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ABSTRACT

We propose a novel foundational framework fany-not explana-
tions that is, explanations for why a tuple is missing from a query
result. Our why-not explanations leverage concepts fromraal-
ogy to provide high-level and meaningful reasons for why@eu
is missing from the result of a query.

A key algorithmic problem in our framework is that cbmput-
ing a most-general explanatidor a why-not question, relative to
an ontology, which can either be provided by the user, or it b
automatically derived from the data and/or schema. We stiely
complexity of this problem and associated problems, andemte
concrete algorithms for computing why-not explanations.tHe
case where an external ontology is provided, we first shotthiga
problem of deciding the existence of an explanation to a wbiy-
question is NP-complete in general. However, the problesolis
able in polynomial time for queries of bounded arity, praddhat
the ontology is specified in a suitable language, such as a-mem
ber of the DL-Lite family of description logics, which all@for
efficient concept subsumption checking. Furthermore, wmvsh
that a most-general explanation can be computed in polyadomi
time in this case. In addition, we propose a method for degivi
a suitable (virtual) ontology from a database and/or a sehemd
we present an algorithm for computing a most-general expiam
to a why-not question, relative to such ontologies. Thi®atgm
runs in polynomial-time in the case when concepts are defimed
a selection-free language, or if the underlying schema ésifi¥i-
nally, we also study the problem of computisigort most-general
explanations, and we briefly discuss alternative defingtiolhwhat
it means to be an explanation, and to be most general.

Categories and Subject Descriptors
H.2 [Database Managemerjt
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1. INTRODUCTION AND RESULTS

An increasing number of databases are derived, extraated; o
rated from disparate data sources. Consequently, it bexamee
and more important to provide data consumers with mechanism
that will allow them to gain an understanding of data thay the
confronted with. An essential functionality towards thaagis the
capability to provide meaningful explanations about whyada
present or missing form the result of a query. Explanatioglp h
data consumers gauge how much trust one can place on the resul
Perhaps more importantly, they provide useful informafmnde-
bugging the query or data that led to incorrect results.

This is particularly the case in scenarios where complea dat
analysis tasks are specified through large collections efede
views (i.e., views that may be defined in terms of other vieWwsy
example, schemas with nested view definitions and integaty
straints capture the core of LogiQL [18.121] 19] (where viesfid
nitions may, in general, involve not only relational opéras, but
also aggregation, machine learning and mathematical zttian
tasks). LogiQL is a language developed and used at Logicj2lox
for developing data-intensive “self service” applicaganvolving
complex data analytics workflows. Similar recent industsigs-
tems include Datonfitand Google’s Yedalo@ [16]. In each of these
systems, nested view definitions (or, Datalog programsjsed to
specify complex workflows to drive data-analytics tasksplBra-
tions for unexpected query results (such as an unexpeqbésl du
a missing tuple) are very useful in such settings, sincedhece of
an error can be particularly hard to track.

There has been considerable research on the topic of dpexin
planations for why a tuple belongs to the output of a querylyEa
systems were developed [ [3.]28] to provide explanationsifie
swers to logic programs in the context of a deductive databEse
presence of a tuple in the output is explained by enumeratiing
possible derivations, that is, instantiations of the logles that de-
rive the answer tuple. 11 [28], the system also explains imjsan-
swers, by providing a partially instantiated rule, basedhemiss-
ing tuple, and leaving the user to figure out how the rest oftke
would have to be instantiated. In the last decade or so, these
been significant efforts to characterize different notiohgrove-
nance (or lineage) of query answers (see, e.ql)[15, 20pwtan
also be applied to understand why an answer is in the queuit.res

There have also been extensive studies orntiig-not problem
(e.g., more recent studies include [6. 14| 23, [22,(25, 29he T
why-not problem is the problem of explaining why an answer is
missing from the output. Since [28], tméy-not problenwas also
studied in[[22] 2B] in the context of debugging results ofadat-
tracted via select-project-join queries, and, subsedyemtarger
class of queries that also includes union and aggregatienaep
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tors. Unlike [28] which is geared towards providing explaos

for answers and missing answers, the goalin [23] is to pmpos
modifications to underlying databageyielding another database
I’ based on the provenance of the missing tuple, constraindgs, a
trust specification at hand, so that the missing tuple aggaahe
result of the same query over the updated database In con-
trast to thedata-centricapproach of updating the database to derive
the missing answer, another line of reseafch [8) 14, 29%\vialla
query-centricapproach whereby the quegyat hand is modified to

¢’ (without modifying the underlying database) so that thesiniy
answer appears in the outputgdfr).

A new take on why-not questions: In this paper, we develop
a novel foundational framework for why-not explanationsitth
is principally different from prior approaches. Our apmioa
is neither data-centric nor query-centric. Instead, weivder
high-level explanations via an ontology that is either juoled, or

is derived from the data or schema. Our immediate goal isaot t
compute repairs of the underlying database or query so lieat t
missing answer would appear in the result. Rather, ds in f28]
primary goal is to provide understandable explanationswby
an answer is missing from the query result. As we will illasg;
explanations that are based on an ontology have the pdtémtia
be high-level and provide meaningful insight to why a tue i
missing from the result. This is because an ontology alstrac
domain in terms of concepts and relationships amongst pt&ice
Hence, explanations that are based on concepts and relaifisn
from an ontology will embody such high-level abstraction&s
we shall describe, our work considers two cases. The firshenw
an ontology is provided externally, in which case explarati
will embody external knowledge about the domain. The second
is when an ontology is not provided. For the latter, we allow a
ontology to be derived from the schema, and hence explarsatio

will embody knowledge about the domain through concepts and

relationships that are defined over the schema.

Formally, an explanation for why a tupéeis not among the re-
sults of a queryy(I), in our framework, is a tuple of concepts from
the ontology whose extension includes the missing tapad, at
the same time, does not include any tuples frgfh). For exam-
ple, a query may ask for all products that each store has ak,sto
in the form of (product ID, store ID) pairs, from the databaa
large retail company. A user may then ask why is the (R0034,
S012)not among the result of the query. Supp&&934refers to
a bluetooth headset product aBfl12refers to a particular store in
San Francisco. IP0034is an instance of a concepluetooth head-
setsand S012is an instance of a conceptores in San Francisgo
and suppose that no pdit, y), wherez is an instance dbluetooth
headsetand y is an instance o$tores in San Francis¢delongs
to the query result. Then the pair of concepikiétooth headset
stores in San Francis¢ds an explanation for the given why-not
question. Intuitively, it signifies the fact than6ne of the stores in
San Francisco has any bluetooth headsets on &tock

There may be multiple explanations for a given why-not ques-
tion. In the above example, this would be the case if, forainsg,
S012belongs also to a more general concsgfatres in California
and that none of the stores in California have bluetooth $etad
on stock. Our goal is to computenaost-general explanatiorthat
is, an explanation that is not strictly subsumed by any oéxer
planation. We study the complexity of computing a most-gaine
explanation to a why-not question. Formally, we definglg/-not
instance(or, why-not questionto be a quintupl€s, I, ¢, Ans @)
whereS is aschemawhich may include integrity constraintg;is
an instance 08; ¢ is a query oveS; Ans=q(I); anda & q(I).

As mentioned earlier, a particular scenario where why-netseg|
tions easily arise is when querying schemas that includege la
collection of views, and where each view may be nested, shdek-
fined in terms of other views. Our framework captures thisragt
since view definitions can be expressed by means of conistrain

Our framework supports a very general notion of an ontology,
which we callS-ontologies For a given relational schen$g anS-
ontology is a triple(C, C, ext) which defines the set of concepts,
the subsumption relationship between concepts, and risggc
the extension of each concept w.rt. an instance of the sshem
S. We use this general notion of &tontology to formalize the
key notions ofexplanationandmost-general explanationand we
show thatS-ontologies capture two different types of ontologies.

The first type of ontologies we consider are those that araetfi
externally, provided that there is a way to associate theeuts in
the externally defined ontology to the instance at hand. kame
ple, the ontology may be represented in the form of a Ontelogy
Based Data Access (OBDA) specification [[26]. More precisely
an OBDA specification consists of a set of concepts and supsum
tion relation specified by means of a description logic tewtagy,
and a set omapping assertionthat relates the concepts to a rela-
tional database schema at hand. Every OBDA specificatiarcesl
a correspondin@-ontology. If the concepts and subsumption rela-
tion are defined by a TBox in a tractable description logichsas
DL-Liter, and the mapping assertions are Global-As-View (GAV)
assertions, the inducegtontology can in fact be computed from
the OBDA specification in polynomial time. We then present an
algorithm for computing all most-general explanations tatey-
not question, given an externgtontology. The algorithm runs in
polynomial time when the arity of the query is bounded, areké-
cutes in exponential time in general. We show that the expitale
running time is unavoidable, unless=RP, because the problem of
deciding whether or not there exists an explanation to a mdty-
guestion given an extern8tontology is NP-complete in general.

