

Edinburgh Research Explorer

High-Level Why-Not Explanations Using Ontologies

Citation for published version:
ten Cate, B, Civili, C, Sherkhonov, E & Tan, W-C 2015, High-Level Why-Not Explanations Using Ontologies.
in PODS '15 Proceedings of the 34th ACM Symposium on Principles of Database Systems. ACM, New
York, NY, USA, pp. 31-43. https://doi.org/10.1145/2745754.2745765

Digital Object Identifier (DOI):
10.1145/2745754.2745765

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
PODS '15 Proceedings of the 34th ACM Symposium on Principles of Database Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 16. Apr. 2024

https://doi.org/10.1145/2745754.2745765
https://doi.org/10.1145/2745754.2745765
https://www.research.ed.ac.uk/en/publications/ea504846-6fc2-43f1-992e-6c1eeb960599

ar
X

iv
:1

41
2.

23
32

v2
 [

cs
.D

B
]

31
 M

ar
 2

01
5

High-Level Why-Not Explanations using Ontologies

Balder ten Cate
LogicBlox and UCSC

balder.tencate@gmail.com

Cristina Civili
Sapienza Univ. of Rome
civili@dis.uniroma1.it

Evgeny Sherkhonov
Univ. of Amsterdam

e.sherkhonov@uva.nl

Wang-Chiew Tan
UCSC

tan@cs.ucsc.edu

ABSTRACT
We propose a novel foundational framework forwhy-not explana-
tions, that is, explanations for why a tuple is missing from a query
result. Our why-not explanations leverage concepts from anontol-
ogy to provide high-level and meaningful reasons for why a tuple
is missing from the result of a query.

A key algorithmic problem in our framework is that ofcomput-
ing a most-general explanationfor a why-not question, relative to
an ontology, which can either be provided by the user, or it may be
automatically derived from the data and/or schema. We studythe
complexity of this problem and associated problems, and present
concrete algorithms for computing why-not explanations. In the
case where an external ontology is provided, we first show that the
problem of deciding the existence of an explanation to a why-not
question is NP-complete in general. However, the problem issolv-
able in polynomial time for queries of bounded arity, provided that
the ontology is specified in a suitable language, such as a mem-
ber of the DL-Lite family of description logics, which allows for
efficient concept subsumption checking. Furthermore, we show
that a most-general explanation can be computed in polynomial
time in this case. In addition, we propose a method for deriving
a suitable (virtual) ontology from a database and/or a schema, and
we present an algorithm for computing a most-general explanation
to a why-not question, relative to such ontologies. This algorithm
runs in polynomial-time in the case when concepts are definedin
a selection-free language, or if the underlying schema is fixed. Fi-
nally, we also study the problem of computingshort most-general
explanations, and we briefly discuss alternative definitions of what
it means to be an explanation, and to be most general.

Categories and Subject Descriptors
H.2 [Database Management]

General Terms
Theory, Algorithms

Keywords
Databases; Why-Not Explanations; Provenance; Ontologies
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this workowned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODS’15,May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2757-2/15/05 ...$15.00.
http://dx.doi.org/10.1145/2745754.2745765.

1. INTRODUCTION AND RESULTS
An increasing number of databases are derived, extracted, or cu-

rated from disparate data sources. Consequently, it becomes more
and more important to provide data consumers with mechanisms
that will allow them to gain an understanding of data that they are
confronted with. An essential functionality towards this goal is the
capability to provide meaningful explanations about why data is
present or missing form the result of a query. Explanations help
data consumers gauge how much trust one can place on the result.
Perhaps more importantly, they provide useful informationfor de-
bugging the query or data that led to incorrect results.

This is particularly the case in scenarios where complex data
analysis tasks are specified through large collections of nested
views (i.e., views that may be defined in terms of other views). For
example, schemas with nested view definitions and integritycon-
straints capture the core of LogiQL [18, 21, 19] (where view defi-
nitions may, in general, involve not only relational operations, but
also aggregation, machine learning and mathematical optimization
tasks). LogiQL is a language developed and used at LogicBlox[2]
for developing data-intensive “self service” applications involving
complex data analytics workflows. Similar recent industrial sys-
tems include Datomic1 and Google’s Yedalog [16]. In each of these
systems, nested view definitions (or, Datalog programs) areused to
specify complex workflows to drive data-analytics tasks. Explana-
tions for unexpected query results (such as an unexpected tuple or
a missing tuple) are very useful in such settings, since the source of
an error can be particularly hard to track.

There has been considerable research on the topic of deriving ex-
planations for why a tuple belongs to the output of a query. Early
systems were developed in [3, 28] to provide explanations for an-
swers to logic programs in the context of a deductive database. The
presence of a tuple in the output is explained by enumeratingall
possible derivations, that is, instantiations of the logicrules that de-
rive the answer tuple. In [28], the system also explains missing an-
swers, by providing a partially instantiated rule, based onthe miss-
ing tuple, and leaving the user to figure out how the rest of therule
would have to be instantiated. In the last decade or so, therehas
been significant efforts to characterize different notionsof prove-
nance (or lineage) of query answers (see, e.g., [15, 20]) which can
also be applied to understand why an answer is in the query result.

There have also been extensive studies on thewhy-not problem
(e.g., more recent studies include [6, 14, 23, 22, 25, 29]). The
why-not problem is the problem of explaining why an answer is
missing from the output. Since [28], thewhy-not problemwas also
studied in [22, 23] in the context of debugging results of data ex-
tracted via select-project-join queries, and, subsequently, a larger
class of queries that also includes union and aggregation opera-

1www.datomic.com

http://arxiv.org/abs/1412.2332v2
www.datomic.com

tors. Unlike [28] which is geared towards providing explanations
for answers and missing answers, the goal in [23] is to propose
modifications to underlying databaseI , yielding another database
I ′ based on the provenance of the missing tuple, constraints, and
trust specification at hand, so that the missing tuple appears in the
result of the same queryq over the updated databaseI ′. In con-
trast to thedata-centricapproach of updating the database to derive
the missing answer, another line of research [8, 14, 29] follows a
query-centricapproach whereby the queryq at hand is modified to
q′ (without modifying the underlying database) so that the missing
answer appears in the output ofq′(I).

A new take on why-not questions: In this paper, we develop
a novel foundational framework for why-not explanations that
is principally different from prior approaches. Our approach
is neither data-centric nor query-centric. Instead, we derive
high-level explanations via an ontology that is either provided, or
is derived from the data or schema. Our immediate goal is not to
compute repairs of the underlying database or query so that the
missing answer would appear in the result. Rather, as in [28], our
primary goal is to provide understandable explanations forwhy
an answer is missing from the query result. As we will illustrate,
explanations that are based on an ontology have the potential to
be high-level and provide meaningful insight to why a tuple is
missing from the result. This is because an ontology abstracts a
domain in terms of concepts and relationships amongst concepts.
Hence, explanations that are based on concepts and relationships
from an ontology will embody such high-level abstractions.As
we shall describe, our work considers two cases. The first is when
an ontology is provided externally, in which case explanations
will embody external knowledge about the domain. The second
is when an ontology is not provided. For the latter, we allow an
ontology to be derived from the schema, and hence explanations
will embody knowledge about the domain through concepts and
relationships that are defined over the schema.

Formally, an explanation for why a tuplea is not among the re-
sults of a queryq(I), in our framework, is a tuple of concepts from
the ontology whose extension includes the missing tuplea and, at
the same time, does not include any tuples fromq(I). For exam-
ple, a query may ask for all products that each store has in stock,
in the form of (product ID, store ID) pairs, from the databaseof a
large retail company. A user may then ask why is the pair(P0034,
S012)not among the result of the query. SupposeP0034refers to
a bluetooth headset product andS012refers to a particular store in
San Francisco. IfP0034is an instance of a conceptbluetooth head-
setsandS012is an instance of a conceptstores in San Francisco,
and suppose that no pair(x, y), wherex is an instance ofbluetooth
headsetandy is an instance ofstores in San Francisco, belongs
to the query result. Then the pair of concepts (bluetooth headset,
stores in San Francisco) is an explanation for the given why-not
question. Intuitively, it signifies the fact that “none of the stores in
San Francisco has any bluetooth headsets on stock”.

There may be multiple explanations for a given why-not ques-
tion. In the above example, this would be the case if, for instance,
S012belongs also to a more general conceptstores in California,
and that none of the stores in California have bluetooth headsets
on stock. Our goal is to compute amost-general explanation, that
is, an explanation that is not strictly subsumed by any otherex-
planation. We study the complexity of computing a most-general
explanation to a why-not question. Formally, we define awhy-not
instance(or, why-not question) to be a quintuple(S, I, q,Ans, a)
whereS is aschema, which may include integrity constraints;I is
an instance ofS; q is a query overS; Ans= q(I); anda 6∈ q(I).

As mentioned earlier, a particular scenario where why-not ques-
tions easily arise is when querying schemas that include a large
collection of views, and where each view may be nested, that is, de-
fined in terms of other views. Our framework captures this setting,
since view definitions can be expressed by means of constraints.

Our framework supports a very general notion of an ontology,
which we callS-ontologies. For a given relational schemaS, anS-
ontology is a triple(C,⊑, ext) which defines the set of concepts,
the subsumption relationship between concepts, and respectively,
the extension of each concept w.r.t. an instance of the schema
S. We use this general notion of anS-ontology to formalize the
key notions ofexplanationsandmost-general explanations, and we
show thatS-ontologies capture two different types of ontologies.

The first type of ontologies we consider are those that are defined
externally, provided that there is a way to associate the concepts in
the externally defined ontology to the instance at hand. For exam-
ple, the ontology may be represented in the form of a Ontology-
Based Data Access (OBDA) specification [26]. More precisely,
an OBDA specification consists of a set of concepts and subsump-
tion relation specified by means of a description logic terminology,
and a set ofmapping assertionsthat relates the concepts to a rela-
tional database schema at hand. Every OBDA specification induces
a correspondingS-ontology. If the concepts and subsumption rela-
tion are defined by a TBox in a tractable description logic such as
DL-LiteR, and the mapping assertions are Global-As-View (GAV)
assertions, the inducedS-ontology can in fact be computed from
the OBDA specification in polynomial time. We then present an
algorithm for computing all most-general explanations to awhy-
not question, given an externalS-ontology. The algorithm runs in
polynomial time when the arity of the query is bounded, and itexe-
cutes in exponential time in general. We show that the exponential
running time is unavoidable, unless P=NP, because the problem of
deciding whether or not there exists an explanation to a why-not
question given an externalS-ontology is NP-complete in general.

