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ONLINE CONVEX OPTIMIZATION USING PREDICTIONS

NIANGJUN CHEN, ANISH AGARWAL, ADAM WIERMAN, SIDDHARTH BARMAN,
LACHLAN L. H. ANDREW

Abstract. Making use of predictions is a crucial, but under-explored, area of
online algorithms. This paper studies a class of online optimization problems
where we have external noisy predictions available. We propose a stochas-
tic prediction error model that generalizes prior models in the learning and
stochastic control communities, incorporates correlation among prediction er-
rors, and captures the fact that predictions improve as time passes. We prove
that achieving sublinear regret and constant competitive ratio for online al-
gorithms requires the use of an unbounded prediction window in adversarial
settings, but that under more realistic stochastic prediction error models it is
possible to use Averaging Fixed Horizon Control (AFHC) to simultaneously
achieve sublinear regret and constant competitive ratio in expectation using
only a constant-sized prediction window. Furthermore, we show that the per-
formance of AFHC is tightly concentrated around its mean.

1. Introduction

Making use of predictions about the future is a crucial, but under-explored, area
of online algorithms. In this paper, we use online convex optimization to illustrate
the insights that can be gained from incorporating a general, realistic model of
prediction noise into the analysis of online algorithms.

Online convex optimization. In an online convex optimization (OCO) prob-
lem, a learner interacts with an environment in a sequence of rounds. In round t
the learner chooses an action xt from a convex decision/action space G, and then
the environment reveals a convex cost function ct and the learner pays cost ct(xt).
An algorithm’s goal is to minimize total cost over a (long) horizon T .

OCO has a rich theory and a wide range of important applications. In computer
science, it is most associated with the so-called k-experts problem, an online learn-
ing problem where in each round t the algorithm chooses one of k possible actions,
viewed as following the advice of one of k “experts”.

However, OCO is being increasingly broadly applied and, recently has become
prominent in networking and cloud computing applications, including the design
of dynamic capacity planning, load shifting and demand response for data centers
[25, 29, 30, 31, 35], geographical load balancing of internet-scale systems [28, 42],
electrical vehicle charging [16, 25], video streaming [21, 22] and thermal manage-
ment of systems-on-chip [46, 47].

In typical applications of online convex optimization in networking and cloud
computing there is an additional cost in each round, termed a “switching cost”,
that captures the cost of changing actions during a round. Specifically, the cost is
ct(xt)+ ‖ xt − xt−1 ‖, where ‖ · ‖ is a norm (often the one-norm). This additional
term makes the online problem more challenging since the optimal choice in a round
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then depends on future cost functions. These “smoothed” online convex optimiza-
tion problems have received considerable attention in the context of networking
and cloud computing applications, e.g., [28, 29, 30, 31, 32], and are also relevant
for many more traditional online convex optimization applications where, in reality,
there is a cost associated with a change in action, e.g., portfolio management. We
focus on smoothed online convex optimization problems.

A mismatch between theory and practice. As OCO algorithms make
their way into networking and cloud computing applications, it is increasingly clear
that there is a mismatch between the pessimistic results provided by the theoretical
analysis (which is typically adversarial) and the near-optimal performance observed
in practice.

Concretely, two main performance metrics have been studied in the literature:
regret, defined as the difference between the cost of the algorithm and the cost of the
offline optimal static solution, and the competitive ratio, defined as the maximum
ratio between the cost of the algorithm and the cost of the offline optimal (dynamic)
solution.

Within the machine learning community, regret has been heavily studied [20, 45,
49] and there are many simple algorithms that provide provably sublinear regret

(also called “no regret”). For example, online gradient descent achieves O(
√
T )-

regret [49], even when there are switching costs [4]. In contrast, the online algo-
rithms community considers a more general class of problems called “metrical task
systems” (MTS) and focuses on competitive ratio [7, 8, 29]. Most results in this
literature are “negative”, e.g., when ct are arbitrary, the competitive ratio grows
without bound as the number of states in the decision space grows [8]. Exceptions
to such negative results come only when structure is imposed on either the cost
functions or the decision space, e.g., when the decision space is one-dimensional it
is possible for an online algorithm to have a constant competitive ratio, e.g., [29].
However, even in this simple setting no algorithms performs well for both competi-
tive ratio and regret. No online algorithm can have sublinear regret and a constant
competitive ratio, even if the decision space is one-dimensional and cost functions
are linear [4].

In contrast to the pessimism of the analytic work, applications in networking and
cloud computing have shown that OCO algorithms can significantly outperform the
static optimum while nearly matching the performance of the dynamic optimal,
i.e., simultaneously do well for regret and the competitive ratio. Examples include
dynamic capacity management of a single data center [2, 29] and geographical load
balancing across multiple data centers [28, 35, 36].

It is tempting to attribute this discrepancy to the fact that practical workloads
are not adversarial. However, a more important factor is that, in reality, algorithms
can exploit relatively accurate predictions about the future, such as diurnal variations
[5, 19, 31]. But a more important contrast between the theory and application is
simply that, in reality, predictions about the future are available and accurate, and
thus play a crucial role in the algorithms.

Incorporating predictions. It is no surprise that predictions are crucial to
online algorithms in practice. In OCO, knowledge about future cost functions is
valuable, even when noisy. However, despite the importance of predictions, we do
not understand how prediction noise affects the performance (and design) of online
convex optimization algorithms.
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This is not due to a lack of effort. Most papers that apply OCO algorithms to
networking and cloud computing applications study the impact of prediction noise,
e.g., [1, 3, 31, 35]. Typically, these consider numerical simulations where i.i.d. noise
terms with different levels of variability are added to the parameter being predicted,
e.g., [18, 40]. While this is a valuable first step, it does not provide any guarantees
about the performance of the algorithm with realistic prediction errors (which tend
to be correlated, since an overestimate in one period is likely followed by another
overestimate) and further does not help inform the design of algorithms that can
effectively use predictions.