The second type of ontologies that we consider are ont@ogie
that are derived either (a) from a schefeor (b) from an instance
of the schema. In both cases, the concepts of the ontologyeare
fined through concept expressions in a suitable languagéhat
we develop. Specifically, our concepts are obtained fromréhe
lations in the schema, through selections, projectiond, iater-
section. The difference between the two cases lies in thethey
subsumption relatiofi is defined. In the former, a conceftis
considered to be subsumed in another con€¥gf the extension
of C is contained in the extension 6t over all instances of the
schema. For the latter, subsumption is considered to htte i€x-
tension ofC is contained in the extension 6f with respect to the
given instance of the schema. TBentology induced by a schema
S, or instancel, denotedOs or Oy, respectively, is typically infi-
nite, and is not intended to be materialized. Instead, wegntean
algorithm for directly computing a most-general explao@atvith
respect taD;. The algorithm runs in exponential time in general.
However, if the schema is of bounded arity, the algorithnsrim
polynomial time. As for computing most-general explanasiavith
respect ta0s, we identify restrictions on the integrity constraints
under which the problem is decidable, and we present contyplex
upper bounds for these cases.

More related work:  The use of ontologies to facilitate access
to databases is not new. A prominent example is OBDA, where
queries are either posed directly against an ontology, @naol-

ogy is used to enrich a data schema against which queriessed p
with additional relations (namely, the concepts from theolmyy)

[9l [26]. Answers are computed based on an open-world assump-
tion and using the mapping assertions and ontology provined



the OBDA specification. As we described above, we make use of explicitly specified otherwise). We duot allow comparisons be-

OBDA specifications as a means to specify an external onjolog
and with a database instance through mapping assertiona- Ho
ever, unlike in OBDA, we consider queries posed againstabdae
instance under the traditional closed-world semanticd,tha on-
tology is used only to derive why-not explanations.

The problems of providing why explanations and why-not axpl
nations have also been investigated in the context of OBOJATh
and [13], respectively. The why-not explanations [of| [13]de

the data-centricapproach to why-not provenance as we discussed

earlier where their goal is to modify the assertions thatdes the
extensions of concepts in the ontology so that the missipig twill
appear in the query result.

There has also been prior work on extracting ontologies from
data. For example, iri_[24], the authors considered hecsigt
automatically generate an ontology from a relational dagekoy
defining project-join queries over the data. Other examptesn-
tology extraction from data include publishing relationiata as
RDF graphs or statements (e.g., D2RQ| [10], Triplify [5]). &ra-
phasize that our goal is not to extract and materialize ogies,
but rather, to use an ontology that is derived from data toprdm
why-not explanations.

Outline:  After the preliminaries, in Section] 3 we present our
framework for why-not explanations. In Sectioh 4 we discimss
detail the two ways of obtaining a®-ontology. In Sectiofils we
present our main algorithmic results. Finally, in Seciibwé study
variatations of our framework, including the problem of ¢moing
short most-general explanations, and alternative notionsxpfa-
nation and of what it means to braost general

2. PRELIMINARIES

A schemais a pair (S, X), whereS is a set{R1,..., R,} of
relation names, where each relation name has an associdted a
andX is a set of first-order sentences oemwhich we will refer as
integrity constraints Abusing the notation, we will writ& for the
schemaS, X). A factis an expression of the fordR(by, . .., bx)
whereR € S is a relation of arityk, and forl < i < k, we have
b; € Const, whereConst is a countably infinite set of constants.
We assume a dense linear orderon Const. An attribute A of
an k-ary relation nameR € S is a number such thatl < i <
k. For a factR(b) whereb = by,..., by, We sometimes write
Tay,...,4, (D) to mean the tuple consisting of théth, ..., Axth
constants in the tupl that is, the valugb., , . .., b4, ). Anatom
overS is an expressioR(z1, ..., z,), whereR € S and every
zs,% € {1,...,n} is a variable or a constant.

A database instangeor simply aninstance I over S is a set
of facts overS satisfying the integrity constrainis. Equivalently,
an instancel is a map that assigns to eakkary relation name
R € S afinite set ofk-tuples overConst such that the integrity
constraints are satisfied. By’ we denote the set of these tuples.
We writeInst(S) to denote the set of all database instances 8yer
andadom(I) to denote the active domain df i.e., the set of all
constants occurring in facts &f

Queries A conjunctive quer{CQ) overS is a query of the form
J7.0(T,y) wheregp is a conjunction of atoms ove$. Given an
instancel and a CQq, we writeq(/) to denote the set of answers
of g overI. In this paper we allow conjunctive queries containing
comparisons to constants, that is, comparisons of the fosgic,
whereop € {=,<,>,<,>} andc € Const. We show that
all upper bounds hold for the case of CQs with such compasison
and all lower bounds hold without the use of comparisonse@sl

tween variables.

Integrity constraints In this paper we consider different classes of
integrity constraints, including functional dependescad inclu-
sion dependencies. We also consider UCQ-view definitiols an
nested UCQ-view definitions, which can be expressed using in
tegrity constraints as well.

A functional dependendfD) on a relationR € S is an expres-
sion of the formR : X — Y whereX andY are subsets of the
set of attributes oRR. We say that an instandeoverS satisfies the
FD if for everya; anda. from R’ if wa(a@1) = w4 (a2) for every
A € X, thenmp(a:) = mp(az) foreveryB € Y.

An inclusion dependendyD) is an expression of the form

R[Ay,..., A C S[By,..., Byl

whereR, S € S, eachA; andB; is an attribute o and S respec-
tively. We say that an instandeover S satisfies the ID if

{may...a,(@) |G € R'} C {mpy,..5, () | b € S

Note that functional and integrity constraints can eqentl be
written as first-order sentencés [1].

View Definitions To simplify presentation, we treat view defintions
as a special case of integrity constraints.

A set of integrity constraint® over S is said to be aollection
of UCQ-view definition# there exists a partitio® = D UV such
that for everyP € V, X contains exactly one first-order sentence
of the form:

P(&) ¢ Visipi(@), (%)

where eachp; is a conjunctive query (with comparisons to con-
stants) oveD.

Similarly, a set of integrity constraints over S is said to be a
collection of nested UCQ-view definitioiishere exists a partition
S = D U V such that for eveny® € V, X contains exactly one
first-order sentence of the form (*), where egghis now allowed
to be a conjunctive query ov@ U V, but subject to the following
acyclicity condition. Let us say tha® € V depends orR € V,
if R occurs in the view definition oP, that is, in the sentence of
¥ that is of the form (*) forP. We require that the “depends on”
relation is acyclic. If, in the view definition of every € V, each
disjunctyp, contains at most one atom ov¥r, then we say that
is a collection ofinearly nested UCQ-view definitions.

Note that a collection of nested UCQ-view definitions (in the
absence of comparisons) can be equivalently viewed as a non-
recursive Datalog program and vice versa [7]. In particidazol-
lection of linearly nested UCQ-view definitions correspsnd a
linear non-recursive Datalog program.

Example 2.1. As an example of a schema, consi®e= D UV
with the integrity constraints in Figufd 1. An instanfeof the
schemdS is given in Figuré . O

3. WHY-NOT EXPLANATIONS

Next, we introduce our ontology-based framework for explai
ing why a tuple is not in the output of a query. Our framework is
based on a general notion of an ontology. As we shall desaribe
Sectior#, the ontology that is used may be an external ayptolo
(for example, an existing ontology specified in a descriptamic),
or it may be an ontology that is derived from a schema. Botlaare
special case of our general definition of &sontology.

Definition 3.1 (S-ontology) An S-ontology over a relational
schemaB is atriple O = (C, C, ext), where



Data schem® :

{Cities(name, population, country, contingnt)
Train-Connections(city_from, city_t)

View schemaV :

{BigCity(name), EuropeanCountry(name)
Reachable(city_from, city_t¢)

UCQ-view definitions:

BigCity(x) <+ Cities(x,y,z,w) A y > 5000000
EuropeanCountry() <  Cities(r,y,z,w) A w = Europe
Reachableg,y) <>  Train-Connections{,y) V

(Train-Connections{,z) A Train-Connectionsz,y))

Functional and inclusion dependencies:

country —  continent

BigCity[name] C  Train-Connections|city_from]
Train-Connections[city_from] C  Cities[name]
Train-Connections|city_to] C  Cities[name]

Figure 1: Example of a schemaS.

Cities Train-Connections
[name [population [country — Jcontinent ]  [city_from  [city_to ]
Amsterdam (779,808 [NetherlandgEurope Amsterdam |Berlin
Berlin 3,502,000 |Germany |Europe Berlin Rome
Rome 2,753,000 |ltaly Europe Berlin Amsterdam
New York 18,337,000 [USA N.Americg |New York San Francisco
San Francisg837,442 [USA N.Americg |San Francisg®anta Cruz
Santa Cruz |59,946 USA N.Americg |Tokyo Kyoto
Tokyo 13,185, 00QJapan Asia
Kyoto 1,400,000 |Japan Asia
BigCity EuropeanCountry Reachable
[name ] [name ] [city_from  Tcity_to ]
New Yorkl  [Netherland Amsterdam |Berlin
Tokyo Germany Berlin Rome
Italy Berlin Amsterdam
New York San Francisdo

San Francisg®anta Cruz
Tokyo Kyoto
Amsterdam |Rome
Amsterdam |Amsterdam
Berlin Berlin
New York Santa Cruz

Figure 2: Example of an instancel of S.

e C is a possibly infinite set, whose elements are catletcepts

e L is a pre-order (i.e., a reflexive and transitive binary retat)
on(, called thesubsumption relatigrand

e ext : C x Inst(S) — p(Const) is a polynomial-time com-
putable function that will be used to identify instances ocba-
cept in a given database instange(Const) denotes the pow-
erset ofConst).