The second type of ontologies that we consider are ontologies
that are derived either (a) from a schemaS, or (b) from an instance
of the schema. In both cases, the concepts of the ontology arede-
fined through concept expressions in a suitable languageLS that
we develop. Specifically, our concepts are obtained from there-
lations in the schema, through selections, projections, and inter-
section. The difference between the two cases lies in the waythe
subsumption relation⊑ is defined. In the former, a conceptC is
considered to be subsumed in another conceptC′ if the extension
of C is contained in the extension ofC′ over all instances of the
schema. For the latter, subsumption is considered to hold ifthe ex-
tension ofC is contained in the extension ofC′ with respect to the
given instance of the schema. TheS-ontology induced by a schema
S, or instanceI , denotedOS or OI , respectively, is typically infi-
nite, and is not intended to be materialized. Instead, we present an
algorithm for directly computing a most-general explanation with
respect toOI . The algorithm runs in exponential time in general.
However, if the schema is of bounded arity, the algorithm runs in
polynomial time. As for computing most-general explanations with
respect toOS, we identify restrictions on the integrity constraints
under which the problem is decidable, and we present complexity
upper bounds for these cases.

More related work: The use of ontologies to facilitate access
to databases is not new. A prominent example is OBDA, where
queries are either posed directly against an ontology, or anontol-
ogy is used to enrich a data schema against which queries are posed
with additional relations (namely, the concepts from the ontology)
[9, 26]. Answers are computed based on an open-world assump-
tion and using the mapping assertions and ontology providedby

the OBDA specification. As we described above, we make use of
OBDA specifications as a means to specify an external ontology
and with a database instance through mapping assertions. How-
ever, unlike in OBDA, we consider queries posed against a database
instance under the traditional closed-world semantics, and the on-
tology is used only to derive why-not explanations.

The problems of providing why explanations and why-not expla-
nations have also been investigated in the context of OBDA in[11]
and [13], respectively. The why-not explanations of [13] follow
thedata-centricapproach to why-not provenance as we discussed
earlier where their goal is to modify the assertions that describe the
extensions of concepts in the ontology so that the missing tuple will
appear in the query result.

There has also been prior work on extracting ontologies from
data. For example, in [24], the authors considered heuristics to
automatically generate an ontology from a relational database by
defining project-join queries over the data. Other exampleson on-
tology extraction from data include publishing relationaldata as
RDF graphs or statements (e.g., D2RQ [10], Triplify [5]). Weem-
phasize that our goal is not to extract and materialize ontologies,
but rather, to use an ontology that is derived from data to compute
why-not explanations.

Outline: After the preliminaries, in Section 3 we present our
framework for why-not explanations. In Section 4 we discussin
detail the two ways of obtaining anS-ontology. In Section 5 we
present our main algorithmic results. Finally, in Section 6, we study
variatations of our framework, including the problem of producing
short most-general explanations, and alternative notions ofexpla-
nation, and of what it means to bemost general.

2. PRELIMINARIES
A schemais a pair(S,Σ), whereS is a set{R1, . . . , Rn} of

relation names, where each relation name has an associated arity,
andΣ is a set of first-order sentences overS, which we will refer as
integrity constraints. Abusing the notation, we will writeS for the
schema(S,Σ). A fact is an expression of the formR(b1, . . . , bk)
whereR ∈ S is a relation of arityk, and for1 ≤ i ≤ k, we have
bi ∈ Const, whereConst is a countably infinite set of constants.
We assume a dense linear order< on Const. An attributeA of
an k-ary relation nameR ∈ S is a numberi such that1 ≤ i ≤
k. For a factR(b) whereb = b1, . . . , bk, we sometimes write
πA1,...,Ak

(b) to mean the tuple consisting of theA1th, ...,Akth
constants in the tupleb, that is, the value(bA1

, . . . , bAk
). An atom

overS is an expressionR(x1, . . . , xn), whereR ∈ S and every
xi, i ∈ {1, . . . , n} is a variable or a constant.

A database instance, or simply aninstance, I over S is a set
of facts overS satisfying the integrity constraintsΣ. Equivalently,
an instanceI is a map that assigns to eachk-ary relation name
R ∈ S a finite set ofk-tuples overConst such that the integrity
constraints are satisfied. ByRI we denote the set of these tuples.
We writeInst(S) to denote the set of all database instances overS,
andadom(I) to denote the active domain ofI , i.e., the set of all
constants occurring in facts ofI .

Queries A conjunctive query(CQ) overS is a query of the form
∃y.ϕ(x, y) whereϕ is a conjunction of atoms overS. Given an
instanceI and a CQq, we writeq(I) to denote the set of answers
of q overI . In this paper we allow conjunctive queries containing
comparisons to constants, that is, comparisons of the formx op c,
whereop ∈ {=, <,>,≤,≥} and c ∈ Const. We show that
all upper bounds hold for the case of CQs with such comparisons,
and all lower bounds hold without the use of comparisons (unless

explicitly specified otherwise). We donot allow comparisons be-
tween variables.

Integrity constraints In this paper we consider different classes of
integrity constraints, including functional dependencies and inclu-
sion dependencies. We also consider UCQ-view definitions and
nested UCQ-view definitions, which can be expressed using in-
tegrity constraints as well.

A functional dependency(FD) on a relationR ∈ S is an expres-
sion of the formR : X → Y whereX andY are subsets of the
set of attributes ofR. We say that an instanceI overS satisfies the
FD if for everya1 anda2 fromRI if πA(a1) = πA(a2) for every
A ∈ X, thenπB(a1) = πB(a2) for everyB ∈ Y .

An inclusion dependency(ID) is an expression of the form

R[A1, . . . , An] ⊆ S[B1, . . . , Bn]

whereR,S ∈ S, eachAi andBj is an attribute ofR andS respec-
tively. We say that an instanceI overS satisfies the ID if

{πA1,...,An
(a) | a ∈ RI} ⊆ {πB1,...,Bn

(b) | b ∈ SI}.

Note that functional and integrity constraints can equivalently be
written as first-order sentences [1].

View DefinitionsTo simplify presentation, we treat view defintions
as a special case of integrity constraints.

A set of integrity constraintsΣ overS is said to be acollection
of UCQ-view definitionsif there exists a partitionS = D∪V such
that for everyP ∈ V, Σ contains exactly one first-order sentence
of the form:

P (x̄) ↔ ∨k
i=1ϕi(x̄), (∗)

where eachϕi is a conjunctive query (with comparisons to con-
stants) overD.

Similarly, a set of integrity constraintsΣ overS is said to be a
collection of nested UCQ-view definitionsif there exists a partition
S = D ∪ V such that for everyP ∈ V, Σ contains exactly one
first-order sentence of the form (*), where eachϕi is now allowed
to be a conjunctive query overD ∪V, but subject to the following
acyclicity condition. Let us say thatP ∈ V depends onR ∈ V,
if R occurs in the view definition ofP , that is, in the sentence of
Σ that is of the form (*) forP . We require that the “depends on”
relation is acyclic. If, in the view definition of everyP ∈ V, each
disjunctϕi contains at most one atom overV, then we say thatΣ
is a collection oflinearly nested UCQ-view definitions.

Note that a collection of nested UCQ-view definitions (in the
absence of comparisons) can be equivalently viewed as a non-
recursive Datalog program and vice versa [7]. In particular, a col-
lection of linearly nested UCQ-view definitions corresponds to a
linear non-recursive Datalog program.

Example 2.1. As an example of a schema, considerS = D ∪ V

with the integrity constraints in Figure 1. An instanceI of the
schemaS is given in Figure 2. ✷

3. WHY-NOT EXPLANATIONS
Next, we introduce our ontology-based framework for explain-

ing why a tuple is not in the output of a query. Our framework is
based on a general notion of an ontology. As we shall describein
Section 4, the ontology that is used may be an external ontology
(for example, an existing ontology specified in a description logic),
or it may be an ontology that is derived from a schema. Both area
special case of our general definition of anS-ontology.

Definition 3.1 (S-ontology). An S-ontology over a relational
schemaS is a tripleO = (C,⊑, ext), where

Data schemaD :

{Cities(name, population, country, continent),

Train-Connections(city_from, city_to)}

View schemaV :

{BigCity(name), EuropeanCountry(name),

Reachable(city_from, city_to)}

UCQ-view definitions:

BigCity(x) ↔ Cities(x,y,z,w) ∧ y ≥ 5000000
EuropeanCountry(z) ↔ Cities(x,y,z,w) ∧w = Europe
Reachable(x,y) ↔ Train-Connections(x,y) ∨

(Train-Connections(x,z) ∧ Train-Connections (z,y))

Functional and inclusion dependencies:

country → continent
BigCity[name] ⊆ Train-Connections[city_from]
Train-Connections[city_from] ⊆ Cities[name]
Train-Connections[city_to] ⊆ Cities[name]

Figure 1: Example of a schemaS.

Cities Train-Connections

name population country continent

Amsterdam 779,808 NetherlandsEurope
Berlin 3,502,000 Germany Europe
Rome 2,753,000 Italy Europe
New York 8,337,000 USA N.America
San Francisco837,442 USA N.America
Santa Cruz 59,946 USA N.America
Tokyo 13,185, 000Japan Asia
Kyoto 1,400,000 Japan Asia

city_from city_to

Amsterdam Berlin
Berlin Rome
Berlin Amsterdam
New York San Francisco
San FranciscoSanta Cruz
Tokyo Kyoto

BigCity EuropeanCountry Reachable

name

New York
Tokyo

name

Netherlands
Germany
Italy

city_from city_to

Amsterdam Berlin
Berlin Rome
Berlin Amsterdam
New York San Francisco
San FranciscoSanta Cruz
Tokyo Kyoto
Amsterdam Rome
Amsterdam Amsterdam
Berlin Berlin
New York Santa Cruz

Figure 2: Example of an instanceI of S.

• C is a possibly infinite set, whose elements are calledconcepts,

• ⊑ is a pre-order (i.e., a reflexive and transitive binary relation)
onC, called thesubsumption relation, and

• ext : C × Inst(S) → ℘(Const) is a polynomial-time com-
putable function that will be used to identify instances of acon-
cept in a given database instance (℘(Const) denotes the pow-
erset ofConst).