Though most work on predictions has been simulation based, there has also been
significant work done seeking analytic guarantees. This literature can be categorized
into:

(i) Worst-case models of prediction error typically assume that there exists a
lookahead window ω such that within that window, prediction is near-perfect
(too optimistic), and outside that window the workload is adversarial (too
pessimistic), e.g., [8, 29, 28, 32, 12].

(ii) Simple stochastic models of prediction error typically consider i.i.d. errors,
e.g., [10, 31, 30]. Although this is analytically appealing, it ignores important
features of prediction errors, as described in the next section.

(iii) Detailed stochastic models of specific predictors applied for specific signal mod-
els, such as [48, 38, 39, 23]. This leads to less pessimistic results, but the
guarantees, and the algorithms themselves, become too fragile to assumptions
on the system evolution.

Contributions of this paper. First, we introduce a general colored noise
model for studying prediction errors in online convex optimization problems. The
model captures three important features of real predictors: (i) it allows for arbitrary
correlations in prediction errors (e.g., both short and long range correlations); (ii)
the quality of predictions decreases the further in the future we try to look ahead;
and (iii) predictions about the future are updated as time passes. Further, it strikes
a middle ground between the worst-case and stochastic approaches. In particular, it
does not make any assumptions about an underlying stochastic process or the design
of the predictor. Instead, it only makes (weak) assumptions about the stochastic
form of the error of the predictor; these assumptions are satisfied by many common
stochastic models, e.g., the prediction error of standard Weiner filters [44] and
Kalman filters [24]. Importantly, by being agnostic to the underlying stochastic
process, the model allows worst-case analysis with respect to the realization of the
underlying cost functions.

Second, using this model, we show that a simple algorithm, Averaging Fixed
Horizon Control (AFHC) [28], simultaneously achieves sublinear regret and a con-
stant competitive ratio in expectation using very limited prediction, i.e., a prediction
window of size O(1), in nearly all situations when it is feasible for an online algo-
rithm to do so (Theorem 2). Further, we show that the performance of AFHC
is tightly concentrated around its mean (Theorem 10). Thus, AFHC extracts the
asymptotically optimal value from predictions. Additionally, our results inform the
choice of the optimal prediction window size. (For ease of presentation, both The-
orems 9 and 10 are stated and proven for the specific case of online LASSO – see
Section 2 – but the proof technique can be generalized in a straightforward way.)
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Importantly, Theorem 5 highlights that the dominant factor impacting whether
the prediction window should be long or short in AFHC is not the variance of the
noise, but rather the correlation structure of the noise. For example, if prediction
errors are i.i.d. then it is optimal for AFHC to look ahead as far as possible (i.e.,
T ) regardless of the variance, but if prediction errors have strong short-range de-
pendencies then the optimal prediction window is constant sized regardless of the
variance.

Previously, AFHC had only been analyzed in the adversarial model [29], and our
results are in stark contrast to the pessimism of prior work. To highlight this, we
prove that in the “easiest” adversarial model (where predictions are exact within the
prediction window), no online algorithm can achieve sublinear regret and a constant
competitive ratio when using a prediction window of constant size (Theorem 1).
This contrast emphasizes the value of moving to a more realistic stochastic model
of prediction error.

2. Online Convex Optimization

with Switching Costs

Throughout this paper we consider online convex optimization problems with
switching costs, i.e., “smoothed” online convex optimization (SOCO) problems.

2.1. Problem Formulation. The standard formulation of an online optimization
problem with switching costs considers a convex decision/action space G ⊂ R

n and
a sequence of cost functions {c1, c2, . . .}, where each ct : G → R

+ is convex. At
time t, the online algorithm first chooses an action, which is a vector xt ∈ G, the
environment chooses a cost function ct from a set C, and the algorithm pays a stage
cost ct(xt) and a switching cost β||xt−xt−1|| where β ∈ (R+). Thus, the total cost
of the online algorithm is defined to be

(1) cost(ALG) = Ex

[

T
∑

t=1

ct(xt) + β||xt − xt−1||
]

,

where x1, . . . , xT are the actions chosen by the algorithm, ALG. Without loss of
generality, assume the initial action x0 = 0, the expectation is over any randomness
used by the algorithm, and || · || is a seminorm on R

n.
Typically, a number of assumptions about the action space G and the cost func-

tions ct are made to allow positive results to be derived. In particular, the action
set G is often assumed to be closed, nonempty, and bounded, where by bounded
we mean that there exists D ∈ R such that for all x, y ∈ G, ||x− y|| ≤ D. Further,
the cost functions ct are assumed to have a uniformly bounded subgradient, i.e.,
there exists N ∈ R

+ such that, for all x ∈ G, ||∇ct(x)|| ≤ N.
Since our focus in this paper is on predictions, we consider a variation of the

above with parameterized cost functions ct(xt; yt), where the parameter yt is the
focus of prediction. Further, except when considering worst-case predictions, we
adopt a specific form of ct for concreteness. We focus on a tracking problem where
the online algorithm is trying to do a “smooth” tracking of yt and pays a least
square penalty each round.

(2) cost(ALG) = Ex

[

T
∑

t=1

1

2
||yt −Kxt||22 + β||xt − xt−1||1.

]

,
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where the target yt ∈ R
m, and K ∈ R

m×n is a (known) linear map that transforms
the control variable into the space of the tracking target. Let K† be the Moore-
Penrose pseudoinverse of K.

We focus on this form because it represents an online version of the LASSO (Least
Absolute Shrinkage and Selection Operator) formulation, which is widely studied in
a variety of contexts, e.g., see [13, 14, 15, 41] and the references therein. Typically
in LASSO the one-norm regularizer is used to induce sparsity in the solution. In
our case, this corresponds to specifying that a good solution does not change too
much, i.e., xt − xt−1 6= 0 is infrequent. Importantly, the focus on LASSO, i.e., the
two-norm loss function and one-norm regularizer, is simply for concreteness and
ease of presentation. Our proof technique generalizes (at the expense of length and
complexity).