More precisely, we assume thatt is specified by a Turing ma-
chine that, giverC' € C, I € Inst(S) andc € Const, decides in
polynomial time it € ext(C, I).

A database instance € Inst(S) is consistentvith O if, for all
017 CreC with 1 C Ca, we have@:ct(Ch I) - 6:625(027 I)

An example of arB-ontologyO = (C, C, ext) is shown in Fig-
ure[3, where the concept subsumption relatiors depicted by
means of a Hasse diagram. Note that, in this exangpl&,C, I)
is independent of the database instahdand, as a consequence,
every S-instance is consistent witf?). In general, this is not the
case (for example, the extension of a concept may be detedmin
through mapping assertions, cf. Secfiod 4.1).

We define our notion of an ontology-based explanation next.

Definition 3.2 (Explanation) Let O = (C,C,ext) be anS-
ontology, I an S-instance consistent wite. Let ¢ be anm-ary
query overS, anda = (a1,...,am) a tuple of constants such
thata ¢ ¢(I). Then a tuple of concept(s’s, ..., C\) fromC™
is called anexplanationfor @ ¢ ¢(I) with respect toO (or an
explanationn short) if:

e foreveryl <i <m,a; € ext(C;, I), and

o (ext(Ch,I) x ... % ext(Cm,I))Ng(I)=0.

In other words, an explanation is a tuple of concepts whose ex
tension includes the missing tupie(and thus explaing) but, at
the same time, it does not include any tuple/it) (and thus does
not explain any tuple ig(I)). Intuitively, the tuple of concepts is
an explanation that is orthogonal to existing tupleg(ih) but rele-
vant for the missing tuplg, and thus forms an explanation for why
ais noting(I). There can be multiple explanations in general and
the “best” explanations are the ones that are the most denera

Definition 3.3 (Most-general explanation)Let O = (C,C, ext)
be an S-ontology, and letE = (Ci,...,Cn) and E' =
(C1,...,Cy,) be two tuples of concepts fraff*.
e We say thaF isless generghan E’ with respect t@), denoted
asE <o F',if C; C Cj foreveryi,1 < i < m.

e We say thaf? is strictly less generghan £’ with respect ta),
denoted ast <o E',if E <o E’,andE’ £o E.

e We say thatF is amost-general explanatidor @ ¢ q(I) if E
is an explanation fof: ¢ q(7), and there is no explanatioR’
fora ¢ q(I) such thatt’ >0 E.

As we will formally define in Sectiohl5, @hy-not problenasks
the question: “why is the tupléu, . . ., am ) not in the output of a
queryq over an instancé of schemaS?” The following example
illustrates the notions of explanations and most-generplaea-
tions in the context of a why-not problem.

Example 3.4. Consider the instance/lp of the relational
schemaS = {Cities(hame, population, country, continent), Train-
Connections(city_from, city_to)} shown in Figure 2.

Suppose ¢ is the query 3z. Train-Connectionsf, z) A
Train-Connections(, y). That is, the query asks for all pairs
of cities that are connected via a city. Thefl) returns tuples
{(Amsterdam, Rome (Amsterdam, Amsterdam(Berlin, Berlin),
(New York, SantaCruz. A user may ask why is the tuple
(Amsterdam, New York not in the result ofg(I) (i.e., why is
(Amsterdam, New York ¢ ¢(I)?). Based on thé&-ontology
defined in Figur€13, we can derive the following explanatifors
(Amsterdam, New York¢ ¢(I) :

E1 = (Dutch-City, East-Coast-Cijy
E5 = (Dutch-City, US-City
E3 = (European-City, East-Coast-City

E4 = (European-City, US-City
E; is the simplest explanation, i.e., the one we can build bi-loo
ing at the lower level of the hierarchy in o&-ontology. Each
subsequent explanation is more general than at least orfeeof t
prior explanations w.r.t. to th8-ontology. In particular, we have
Ey >0 E2 >0 Ey,andE; >0 Es >0 Ei. Thus, the most-
general explanation for whiAmsterdam, New York¢ ¢(I) with
respect to ouB-ontology isE4, which intuitively informs that the
reason is because Amsterdam is a city in Europe while New York
is a city in the US (and hence, they are not connected by train)
Note that all the other possible combinations of conceptsnat
explanations because they intersect with). O



City

/\

European-City US-City

| N

Dutch-City ~ East-Coast-City West-Coast-City

ext(City, I) {Amsterdam, Berlin, Rome, New York,
San Francisco, Santa Cruz, Tokyo, Kypto

ext(European-CityI) {Amsterdam, Berlin, Rome

ext(Dutch-City, I) = {Amsterdan}
ext(US-City, I) = {New York, San Francisco, Santa Cjuz
ext(East-Coast-City) = {New York}

ext(West-Coast-City[) {Santa Cruz, San Francisco

Figure 3: Example ontology.

As we will see in Examplg4]9, there may be more than one most-
general explanations in general.

Generalizing the above example, we can informally define the
problem of explaining why-not questions via ontologiesa®ivs:
given an instancé of schemas, a queryg overS, anS-ontologyO
(consistent with') and a tuplea ¢ ¢(I), compute a most-general
explanation fora & ¢(I), if one exists, w.r.tO. As we shall de-
scribe in Sectiofi]5, in addition to the above problem of cotimgu
one most-general explanation, we will also investigateciee-
sponding decision problem that asks whether or not an eatitan
for a why-not problem exists, and whether or not a given taple
concepts is a most-general explanation for a why-not problie
our framework, theS-ontology © may be given explicitly as part
of the input, or it may be derived from a given database itgtan
or a given schema. We will introduce the different scenabips
which an ontology may be obtained in the next section, befae
describe our algorithms for computing most-general exaians
in Sectior{’b.

4. OBTAINING ONTOLOGIES

In this section we discuss two approaches by wiSiantologies
may be obtained. The first approach allows one to leverage-an e
ternal ontology, provided that there is a way to relate a ephc
in the ontology to a database instance. In this case, thé sét
concepts is specified through a description logic sucl € or
DL-Lite; C is a partial order on the concepts defined in the ontol-
ogy, and the functioextmay be given throughapping assertions
The second approach considersSaontology that is derived from
a specific database instance, or from a schema. This appi®ach
useful as it allows one to define an ontology to be used foraéxpl
ing why-not questions in the absence of an external ontology

In either case, we study the complexity of deriving sugh
ontologies based on the language on which concepts are diefine
the subsumption between concepts, and the funetianwhich is
defined according to the semantics of the concept language.

4.1 Leveraging an external ontology

We first consider the case where we are given an external-ontol
ogy that models the domain of the database instance, and-a rel
tionship between the ontology and the instance. We wilkthate
in particular howdescription logic ontologieare captured as a spe-
cial case of our framework.

In what follows, our exposition borrows notions from the
Ontology-Based Data Access (OBDA) framework. Specifically
we will make crucial use of the notion of @BDA specification
[17], which consists of a description logic ontology, a tielaal

schema, and a collection of mapping assertions. To keepfiee e
sition simple, we restrict our discussion to one particdescrip-

tion logic, calledDL-Liter, which is a representative member of
the DL-Lite family of description logics [12]DL-Litex is the ba-

sis for the OWL 2 QE profile of OWL 2, which is a standard on-
tology language for Semantic Web adopted by W3C. As the other
languages in th®L-Lite family, DL-Litex exhibits a good trade
off between expressivity and complexity bounds for impatrtaa-
soning tasks such as subsumption checking, instance clgeahkd
query answering.

TBox and Mapping Assertions. In the description logic litera-
ture, an ontology is typically formalized as a TBox (Termogy
Box), which consists of finitely manyBox axiomswhere each
TBox axiom expresses a relationship between concepts.gaide
TBoxes, ABoxes (Assertion Boxes) are sometimes used toilesc
the extension of concepts. To simplify the presentationdw@ot
consider ABoxes here.

Definition 4.1 (DL-Liteg). Fix a finite set®< of “atomic con-
cepts”and a finite setb r of “atomic roles’
e Theconcept expressiorend role expressionsf DL-Liter are
defined as follows:

Basic concept expression: B ::= A | 3R

Basic role expression: R:=P| P~
Concept expressions: C:=B|-B
Role expressions E:=R|-R

where A € ®¢c and P € ®r. Formally, a (®c,Pr)-
interpretationZ is a map that assigns to every atomic concept
in & a unary relation overConst and to every atomic role
in @ a binary relation overConst. The mapZ naturally
extends to arbitrary concept expressions and role exprassi

Z(P7) ={(z,y) | (y,2) e Z(P)} Z(3IP) =mi(Z(P))
Z(-P) = Const? \ Z(P) Z(~A) = Const \ Z(A)

Observe thaZ (3P ™) = m2(Z(P)).

e A TBox (Terminology Box)is a finite set of TBox axioms
where each TBox axiom is an inclusion assertion of the form
B C Cor RLC E,whereB is a basic concept expressioff,
is a concept expressioR is a basic role expression arfd is a
role expression. At®c, ¢ r)-interpretationZ satisfiesa TBox
if for each axiomX C Y, itholdsZ(X) C Z(Y).