More precisely, we assume thatext is specified by a Turing ma-
chine that, givenC ∈ C, I ∈ Inst(S) andc ∈ Const, decides in
polynomial time ifc ∈ ext(C, I).

A database instanceI ∈ Inst(S) is consistentwith O if, for all
C1, C2 ∈ C withC1 ⊑ C2, we haveext(C1, I) ⊆ ext(C2, I).

An example of anS-ontologyO = (C,⊑, ext) is shown in Fig-
ure 3, where the concept subsumption relation⊑ is depicted by
means of a Hasse diagram. Note that, in this example,ext(C, I)
is independent of the database instanceI (and, as a consequence,
everyS-instance is consistent withO). In general, this is not the
case (for example, the extension of a concept may be determined
through mapping assertions, cf. Section 4.1).

We define our notion of an ontology-based explanation next.

Definition 3.2 (Explanation). Let O = (C,⊑, ext) be an S-
ontology,I an S-instance consistent withO. Let q be anm-ary
query overS, and a = (a1, . . . , am) a tuple of constants such
that a 6∈ q(I). Then a tuple of concepts(C1, . . . , Cm) from Cm

is called anexplanationfor a 6∈ q(I) with respect toO (or an
explanationin short) if:
• for every1 ≤ i ≤ m, ai ∈ ext(Ci, I), and

• (ext(C1, I)× . . .× ext(Cm, I)) ∩ q(I) = ∅.

In other words, an explanation is a tuple of concepts whose ex-
tension includes the missing tuplea (and thus explainsa) but, at
the same time, it does not include any tuple inq(I) (and thus does
not explain any tuple inq(I)). Intuitively, the tuple of concepts is
an explanation that is orthogonal to existing tuples inq(I) but rele-
vant for the missing tuplea, and thus forms an explanation for why
a is not inq(I). There can be multiple explanations in general and
the “best” explanations are the ones that are the most general.

Definition 3.3 (Most-general explanation). Let O = (C,⊑, ext)
be an S-ontology, and letE = (C1, . . . , Cm) and E′ =
(C′

1, . . . , C
′
m) be two tuples of concepts fromCm.

• We say thatE is less generalthanE′ with respect toO, denoted
asE ≤O E′, if Ci ⊑ C′

i for everyi, 1 ≤ i ≤ m.

• We say thatE is strictly less generalthanE′ with respect toO,
denoted asE <O E′, if E ≤O E′, andE′ 6≤O E.

• We say thatE is a most-general explanationfor a 6∈ q(I) if E
is an explanation fora 6∈ q(I), and there is no explanationE′

for a 6∈ q(I) such thatE′ >O E.

As we will formally define in Section 5, awhy-not problemasks
the question: “why is the tuple(a1, . . . , am) not in the output of a
queryq over an instanceI of schemaS?” The following example
illustrates the notions of explanations and most-general explana-
tions in the context of a why-not problem.

Example 3.4. Consider the instanceID of the relational
schemaS = {Cities(name, population, country, continent), Train-
Connections(city_from, city_to)} shown in Figure 2.

Suppose q is the query ∃z. Train-Connections(x, z) ∧
Train-Connections(z, y). That is, the query asks for all pairs
of cities that are connected via a city. Thenq(I) returns tuples
{〈Amsterdam, Rome〉, 〈Amsterdam, Amsterdam〉, 〈Berlin, Berlin〉,
〈New York, Santa Cruz〉}. A user may ask why is the tuple
〈Amsterdam, New York〉 not in the result ofq(I) (i.e., why is
〈Amsterdam, New York〉 6∈ q(I)?). Based on theS-ontology
defined in Figure 3, we can derive the following explanationsfor
〈Amsterdam, New York〉 /∈ q(I) :

E1 = 〈Dutch-City, East-Coast-City〉
E2 = 〈Dutch-City, US-City〉
E3 = 〈European-City, East-Coast-City〉
E4 = 〈European-City, US-City〉

E1 is the simplest explanation, i.e., the one we can build by look-
ing at the lower level of the hierarchy in ourS-ontology. Each
subsequent explanation is more general than at least one of the
prior explanations w.r.t. to theS-ontology. In particular, we have
E4 >O E2 >O E1, andE4 >O E3 >O E1. Thus, the most-
general explanation for why〈Amsterdam, New York〉 6∈ q(I) with
respect to ourS-ontology isE4, which intuitively informs that the
reason is because Amsterdam is a city in Europe while New York
is a city in the US (and hence, they are not connected by train).
Note that all the other possible combinations of concepts are not
explanations because they intersect withq(I). ✷

City

US-City

West-Coast-CityEast-Coast-City

European-City

Dutch-City

ext(City, I) = {Amsterdam, Berlin, Rome, New York,
San Francisco, Santa Cruz, Tokyo, Kyoto}

ext(European-City, I) = {Amsterdam, Berlin, Rome}
ext(Dutch-City, I) = {Amsterdam}
ext(US-City, I) = {New York, San Francisco, Santa Cruz}
ext(East-Coast-City, I) = {New York}
ext(West-Coast-City, I) = {Santa Cruz, San Francisco}

Figure 3: Example ontology.

As we will see in Example 4.9, there may be more than one most-
general explanations in general.

Generalizing the above example, we can informally define the
problem of explaining why-not questions via ontologies as follows:
given an instanceI of schemaS, a queryq overS, anS-ontologyO
(consistent withI) and a tuplea 6∈ q(I), compute a most-general
explanation fora 6∈ q(I), if one exists, w.r.t.O. As we shall de-
scribe in Section 5, in addition to the above problem of computing
one most-general explanation, we will also investigate thecorre-
sponding decision problem that asks whether or not an explanation
for a why-not problem exists, and whether or not a given tupleof
concepts is a most-general explanation for a why-not problem. In
our framework, theS-ontologyO may be given explicitly as part
of the input, or it may be derived from a given database instance
or a given schema. We will introduce the different scenariosby
which an ontology may be obtained in the next section, beforewe
describe our algorithms for computing most-general explanations
in Section 5.

4. OBTAINING ONTOLOGIES
In this section we discuss two approaches by whichS-ontologies

may be obtained. The first approach allows one to leverage an ex-
ternal ontology, provided that there is a way to relate a concept
in the ontology to a database instance. In this case, the setC of
concepts is specified through a description logic such asALC or
DL-Lite; ⊑ is a partial order on the concepts defined in the ontol-
ogy, and the functionextmay be given throughmapping assertions.
The second approach considers anS-ontology that is derived from
a specific database instance, or from a schema. This approachis
useful as it allows one to define an ontology to be used for explain-
ing why-not questions in the absence of an external ontology.

In either case, we study the complexity of deriving suchS-
ontologies based on the language on which concepts are defined,
the subsumption between concepts, and the functionext, which is
defined according to the semantics of the concept language.

4.1 Leveraging an external ontology
We first consider the case where we are given an external ontol-

ogy that models the domain of the database instance, and a rela-
tionship between the ontology and the instance. We will illustrate
in particular howdescription logic ontologiesare captured as a spe-
cial case of our framework.

In what follows, our exposition borrows notions from the
Ontology-Based Data Access (OBDA) framework. Specifically,
we will make crucial use of the notion of anOBDA specification
[17], which consists of a description logic ontology, a relational

schema, and a collection of mapping assertions. To keep the expo-
sition simple, we restrict our discussion to one particulardescrip-
tion logic, calledDL-LiteR, which is a representative member of
theDL-Lite family of description logics [12].DL-LiteR is the ba-
sis for the OWL 2 QL2 profile of OWL 2, which is a standard on-
tology language for Semantic Web adopted by W3C. As the other
languages in theDL-Lite family, DL-LiteR exhibits a good trade
off between expressivity and complexity bounds for important rea-
soning tasks such as subsumption checking, instance checking and
query answering.

TBox and Mapping Assertions. In the description logic litera-
ture, an ontology is typically formalized as a TBox (Terminology
Box), which consists of finitely manyTBox axioms, where each
TBox axiom expresses a relationship between concepts. Alongside
TBoxes, ABoxes (Assertion Boxes) are sometimes used to describe
the extension of concepts. To simplify the presentation, wedo not
consider ABoxes here.

Definition 4.1 (DL-LiteR). Fix a finite setΦC of “atomic con-
cepts”and a finite setΦR of “atomic roles”.
• Theconcept expressionsand role expressionsof DL-LiteR are

defined as follows:

Basic concept expression:B ::= A | ∃R
Basic role expression: R ::= P | P−

Concept expressions: C ::= B | ¬B
Role expressions E ::= R | ¬R

whereA ∈ ΦC and P ∈ ΦR. Formally, a (ΦC ,ΦR)-
interpretationI is a map that assigns to every atomic concept
in ΦC a unary relation overConst and to every atomic role
in ΦR a binary relation overConst. The mapI naturally
extends to arbitrary concept expressions and role expressions:

I(P−) = {(x, y) | (y, x) ∈ I(P)} I(∃P) = π1(I(P))
I(¬P) = Const

2 \ I(P) I(¬A) = Const \ I(A)

Observe thatI(∃P−) = π2(I(P)).

• A TBox (Terminology Box)is a finite set ofTBox axioms
where each TBox axiom is an inclusion assertion of the form
B ⊑ C or R ⊑ E, whereB is a basic concept expression,C
is a concept expression,R is a basic role expression andE is a
role expression. An(ΦC ,ΦR)-interpretationI satisfiesa TBox
if for each axiomX ⊑ Y , it holdsI(X) ⊆ I(Y).

• For concept expressionsC1, C2 and a TBoxT , we say thatC1

is subsumed byC2 relative toT (notation: T |= C1 ⊑ C2)
if, for all interpretationsI satisfyingT , we have thatI(C1) ⊆
I(C2).

An example of aDL-LiteR TBox is given at the top of Fig-
ure 4. For convenience, we have listed next to each TBox axiom,
its equivalent semantics in first-order notation.