We assume that KTK is invertible and that the static optimal solution to (2)
is positive. Neither of these is particularly restrictive. If K has full column rank
then KTK is invertible. This is a reasonable, for example, when the dimensionality
of the action space G is small relative to the output space. Note that typically
K is designed, and so it can be chosen to ensure these assumptions are satisfied.
Additionally if K is invertible, then it no longer appears in the results provided.

Finally, it is important to highlight a few contrasts between the cost function in
(2) and the typical assumptions in the online convex optimization literature. First,
note that the feasible action set G = R

n is unbounded. Second, note that gradient
of ct can be arbitrarily large when yt and Kxt are far apart. Thus, both of these
are relaxed compared to what is typically studied in the online convex optimization
literature. We show in Section 5 that, we can have sublinear regret even in this
relaxed setting.

2.2. Performance Metrics. The performance of online algorithms for SOCO
problems is typically evaluated via two performance metrics: regret and the compet-
itive ratio. Regret is the dominant choice in the machine learning community and
competitive ratio is the dominant choice in the online algorithms community. The
key difference between these measures is whether they compare the performance
of the online algorithm to the offline optimal static solution or the offline optimal
dynamic solution. Specifically, the optimal offline static solution, is1

(3) STA = argmin
x∈G

T
∑

t=1

ct(x) + β||x||,

and the optimal dynamic solution is

OPT = argmin
(x1,...,xT )∈GT

T
∑

t=1

ct(xt) + β||(xt − xt−1)||.(4)

Definition 1. The regret of an online algorithm, ALG, is less than ρ(T ) if the
following holds:

sup
(c1,...,cT )∈CT

cost(ALG)− cost(STA) ≤ ρ(T ).(5)

1One switching cost is incurred due to the fact that we enforce x0 = 0.
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Definition 2. An online algorithm ALG is said to be ρ(T )-competitive if the
following holds:

sup
(c1,...,cT )∈CT

cost(ALG)

cost(OPT )
≤ ρ(T )(6)

The goals are typically to find algorithms with a (small) constant competitive
ratio (“constant-competitive”) and to find online algorithms with sublinear regret,
i.e., an algorithm ALG that has regret ρ(T ) bounded above by some ρ̂(T ) ∈ o(T );
note that ρ(T ) may be negative if the concept we seek to learn varies dynamically.
Sublinear regret is also called “no-regret”, since the time-average loss of the online
algorithm goes to zero as T grows.

2.3. Background. To this point, there are large literatures studying both the
designs of no-regret algorithms and the design of constant-competitive algorithms.
However, in general, these results tell a pessimistic story.

In particular, on a positive note, it is possible to design simple, no-regret algo-
rithms, e.g., online gradient descent (OGD) based algorithms [49, 20] and Online
Newton Step and Follow the Approximate Leader algorithms [20]. (Note that the
classical setting does not consider switching costs; however, [4] shows that similar
regret bounds can be obtained when switching costs are considered.)

However, when one considers the competitive ratio, results are much less op-
timistic. Historically, results about competitive ratio have considered weaker as-
sumptions, i.e., the cost functions ct and the action set G can be nonconvex, and the
switching cost is an arbitrary metric d(xt, xt−1) rather than a seminorm ||xt−xt−1||.
The weakened assumptions, together with the tougher offline target for compari-
son, leads to the fact that most results are “negative”. For example, [8] has shown
that any deterministic algorithm must be Ω(n)-competitive given metric decision
space of size n. Furthermore, [7] has shown that any randomized algorithm must

be Ω(
√

logn/ log logn)-competitive. To this point, positive results are only known
in very special cases. For example, [29] shows that, when G is a one dimensional
normed space, there exists a deterministic online algorithm that is 3-competitive.

Results become even more pessimistic when one asks for algorithms that per-
form well for both competitive ratio and regret. Note that performing well for
both measures is particularly desirable for many networking and cloud computing
applications where it is necessary to both argue that a dynamic control algorithm
provides benefits over a static control algorithm (sublinear regret) and is near opti-
mal (competitive ratio). However, a recent result in [4] highlights that such as goal
is impossible: even when the setting is restricted to a one dimensional normed space
with linear cost functions no online algorithm can simultaneously achieve sublinear
regret and constant competitive ratio 2.

3. Modeling Prediction Error

The adversarial model underlying most prior work on online convex optimization
has led to results that tend to be pessimistic; however, in reality, algorithms can
often use predictions about future cost functions in order to perform well.

2Note that this impossibility is not the result of the regret being additive and the competitive ratio
being multiplicative, as [4] proves the parallel result for competitive difference, which is an additive
comparison to the dynamic optimal.
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Knowing information about future cost functions is clearly valuable for smoothed
online convex optimization problems, since it allows you to better justify whether
it is worth it to incur a switching cost during the current stage. Thus, it is not
surprising that predictions have proven valuable in practice for such problems.

Given the value of predictions in practice, it is not surprising that there have been
numerous attempts to incorporate models of prediction error into the analysis of
online algorithms. We briefly expand upon the worst-case and stochastic approaches
described in the introduction to motivate our approach, which is an integration of
the two.

Worst-case models. Worst-case models of prediction error tend to assume
that there exists a lookahead window, w, such that within that window, a perfect
(or near-perfect, e.g., error bounded by ε) prediction is available. Then, outside of
that window the workload is adversarial. A specific example is that, for any t the
online algorithm knows yt, . . . , yt+w precisely, while yt+w+1, . . . are adversarial.