For concept expressions, , C> and a TBox7 ', we say thaC;
is subsumed by’; relative to7 (notation: 7 = C1 C Cb)
if, for all interpretationsZ satisfying7", we have thaZ (Cy) C
Z(Cs).

An example of aDL-Litex TBox is given at the top of Fig-
ure[4. For convenience, we have listed next to each TBox gxiom
its equivalent semantics in first-order notation.

Next we describe what mapping assertions are. Given an-ontol
ogy and a relational schema, we can specify mapping assettio
relate the ontology language to the relational schema,wikisim-
ilar to how mappings are used in OBDA |26]. In general, magpin
assertions are first order sentences over the sclsemé@c U o
that express relationships between the symbolS and those in
dc- and®r. Among the different schema mapping languages that
can be used, we restrict our attention, for simplicity, te thass of
Global-As-View (GAV) mapping assertiofSAV mapping asser-
tions or GAV constraintsr GAV source-to-target tggls

2ht tp: /7w, W3. or g/ TR owl 2- prof i [ es/ #OW. 2 QL
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DL-Lite TBox axiom (first-order translation)

EU-City C City Va EU-City(z) — City(x)
Dutch-City = EU-City vz Dutch-City(z) — EU-City(z)
N.A.-City C City vz N.A.-City(z) — City(x)

EU-City C = N.A.-City
US-City C N.A.-City

City C 3 hasCountry
CountryC 3 hasContinent
JhasCountry C Country
JhasContinent C Continent
Jconnected_ City
Jconnected L City

Vz EU-City(z) — —N.A.-City(z)

Vz US-City(z) — N.A.-City(z)

Vz City(z) — Jy hasCountryz, y)

Vz Country(z) — Jy hasContineritr, v)
Vz (Jy hasCountryy, x)) — Country(z)
Vz (Jy hasContiner{y, z)) — Continentx)
Vz (Jy connectetir, y)) — City(x)

Vz (Jy connectedy, z)) — City(z)

GAV mapping assertions (universal quantifiers omitted éadability):

Cities(z, z, w, “Europe”) —  EU-City(z)
Cities(z, z, “Netherlands} w) —  Dutch-City()
Cities(z, z, w, “N.America”) —  N.A.-City(z)
Cities(z, z, “USA", w) —  US-City(z)
Cities(z, v, z, w) —  Continent(v)
Cities(z, k, y, w) — hasCountry(x,y)
Cities(z, k, w, y) — hasContinent{,y)
Train-Connectiofiz, y),

Cities(z, z1, z2, x3), Cities(y, y1,y2,y3) — connectedt,y)

Figure 4: Example DL-Lite ontology with mapping assertions

Definition 4.2 (GAV mapping assertions)A GAV mapping asser-
tion over(S, (Pc U ®r)) is a first-order sentence of the form

VE (e1(21), -+, pn(@n)) = ()

whereZ C 21 U ... U2y, ¢1,...,pn, are atoms ovelS andq is
an atomic formula of the form(z;) (for A € ®¢) or P(z;, x;)
(for P € ®g). LetI be anS-instance andZ an (®¢,®r)-
interpretation. We say that the pa(f,Z) satisfieshe GAV map-
ping assertion (notation(/,Z) = ) if it holds that for any tu-
ple of elements from adom (1), witha = U, ., dr, if I =
p1(d1),...,pn(dn), thena; € Z(A), witha; € a (I_f Y = A(zy))
or (ai, aj) S I(P), witha;, a; € a (if ¢ = P(zl,:c]))

Intuitively, a GAV mapping assertion associates a conjuact
query ovelS to an element (concept or atomic role) of the ontology.
A set of GAV mapping assertions associates, in general,aofi
conjunctive queries to an element of the ontology. Exampfes
GAV mapping assertions are given at the bottom of Fiflire 4.

OBDA induced ontologies

Definition 4.3 (OBDA specification) Let7 be a TBoxS a rela-
tional schema, and\U a set of mapping assertions froghto the
concepts off . We call the triple5 = (7, S, M) an OBDA speci-
fication

An (®¢c, Dr)-interpretationZ is said to be asolutionfor an S-
instancel with respect to the OBDA specificatidh if the pair
(I,Z) satisfies all mapping assertions.im andZ satisfiesT .

Note that our notion of an OBDA specification is a special case
of the one given in [17], where we do not consider view in@usi
dependencies. Also, as mentioned earlier, our OBDA spatiifits
in this paper assume th@tis aDL-Litex TBox and M is a set of
GAV mappings. These restrictions allow us to achieve goad-co
plexity bounds for explaining why-not questions with ooigies.

In particular, it is not hard to see that, for the OBDA speaifiens
we consider, everg-instancel has a solution.

Theorem 4.1.([12}[26]) Let 7 be a DL-Litezx TBox.
1. There is @ TiME-algorithm for deciding subsumption. That is,
given7 and two concept€'i, Cs, decide if7 = C1 C Co.

2. There is an algorithm that, given an OBDA specification
B, an instancel over S and a conceptC, computes
certain(C,I,B) = N{Z(C) | Z is a solution forl w.r.t. B}.
For a fixed OBDA specification, the algorithm runsRTIME
(ACY in data complexity).

Every OBDA specification induces &rontology as follows.

Definition 4.4. Every OBDA specificatio = (7, S, M) where
T is a DL-Liter TBox andM is a set of GAV mappings gives rise
to anS-ontology where:

e Co, is the set of all basic concept expressions occurring in

o Log=1{(C1,C2) | T |F C1 E Ca}

e exto, is the polynomial-time computable function given by
extos (C,I) = ({Z(C) | Z is a solution for] w.r.t. 5}

Note that the fact thatxto, is the polynomial-time computable
follows from Theoreni 4]1.

We remarked earlier that, for the ODBA specificatighthat we
consider, it holds that every input instance has a solutidollows
that every input instancg is consistent with the correspondiSg
ontologyO5.

Theorem 4.2.TheS-ontologyOs = (Co,,Coy, ertoy) can be
computed from a given OBDA specificatih= (7,S, M) in
PTIME if 7 is a DL-Liter TBox andM is a set of GAV mappings.

We are now ready to illustrate an example where a why-not-ques
tion is explained via an external ontology.

Example 4.5. Consider the OBDA specificatiof = (7, S, M)
whereT is the TBox consisting of thBL-Liter axioms given in
Figure[3,S is the schema from Examdle_B.4, and is the set of
mapping assertions given in Figlite 4. These together indn&e
ontologyOi = (Coz, Coy, extoyg). The seCo, consists of the
following basic concept expressions:

City, EU-City, N.A.-City, Dutch-City,

US-City, Country, Continent,

3 hasCountryd hasCountry , 3 hasContinent,
3 hasContinent, 3 connected; connected .

The set_o,; includes the pairs of concepts of the TBPxgiven
in Figure[4. We use the mappings to compute the extensiorchf ea
concept iCo,, using the instancé on the left of Figur€R. We list
a few extensions here:

exto, (City, I) {Amsterdam, Berlin, Rome, New York,

San Francisco, Santa Cruz, Tokyo, Kypto

exto (EU-City, I) = {Amsterdam, Berlin, Rome

extoz (N.A.-City, I) = {New York, San Francisco, Santa Cjuz
exto,(3hasCountry , 1) = {Netherlands, Germany, Italy, USA, Jagan
exto, (3connected!) = {Amsterdam, Berlin, New York

Now consider the query(z,y) = 3z. Train-Connections{, z)
A Train-Connections(, y), andg(I) as in Exampl&3l4. As before,
we would like to explain why igAmsterdam, New York ¢ ¢(I).
This time, we use the inducesiontology Oz described above to
derive explanations fofAmsterdam, New York¢ ¢(I):

E; = (EU-City, N.A-City) Es = (Dutch-City,N.A.-City)

Es = (EU-City, US-City) E, = (Dutch-City,US-City

Among the four explanations abovg; is the most general. O

4.2 Ontologies derived from a schema

We now move to the second approach where an ontology is de-
rived from an instance or a schema. The ability to derive dolon
ogy through an instance or a schema is useful in the contestavh



an external ontology is unavailable. To this purpose we first
troduce a simple but suitable concept language that canfbede
over the schem8.

Specifically, our concept language, denoted.gsmakes use of
two relational algebra operations, projectiar) &nd selectiond).
We firstintroduce and motivate the language. We will thercdiee
our complexity results for testing whether one conceptlisamed
by another, and for obtaining an ontology from a given instaor
a schema. We will make use of these results later on in Sé&fbn
and Sectiofi5]3.

Definition 4.6 (The Concept Languagks). LetS be a schema. A
conceptinLg is an expressiod’ defined by the following grammar.

D:=R | OAjopey,..., Anopcn(R)
C:=T|{c}|ma(D) | CNC

In the above,R is a predicate name fror8, A, A1,..., A, are
attributes in R, not necessarily distincg, c1,...,c, € Const,
and each occurrence @ is a comparison operator belonging to
{=,<,>,<,>}. ForC = {C4,...,Cx} afinite set of concepts,
we denote by1C the conjunctiorC M...MNCy. If Cis empty, we
takemC to beT.