Next we describe what mapping assertions are. Given an ontol-
ogy and a relational schema, we can specify mapping assertions to
relate the ontology language to the relational schema, which is sim-
ilar to how mappings are used in OBDA [26]. In general, mapping
assertions are first order sentences over the schemaS ∪ ΦC ∪ ΦR

that express relationships between the symbols inS and those in
ΦC andΦR. Among the different schema mapping languages that
can be used, we restrict our attention, for simplicity, to the class of
Global-As-View (GAV) mapping assertions(GAV mapping asser-
tions or GAV constraintsor GAV source-to-target tgds).
2http://www.w3.org/TR/owl2-profiles/#OWL_2_QL

http://www.w3.org/TR/owl2-profiles/#OWL_2_QL

DL-Lite TBox axiom (first-order translation)

EU-City ⊑ City ∀x EU-City(x) → City(x)
Dutch-City⊑ EU-City ∀x Dutch-City(x) → EU-City(x)
N.A.-City ⊑ City ∀x N.A.-City(x) → City(x)
EU-City ⊑ ¬ N.A.-City ∀x EU-City(x) → ¬N.A.-City(x)
US-City⊑ N.A.-City ∀x US-City(x) → N.A.-City(x)
City ⊑ ∃ hasCountry ∀x City(x) → ∃y hasCountry(x, y)
Country⊑ ∃ hasContinent ∀x Country(x) → ∃y hasContinent(x, y)
∃hasCountry− ⊑ Country ∀x (∃y hasCountry(y, x)) → Country(x)
∃hasContinent− ⊑ Continent ∀x (∃y hasContinent(y, x)) → Continent(x)
∃connected⊑ City ∀x (∃y connected(x, y)) → City(x)
∃connected− ⊑ City ∀x (∃y connected(y, x)) → City(x)

GAV mapping assertions (universal quantifiers omitted for readability):

Cities(x, z, w, “Europe”) → EU-City(x)
Cities(x, z, “Netherlands”, w) → Dutch-City(x)
Cities(x, z, w, “N.America”) → N.A.-City(x)
Cities(x, z, “USA” , w) → US-City(x)
Cities(x, y, z, w) → Continent(w)
Cities(x, k, y, w) → hasCountry(x,y)
Cities(x, k, w, y) → hasContinent(x,y)
Train-Connection(x, y),
Cities(x, x1, x2, x3),Cities(y, y1, y2, y3) → connected(x,y)

Figure 4: Example DL-Lite ontology with mapping assertions.

Definition 4.2 (GAV mapping assertions). A GAV mapping asser-
tion over(S, (ΦC ∪ ΦR)) is a first-order sentenceψ of the form

∀~x (ϕ1(~x1), · · · , ϕn(~xn)) → ψ(~x)

where~x ⊆ ~x1 ∪ . . . ∪ ~xn, ϕ1, . . . , ϕn are atoms overS andψ is
an atomic formula of the formA(xi) (for A ∈ ΦC) or P (xi, xj)
(for P ∈ ΦR). Let I be anS-instance andI an (ΦC ,ΦR)-
interpretation. We say that the pair(I,I) satisfiesthe GAV map-
ping assertion (notation:(I,I) |= ψ) if it holds that for any tu-
ple of elements̄a from adom(I), with ā =

⋃
1≤k≤n

āk, if I |=

ϕ1(ā1), . . . , ϕn(ān), thenai ∈ I(A), with ai ∈ ā (if ψ = A(xi))
or (ai, aj) ∈ I(P), withai, aj ∈ ā (if ψ = P (xi, xj)).

Intuitively, a GAV mapping assertion associates a conjunctive
query overS to an element (concept or atomic role) of the ontology.
A set of GAV mapping assertions associates, in general, a union of
conjunctive queries to an element of the ontology. Examplesof
GAV mapping assertions are given at the bottom of Figure 4.

OBDA induced ontologies

Definition 4.3 (OBDA specification). Let T be a TBox,S a rela-
tional schema, andM a set of mapping assertions fromS to the
concepts ofT . We call the tripleB = (T ,S,M) anOBDA speci-
fication.

An (ΦC ,ΦR)-interpretationI is said to be asolutionfor anS-
instanceI with respect to the OBDA specificationB if the pair
(I, I) satisfies all mapping assertions inM andI satisfiesT .

Note that our notion of an OBDA specification is a special case
of the one given in [17], where we do not consider view inclusion
dependencies. Also, as mentioned earlier, our OBDA specifications
in this paper assume thatT is aDL-LiteR TBox andM is a set of
GAV mappings. These restrictions allow us to achieve good com-
plexity bounds for explaining why-not questions with ontologies.
In particular, it is not hard to see that, for the OBDA specifications
we consider, everyS-instanceI has a solution.

Theorem 4.1.([12, 26]) LetT be a DL-LiteR TBox.
1. There is aPTIME-algorithm for deciding subsumption. That is,

givenT and two conceptsC1, C2, decide ifT |= C1 ⊑ C2.

2. There is an algorithm that, given an OBDA specification
B, an instance I over S and a conceptC, computes
certain(C, I,B) =

⋂
{I(C) | I is a solution forI w.r.t. B}.

For a fixed OBDA specification, the algorithm runs inPTIME

(AC0 in data complexity).

Every OBDA specification induces anS-ontology as follows.

Definition 4.4. Every OBDA specificationB = (T ,S,M) where
T is a DL-LiteR TBox andM is a set of GAV mappings gives rise
to anS-ontology where:
• COB

is the set of all basic concept expressions occurring inT ;

• ⊑OB
= {(C1, C2) | T |= C1 ⊑ C2}

• extOB
is the polynomial-time computable function given by

extOB
(C, I) =

⋂
{I(C) | I is a solution forI w.r.t. B}

Note that the fact thatextOB
is the polynomial-time computable

follows from Theorem 4.1.
We remarked earlier that, for the ODBA specificationsB that we

consider, it holds that every input instance has a solution.It follows
that every input instanceI is consistent with the correspondingS-
ontologyOB.

Theorem 4.2.TheS-ontologyOB = (COB
,⊑OB

, extOB
) can be

computed from a given OBDA specificationB = (T ,S,M) in
PTIME if T is a DL-LiteR TBox andM is a set of GAV mappings.

We are now ready to illustrate an example where a why-not ques-
tion is explained via an external ontology.

Example 4.5. Consider the OBDA specificationB = (T ,S,M)
whereT is the TBox consisting of theDL-LiteR axioms given in
Figure 4,S is the schema from Example 3.4, andM is the set of
mapping assertions given in Figure 4. These together induceanS-
ontologyOB = (COB

,⊑OB
, extOB

). The setCOB
consists of the

following basic concept expressions:

City, EU-City, N.A.-City, Dutch-City,
US-City, Country, Continent,
∃ hasCountry,∃ hasCountry− , ∃ hasContinent,
∃ hasContinent− , ∃ connected,∃ connected− .

The set⊑OB
includes the pairs of concepts of the TBoxT given

in Figure 4. We use the mappings to compute the extension of each
concept inCOB

using the instanceI on the left of Figure 2. We list
a few extensions here:

extOB
(City, I) = {Amsterdam, Berlin, Rome, New York,

San Francisco, Santa Cruz, Tokyo, Kyoto}
extOB

(EU-City, I) = {Amsterdam, Berlin, Rome}
extOB

(N.A.-City, I) = {New York, San Francisco, Santa Cruz}
extOB

(∃hasCountry− , I) = {Netherlands, Germany, Italy, USA, Japan}
extOB

(∃connected, I) = {Amsterdam, Berlin, New York}

Now consider the queryq(x, y) = ∃z. Train-Connections(x, z)
∧ Train-Connections(z, y), andq(I) as in Example 3.4. As before,
we would like to explain why is〈Amsterdam, New York〉 6∈ q(I).
This time, we use the inducedS-ontologyOB described above to
derive explanations for〈Amsterdam, New York〉 /∈ q(I):

E1 = 〈EU-City, N.A.-City〉 E2 = 〈Dutch-City,N.A.-City〉
E3 = 〈EU-City, US-City〉 E4 = 〈Dutch-City,US-City〉

Among the four explanations above,E1 is the most general. ✷

4.2 Ontologies derived from a schema
We now move to the second approach where an ontology is de-

rived from an instance or a schema. The ability to derive an ontol-
ogy through an instance or a schema is useful in the context where

an external ontology is unavailable. To this purpose we firstin-
troduce a simple but suitable concept language that can be defined
over the schemaS.

Specifically, our concept language, denoted asLS, makes use of
two relational algebra operations, projection (π) and selection (σ).
We first introduce and motivate the language. We will then describe
our complexity results for testing whether one concept is subsumed
by another, and for obtaining an ontology from a given instance or
a schema. We will make use of these results later on in Section5.2
and Section 5.3.

Definition 4.6 (The Concept LanguageLS). LetS be a schema. A
concept inLS is an expressionC defined by the following grammar.

D ::= R | σA1op c1,...,Anop cn(R)
C := ⊤ | {c} | πA(D) | C ⊓ C

In the above,R is a predicate name fromS, A,A1, . . . , An are
attributes inR, not necessarily distinct,c, c1, . . . , cn ∈ Const,
and each occurrence ofop is a comparison operator belonging to
{=, <,>,≤,≥}. For C = {C1, . . . , Ck} a finite set of concepts,
we denote by⊓C the conjunctionC1 ⊓ . . .⊓Ck. If C is empty, we
take⊓C to be⊤.

Given a finite set of constantsK ⊂ Const, we defineLS[K]
as the concept languageLS whose concept expressions only use
constants fromK. By selection-freeLS, we mean the language
LS whereσ is not allowed. Similarly, byintersection-freeLS, we
mean the languageLS where⊓ is not allowed, and byLmin

S , we
mean the minimal concept languageLS where bothσ and⊓ are
not allowed.

Observe that theLS grammar defines a concept in the form
C1 ⊓ . . . ⊓ Cn where eachCi is ⊤ or {c} or πA(R) or
πA(σA1op c1,...,Anop cn(R)). A concept of the form{c} is called
a nominal. A nominal {c} is the “most specific” concept for the
constantc. Given a tuplea that is not in the output, the corre-
sponding tuple of nominal concepts forms a default, albeit trivial,
explanation for why nota.

As our next example illustrates, even though our concept lan-
guageLS appears simple, it is able to naturally capture many intu-
itive concepts over the domain of the database.

Example 4.7. We refer back to our schemaS in Figure 1. Sup-
pose we do not have access to an external ontology such as the one
given in Example 3.4. We show that even so, we can still construct
meaningful concepts directly from the database schema using the
concept language described above. We list a few semantic concepts
that can be specified withLS in Figure 5, where we also show the
correspondingSELECT-FROM-WHERE style expressions and intu-
itive meaning. ✷

Example 4.7 shows that, even thoughLS is a simple language
where concepts are essentially intersections of unary projections
of relations and nominals, it is already sufficiently expressive to
capture natural concepts that can be used to build meaningful ex-
planations. It is worth noting that, for minor extensions ofthe lan-
guageLS, such as with6=-comparisons and disjunction, the notion
of a most-general explanation becomes trivial, in the sensethat,
for each why-not question, there is a most-general explanation that
essentially enumerates all tuples in the query answer.