Clearly, such models are both too optimistic about the the predictions used
and too pessimistic about what is outside the prediction window. The result is
that algorithms designed using such models tend to be too trusting of short term
predictions and too wary of unknown fluctuations outside of the prediction window.
Further, such models tend to underestimate the value of predictions for algorithm
performance. To illustrate this, we establish the following theorem.

Theorem 1. For any constant γ > 0 and any online algorithm A (deterministic or
randomized) with constant lookahead w, either the competitive ratio of the algorithm
is at least γ or its regret, is Ω(T ). Here T is the number of cost functions in an
instance.

The above theorem focuses on the “easiest” worst-case model, i.e., where the
algorithm is allowed perfect lookahead for w steps. Even in this case, an online
algorithm must have super-constant lookahead in order to simultaneously have
sublinear regret and a constant competitive ratio. Further, the proof (given in
Appendix A.1) highlights that this holds even in the scalar setting with linear
cost functions. Thus, worst-case models are overly pessimistic about the value of
prediction.

Stochastic models. Stochastic models tend to come in two forms: (i) i.i.d.
models or (ii) detailed models of stochastic processes and specific predictors for
those processes.

In the first case, for reasons of tractability, prediction errors are simply assumed
to be i.i.d. mean zero random variables. While such an assumption is clearly ana-
lytically appealing, it is also quite simplistic and ignores many important features
of prediction errors. For example, in reality, predictions have increasing error the
further in time we look ahead due to correlation of predictions errors in nearby
points in time. Further, predictions tend to be updated or refined as time passes.
These fundamental characteristics of predictions cannot be captured by the i.i.d.
model.

In the second case, which is common in control theory, a specific stochastic
model for the underlying process is assumed and then an optimal predictor (filter)
is derived. Examples here include the derivation of Weiner filters and Kalaman
filters for the prediction of wide-sense stationary processes and linear dynamical
systems respectively, see [23]. While such approaches avoid the pessimism of the
worst-case viewpoint, they instead tend to be fragile to the underlying modeling
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assumptions. In particular, an online algorithm designed to use a particular filter
based on a particular stochastic model lacks the robustness to be used in settings
where the underlying assumptions are not valid.

3.1. A General Prediction Model. A key contribution of this paper is the devel-
opment of a model for studying predictions that provides a middle ground between
the worst-case and the stochastic viewpoints. The model we propose below seeks a
middle ground by not making any assumption on the underlying stochastic process
or the design of the predictor, but instead making assumptions only on the form of
the error of the predictor. Thus, it is agnostic to the predictor and can be used in
worst-case analysis with respect to the realization of the underlying cost functions.

Further, the model captures three important features of real predictors: (i) it
allows for correlations in prediction errors (both short range and long range); (ii)
the quality of predictions decreases the further in the future we try to look ahead;
and (iii) predictions about the future are refined as time passes.

Concretely, throughout this paper we model prediction error via the following
equation:

(7) yt = yt|τ +

t
∑

s=τ+1

f(t− s)e(s).

Here, yt|τ is the prediction of yt made at time τ < t. Thus, yt−yt|τ is the prediction
error, and is specified by the summation in (7). In particular, the prediction error
is modeled as a weighted linear combination of per-step noise terms, e(s) with
weights f(t − s) for some deterministic impulse function f . The key assumptions
of the model are that e(s) are i.i.d. with mean zero and positive definite covariance
Re; and that f satisfies f(0) = I and f(t) = 0 for t < 0. Note that, as the examples
below illustrate, it is common for the impulse function to decay as f(s) ∼ 1/sα.
As we will see later, this simple model is flexible enough to capture the prediction
error that arise from classical filters on time series, and it can represent all forms
of stationary prediction error by using appropriate forms of f .

Some intuition for the form of the model can be obtained by expanding the
summation in (7). In particular, note that for τ = t− 1 we have

(8) yt − yt|t−1 = f(0)e(t) = e(t),

which highlights why we refer to e(t) as the per-step noise.
Further, expanding the summation further gives

yt − yt|τ = f(0)e(t) + f(1)e(t− 1) + . . .+ f(t− τ − 1)e(τ + 1).(9)

Note that the first term is the one-step prediction error yt − yt|t−1; the first two
terms make up the two-step prediction error yt − yt|t−2; and so on. This highlights
that predictions in the model have increasing noise as one looks further ahead in
time and that predictions are refined as time goes forward.

Additionally, note that the form of (9) highlights that the impulse function f
captures the degree of short-term/long-term correlation in prediction errors. Specif-
ically, the form of f(t) determines how important the error t steps in the past is
for the prediction. Since we assume no structural form for f , complex correlation
structures are possible.

Naturally, the form of the correlation structure plays a crucial role in the per-
formance results we prove. But, the detailed structure is not important, only its
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effect on the aggregate variance. Specifically, the impact of the correlation struc-
ture on performance is captured through the following two definitions, which play
a prominent role in our analysis. First, for any w > 0, let ||fw||2 be the two norm
of prediction error covariance over (w + 1) steps of prediction, i.e.,

(10) ||fw||2 = tr(E[δywδy
T
w ]) = tr(Re

w
∑

s=0

f(s)T f(s)),

where δyTw = yt+w − yt+w|t−1 =
∑t+w

s=t f(t+ w − s)e(s). The derivation of (10) is
found in the proof of Theorem 5.

Second, let F (w) be the two norm square of the projected cumulative prediction
error covariance, i.e.,

(11) F (w) =

w
∑

t=0

E||KK
†
δyw||2 = tr(Re

w
∑

s=0

(w − s+ 1)f(s)TKK
†
f(s)).

Note that KK† is the orthogonal projector onto the range space of K. Hence it
is natural that the definitions are over the induced norm of KK† since any action
chosen from the space F can only be mapped to the range space of K i.e. no
algorithm, online or offline, can track the portion of y that falls in the null space of
K.