Given a finite set of constant§ C Const, we defineLs[K]
as the concept languagbs whose concept expressions only use
constants fromiC. By selection-freeLs, we mean the language
Ls whereo is not allowed. Similarly, byntersection-fred.s, we
mean the languagé&s wherer is not allowed, and by.2"*, we
mean the minimal concept languadig where botho and 1 are
not allowed.

Observe that thd.s grammar defines a concept in the form
Cy N ... N Cp where eachC; is T or {c} or ma(R) or
TA(C A oper,..., Anopen (R)). A concept of the form{c} is called
anominal A nominal {c} is the “most specific” concept for the
constantc. Given a tuplea that is not in the output, the corre-
sponding tuple of nominal concepts forms a default, albiitad,
explanation for why not.

As our next example illustrates, even though our concept lan
guageLs appears simple, it is able to naturally capture many intu-
itive concepts over the domain of the database.

Example 4.7. We refer back to our schentin Figure[1. Sup-
pose we do not have access to an external ontology such asehe o
given in Exampl€314. We show that even so, we can still caostr
meaningful concepts directly from the database schemay tkin
concept language described above. We list a few semantiepts
that can be specified withs in Figure[B, where we also show the
correspondingsELECTFFROM-WHERE style expressions and intu-
itive meaning. a

Example[4.)7 shows that, even thoufib is a simple language
where concepts are essentially intersections of unaryegtions
of relations and nominals, it is already sufficiently exgies to
capture natural concepts that can be used to build meahiexfu
planations. It is worth noting that, for minor extensionsta# lan-
guageLs, such as with£-comparisons and disjunction, the notion
of a most-general explanation becomes trivial, in the sd¢nat
for each why-not question, there is a most-general exptamétat
essentially enumerates all tuples in the query answer.

By using Ls, we are able to define an ontology whose atomic
concepts are derived from the schema itself. This approdmhisa
us to provide explanations using a vocabulary that is ajrémuil-
iar to the user. We believe that this leads to intuitive anefuls
why-not explanations.

If we view each expression4 (D) as an atomic concept, then
the languagéel.s corresponds to a very simple concept language,
whose concepts are built from atomic concepts and nomirgls u
ing only intersection. In this sensés can be considered to be
a fragment ofDL-Litecore,n With nominals (also known aBL-
Litenorn [4]), i.€., the description logic obtained by enrichibd-
Litecor. (the simplest language in the DL-Lite family) with con-
junction.

The precise semantics @fs is as follows. Given a concegt
that is defined inLs and an instancé overS, the extension of”
in I, denoted byfC]’, is inductively defined below. Intuitively, the
extension ofC in I is the result of evaluating the query associated
with C' over1.

[R]! =R! _

IIUAlop] C1,.-,Anop, cn (R)]]I = {b € RI ‘ WAi(b)opiciv 1<:< TL}
[ = Const

[{c}’ ={c}

[ra(D)]* =ma([D]")

[CinCa)! =[C1]" n[Ca]’

The notion of when one concept is subsumed by another is de-
fined according to the extensions of the concepts. Therenare t
notions, corresponding to concept subsumption w.r.t. ataite
or subsumption w.r.t. a schema. More precisely, given twe co
ceptsCi, Ca,

e we say thatC, subsumes”; w.rt. an instancel (notation:
C1 Ty Cy)if [[Cl]]l - [[02]]1-

e we say thatC, subsumes’; w.rt. a schemaS (notation:
C:1 Cs (), if for every instancd of S, we have thatC; Cr
Cs.
We are now ready to define the two types of ontologies, which
are based on the two notions of concept subsumption dedcribe
above, that can be derived from an instance or a schema.

Definition 4.8 (Ontologies derived from a schemalet S be a
schema, and lef be an instance d8. Then the ontologies derived
from S and I are defined respectively as

e Os = (Ls,Cs,ext) and
o OI = (LS7 E],efﬁt),

whereezt is the function given byzt(C,I') = [[C]]” for all in-
stancesl’ overS. By Os[K] we denote the ontologyfs[K], Cs
,ext), and byO;[K] we denote the ontolog\Ls [K], C;, ext).

It is easy to verify that the subsumption relatidag and C;
are indeed pre-orders (i.e., reflexive, and transitiveticeia), and
that, for every fixed schem& the function[[C]]I/ is polynomial-
time computable. Hence, the above definition is well-defieezh
though the ontologies obtained in this way are typicallyni.
From the definition, it is easy to verify that 1 Cs Cs, then
C1 L1 Co.

The following result about deciding ; is immediate, as one can
always execute the queries that are associated with theptsnand
then test for subsumption, which can be done in polynomiagdti

Proposition 4.1.The problem of deciding, given an instancef a
schemaS and given twals concept expressions;, Cs, whether
C1 C1 Cy,isinPTIME.

On the other hand, the complexity of decidifg depends on
the type of integrity constraints that are used in the spetifin of
S. Tabled provides a summary of relevant complexity results.

Theorem 4.3.Let W be one of the different classes of schemas
with integrity constraints listed in Tabld 1. The complgxf the
problem to decide, given a scherBain VW and two Ls concept



Lg concept expression

Wnam({cities)
7rnam‘{O'continem:“Europe“(cmes))

Tname( Ocontinent="N.America”(Cities))
Tname(Tpopulation>1000000 (Cities))

71 (BigCity)

{“Santa Cruz’}

Tname(Tpopulation< 1000000 ( Cities) )1
Teity_to(Tcity_from=Amsterdan{ R€achablg)

name from Cities

name from BigCity
“Santa Cruz”

SELECT-FROM-WHERE formulation

name from Cities where continent="Europe”
name from Cities where continent="N.America”
name from Cities where population>1000000

name from Cities where population<1000000
AND city_from from Reachable where city_to=Amsterdal

Intuitive meaning
City
European City
N.AmericaityC
Large City
name of BigCity
Santa Cruz

mSmaII City that is reachable from Amsterdam.

Figure 5: Example of concepts specified itl.s.

Constraints Complexity of subsumption fbg
UCQ-view def. (no comparisons) NP-complete
UCQ-view def. 117 -complete

linearly nested UCQ-view def.
nested UCQ-view def.

115 -complete
CONEXPTIME-complete

FDs in PTIME
IDs ? (in PTiME for selection-freel.g)
IDs + FDs Undecidable

All stated lower bounds already hold f6&" concept expressions.

Table 1: Complexity of concept subsumption.

expressiong”:, C2, whetherCy; Cgs (s, is as indicated in the
second column of the corresponding row in Tdble 1.

For example, given two concepts, C>, and a scheméS, X)
whereX is a collection of nested UCQ-view definitions, the com-
plexity of decidingC1 Cs Cs is CONEXPTIME-complete. The
lower bound already holds for concepts specified 31”. We con-
clude this section with an analysis of the number of distoart-
cepts that can be formulated in a given concept language @nd a
example that illustrates explanations that can be compinted
such derived ontologies.

Proposition 4.2.Given a schem& and a finite set of constants
K C Const, the number of unique concepts (modulo logical
equivalence)

e in LE™[K] is polynomial in the size & and K,

e in selection-free or intersection-freks[K] is single exponen-
tial in the size ofS and .

e in Ls[K] is double exponential in the size®fand K.

Example 4.9. Let S and be the schema and instance from Fig-
ure[d and FigurE]2. Suppose the concept languagés used to
define among others the concepts from Fidgdre 5. The following
concept subsumptions can be derived fi8mNote that subsump-
tion Cs impliesC;.

Tnamd Ocontinent="Europe’(Cities)) Cs  mnamd Cities)

Tname Opopulation>7000000Cities)) Ts  7mamd BigCity)

mnamd BigCity) Cs mnamdCities)

mnameBigCity) Cs ity _from(Train-Connectionp

The first and second subsumptions follow from definitions.e Th
third one holds because accordinglip a BigCity is a city with
population more than 5 million. The fourth subsumption dais
from the inclusion dependency that each BigCity must havaia t
departing from it. There are subsumptions that hol@inbut not

in Os. For instance,

7Tcity_lo(O'City_from:Amsterdan( ReaChab'?) L
Tcity_to(Ucity_from:Berlin ( ReaChab'}?) s

holds w.r.t.O;, wherel is the instance given in Figuké 2, but does
not hold w.r.tOs, since one can construct an instance where not

all cities that are reachable from Amsterdam are reachabte f
Berlin.