By usingLS, we are able to define an ontology whose atomic
concepts are derived from the schema itself. This approach allows
us to provide explanations using a vocabulary that is already famil-
iar to the user. We believe that this leads to intuitive and useful
why-not explanations.

If we view each expressionπA(D) as an atomic concept, then
the languageLS corresponds to a very simple concept language,
whose concepts are built from atomic concepts and nominals us-
ing only intersection. In this sense,LS can be considered to be
a fragment ofDL-Litecore,⊓ with nominals (also known asDL-
Litehorn [4]), i.e., the description logic obtained by enrichingDL-
Litecore (the simplest language in the DL-Lite family) with con-
junction.

The precise semantics ofLS is as follows. Given a conceptC
that is defined inLS and an instanceI overS, the extension ofC
in I , denoted by[[C]]I , is inductively defined below. Intuitively, the
extension ofC in I is the result of evaluating the query associated
with C overI .

[[R]]I =RI

[[σA1op1c1,...,Anop
n
cn (R)]]I = {b̄ ∈ RI | πAi

(b̄)opici, 1 ≤ i ≤ n}

[[⊤]]I =Const

[[{c}]]I = {c}
[[πA(D)]]I =πA([[D]]I)
[[C1 ⊓C2]]I = [[C1]]I ∩ [[C2]]I

The notion of when one concept is subsumed by another is de-
fined according to the extensions of the concepts. There are two
notions, corresponding to concept subsumption w.r.t. an instance
or subsumption w.r.t. a schema. More precisely, given two con-
ceptsC1, C2,
• we say thatC2 subsumesC1 w.r.t. an instanceI (notation:
C1 ⊑I C2) if [[C1]]

I ⊆ [[C2]]
I .

• we say thatC2 subsumesC1 w.r.t. a schemaS (notation:
C1 ⊑S C2), if for every instanceI of S, we have thatC1 ⊑I

C2.
We are now ready to define the two types of ontologies, which

are based on the two notions of concept subsumption described
above, that can be derived from an instance or a schema.

Definition 4.8 (Ontologies derived from a schema). Let S be a
schema, and letI be an instance ofS. Then the ontologies derived
fromS andI are defined respectively as

• OS = (LS,⊑S, ext) and

• OI = (LS,⊑I , ext),

whereext is the function given byext(C, I ′) = [[C]]I
′

for all in-
stancesI ′ overS. ByOS[K] we denote the ontology(LS[K],⊑S

, ext), and byOI [K] we denote the ontology(LS[K],⊑I , ext).

It is easy to verify that the subsumption relations⊑S and⊑I

are indeed pre-orders (i.e., reflexive, and transitive relations), and
that, for every fixed schemasS, the function[[C]]I

′

is polynomial-
time computable. Hence, the above definition is well-definedeven
though the ontologies obtained in this way are typically infinite.
From the definition, it is easy to verify that ifC1 ⊑S C2, then
C1 ⊑I C2.

The following result about deciding⊑I is immediate, as one can
always execute the queries that are associated with the concepts and
then test for subsumption, which can be done in polynomial time.

Proposition 4.1.The problem of deciding, given an instanceI of a
schemaS and given twoLS concept expressionsC1, C2, whether
C1 ⊑I C2, is in PTIME.

On the other hand, the complexity of deciding⊑S depends on
the type of integrity constraints that are used in the specification of
S. Table 1 provides a summary of relevant complexity results.

Theorem 4.3.Let W be one of the different classes of schemas
with integrity constraints listed in Table 1. The complexity of the
problem to decide, given a schemaS in W and twoLS concept

LS concept expression SELECT-FROM -WHERE formulation Intuitive meaning

πname(Cities) name from Cities City
πname(σcontinent=“Europe”(Cities)) name from Cities where continent=“Europe” European City
πname(σcontinent=“N.America”(Cities)) name from Cities where continent=“N.America” N.American City
πname(σpopulation>1000000(Cities)) name from Cities where population>1000000 Large City
π1(BigCity) name from BigCity name of BigCity
{“Santa Cruz”} “Santa Cruz” Santa Cruz
πname(σpopulation<1000000(Cities))⊓
πcity_to(σcity_from=Amsterdam(Reachable))

name from Cities where population<1000000
AND city_from from Reachable where city_to=AmsterdamSmall City that is reachable from Amsterdam.

Figure 5: Example of concepts specified inLS.

Constraints Complexity of subsumption forLS

UCQ-view def. (no comparisons) NP-complete
UCQ-view def. ΠP

2 -complete
linearly nested UCQ-view def. ΠP

2 -complete
nested UCQ-view def. CONEXPT IME-complete
FDs in PTIME

IDs ? (in PTIME for selection-freeLS)
IDs + FDs Undecidable

All stated lower bounds already hold forLmin
S concept expressions.

Table 1: Complexity of concept subsumption.

expressionsC1, C2, whetherC1 ⊑S C2, is as indicated in the
second column of the corresponding row in Table 1.

For example, given two conceptsC1, C2, and a schema(S,Σ)
whereΣ is a collection of nested UCQ-view definitions, the com-
plexity of decidingC1 ⊑S C2 is CONEXPTIME-complete. The
lower bound already holds for concepts specified inLmin

S . We con-
clude this section with an analysis of the number of distinctcon-
cepts that can be formulated in a given concept language and an
example that illustrates explanations that can be computedfrom
such derived ontologies.

Proposition 4.2.Given a schemaS and a finite set of constants
K ⊂ Const, the number of unique concepts (modulo logical
equivalence)
• in Lmin

S [K] is polynomial in the size ofS andK,

• in selection-free or intersection-freeLS[K] is single exponen-
tial in the size ofS andK.

• in LS[K] is double exponential in the size ofS andK.

Example 4.9. Let S andI be the schema and instance from Fig-
ure 1 and Figure 2. Suppose the concept languageLS is used to
define among others the concepts from Figure 5. The following
concept subsumptions can be derived fromS. Note that subsump-
tion⊑S implies⊑I .

πname(σcontinent=“Europe”(Cities)) ⊑S πname(Cities)
πname(σpopulation>7000000(Cities)) ⊑S πname(BigCity)
πname(BigCity) ⊑S πname(Cities)
πname(BigCity) ⊑S πcity_from(Train-Connections)

The first and second subsumptions follow from definitions. The
third one holds because according toΠ, a BigCity is a city with
population more than 5 million. The fourth subsumption follows
from the inclusion dependency that each BigCity must have a train
departing from it. There are subsumptions that hold inOI but not
in OS. For instance,

πcity_to(σcity_from=Amsterdam(Reachable)) ⊑I

πcity_to(σcity_from=Berlin(Reachable)),

holds w.r.t.OI , whereI is the instance given in Figure 2, but does
not hold w.r.tOS, since one can construct an instance where not

all cities that are reachable from Amsterdam are reachable from
Berlin.

We now give examples of most-general explanations
w.r.t. OS and OI . As before, let q(x, y) = ∃z. Train-
Connections(x, z) ∧ Train-Connections(z, y) be a query with
q(I) = {〈Amsterdam, Rome〉, 〈Amsterdam, Amsterdam〉,
〈Berlin, Berlin〉, 〈New York, Santa Cruz〉}. We would like to
explain why〈Amsterdam, New York〉 6∈ q(I) using the derived
ontologiesOS and OI . Note that ifE is an explanation w.r.t.
OS, then it is also an explanation w.r.t.OI and vice versa. Some
possible explanations are:

E1 = 〈πname(σcontinent=Europe(Cities)),
πcity_from(σcity_to = San Francisco(Train-Connections))〉

E2 = 〈πname(σcontinent=Europe(Cities)),
πname(σcontinent=N.America(Cities))〉

E3 = 〈πcity_to(σcity_from = Berlin(Reachable)),
πcity_from(σcity_to = Santa Cruz(Reachable))〉

E4 = 〈{Amsterdam}, πname(σpopulation>7000000(Cities))〉
E5 = 〈πname(σcountry=Netherlands(Cities)),

πname(BigCity) ⊓ πname(σcontinent=N.America(Cities))〉
E6 = 〈{Amsterdam}, {New York}〉
E7 = 〈πname(σcontinent=Europe(Cities)), πname(BigCity)}〉
E8 = 〈πname(σcontinent=Europe(Cities)),

πname(σpopulation>7000000(Cities))}〉

For example,E1 states the reason is that Amsterdam is a European
city and New York is a city that has a train connection to San Fran-
cisco, and there is no train connection between such cities via a
city. The trivial explanationE6 is less general than any other ex-
planation w.r.tOS (andOI too). It can be verified thatE2 andE7

are most-general explanations w.r.t bothOS andOI . In particular,
E2 >OI

E5 andE2 ≥OI
E3, butE2 6>OS

E5 andE2 6>OS
E3

since there might be an instance ofS where Netherlands is not in
Europe or where Berlin is reachable from a non-european city. ✷

In general, ifE is an explanation w.r.t.OI thenE is also an
explanation w.r.t.OS, and vice versa. The following proposition
also describes the relationship between most-general explanations
w.r.tOS andOI .

Proposition 4.3.LetS be a schema, and letI be an instance ofS.
(i) Every explanation w.r.t.OS is an explanation w.r.t.OI and vice

versa.

(ii) A most-general explanation w.r.tOS is not necessarily a most-
general explanation w.r.t.OI , and likewise vice versa.

Proof. The statement(i) follows from Definition 3.2 and the defi-
nition of ext for OS andOI . That is,ext is the same on the input
instanceI for bothOS andOI , and the conditions of Definition 3.2
use only the value ofext on I . Going back to Example 4.9,E1 is
a most-general explanation w.r.t.OS, but it is not a most-general
explanation w.r.t.OI (sinceE3 is a strictly more general expla-
nation thanE1 w.r.t. OI). Thus, the first direction of(ii) holds.
For the other direction of(ii), considerE8 which is a most-general

explanation w.r.t.OI . But it holds thatE7 >OS
E8 andE7 is an

explanation. Note thatE7 andE8 are equivalent w.r.t.OI .

5. ALGORITHMS FOR COMPUTING
MOST-GENERAL EXPLANATIONS

Next, we formally introduce the ontology-based why-not prob-
lem, which was informally described in Section 3, and we define
algorithms for computing most-general explanations. We start by
defining the notion of a why-not instance (or why-not question).