Finally, unraveling the summation all the way to time zero highlights that the
process yt can be viewed as a random deviation around the predictions made at
time zero, yt|0 := ŷt, which are specified externally to the model:

(12) yt = ŷt +

t
∑

s=1

f(t− s)e(s).

This highlights that an instance of the online convex optimization problem can
be specified via either the process yt or via the initial predictions ŷt, and then
the random noise from the model determines the other. We discuss this more when
defining the notions of regret and competitive ratio we study in this paper in Section
3.3.

3.2. Examples. While the form of the prediction error in the model may seem
mysterious, it is quite general, and includes many of the traditional models as
special cases. For example, to recover the worst-case prediction model one can set,
∀t, e(t) = 0 and ŷt′ as unknown ∀t′ > t + w and then take the worst case over

ŷ. Similarly, a common approach in robust control is to set f(t) =

{

I, t = 0;

0, t 6= 0
,

|e(s)| < D, ∀s and then consider the worst case over e.
Additionally, strong motivation for it can be obtained by studying the predictors

for common stochastic processes. In particular, the form of (7) matches the predic-
tion error of standard Weiner filters [44] and Kalman filters [24], etc. To highlight
this, we include a few brief examples below.

Example 1 (Wiener Filter). Let {yt}Tt=0 be a wide-sense stationary stochastic pro-
cess with E[yt] = ŷt, and covariance E[(yi − ŷi)(yj − ŷj)

T ] = Ry(i − j), i.e., the
covariance matrix Ry > 0 of y = [y1 y2 . . . yT ]

T is a Toeplitz matrix. The corre-
sponding e(s) in the Wiener filter for the process is called the “innovation process”
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and can be computed via the Wiener-Hopf technique [23]. Using the innovation
process e(s), the optimal causal linear prediction is

yt|τ = ŷt +
τ
∑

s=1

〈yt, e(s)〉||e(s)||−2
e(s),

and so the correlation function f(s) as defined in (7) is

(13) f(s) = 〈ys, e(0)〉||e(0)||−2 = Ry(s)R
−1
e ,

which yields

||fw ||2 =
1

Re

w
∑

s=0

Ry(s)
2
and F (w) =

1

Re

w
∑

s=0

(w − s+ 1)Ry(s)
2
.

Example 2 (Kalman Filter). Consider a stationary dynamical system described
by the hidden state space model

x
′
t+1 = Ax

′
t +But, yt = Cx

′
t + vt.

where the {ut, vt, x0} are m × 1, p × 1, and n × 1-dimensional random variables
such that

〈





ui

vj
x0



 ,









ui

vj
x0

1









〉

=





Qδij Sδij 0 0
S∗δij Rδij 0 0
0 0 Π0 0



 .

The Kalman filter for this process yields the optimal causal linear estimator yt|τ =

K[yT1 , . . . , y
T
τ ]

T such that yt|τ = argminEτ ||yt−K ′[yT1 , . . . , y
T
τ ]

T ||2. When t is large
and the system reaches steady state, the optimal prediction is given in the following
recursive form [23]:

x
′
t+1|t = Ax

′
t|t−1 +Kpe(t), y0|−1 = 0, e(0) = y0,

e(t) = yt −Cx
′
t|t−1,

where Kp = (APC∗ + BS)R−1
e , is the Kalman gain, and Re = R + CPC∗ is the

covariance of the innovation process et, and P solves

P = APA
∗ + CQC

∗ −KpReK
∗
p .

This yields the predictions

yt|τ =

τ
∑

s=1

〈yt, e(s)〉R−1
e e(s)

=
τ
∑

s=1

CAt−s−1(APC∗ +BS)R−1
e e(s).

Thus, for stationary Kalman filter, the prediction error correlation function is

(14) f(s) = CA
s−1(APC

∗ +BS)R−1
e = CA

s−1
Kp,

which yields

||fw ||2 =
w
∑

s=0

tr(Re(CA
s−1

Kp)
T
KK

†(CA
s−1

Kp)) and

F (w) =
w
∑

s=0

(w − s+ 1)tr(Re(CA
s−1

Kp)
T
KK

†(CA
s−1

Kp)).
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3.3. Performance Metrics. A key feature of the prediction model described
above is that it provides a general stochastic model for prediction errors while
not imposing any particular underlying stochastic process or predictor. Thus, it
generalizes a variety of stochastic models while allowing worst-case analysis.

More specifically, when studying online algorithms using the prediction model
above, one could either specify the instance via yt and then use the form of (7) to
give random predictions about the instance to the algorithm or, one could specify
the instance using ŷ := yt|0 and then let the yt be randomly revealed using the form
of (12). Note that, of the two interpretations, the second is preferable for analysis,
and thus we state our theorems using it.

In particular, our setup can be interpreted as allowing an adversary to specify
the instance via the initial (time 0) predictions ŷ, and then using the prediction
error model to determine the instance yt. We then take the worst-case over ŷ. This
corresponds to having an adversary with a “shaky hand” or, alternatively, letting
the adversary specify the instance but forcing them to also provide unbiased initial
predictions.

In this context, we study the following notions of (expected) regret and (ex-
pected) competitive ratio, where the expectation is over the realization of the pre-
diction noise e and the measures consider the worst-case specification of the instance
ŷ.

Definition 3. We say an online algorithm ALG, has (expected) regret at most
ρ(T ) if

sup
ŷ

Ee[cost(ALG)− cost(STA)] ≤ ρ(T ).(15)

Definition 4. We say an online algorithm ALG is ρ(T )-competitive (in expec-
tation) if

sup
ŷ

Ee[cost(ALG)]

Ee[cost(OPT )]
≤ ρ(T ).(16)

Our proofs bound the competitive ratio through an analysis of the competitive
difference, which is defined as follows.