We now give examples of most-general explanations
wrt.  Os and O;. As before, letq(z,y) = Jz. Train-
Connections(, z) A Train-Connections(,y) be a query with
q(I) {(Amsterdam, Romle (Amsterdam, Amsterdam
(Berlin, Berlin), (New York, Santa Cruz}. We would like to
explain why (Amsterdam, New York ¢ ¢(I) using the derived
ontologiesOs and O;. Note that if £ is an explanation w.r.t.
Os, then it is also an explanation w.r€; and vice versa. Some
possible explanations are:

E1 = (mnamd ocontinent=EuropkCities)),
Teity_from(Tcity_to = San Francisdol fain-Connectiony))
E3 = (mnamd ocontinent=EuropkCities)),
Tname Ocontinent=N.AmerickCiti€s) ) )
E3 = (7city_to(0city_from = Berlin(R€achablg),
Teity_from(Tcity_to = Santa crugReachablg))
E4 = ({Amsterdan}, mname opopulation>7000006Cities) ))
Es5 = (mnamd 0country=NetherlandeCities)),
Tname BigCity) M mname Tcontinent=N.Americ4Cities) ))
E¢ = ({Amsterdan}, {New York})
E7 = (mnamd dcontinent=EuropkCities) ), mnamdBigCity) })
Eg = (mnamd ocontinent=EuroptCities)),
Tname(Opopulation>7000000Cities) ) })

For exampleE; states the reason is that Amsterdam is a European
city and New York is a city that has a train connection to SamFr
cisco, and there is no train connection between such cites v
city. The trivial explanationEs is less general than any other ex-
planation w.r.tOs (andO; to0). It can be verified thab> and E;

are most-general explanations w.r.t b6ls andO;. In particular,

Ey >0, Es and B> >0, Es, but E5 Fos Es and E» Fos E3
since there might be an instance®fvhere Netherlands is not in
Europe or where Berlin is reachable from a non-european city

In general, ifE is an explanation w.r.tO; then E is also an
explanation w.r.t.Os, and vice versa. The following proposition
also describes the relationship between most-generaheaiibns
w.r.t Og andQj.

Proposition 4.3.Let S be a schema, and Idtbe an instance d8.

(i) Every explanation w.r.tOs is an explanation w.r.tO; and vice
versa.

(i) A most-general explanation w.i@s is not necessarily a most-
general explanation w.r.t0;, and likewise vice versa.

Proof. The statement:) follows from Definition[3:2 and the defi-
nition of ext for Og andO;. That is,ext is the same on the input
instancel for bothOs andO;, and the conditions of Definitidn 3.2
use only the value ofzt on I. Going back to Example 4.9, is

a most-general explanation w.r?s, but it is not a most-general
explanation w.r.t. O; (since E is a strictly more general expla-
nation thanE; w.rt. Or). Thus, the first direction ofi:) holds.

For the other direction dfiz), considerEs which is a most-general



explanation w.r.tO;. But it holds thatE; >og Es and E- is an
explanation. Note tha; and Es are equivalent w.r.t0;. a

5. ALGORITHMS FOR COMPUTING
MOST-GENERAL EXPLANATIONS

Next, we formally introduce the ontology-based why-nottpro
lem, which was informally described in Sectigh 3, and we defin
algorithms for computing most-general explanations. Vet &ty
defining the notion of a why-not instance (or why-not questio

Definition 5.1 (Why-not instance) Let S be a schema/ an in-
stance ofS, ¢ an m-ary query over/ anda = (ai,...,am)
a tuple of constants such that ¢ ¢(I). We call the quintuple
(S,1I,q,Ans,a), where Ans = ¢(I), a why-not instanceor a
why-not question

In a why-not instance, the answer getsof ¢ overI is assumed
to have been computed already. This corresponds closdig sre-
nario under which why-not questions are posed where theraser
quests explanations for why a certain tuple is missing irothtput
of a query, which is computed a priori. Note that sifoes=q(I)
is part of a why-not instance, the complexity of evaluatjmyer I
does not affect the complexity analysis of the problems weysin
this paper. In addition, observe that although a queis/part of a
why-not instance, the query is not directly used in our dgion of
explanations for why-not questions with ontologies. Hogrethe
general setup accomodates the possibility to congjagrectly in
the derivation of explanations and this is part of our futuoek.

We will study the following algorithmic problems concergin
most-general explanations for a why-not instance.

Definition 5.2. The EXISTENCE-OF-EXPLANATION problem is
the following decision problem: given a why-not instance
(S, I,q, Ans,a) and anS-ontologyO consistent witH, does there
exist an explanation fof ¢ Ans w.rt. O?

Definition 5.3. The CHECK-MGE problem is the following
decision problem: given a why-not instan¢8, I, q, Ans,a),

an S-ontology O consistent with/, and a tuple of concepts
(C1,...,Cr), is the given tuple of concepts a most-general ex-
planation w.r.t.O fora ¢ Ans?

Definition 5.4. The CoOMPUTE-ONE-MGE problem is the fol-
lowing computational problem: given a why-not instance
(S,I,q,Ans,a) and anS-ontology O consistent withZ, find a
most-general explanation w.r@2 for @ ¢ Ans, if one exists.

Note that deciding the existence of an explanation w.r.tnigefi
S-ontology is equivalent to deciding existence of a mostegah
explanation w.r.t. the sant&ontology.

Thus, our approach to the why-not problem makes us8-of
ontologies. In particular, our notion of a “best explanatics a
most-general explanatiowhich is defined with respect to &t
ontology. We study the problem in three flavors: one in whieh t
S-ontology is obtained from an external source, and thuspais
of the input, and two in which th8-ontology is not part of the in-
put, and is derived, respectively, from the sche®har from the
instancel.

5.1 External Ontology

We start by studying the case of computing ontology-based wh
not explanations w.r.t. an externg@tontology. We first study the
complexity of deciding whether or not there exists an exgiim
w.r.t. an externaB-ontology.

Theorem 5.1.
1. The problenCHECK-MGE is solvable inPTIME.

2. The problenEXISTENCE-OF-EXPLANATION is NP-complete.
It remainsNP-complete even for bounded schema arity.

Intuitively, to check if a tuple of concepts is a most-gehesa
planation, we can first check in PME if it is an explanation. Then,
for each concept in the explanation, we can check inMETif it is
subsumed by some other concepsuch that by replacing it with
this more general concept, the tuple of concepts remaingpla-e
nation. The membership in NP is due to the fact that we cansgues
a tuple of concepts of polynomial size and verify in IRE that it
is an explanation. The lower bound is by a reduction from the S
COVER problem. Our reduction uses a query of unbounded arity
and a schema of bounded arity. As we will show in Thedrerh 5.2,
the problem is in PTME if the arity of the query is fixed.

In light of the above result, we define an algorithm, calleel th
EXHAUSTIVE SEARCHALGORITHM, which is an XPTIME algo-
rithm for solving the @ MPUTE-ONE-MGE problem.

Algorithm 1: EXHAUSTIVE SEARCHALGORITHM

Input: a why-not instancéS, I, q, Ans, @), where
a = (a1,...,am), afiniteS-ontology
O = (C,C,ext)
Output: the set of most-general explanations@og Ans wrt
@]
1 LetC(a;)) ={C €C|a; € ext(C,I)}foralli,1 <i<m
2 LetxX = {(C1,...,Cn) | C; €
C(a;) and(ext(Cr,I) X ... x ext(Cm,I)) N Ans = 0}
3 foreach pair of explanationsZ;,E> € X, E1 # E> do
4 if E1 >0 Esthen
5 L | removeF, from X
6 returnX

This algorithm first generates the set of all possible exgtians,
and then iteratively reduces the set by removing the tuflesm
cepts that are less general than some tuple of concepts sethe
In the end, only most-general explanations are returnefirgitin
line 1, for each element of the tugie= (a1, .. ., am), we build the
setC(a;) containing all the concepts fiwhose extension contains
a;. Then, in line 2, we build the set of all possible explanagiby
picking a concept i€ (a;) for each position irw, and by discard-
ing the ones that have a non empty intersection with the ansste
Ans. Finally, in lines 3-5, we remove from the set those explana-
tions that have a strictly more general explanation in the se

We now show that EHAUSTIVE SEARCH ALGORITHM is cor-
rect (i.e. it outputs the set of all most-general explametifor the
given why-not instance w.r.t. to the giv@iontology), and runs in
exponential time in the size of the input.

Theorem 5.2.Let the why-not instancéS, I, q, Ans,a) and the

S-ontologyO be an input taEXHAUSTIVE SEARCHALGORITHM

and letX be the corresponding output. The following hold:

1. X is the set of all most-general explanations for¢ Ans
(modulo equivalence);

2. EXHAUSTIVE SEARCH ALGORITHM runs in EXPTIME in the
size of the input (ifP TIME if we fix the arity of the input query).

Theoren{5.R, together with Theordm14.2, yields the follayvin
corollary (recall that, by construction @z, it holds that every
input instancd is consistent wittOp).



Corollary 5.5. There is an algorithm that takes as input a why-
not instance(S, I, q, Ans,a) and an OBDA specificatiol8 =
(7,8, M), where T is a DL-Litex TBox and M is a set of
GAV mappings, and computes all the most-general explamatio
fora ¢ Ans w.rt. theS-ontologyOp in EXPTIME in the size of
the input (inPTIME if the arity of theq is fixed) .

5.2 Ontologies from an instance

We now study the why-not problem w.r.t. &tontology O,
that is derived from an instance. First, note that the preserf
nominals in the concept language guarantees a trivial anfore
the EXISTENCE-OF-EXPLANATION W.R.T. Oy problem. An ex-
planation always exists, namely the explanation with naisigor-
responding to the constants of the tupleln fact, amost-general
explanationalways exists, as follows from the results below.

Definition 5.6. The COMPUTE-ONE-MGE W.R.T. Oy is the
following computational problem: given a why-not instance
(S,I,q,Ans,a), find a most-general explanation w.r.tO; for

a ¢ Ans, whereQ; is the S-ontology that is derived frond, as
defined in Sectidn 4.2.