Definition 5.1 (Why-not instance). Let S be a schema,I an in-
stance ofS, q an m-ary query overI and a = (a1, . . . , am)
a tuple of constants such thata /∈ q(I). We call the quintuple
(S, I, q, Ans, a), whereAns = q(I), a why-not instanceor a
why-not question.

In a why-not instance, the answer setAnsof q overI is assumed
to have been computed already. This corresponds closely to the sce-
nario under which why-not questions are posed where the userre-
quests explanations for why a certain tuple is missing in theoutput
of a query, which is computed a priori. Note that sinceAns=q(I)
is part of a why-not instance, the complexity of evaluatingq overI
does not affect the complexity analysis of the problems we study in
this paper. In addition, observe that although a queryq is part of a
why-not instance, the query is not directly used in our derivation of
explanations for why-not questions with ontologies. However, the
general setup accomodates the possibility to considerq directly in
the derivation of explanations and this is part of our futurework.

We will study the following algorithmic problems concerning
most-general explanations for a why-not instance.

Definition 5.2. The EXISTENCE-OF-EXPLANATION problem is
the following decision problem: given a why-not instance
(S, I, q, Ans, a) and anS-ontologyO consistent withI , does there
exist an explanation fora 6∈ Ans w.r.t. O?

Definition 5.3. The CHECK-MGE problem is the following
decision problem: given a why-not instance(S, I, q, Ans, a),
an S-ontology O consistent withI , and a tuple of concepts
(C1, . . . , Cn), is the given tuple of concepts a most-general ex-
planation w.r.t.O for a 6∈ Ans?

Definition 5.4. The COMPUTE-ONE-MGE problem is the fol-
lowing computational problem: given a why-not instance
(S, I, q, Ans, a) and anS-ontologyO consistent withI , find a
most-general explanation w.r.t.O for a 6∈ Ans, if one exists.

Note that deciding the existence of an explanation w.r.t. a finite
S-ontology is equivalent to deciding existence of a most-general
explanation w.r.t. the sameS-ontology.

Thus, our approach to the why-not problem makes use ofS-
ontologies. In particular, our notion of a “best explanation” is a
most-general explanation, which is defined with respect to anS-
ontology. We study the problem in three flavors: one in which the
S-ontology is obtained from an external source, and thus it ispart
of the input, and two in which theS-ontology is not part of the in-
put, and is derived, respectively, from the schemaS, or from the
instanceI .

5.1 External Ontology
We start by studying the case of computing ontology-based why-

not explanations w.r.t. an externalS-ontology. We first study the
complexity of deciding whether or not there exists an explanation
w.r.t. an externalS-ontology.

Theorem 5.1.
1. The problemCHECK-MGE is solvable inPTIME.

2. The problemEXISTENCE-OF-EXPLANATION is NP-complete.
It remainsNP-complete even for bounded schema arity.

Intuitively, to check if a tuple of concepts is a most-general ex-
planation, we can first check in PTIME if it is an explanation. Then,
for each concept in the explanation, we can check in PTIME if it is
subsumed by some other concept inO such that by replacing it with
this more general concept, the tuple of concepts remains an expla-
nation. The membership in NP is due to the fact that we can guess
a tuple of concepts of polynomial size and verify in PTIME that it
is an explanation. The lower bound is by a reduction from the SET

COVER problem. Our reduction uses a query of unbounded arity
and a schema of bounded arity. As we will show in Theorem 5.2,
the problem is in PTIME if the arity of the query is fixed.

In light of the above result, we define an algorithm, called the
EXHAUSTIVE SEARCH ALGORITHM, which is an EXPTIME algo-
rithm for solving the COMPUTE-ONE-MGE problem.

Algorithm 1: EXHAUSTIVE SEARCH ALGORITHM

Input : a why-not instance(S, I, q, Ans, a), where
a = (a1, . . . , am), a finiteS-ontology
O = (C,⊑, ext)

Output : the set of most-general explanations fora 6∈ Ans wrt
O

1 Let C(ai) = {C ∈ C | ai ∈ ext(C, I)} for all i, 1 ≤ i ≤ m
2 LetX = {(C1, . . . , Cm) | Ci ∈
C(ai) and(ext(C1, I)× . . .× ext(Cm, I)) ∩Ans = ∅}

3 foreach pair of explanationsE1,E2 ∈ X ,E1 6= E2 do
4 if E1 >O E2 then
5 removeE2 from X

6 returnX

This algorithm first generates the set of all possible explanations,
and then iteratively reduces the set by removing the tuples of con-
cepts that are less general than some tuple of concepts in theset.
In the end, only most-general explanations are returned. Atfirst, in
line 1, for each element of the tuplea = (a1, . . . , am), we build the
setC(ai) containing all the concepts inC whose extension contains
ai. Then, in line 2, we build the set of all possible explanations by
picking a concept inC(ai) for each position ina, and by discard-
ing the ones that have a non empty intersection with the answer set
Ans. Finally, in lines 3-5, we remove from the set those explana-
tions that have a strictly more general explanation in the set.

We now show that EXHAUSTIVE SEARCH ALGORITHM is cor-
rect (i.e. it outputs the set of all most-general explanations for the
given why-not instance w.r.t. to the givenS-ontology), and runs in
exponential time in the size of the input.

Theorem 5.2.Let the why-not instance(S, I, q, Ans, a) and the
S-ontologyO be an input toEXHAUSTIVE SEARCH ALGORITHM

and letX be the corresponding output. The following hold:
1. X is the set of all most-general explanations fora 6∈ Ans

(modulo equivalence);

2. EXHAUSTIVE SEARCH ALGORITHM runs inEXPTIME in the
size of the input (inPTIME if we fix the arity of the input query).

Theorem 5.2, together with Theorem 4.2, yields the following
corollary (recall that, by construction ofOB, it holds that every
input instanceI is consistent withOB).

Corollary 5.5. There is an algorithm that takes as input a why-
not instance(S, I, q, Ans, a) and an OBDA specificationB =
(T ,S,M), where T is a DL-LiteR TBox andM is a set of
GAV mappings, and computes all the most-general explanations
for a /∈ Ans w.r.t. theS-ontologyOB in EXPTIME in the size of
the input (inPTIME if the arity of theq is fixed) .

5.2 Ontologies from an instance
We now study the why-not problem w.r.t. anS-ontologyOI

that is derived from an instance. First, note that the presence of
nominals in the concept language guarantees a trivial answer for
the EXISTENCE-OF-EXPLANATION W.R.T. OI problem. An ex-
planation always exists, namely the explanation with nominals cor-
responding to the constants of the tuplea. In fact, amost-general
explanationalways exists, as follows from the results below.

Definition 5.6. The COMPUTE-ONE-MGE W.R.T. OI is the
following computational problem: given a why-not instance
(S, I, q, Ans, a), find a most-general explanation w.r.t.OI for
a 6∈ Ans, whereOI is theS-ontology that is derived fromI , as
defined in Section 4.2.

First, we state an important proposition, that underlies the cor-
rectness of the algorithms that we will present. The following
proposition shows that, when we search for explanations w.r.t. OI ,
we can always restrict our attention to a particular finite restriction
of this ontology.

Proposition 5.1.Let (S, I, q, Ans, a) be a why-not instance. IfE
is an explanation fora 6∈ Ans w.r.t. OI (resp. OS), then there
exists an explanationE′ for a 6∈ Ans such thatE <OI [K] E

′

(resp.E <OS[K] E
′), whereK = adom(I) ∪ {a1, . . . , am} and

each constant inE′ belongs toK.

In our proof, we iteratively reduce the number of constants oc-
curring in the explanation. That is, for every explanationE with
concepts containing constants outside ofadom(I)∪{a1, . . . , am},
we produce a new explanationE′ which is more general thanE and
which contains less constants outside ofadom(I)∪{a1, . . . , am}.

Notice that since, in principle, it is possible to materialize
the ontologyOI [K] (i.e., to explicitly compute all the concepts
C in the ontology, the subsumption relation⊑I , and the exten-
sionext), the EXHAUSTIVE SEARCH ALGORITHM, together with
Proposition 5.1, give us a method for solving COMPUTE-ONE-
MGE W.R.T. OI . In particular, given a schema, EXHAUSTIVE

SEARCH ALGORITHM solves COMPUTE-ONE-MGE W.R.T. OI

in 2EXPTIME (in EXPTIME if the arity of q is fixed). This is
because to find a most-general explanation w.r.tOI , it is suffi-
cient to restrict to the concept languageLS[K] and its fragments,
whereK = adom(I) ∪ {a1, . . . , am}. Then COMPUTE-ONE-
MGE W.R.T. OI is solvable in 2EXPTIME follows from the fact
that theS-ontologyOI [K] is computable in at most 2EXPTIME.

We now present a more effective algorithm for solving
COMPUTE-ONE-MGE W.R.T. OI . (See Algorithm 2.) We start by
introducing the notion of aleast upper boundof a set of constants
X w.r.t. an instanceI , denoted bylubI(X). This, intuitively, cor-
responds to the most-specific concept whose extension contains all
constants ofX. We first consider the case in whichlubI(X) is
expressed using selection-freeLS concepts. The following lemma
states two important properties oflubI(X) that are crucial for the
correctness of Algorithm 2.

Lemma 5.1.Given an instanceI of schemaS and a set of con-
stantsX, we can compute in polynomial time a selection-freeLS

concept, denotedlubI(X), that is the smallest concept whose ex-
tension contains all the elements inX definable in the language.
In particular, the following hold:

1. X ⊆ ext(lubI(X), I),

2. there is no conceptC′ in selection-freeLS such thatC′
❁I

lubI(X) andX ⊆ ext(C′, I).

We are now ready to introduce the algorithm. We will start with
a high-level description of the idea behind it. The algorithm nav-
igates through the search space of possible explanations using an
incremental search strategy and makes use of the above defined no-
tion of lub. We start with an explanation that has, in each position,
the lub of the constant (i.e., nominal) that occurs in that position.
Then, we try to construct a more general explanation by expanding
the set of constants considered by eachlub.

Notice that INCREMENTAL SEARCH ALGORITHM produces ex-
planations which are tuples of conjunctions of concepts. Therefore
it produces an explanation whose concepts are concept expressions
in the languageLS or selection-freeLS. We will study the behavior
of the algorithm in each of these cases separately.