Definition 5. We say an online algorithm ALG has (expected) competitive dif-

ference at most ρ(T ) if

sup
ŷ

Ee [cost(ALG)− cost(OPT )] ≤ ρ(T ).(17)

Note that these expectations are with respect to the prediction noise, (e(t))Tt=1,
and so cost(OPT ) is also random. Note also that when cost(OPT ) ∈ Ω(ρ(T )) and
ALG has competitive difference at most ρ(T ), then the algorithm has a constant
(bounded) competitive ratio.

4. Averaging Fixed Horizon Control

A wide variety of algorithms have been proposed for online convex optimization
problems. Given the focus of this paper on predictions, the most natural choice of an
algorithm to consider is Receding Horizon Control (RHC), a.k.a., Model Predictive
Control (MPC).

There is a large literature in control theory that studies RHC/MPC algorithms,
e.g., [17, 33] and the references therein; and thus RHC is a popular choice for
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online optimization problems when predictions are available, e.g., [6, 43, 26, 11].
However, recent results have highlighted that while RHC can perform well for one-
dimensional smoothed online optimization problems, it does not perform well (in
the worst case) outside of the one-dimension case. Specifically, the competitive ratio
of RHC with perfect lookahead w is 1+O(1/w) in the one-dimensional setting, but
is 1 +Ω(1) outside of this setting, i.e., the competitive ratio does not decrease to 1
as the prediction window w increases [28].

In contrast, a promising new algorithm, Averaging Fixed Horizon Control (AFHC)
proposed by [28] in the context of geographical load balancing maintains good
performance in high-dimensional settings, i.e., maintains a competitive ratio of
1 + O(1/w)3. Thus, in this paper, we focus on AFHC. Our results highlight that
AFHC extracts the asymptotically optimal value from predictions, and so validates
this choice.

As the name implies, AFHC averages the choices made by Fixed Horizon Con-
trol (FHC) algorithms. In particular, AFHC with prediction window size (w + 1)
averages the actions of (w + 1) FHC algorithms.

Algorithm 1 (Fixed Horizon Control). Let Ωk = {i : i ≡ k mod (w + 1)}∩[−w, T ]
for k = 0, . . . , w. Then FHC(k)(w + 1), the kth FHC algorithm is defined in the
following manner. At timeslot τ ∈ Ωk (i.e., before cτ is revealed), choose actions

x
(k)
FHC,t for t = τ, . . . τ + w as follows:

If t ≤ 0, x
(k)
FHC,t = 0. Otherwise, let xτ−1 = x

(k)
FHC,τ−1, and let (x

(k)
FHC,t)

τ+w
t=τ be

the vector that solves

min
xτ ,...,xτ+w

τ+w
∑

t=τ

ĉt(xt) + β||(xt − xt−1)||

where ĉt(·) is the prediction of the future cost ct(·) for t = τ, . . . , τ + w.

Note that in the classical OCO with (w + 1)-lookahead setting, ĉt(·) is exactly
equal to the true cost c(·). Each FHC(k)(w + 1) can be seen as a length (w + 1)
fixed horizon control starting at position k. Given (w+1) versions of FHC, AFHC
is defined as the following:

Algorithm 2 (Averaging Fixed Horizon Control). At timeslot t ∈ 1, ..., T , AFHC(w+
1) sets

(18) xAFHC,t =
1

w + 1

w
∑

k=0

x
(k)
FHC,t.

5. Average-case Analysis

We first consider the average-case performance of AFHC (in this section), and
then consider distributional analysis (in Section 6). We focus on the tracking prob-
lem in (2) for concreteness and conciseness, though our proof techniques generalize.
Note that, unless otherwise specified, we use || · || = || · ||2.

Our main result shows that AFHC can simultaneously achieve sublinear regret
and a constant competitive ratio using only a constant-sized prediction window in

3Note that this result assumes that the action set is bounded, i.e., for all feasible action x, y, there
exists D > 0, such that ||x − y|| < D, and that there exists e0 > 0, s.t. ct(0) ≥ e0, ∀t. The results we
prove in this paper make neither of these assumptions.
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nearly all cases that it is feasible for an online algorithm to do so. This is in stark
contrast with Theorem 1 for the worst-case prediction model.

Theorem 2. Let w be a constant. AFHC(w+1) is constant-competitive whenever
inf ŷ Ee[OPT ] = Ω(T ) and has sublinear regret whenever inf ŷ Ee[STA] ≥ α1T −
o(T ), for α1 = 4V + 8B2, where

V =
β||K†||1||fw||+ 3β2||(KTK)−1

1||+ F (w)/2

w + 1
(19)

B = β||(KT )†1||.(20)

and ||M ||1 denotes the induced 1-norm of a matrix M
Theorem 2 imposes bounds on the expected costs of the dynamic and static

optimal in order to guarantee a constant competitive ratio and sublinear regret.
These bounds come about as a result of the noise in predictions. In particular,
prediction noise makes it impossible for an online algorithm to achieve sublinear
expected cost, and thus makes it infeasible for an online algorithm to compete with
dynamic and static optimal solutions that perform too well. This is made formal in
Theorems 3 and 4, which are proven in Appendix B. Recall that Re is the covariance
of an estimation error vector, e(t).

Theorem 3. Any online algorithm ALG that chooses xt using only (i) internal
randomness independent of e(·) and (ii) predictions made up until time t, has ex-

pected cost Ee[cost(ALG)] ≥ α2T + o(T ), where α2 = 1
2 ||R

1/2
e ||2KK† .

Theorem 4. Consider an online algorithm ALG such that Ee[cost(ALG)] ∈ o(T ).
The actions, xt, of ALG can be used to produce one-step predictions y′t|t−1, such

that mean square of the one-step prediction error is smaller than that for yt|t−1,

i.e., Ee||yt − y′t|t−1||2 ≤ Ee||yt − yt|t−1||2, for all but sublinearly many t.