First, we state an important proposition, that underliesdor-
rectness of the algorithms that we will present. The folluyvi
proposition shows that, when we search for explanations @y,
we can always restrict our attention to a particular finitrnietion
of this ontology.

Proposition 5.1.Let (S, I, ¢, Ans, @) be a why-not instance.

is an explanation fom ¢ Ans w.rt. Oy (resp. Os), then there
exists an explanatio?’ for a ¢ Ans such thatE <o, ] E’

(resp. E <ogix) E'), whereK = adom(I) U {a1,...,am} and
each constant i’ belongs ta<.

In our proof, we iteratively reduce the number of constarmts o
curring in the explanation. That is, for every explanatigrwith
concepts containing constants outsidedém (7)U{a1, ..., am},
we produce a new explanatid# which is more general thaki and
which contains less constants outside®bm () U{a1,...,am}.

Notice that since, in principle, it is possible to matedali
the ontologyO;[K] (i.e., to explicitly compute all the concepts
C in the ontology, the subsumption relatién;, and the exten-
sionext), the EXHAUSTIVE SEARCH ALGORITHM, together with
Proposition[511, give us a method for solvingdKGPUTE-ONE-
MGE W.R.T. O;r. In particular, given a schema,xHAUSTIVE
SEARCH ALGORITHM solves @WMPUTE-ONE-MGE W.R.T. Oy
in 2ExPTIME (in EXPTIME if the arity of ¢ is fixed). This is
because to find a most-general explanation Wt it is suffi-
cient to restrict to the concept language[K] and its fragments,
where X = adom(I) U {ai,...,am}. Then GMPUTE-ONE-
MGE w.R.T. O; is solvable in 2EPTIME follows from the fact
that theS-ontology O;[K] is computable in at most 28TIME.

We now present a more effective algorithm for solving
COMPUTE-ONE-MGE W.R.T. O7. (See AlgorithniR.) We start by
introducing the notion of &ast upper bounaf a set of constants
X w.r.t. an instancd, denoted byub; (X). This, intuitively, cor-
responds to the most-specific concept whose extensioniesiatia
constants ofX. We first consider the case in whidhb;(X) is
expressed using selection-frég concepts. The following lemma
states two important properties lob; (X) that are crucial for the
correctness of Algorithiial 2.

Lemma 5.1.Given an instancd of schemeS and a set of con-
stantsX, we can compute in polynomial time a selection-ffge
concept, denotetlib; (X), that is the smallest concept whose ex-
tension contains all the elements } definable in the language.
In particular, the following hold:

1. X C ext(lubs (X), 1),

2. there is no concepf”’ in selection-freeLs such thatC’ —;
lub;(X) and X C ext(C’,I).

We are now ready to introduce the algorithm. We will startwit
a high-level description of the idea behind it. The algarnthav-
igates through the search space of possible explanationg as
incremental search strategy and makes use of the abovediatine
tion of lub. We start with an explanation that has, in each position,
the lub of the constant (i.e., nominal) that occurs in that position
Then, we try to construct a more general explanation by edipgn
the set of constants considered by ekth

Notice that NCREMENTAL SEARCHALGORITHM produces ex-
planations which are tuples of conjunctions of concepterétore
it produces an explanation whose concepts are conceptssxpns
in the languagd.s or selection-fred.s. We will study the behavior
of the algorithm in each of these cases separately.

Algorithm 2: INCREMENTAL SEARCHALGORITHM

Input: a why-not instancés, I, q, Ans, @)
Output: a most-general explanation far¢ Ans wrt O;
1 LetK = adom(I) U {ai,...,am}
2 LetX = (X4,...,Xm) s.t. eachX; = {a;}. // support set
3 LetE = (C4,...,Cn) s.t. eachC; = lubz(X}). /first
candidate explanation
4 foreach1l < j < mdo

5 foreachb € adom([) \ ext(E;, I) do

6 X! = X, U {b}

7 Let C} = lub;(X}) // amore general concept in positign

8 LetE' := (C17...,C§7...Cm) I/ a more general
explanation

9 if ' N Ans = ( then

10 E:=F

11 LX::(Xl,...,XJ’v,...Xm)

12 returnk

First, we focus on the case in whichdREMENTAL SEARCH
ALGORITHM produces most-general explanations using selection-
free Ls concepts. We show that the algorithm is correct, i.e., that
it outputs an explanation fat ¢ Ans w.r.t. Oy, and that it runs in
polynomial time with selection-freés.

Theorem 5.3 (Correctness and running time oRGCREMENTAL

SEARCHALGORITHM). Let the why-not instandes, I, ¢, Ans, @)

be an input tol NCREMENTAL SEARCH ALGORITHM and F the

corresponding output. The following holds:

1. E is a most-general explanation far ¢ Ans w.rt. O =
(C,Cr, ext), whereC is selection-fred.s;

2. INCREMENTAL SEARCH ALGORITHM runs in PTIME in the
size of the input.

Now we extend our analysis oRCREMENTAL SEARCHALGO-
RITHM to the general case in which it works withs. First, we
state an analogue of Lemimal.1 fos.

Lemma 5.2.Given an instancé of S and a set of constant’, we
can compute in exponential timela concept, denotetlib? (X),
that is the smallest concept whose extension contains eleks-
ments inX definable in the language. Such concept is polynomial-
time computable for bounded schema arity. In particulag tbl-
lowing hold:

1. X Cext(lubf(X), 1),



2. there is no concepf” in Ls such thatC’ = lubf(X) and
X Cext(C',I).

By INCREMENTAL SEARCH ALGORITHM WITH SELECTIONS
we will refer to the algorithm obtained fromNEREMENTAL
SEARCHALGORITHM by replacingub; (X) with lub? (X) in line
3 and line 7.

The following Theorem shows thaNEREMENTAL SEARCH
ALGORITHM WITH SELECTIONSIS correct, i.e., that it outputs an
explanation fol@ ¢ Ans w.r.t. theS-ontologyO;, and that it runs
in exponential time (in polynomial time for bounded schemit/h

Theorem 5.4 (Correctness and running time oRGREMENTAL

SEARCH ALGORITHM WITH SELECTIONYS). Let the why-not in-

stance(S, I, ¢, Ans,a) be an input tolNCREMENTAL SEARCH

ALGORITHM WITH SELECTIONSand E the corresponding output.

The following hold:

1. E is a most-general explanation far ¢ Ans w.rt. Oy =
(C,Cr,ext), whereC is Ls;

2. INCREMENTAL SEARCHALGORITHMruns inEXPTIME in the
size of the input (ifP TIME for bounded schema arity).

We close this section with the study of the following problem

Definition 5.7. The CHECK-MGE Ww.R.T. O; problem is
the following decision problem: given a why-not instance
(S,I,q,Ans,a) and a tuple of concepty = (Ci,...,Ch), is

E a most-general explanation w.r@; fora ¢ Ans?

Our next proposition states the running time of our alganifor
the CHECK-MGE W.R.T. O; for various fragments of our concept
language. The algorithm operates very similarly to linekl4ef
INCREMENTAL SEARCHALGORITHM. Given a tuple of concepts,
we check whether that tuple of concepts can be extended toea mo
general tuple of concepts through ideas similar to lineg 4flIN-
CREMENTAL SEARCH ALGORITHM. If the answer is “no”, then
we return “yes”. Otherwise, we return “no”.

Proposition 5.2.There is an algorithm that solveS8HECK-MGE
W.R.T. Oy in:
e PTIME for selection-freeLs, or for Ls with bounded schema
arity;

e EXPTIME for Ls in the general case.

5.3 Ontologies from Schema

We now study the case of solving the why-not problem w.r.t. to
an S-ontology Os that is derived from a schema. As in the previ-
ous case, the presence of nominals in the concept language gu
antees that the trivial explanation always exists. Theesfee do
not consider the decision problenx ETENCE-OF-EXPLANATION
W.R.T. Os.

Definition 5.8 (COMPUTE-ONE-MGE W.R.T. Os). The
COMPUTE-ONE-MGE W.R.T. Os is the following computa-
tional problem: given a why-not instand¢8, I, ¢, Ans, @), find a
most-general explanation w.r@s for a ¢ Ans, whereOs is the
S-ontology that is derived fror88, as defined in Sectidn4.2.

The complexity of @MPUTE-ONE-MGE W.R.T. Os depends
on the complexity of subsumption checking fbg. As seen in
Table[d, subsumption checking with respect to arbitrarggrity
constraints is undecidable. Therefore, for the genera icawhich
no restriction is imposed on the integrity constraintQMPUTE-
ONE-MGE W.R.T. Os is unlikely to be decidable. The restrictions
on the integrity constraints & allow for the definition of several
variants of the problem that, under some restrictions, acédble.

We restrict now to the cases in which we are able to material-
ize theS-ontology Os K], with K = adom(I) U {a1,...,am}.
EXHAUSTIVE SEARCH ALGORITHM gives us a method for solv-
ing COMPUTE-ONE-MGE W.R.T. Os. The following proposition
gives us a double exponential upper bound f@MPUTE-ONE-
MGE w.R.T. Os in the general case, and a polynomial case under
specific assumptions (cf. Tafjle 1).