Algorithm 2: INCREMENTAL SEARCH ALGORITHM

Input : a why-not instance(S, I, q, Ans, a)
Output : a most-general explanation fora /∈ Ans wrt OI

1 LetK = adom(I) ∪ {a1, . . . , am}
2 LetX = (X1, . . . , Xm) s.t. eachXj = {aj}. // support set

3 LetE = (C1, . . . , Cm) s.t. eachCj = lubI(Xj). // first

candidate explanation

4 foreach1 ≤ j ≤ m do
5 foreach b ∈ adom(I) \ ext(Ej, I) do
6 X ′

j = Xj ∪ {b}
7 LetC′

j = lubI(X
′
j) // a more general concept in positionj

8 LetE′ := (C1, . . . , C
′
j , . . . Cm) // a more general

explanation

9 if E′ ∩Ans = ∅ then
10 E := E′

11 X := (X1, . . . , X
′
j , . . . Xm)

12 returnE

First, we focus on the case in which INCREMENTAL SEARCH

ALGORITHM produces most-general explanations using selection-
freeLS concepts. We show that the algorithm is correct, i.e., that
it outputs an explanation fora /∈ Ans w.r.t. OI , and that it runs in
polynomial time with selection-freeLS.

Theorem 5.3 (Correctness and running time of INCREMENTAL

SEARCH ALGORITHM). Let the why-not instance(S, I, q, Ans, a)
be an input toINCREMENTAL SEARCH ALGORITHM andE the
corresponding output. The following holds:
1. E is a most-general explanation fora 6∈ Ans w.r.t. OI =

(C,⊑I , ext), whereC is selection-freeLS;

2. INCREMENTAL SEARCH ALGORITHM runs in PTIME in the
size of the input.

Now we extend our analysis of INCREMENTAL SEARCH ALGO-
RITHM to the general case in which it works withLS. First, we
state an analogue of Lemma 5.1 forLS.

Lemma 5.2.Given an instanceI ofS and a set of constantsX, we
can compute in exponential time aLS concept, denotedlubσ

I (X),
that is the smallest concept whose extension contains all the ele-
ments inX definable in the language. Such concept is polynomial-
time computable for bounded schema arity. In particular, the fol-
lowing hold:
1. X ⊆ ext(lubσ

I (X), I),

2. there is no conceptC′ in LS such thatC′
❁I lubσ

I (X) and
X ⊆ ext(C′, I).

By INCREMENTAL SEARCH ALGORITHM WITH SELECTIONS

we will refer to the algorithm obtained from INCREMENTAL

SEARCH ALGORITHM by replacinglubI(X) with lubσ
I (X) in line

3 and line 7.
The following Theorem shows that INCREMENTAL SEARCH

ALGORITHM WITH SELECTIONSis correct, i.e., that it outputs an
explanation fora /∈ Ans w.r.t. theS-ontologyOI , and that it runs
in exponential time (in polynomial time for bounded schema arity).

Theorem 5.4 (Correctness and running time of INCREMENTAL

SEARCH ALGORITHM WITH SELECTIONS). Let the why-not in-
stance(S, I, q, Ans, a) be an input toINCREMENTAL SEARCH

ALGORITHM WITH SELECTIONSandE the corresponding output.
The following hold:
1. E is a most-general explanation fora 6∈ Ans w.r.t. OI =

(C,⊑I , ext), whereC isLS;

2. INCREMENTAL SEARCHALGORITHM runs inEXPTIME in the
size of the input (inPTIME for bounded schema arity).

We close this section with the study of the following problem.

Definition 5.7. The CHECK-MGE W.R.T. OI problem is
the following decision problem: given a why-not instance
(S, I, q, Ans, a) and a tuple of conceptsE = (C1, . . . , Cn), is
E a most-general explanation w.r.t.OI for a 6∈ Ans?

Our next proposition states the running time of our algorithm for
the CHECK-MGE W.R.T. OI for various fragments of our concept
language. The algorithm operates very similarly to lines 4-11 of
INCREMENTAL SEARCH ALGORITHM. Given a tuple of concepts,
we check whether that tuple of concepts can be extended to a more
general tuple of concepts through ideas similar to lines 4-11 of IN-
CREMENTAL SEARCH ALGORITHM. If the answer is “no”, then
we return “yes”. Otherwise, we return “no”.

Proposition 5.2.There is an algorithm that solvesCHECK-MGE
W.R.T. OI in:
• PTIME for selection-freeLS, or for LS with bounded schema

arity;

• EXPTIME for LS in the general case.

5.3 Ontologies from Schema
We now study the case of solving the why-not problem w.r.t. to

anS-ontologyOS that is derived from a schema. As in the previ-
ous case, the presence of nominals in the concept language guar-
antees that the trivial explanation always exists. Therefore we do
not consider the decision problem EXISTENCE-OF-EXPLANATION

W.R.T. OS.

Definition 5.8 (COMPUTE-ONE-MGE W.R.T. OS). The
COMPUTE-ONE-MGE W.R.T. OS is the following computa-
tional problem: given a why-not instance(S, I, q, Ans, a), find a
most-general explanation w.r.t.OS for a 6∈ Ans, whereOS is the
S-ontology that is derived fromS, as defined in Section 4.2.

The complexity of COMPUTE-ONE-MGE W.R.T. OS depends
on the complexity of subsumption checking forLS. As seen in
Table 1, subsumption checking with respect to arbitrary integrity
constraints is undecidable. Therefore, for the general case in which
no restriction is imposed on the integrity constraints, COMPUTE-
ONE-MGE W.R.T. OS is unlikely to be decidable. The restrictions
on the integrity constraints ofS allow for the definition of several
variants of the problem that, under some restrictions, are decidable.

We restrict now to the cases in which we are able to material-
ize theS-ontologyOS[K], with K = adom(I) ∪ {a1, . . . , am}.
EXHAUSTIVE SEARCH ALGORITHM gives us a method for solv-
ing COMPUTE-ONE-MGE W.R.T. OS. The following proposition
gives us a double exponential upper bound for COMPUTE-ONE-
MGE W.R.T. OS in the general case, and a polynomial case under
specific assumptions (cf. Table 1).

Proposition 5.3.There is an algorithm that solvesCOMPUTE-
ONE-MGE W.R.T. OS

• in 2EXPTIME for LS, provided that the input schemaS is
from a class for which concept subsumption can be checked
in EXPTIME,

• in EXPTIME for selection-freeLS, and projection-freeLS, pro-
vided that the input schemaS is from a class for which concept
subsumption can be checked inEXPTIME,

• in PTIME forLmin
S , if the arity ofq is fixed and provided that the

input schemaS is from a class for which concept subsumption
can be checked inPTIME.

We end with the definition of CHECK-MGE W.R.T. OS.

Definition 5.9. The CHECK-MGE W.R.T. OS problem is
the following decision problem: given a why-not instance
(S, I, q, Ans, a) and a tuple of conceptsE = (C1, . . . , Cn), is
E a most-general explanation w.r.t.OS for a 6∈ Ans?

As for COMPUTE-ONE-MGE W.R.T. OS, the undecidability of
concept subsumption in the general case suggests that it is unlikely
for CHECK-MGE W.R.T.OS to be decidable without imposing any
restriction onΠ andΣ. However, also this problem allows for the
characterization of several decidable variants.

In particular, since CHECK-MGE is solvable in PTIME (see
Theorem 5.1), by materializingOS[K] we can derive some upper
bounds for CHECK-MGE W.R.T. OS too.

Proposition 5.4.There is an algorithm that solvesCHECK-MGE
W.R.T. OS

• in 2EXPTIME for LS concepts, provided that the input schema
S is from a class for which concept subsumption can be checked
in EXPTIME,

• in EXPTIME for selection-freeLS, and projection-freeLS, pro-
vided that the input schemaS is from a class for which concept
subsumption can be checked inEXPTIME,

• in PTIME for Lmin
S , provided that the input schemaS is from a

class for which concept subsumption can be checked inPTIME.

The proof is analogous to the one for Proposition 5.3.
We expect that the upper bounds for COMPUTE-ONE-MGE

W.R.T. OS and CHECK-MGE W.R.T. OS can be improved. Pin-
pointing the complexity of these problems is left for futurework.

6. VARIATIONS OF THE FRAMEWORK
We consider several refinements and variations to our framework

involving finding short explanations, and providing alternative def-
initions of explanationsand of what it means to bemost general.

Producing a Short Explanation. A most-general explanation that
is short may be more helpful to the user. To simplify our discus-
sion, we restrict our attention to ontologies that are derived from an
instance and show that the problem of finding a most-general expla-
nation of minimal length is NP-hard in general, where thelengthof
an explanationE = (C1, . . . , Ck) is measured by the total number
of symbols needed to write outC1, . . . ,Ck.

Proposition 6.1.Given a why-not instance(S, I, q, Ans, a), the
problem of finding a most-general explanation toā 6∈ Ans of min-
imal length isNP-hard.

Given that computing a shortest most-general explanation is in-
tractable in general, we may consider the task of shorteninga given
most-general explanation. The INCREMENTAL SEARCH ALGO-
RITHM produces concepts that may contain superfluous conjuncts.
It is thus natural to ask whether the algorithm can be modifiedto
produce a most-general explanation of a shorter length. This ques-
tion can be formalized in at least two ways.

Let I be an instance of a schemaS, and letC = ⊓{C1, . . . , Cn}
be anyLS concept expression. We may assume that eachCi is
intersection-free. We say thatC is irredundantif there is a no strict
subsetX ({C1, . . . , Cn} such thatC ≡OI

⊓X. We say that
an explanation (with respect toOI) is irredundant if it consists of
irredundant concept expressions. We say that explanationsE1 and
E2 areequivalentw.r.t. an ontologyO, denoted asE1 ≡O E2, if
E1 ≤O E2 andE2 ≤O E1.

Proposition 6.2.There is a polynomial-time algorithm that takes
as input an instanceI of a schemaS, as well as anLS concept
expressionC, and produces an irredundant concept expressionC′

such thatC ≡OI
C′.

Hence, by combining Proposition 6.2 with INCREMENTAL

SEARCH ALGORITHM, we can compute an irredundant most-
general explanation w.r.t.OI in polynomial time.