Theorem 3 implies that it is impossible for any online algorithm that uses extra
information (e.g., randomness) independent of the prediction noise to be constant
competitive if Ee[cost(OPT )] = o(T ) or to have sublinear regret if Ee[cost(STA)] ≤
(α2 − ε)T + o(T ), for ε > 0.

Further, Theorem 4 states that if an online algorithm does somehow obtain
asymptotically smaller cost than possible using only randomness independent of
the prediction error, then it must be using more information about future yt than
is available from the predictions. This means that the algorithm can be used to
build a better predictor.

Thus, the consequence of Theorems 3 and 4 is the observation that the condition
in Theorem 2 for the competitive ratio is tight and the condition in Theorem 2 for
regret is tight up to a constant factor, i.e., α1 versus α2. (Attempting to prove
matching bounds here is an interesting, but very challenging, open question.)

In the remainder of the section, we outline the analysis needed to obtain Theorem
2, which is proven by combining Theorem 5 bounding the competitive difference
of AFHC and Theorem 9 bounding the regret of AFHC. The analysis exposes the
importance of the correlation in prediction errors for tasks such as determining
the optimal prediction window size for AFHC. Specifically, the window size that
minimizes the performance bounds we derive is determined not by the quality of
predictions, but rather by how quickly error correlates, i.e., by ||fω||2.
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Proof of Theorem 2. The first step in our proof of Theorem 2 is to bound the
competitive difference of AFHC. This immediately yields a bound on the compet-
itive ratio and, since it is additive, it can easily be adapted to bound regret as
well.

The main result in our analysis of competitive difference is the following. This
is the key both to bounding the competitive ratio and regret.

Theorem 5. The competitive difference of AFHC(w+1) is O(T ) and bounded by:

(21) sup
ŷ

Ee[cost(AFHC) − cost(OPT )] ≤ V T

where V is given by (19)

Theorem 5 implies that the competitive ratio of AFHC is bounded by a constant
when cost(OPT ) ∈ Ω(T ).

The following corollary of Theorem 5 is obtained by minimizing V with respect
to w.

Corollary 6. For AFHC, the prediction window size that minimizes the bound
in Theorem 5 on competitive difference is a finite constant (independent of T ) if
F (T ) ∈ ω(T ) and is T if there is i.i.d noise4.

The intuition behind this result is that if the prediction model causes noise to
correlate rapidly, then a prediction for a time step too far into the future will be
so noisy that it would be best to ignore it when choosing an action under AFHC.
However, if the prediction model is nearly independent, then it is optimal for AFHC
to look over the entire time horizon, T , since there is little risk from aggregating
predictions. Importantly, notice that the quality (variance) of the predictions is
not determinant, only the correlation.

Theorem 5 is proven using the following lemma (proven in the appendix) by
taking expectation over noise.

Lemma 7. The cost of AFHC(w + 1) for any realization of yt satisfies

cost(AFHC)− cost(OPT ) ≤

1

w + 1

w
∑

k=0

∑

τ∈Ωk

(

β||x∗
τ−1 − x

(k)
τ−1||1 +

τ+w
∑

t=τ

1

2
||yt − yt|τ−1||2KK†

)

.

Next, we use the analysis of the competitive difference in order to characterize
the regret of AFHC. In particular, to bound the regret we simply need a bound on
the gap between the dynamic and static optimal solutions.

Lemma 8. The suboptimality of the offline static optimal solution STA can be
bounded below on each sample path by

cost(STA)− cost(OPT )

≥1

2





√

√

√

√

T
∑

t=1

||yt − ȳ||2
KK† − 2B

√
T )





2

− 2B2T − C

where ȳ =
∑

T

t=1
yt

T , B = β||(KT )†1||2 and C = β2
1

T (KTK)−1
1

2T .

4Specifically f(0) = I, f(t) = 0∀t > 0
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Note that the bound above is in terms of ||(yt−ȳ)||2KK† , which can be interpreted
as a measure of the variability yt. Specifically, it is the projection of the variation
onto the range space of K.

Combining Theorem 5 with Lemma 8 gives a bound on the regret of AFHC,
proven in Appendix B.

Theorem 9. AHFC has sublinear expected regret if

inf
ŷ
Ee

T
∑

t=1

||KK†(yt − ȳ)||2 ≥ (8V + 16B2)T,

where V and B are defined in (19) and (20).

Finally, we make the observation that, for all instances of y:

cost(STA) =
1

2

T
∑

t=1

||yt −Kx||2 + β||x||1

≥ 1

2

T
∑

t=1

||(I −KK
†)yt +KK

†
yt −Kx||2

=
1

2

T
∑

t=1

||(I −KK
†)yt||2 +

1

2
||KK

†
yt −Kx||2

≥ 1

2
||KK

†(yt − ȳ)||2.

Hence by Theorem 9, we have the condition of the Theorem.

6. Concentration Bounds

The previous section shows that AFHC performs well in expectation, but it is
also important to understand the distribution of the cost under AFHC. In this
section, we show that, with a mild additional assumption on the prediction error
e(t), the event when there is a large deviation from the expected performance bound
proven in Theorem 5 decays exponentially fast.

The intuitive idea behind the result is the observation that the competitive
difference of AFHC is a function of the uncorrelated prediction error e(1), . . . , e(T )
that does not put too much emphasis on any one of the random variables e(t).
This type of function normally has sharp concentration around its mean because
the effect of each e(t) tends to cancel out.

For simplicity of presentation, we state and prove the concentration result for
AFHC for the one dimensional tracking cost function

1

2

T
∑

t=1

(yt − xt)
2 + β|xt − xt−1|.

In this case, Re = σ2, and the correlation function f : N → R is a scalar valued
function. The results can all be generalized to the multidimensional setting.

