is strongly convex if it can be lower bounded by a quadratic
function. Specifically, for a parameter σ ≥ 0, the function ` : Θ×X →R is 2σ -strongly convex if for every
θ,θ′ ∈Θ and x ∈ X , `(θ′ ;x) ≥ `(θ;x)+〈θ′−θ,∇`(θ;x)〉+σ‖θ′−θ‖22. In the previous statement, the gradient
is with respect to θ.

Theorem 4.5 ([BST14]). Let ` : Θ×X →R be a σ -strongly convex loss function whereΘ ⊆
{
θ ∈Rd | ‖θ‖2 ≤ 1

}
and for every θ ∈Θ, x ∈ X , ‖∇`x(θ)‖2 ≤ 1. Let q` be the associated CM query. There is a (ε0,δ0)-differentially
private algorithm that is (α0,β0)-accurate for q` on datasets of size n for

n =O
( √

d
√
σα0ε0

)
·polylog

(
1
δ0
,

1
β0

)
.

Combining Theorem 3.8 and Theorem 4.5 yields the following result.

Theorem 4.6. Let L be the set of σ -strongly convex loss functions ` : Θ ×X → R for Θ ⊆
{
θ ∈Rd | ‖θ‖2 ≤ 1

}
such that for every ` ∈ L, θ ∈ Θ, x ∈ X , ‖∇`x(θ)‖2 ≤ 1. Let QL be the associated family of CM queries. There
is an (ε,δ)-differentially private algorithm that is (α,β)-accurate for k CM queries from QL on datasets of size
n for

n = Õ

√log |X |
ε

max
{ √

d
√
σα3/2

,
logk
α2

} ·polylog
(

1
δ
,
1
β

)

4.3 Running Time and Discussion of Computational Complexity

In this section we discuss the computational complexity of the algorithm. To do so, we assume Θ ⊆ R
d ,

and for simplicity and concreteness we consider the natural choice of data universe X = {0,1}d , or

equivalently X =
{
±1√
d

}d
. Since our algorithm uses the ability to solve a single CM query in L as a

blackbox, we assume that this step can be done in poly(n,d) time both privately and non-privately. For
this informal discussion, we also ignore the dependence in running time on S,α,β,ε,δ, which will not
substantially affect the conclusions.

There are three main steps that dominate the running time of each of the k iterations:

1. Running the online sparse vector algorithm SV on qj . This step can be done in time poly(n,d).

2. If aj = >, finding a private approximate minimizer of `j . By assumption, this step can be done in
time poly(n,d).

3. If aj =>, computing the new histogram D̂t+1. This step requires time Õ(2d).
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Since each of these steps is carried out for k steps, the overall running time is poly(n,2d , k). Even
tough it was useful to think of the database as a histogram, which is a vector of length 2d , the input
database D would more naturally be represented as a collection of records D ∈ ({0,1}d)n. Thus it is
natural to look for an algorithm with running time poly(n,d,k). In summary, even when the individual
loss functions can be privately minimized in poly(n,d) time, our algorithm requires time poly(n,2d , k),
which is exponential in the dimension of the data. More generally, there is a polynomial dependence on
|X |, where one would hope for a polylogarithmic dependence.

Unfortunately, this exponential running time is inherent. Since CM queries generalize the well stud-
ied class of linear queries, we can carry over the hardness results of Ullman [Ull13] to this setting.
Specifically, assuming the existence of one-way functions, there is no poly(n,d)-time algorithm that
takes as input a set of k arbitrary differentiable convex loss functions, and a database D ∈ ({0,1}d)n for
n ≤ k1/2−o(1), and and outputs answers that are even 1/100-accurate for each query in L.

Although the hardness result rules out an efficient mechanism for answering an arbitrary large set
of CM queries, more efficient algorithms may be possible for specific families L. In the setting of count-
ing queries, such algorithms are known for special cases such as interval queries [BNS13] and marginal
queries [GHRU11, HRS12, TUV12, CTUW14, DNT13]. It would be interesting to see if techniques from
those works can be applied to give more efficient algorithms for natural families of CM queries. We
remark that Ullman and Vadhan [UV11] show that efficient algorithms that output synthetic data can-
not be accurate even for very simple families of counting queries, and thus also for certain very simple
families of CM queries. Our algorithm indeed can be modified to output a synthetic dataset (namely,
the final histogram D̂t used in the execution of the algorithm), and thus substantially different tech-
niques would be required to answer interesting classes of CM queries more efficiently. We leave it as
an interesting direction for future work to improve the running time of our algorithm for interesting
restricted families of CM queries.
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