We say that an explanationE = (C1, . . . , Ck) is minimized
w.r.t. OI if there does not exist an explanationE′ = (C1, . . . , Ck)
such thatE ≡OI

E′ andE′ is shorter thanE. Every minimized
explanation is irredundant, but the converse may not be true. For in-
stance, letO be an ontology with three atomic conceptsC1, C2, C3

such thatC1 ⊑O C2 ⊓ C3 andC2 ⊓ C3 ⊑O C1. Then the con-
ceptC2 ⊓ C3 is irredundant with respect toO. However,C1 is an
equivalent concept of strictly shorter length.

Proposition 6.3.Given a why-not instance(S, I, q, Ans, a) and
an explanationE to whyā 6∈ Ans, the problem of finding a mini-
mized explanation equivalent toE is NP-hard.

Cardinality based preference.We have currently defined amost-
general explanationto be an explanationE such that there is no
explanationE′ with E′ >O E. A natural alternative is to define
“most general” in terms of the cardinality of the extensionsof the
concepts in an explanation. Formally, letO = (C,⊑, ext) be an
S-ontology, andI an instance. We define thedegree of generality
of an explanationE = (C1, . . . , Cm) with respect toO andI to
be the (possibly infinite) sum|ext(C1, I)| + · · · + |ext(Cm, I)|.
For two explanations,E1, E2, we writeE1 >

card
O,I E2, if E1 has a

strictly higher degree of generality thanE2 with respect toO and
I . We say that an explanationE is>card-maximal (with respect to
O andI) if there is no explanationE′ such thatE′ >card

O,I E.

Proposition 6.4.Assuming P6=NP, there is noPTIME algorithm
that takes as input a why-not instance(S, I, q, Ans, a) and anS-
ontologyO, and produces a>card-maximal explanation fora 6∈
Ans. This holds even for unary queries.

In particular, this shows (assuming P6=NP) that computing
>card-maximal explanations is harder than computing most-
general explanations. The proof of Proposition 6.4 goes by reduc-
tion from a suitable variant of SET COVER. Our reduction is in
fact anL-reduction, which implies that there is no PTIME constant-
factor approximation algorithm for the problem of finding a>card-
maximal explanation.

Strong explanations. We now examine an alternative notion of
an explanation that is essentially independent to the instance of

a why-not question. Recall that the second condition of our cur-
rent definition of an explanationE = (C1, . . . , Cm) requires that
ext(C1, I)×· · ·×ext(C1, I) does not intersect withAns, whereI
is the given instance. We could replace this condition by a stronger
condition, namely thatext(C1, I

′) × · · · × ext(C1, I
′) does not

intersect withq(I ′), for any instanceI ′ of the given schema that is
consistent with the ontologyO. If this holds, we say thatE is a
strong explanation.

A strong explanation is also an explanation but not necessarily
the other way round. When a strong explanationE for a 6∈ Ans
exists, then, intuitively, the reason whya does not belong toAns,
is essentially independent from the specific instanceI , and has
to do with the ontologyO and the queryq. In the case where
the ontologyO is derived from a schemaS, a strong explanation
may help one discover possible errors in the integrity constraints
of S, or in the queryq. We leave the study of strong why-not
explanations for future work.

7. CONCLUSION
We have presented a new framework for why-not explanations,

which leverages concepts from an ontology to provide high-level
and meaningful reasons for why a tuple is missing from the result
of a query. Our focus in this paper was on developing a principled
framework, and on identifying the key algorithmic problems. The
exact complexity of some problems raised in this paper remains
open. In addition, there are several directions for future work.

Recall that, in general, there may be multiple most-generalex-
planations fora 6∈ q(I). While we have presented a polynomial
time algorithm for computing a most-general explanation toa why-
not question w.r.t.OI for the case of selection-freeLS, the most-
general explanation that is returned by the algorithm may not al-
ways be the most helpful explanation. In future work, we planto
investigate whether there is a polynomial delay algorithm for enu-
merating all most-general explanations for such ontologies.

Although we only looked atwhy-not explanations, it will be nat-
ural to considerwhy explanationsin the context of an ontology,
and in particular, understand whether the notion of most-general
explanations, suitably adapted, applies in this setting. In addition,
Roy and Suciu [27] recently initiated the study of what one could
call “why so high” and “why so low” explanations for numerical
queries (such as aggregate queries). Again, it would be interest-
ing to see if our approach can help in identifying high-levelsuch
explanations.

We have focused on providing why-not explanations to missing
tuples of queries that are posed against a database schema. How-
ever, our framework for answering the why-not question is general
and could, in principle, be applied also to queries posed against the
ontology in an OBDA setting.

Finally, we plan to explore ways whereby our high-level explana-
tions can be used to complement and enhance existing data-centric
and/or query-centric approaches. We illustrate this with an exam-
ple. Suppose a certain publicationX is missing from the answers to
query over some publication database. A most-general explanation
may be that X was published by Springer (supposing all Springer
publications are missing from the answers to the query). This ex-
planation provides insight on potential high-level issuesthat may
exist in the database and/or query. For example, it may be that all
Springer publications are missing from the database (perhaps due
to errors in the integration/curation process) or the queryhas in-
advertently omitted the retrieval of all Springer publications. This
is in contrast with existing data-centric (resp. query-centric) ap-
proaches, which only suggest fixes to the database instance (resp.
query) so that the specific publicationX appears in the query result.

Acknowledgements We thank Vince Bárány, Bertram Ludäscher
and Dan Olteanu for motivating discussion during early stages of
the research. Ten Cate is partially supported by NSF grant IIS-
1217869. Civili is partially supported by the EU under FP7 project
Optique (grant n. FP7-318338). Sherkhonov is supported by the
Netherlands Organization for Scientific Research (NWO) under
project number 612.001.012 (DEX). Tan is partially supported by
NSF grant IIS-1450560.

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu.Foundations of

databases, volume 8. Addison-Wesley, 1995.
[2] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu,

E. Pasalic, T. L. Veldhuizen, and G. Washburn. Design and
implementation of the logicblox system. InSIGMOD ’15,
2015.

[3] T. Arora, R. Ramakrishnan, W. G. Roth, P. Seshadri, and
D. Srivastava. Explaining program execution in deductive
systems. InDOOD, pages 101–119, 1993.

[4] A. Artale, D. Calvanese, R. Kontchakov, and
M. Zakharyaschev. The DL-Lite family and relations.J.
Artif. Intell. Res. (JAIR), 36:1–69, 2009.

[5] S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and
D. Aumueller. Triplify: Light-weight linked data publication
from relational databases. InWWW, pages 621–630, 2009.

[6] A. Baid, W. Wu, C. Sun, A. Doan, and J. F. Naughton. On
debugging non-answers in keyword search systems. In
EDBT, 2015.

[7] M. Benedikt and G. Gottlob. The impact of virtual views on
containment.PVLDB, 3(1):297–308, 2010.

[8] N. Bidoit, M. Herschel, and K. Tzompanaki. Query-based
why-not provenance with nedexplain. InEDBT, pages
145–156, 2014.

[9] M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter.
Ontology-based data access: A study through disjunctive
datalog, CSP, and MMSNP. InPODS, pages 213–224, 2013.

[10] C. Bizer and A. Seaborne. D2rq - treating non-rdf databases
as virtual rdf graphs. InISWC2004 (posters), 2004.

[11] A. Borgida, D. Calvanese, and M. Rodriguez-Muro.
Explanation in the DL-Lite family of description logics. In
On the Move to Meaningful Internet Systems, pages
1440–1457, 2008.

[12] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati. Tractable reasoning and efficient query answering
in description logics: The dl-lite family.J. of Automated
reasoning, 39(3):385–429, 2007.

[13] D. Calvanese, M. Ortiz, M. Simkus, and G. Stefanoni.
Reasoning about explanations for negative query answers in
DL-Lite. J. Artif. Intell. Res., 48:635–669, 2013.

[14] A. Chapman and H. V. Jagadish. Why not? InSIGMOD,
pages 523–534, 2009.

[15] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in
databases: Why, how, and where.Foundations and Trends in
Databases, 1(4):379–474, 2009.

[16] B. Chin, D. von Dincklage, V. Ercegovak, P. Hawkins, M. S.
Miller, F. Och, C. Olston, and F. Pereira. Yedalog: Exploring
knowledge at scale. InSNAPL, 2015. To appear.

[17] F. Di Pinto, D. Lembo, M. Lenzerini, R. Mancini, A. Poggi,
R. Rosati, M. Ruzzi, and D. F. Savo. Optimizing query
rewriting in ontology-based data access. InEDBT, pages
561–572, 2013.

[18] T. J. Green. Logiql: a declarative language for enterprise
applications. InPODS ’15, 2015.

[19] T. J. Green, M. Aref, and G. Karvounarakis. Logicblox,
platform and language: A tutorial. InProceedings of the
Second International Conference on Datalog in Academia
and Industry, pages 1–8, 2012.

[20] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. InPODS, pages 31–40, 2007.

[21] T. Halpin and S. Rugaber.LogiQL: A Query Language for
Smart Databases. CRC Press, 2014.

[22] M. Herschel, M. A. Hernández, and W. C. Tan. Artemis: A
system for analyzing missing answers.PVLDB,
2(2):1550–1553, 2009.

[23] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the
provenance of non-answers to queries over extracted data.
PVLDB, 1(1):736–747, 2008.

[24] L. Lubyte and S. Tessaris. Automatic extraction of
ontologies wrapping relational data sources. InDEXA, pages
128–142, 2009.

[25] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The
complexity of causality and responsibility for query answers
and non-answers.PVLDB, 4(1):34–45, 2010.

[26] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo,
M. Lenzerini, and R. Rosati. Linking data to ontologies.J. on
Data Semantics X, pages 133–173, 2008.

[27] S. Roy and D. Suciu. A formal approach to finding
explanations for database queries. InProceedings of the 2014
ACM SIGMOD International Conference on Management of
Data, SIGMOD ’14, pages 1579–1590, New York, NY,
USA, 2014. ACM.

[28] O. Shmueli and S. Tsur. Logical diagnosis of ldl programs.
In Int’l Conf. on Logic Programming, 1990.

[29] Q. T. Tran and C. Chan. How to conquer why-not questions.
In SIGMOD, pages 15–26, 2010.

	1 Introduction and Results
	2 Preliminaries
	3 Why-Not Explanations
	4 Obtaining Ontologies
	4.1 Leveraging an external ontology
	4.2 Ontologies derived from a schema

	5 Algorithms for Computing Most-General Explanations
	5.1 External Ontology
	5.2 Ontologies from an instance
	5.3 Ontologies from Schema

	6 Variations of the Framework
	7 Conclusion
	8 References