Proposition 5.3.There is an algorithm that solve€OMPUTE-

ONE-MGE W.R.T. Os

e in 2EXPTIME for Ls, provided that the input schenfa is
from a class for which concept subsumption can be checked
in EXPTIME,

e in ExPTIME for selection-fred.s, and projection-fred.s, pro-
vided that the input schentiis from a class for which concept
subsumption can be checkedBRPTIME,

e in PTIME for L2 if the arity ofq is fixed and provided that the
input schemas is from a class for which concept subsumption
can be checked iRTIME.

We end with the definition of BECK-MGE W.R.T. Os.

Definition 5.9. The CHECK-MGE Ww.R.T. Os problem is
the following decision problem: given a why-not instance
(S,I,q,Ans,a) and a tuple of concept& = (Ci,...,Ch), is

E a most-general explanation w.rfs fora ¢ Ans?

As for COMPUTE-ONE-MGE W.R.T. Os, the undecidability of
concept subsumption in the general case suggests thanitksly
for CHECK-MGE W.R.T. Os to be decidable without imposing any
restriction onll andX. However, also this problem allows for the
characterization of several decidable variants.

In particular, since Beck-MGE is solvable in PTME (see
Theoren{51), by materializings[KC] we can derive some upper
bounds for GiECK-MGE w.R.T. Os too.

Proposition 5.4.There is an algorithm that solveS8HECK-MGE
W.R.T. Os
e in 2EXPTIME for Lg concepts, provided that the input schema
S is from a class for which concept subsumption can be checked
in EXPTIME,

e in ExPTIME for selection-fred.s, and projection-fred.s, pro-
vided that the input schentiis from a class for which concept
subsumption can be checkedBRPTIME,

e in PTIME for LE"™, provided that the input schensais from a
class for which concept subsumption can be check&TimE.

The proof is analogous to the one for Proposifion 5.3.

We expect that the upper bounds folORZPUTE-ONE-MGE
W.R.T. Os and GHECK-MGE W.R.T. Os can be improved. Pin-
pointing the complexity of these problems is left for futuverk.

6. VARIATIONS OF THE FRAMEWORK

We consider several refinements and variations to our frammew
involving finding short explanations, and providing alttive def-
initions of explanationsaand of what it means to bmost general

Producing a Short Explanation. A most-general explanation that
is short may be more helpful to the user. To simplify our discus-
sion, we restrict our attention to ontologies that are aerifrom an
instance and show that the problem of finding a most-genepie
nation of minimal length is NP-hard in general, whereltrgthof

an explanatiorl = (Ch, . .., C}) is measured by the total number
of symbols needed to write odt,, ...,Cj.



Proposition 6.1.Given a why-not instancéS, I, ¢, Ans,a), the
problem of finding a most-general explanatiorat¢ Ans of min-
imal length isNP-hard.

Given that computing a shortest most-general explanasiom- i
tractable in general, we may consider the task of shortemijigen
most-general explanation. TheldREMENTAL SEARCH ALGO-

RITHM produces concepts that may contain superfluous conjuncts.

It is thus natural to ask whether the algorithm can be modified
produce a most-general explanation of a shorter lengtts qires-
tion can be formalized in at least two ways.

Let I be an instance of a scherfaand letC' = M{C,...,Cn}
be anyLs concept expression. We may assume that &zcis
intersection-free. We say thétis irredundantif there is a no strict
subsetX C {Ci,...,C,} such thatC =p, MX. We say that
an explanation (with respect t9;) is irredundant if it consists of
irredundant concept expressions. We say that explanafigrasd
E5 areequivalentw.r.t. an ontology®, denoted aF:1 =0 E», if
Ey <o E; andFE; <o Fi.

Proposition 6.2.There is a polynomial-time algorithm that takes
as input an instancd of a schemdas, as well as anLs concept
expressiorC, and produces an irredundant concept expresgitn
such thatC' =o, C’.

Hence, by combining Proposition 6.2 witthN¢REMENTAL
SEARCH ALGORITHM, we can compute an irredundant most-
general explanation w.r€; in polynomial time.

We say that an explanatioB = (C1,...,C%) is minimized
w.r.t. Oy if there does not exist an explanatiéil = (C, ..., Cy)
such thatE =¢, E’ and E’ is shorter thanF. Every minimized
explanation is irredundant, but the converse may not be Eoein-
stance, leD be an ontology with three atomic concefits, C2, Cs
such thatC; Co C2 M Cs andC> M C3 Co C;. Then the con-
ceptCs M Cs is irredundant with respect 0. However,C' is an
equivalent concept of strictly shorter length.

Proposition 6.3.Given a why-not instancéS, I, ¢, Ans,a) and
an explanationF to whya ¢ Ans, the problem of finding a mini-
mized explanation equivalent 0 is NP-hard.

Cardinality based preference.We have currently definedraost-
general explanatiorio be an explanatio® such that there is no
explanationE’” with E' >» E. A natural alternative is to define
“most general” in terms of the cardinality of the extensiofshe
concepts in an explanation. Formally, Bt= (C,C, ext) be an
S-ontology, andl an instance. We define tliegree of generality
of an explanatiorE = (C1, ..., Cy) with respect taD andI to
be the (possibly infinite) surfext(C1,I)| + - - - + |ext(Chm, I)].
For two explanationsE, Fo, we write £y >?9“f,'d FEs, if E4 hasa
strictly higher degree of generality thdf: with respect ta© and
I. We say that an explanatidnis >°*"?-maximal (with respect to
O andI) if there is no explanatio®’ such thatt’ >&"" E.

Proposition 6.4.Assuming EENP, there is noPTIME algorithm
that takes as input a why-not instan¢®, I, ¢, Ans, @) and anS-
ontology ©, and produces a-°*"¢-maximal explanation fof ¢
Ans. This holds even for unary queries.

In particular, this shows (assumingARP) that computing
>crd_maximal explanations is harder than computing most-
general explanations. The proof of Proposifiod 6.4 goesbyc-
tion from a suitable variant of 8r CoveR. Our reduction is in
fact anL-reduction, which implies that there is no RIE constant-
factor approximation algorithm for the problem of finding-&*"¢-
maximal explanation.

Strong explanations. We now examine an alternative notion of
an explanation that is essentially independent to the riostaf

a why-not question. Recall that the second condition of auwf c
rent definition of an explanatio® = (C1,...,Cy) requires that
ext(Cy,I)x---xext(C1,I)does notintersect witdns, wherel
is the given instance. We could replace this condition byangier
condition, namely that¢xt(Ci,1') x -+ x ext(Ci, ') does not
intersect withg(I'), for anyinstancel” of the given schema that is
consistent with the ontologg). If this holds, we say thakt’ is a
strong explanation

A strong explanation is also an explanation but not necigsar
the other way round. When a strong explanatiorior @ ¢ Ans
exists, then, intuitively, the reason whydoes not belong teins,
is essentially independent from the specific instaficeand has
to do with the ontology® and the query,. In the case where
the ontologyO is derived from a schem@, a strong explanation
may help one discover possible errors in the integrity cairds
of S, or in the queryq. We leave the study of strong why-not
explanations for future work.

7. CONCLUSION

We have presented a new framework for why-not explanations,
which leverages concepts from an ontology to provide haytell
and meaningful reasons for why a tuple is missing from thaltes
of a query. Our focus in this paper was on developing a priedip
framework, and on identifying the key algorithmic problenitie
exact complexity of some problems raised in this paper mnesnai
open. In addition, there are several directions for futuoekw

Recall that, in general, there may be multiple most-genexal
planations fofa ¢ q(I). While we have presented a polynomial
time algorithm for computing a most-general explanatioa tehy-
not question w.r.tO; for the case of selection-freles, the most-
general explanation that is returned by the algorithm mayaho
ways be the most helpful explanation. In future work, we ptan
investigate whether there is a polynomial delay algoritlomeinu-
merating all most-general explanations for such ontokgie

Although we only looked atvhy-not explanationst will be nat-
ural to considemwhy explanationsn the context of an ontology,
and in particular, understand whether the notion of mostegs
explanations, suitably adapted, applies in this settingaddition,
Roy and Suciu[[27] recently initiated the study of what onaldo
call “why so high” and “why so low” explanations for numerica
queries (such as aggregate queries). Again, it would beeistte
ing to see if our approach can help in identifying high-leseth
explanations.

We have focused on providing why-not explanations to mgssin
tuples of queries that are posed against a database schema. H
ever, our framework for answering the why-not question isegel
and could, in principle, be applied also to queries posethagtne
ontology in an OBDA setting.

Finally, we plan to explore ways whereby our high-level exyal-
tions can be used to complement and enhance existing dattdcce
and/or query-centric approaches. We illustrate this witlexam-
ple. Suppose a certain publicatighis missing from the answers to
query over some publication database. A most-general iex{an
may be that X was published by Springer (supposing all Spring
publications are missing from the answers to the query)s €k
planation provides insight on potential high-level isstlest may
exist in the database and/or query. For example, it may heatha
Springer publications are missing from the database (psrbae
to errors in the integration/curation process) or the query in-
advertently omitted the retrieval of all Springer publioas. This
is in contrast with existing data-centric (resp. querytdehap-
proaches, which only suggest fixes to the database insteese (
query) so that the specific publicatidhappears in the query result.
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