Additionally, for simplicity of presentation, we assume (for this section only)
that {e(t)}Tt=1 are uniformly bounded, i.e., ∃ǫ > 0, s.t. ∀t, |e(t)| < ǫ. Note that,
with additional effort, the boundedness assumption can be relaxed to the case of
e(t) being subgaussian, i.e., E[exp(e(t)2/ǫ2)] ≤ 2, for some ǫ > 0.5

5This involves more computation and worse constants in the concentration bounds. Interested
readers are referred to Theorem 12 and the following remark of [9] for a way to generalize the
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To state the theorem formally, let V T be the upper bound of the expected
competitive difference of AFHC in (21). Given {ŷt}Tt=1, the competitive difference
of AFHC is a random variable that is a function of the prediction error e(t). The
following theorem shows that the probability that the cost of AFHC exceeds that
of OPT by much more than the expected value V T decays rapidly.

Theorem 10. The probability that the competitive difference of AFHC exceeds
V T is exponentially small, i.e., for any u > 0:

P(cost(AFHC)− cost(OPT ) > V T + u)

≤ exp





−u2

8ǫ2 β2T
(w+1)σ2 ||fw ||2



+ exp

(

−u2

16ǫ2λ(2 T
w+1

F (w) + u)

)

≤2 exp

(

−u2

a+ bu

)

,

where ||fw||2 = (
∑w

t=0 |f(t)|2), the parameter λ of concentration

λ ≤
w
∑

t=0

(w − t)f(t)2 =
1

σ2
F (w),

and a = 8ǫ2[T/(w + 1)]max(β
2

σ2 ||fw||2, 4λF (w)), b = 16ǫ2λ.

The theorem implies that the tail of the competitive difference of AFHC has a
Bernstein type bound. The bound decays much faster than the normal large devia-
tion bounds obtained by bounding moments, i.e., Markov Inequality or Chebyshev
Inequality. This is done by more detailed analysis of the structure of the competitive
difference of AFHC as a function of e = (e(1), . . . , e(T ))T .

Note that smaller values of a and b in Theorem 10 imply a sharper tail bound.
We can see that smaller ||fw|| and smaller F (w) implies the tail bound decays faster.
Since higher prediction error correlation implies higher ||fw|| and F (w), Theorem
10 quantifies the intuitive idea that, the performance of AFHC concentrates more
tightly around its mean when the prediction error is less correlated.

Proof of Theorem 10. To prove Theorem 10, we start by decomposing the bound
in Lemma 7. In particular, Lemma 7 gives

cost(AFHC) − cost(OPT ) ≤ g1 + g2(22)

where

g1 =
1

w + 1

w
∑

k=0

∑

τ∈Ωk

β|x∗
τ−1 − x

(k)
τ−1|,

represents loss due to the switching cost, and

g2 =
1

w + 1

w
∑

k=0

∑

τ∈Ωk

τ+w
∑

t=τ

1

2
(yt − yt|τ−1)

2,

represents the loss due to the prediction error.

concentration bound for the switching cost (Lemma 11), and Theorem 1.1 of [37] for a way to
generalize the concentration bound for prediction error (Lemma 15).
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Let V1 = 3β2T
w+1 + βT

w+1 ||fw||2, and V2 = T
2(w+1)F (w). Note that V T = V1 + V2.

Then, by (22),

P(cost(AFHC)− cost(OPT ) > u+ V T )

≤ P(g1 > u/2 + V1 or g2 > u/2 + V2)

≤ P(g1 > u/2 + V1) + P(g2 > u/2 + V2).(23)

Thus, it suffices to prove concentration bounds for the loss due to switching cost,
g1, and the loss due to prediction error, g2, deviating from V1 and V2 respectively.
This is done in the following. The idea is to first prove that g1 and g2 are functions
of e = (e(1), . . . , e(T ))T that are not “too sensitive” to any of the elements of e, and
then apply the method of bounded difference [34] and Log-Sobolev inequality [27].
Combining (23) with Lemmas 11 and 15 below will complete the proof of Theorem
10.
Bounding the loss due to switching cost. This section establishes the following
bound on the loss due to switching:

Lemma 11. The loss due to switching cost has a sub-Gaussian tail: for any u > 0,

P(g1 > u+ V1) ≤ exp

(

−u2

2ǫ2β2 T
w+1 (||fw||)2

)

.(24)

To prove Lemma 11, we introduce two lemmas. Firstly, we use the first order
optimality condition to bound g1 above by a linear function of e = (e(1), . . . , e(T ))T

using the following lemma proved in the Appendix.

Lemma 12. The loss due to switching cost can be bounded above by

(25) g1 ≤ 3β2T

w + 1
+

β

w + 1

w
∑

k=0

∑

τ∈Ωk

∣

∣

∣

∣

∣

∣

τ−1
∑

s=1∨(τ−w−2)

f(τ − 1− s)e(s)

∣

∣

∣

∣

∣

∣

Let g′1(e) be the second term of g1. Note that the only randomness in the upper
bound (25) comes from g′1.

Lemma 13. The expectation of g′1(e) is bounded above by

Eeg
′
1(e) ≤

βT

w + 1
||fw||2.

With Lemma 13, we can reduce (24) to proving a concentration bound on g′1(e),
since

(26) P(g1 > u+ V1) ≤ P(g′1 − Eg′1(e) ≤ u).

To prove concentration of g′1(e), which is a function of a collection of independent
random variables, we use the method of bounded difference, i.e., we bound the
difference of g′1(e) where one component of e is replaced by an identically-distributed
copy. Specifically, we use the following lemma, the one-sided version of one due to
McDiarmid:

Lemma 14 ([34], Lemma 1.2). Let X = (X1, . . . , Xn) be independent random
variables and Y be the random variable f(X1, . . . , Xn), where function f satisfies

|f(x) − f(x′
k)| ≤ ck
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whenever x and x′
k differ in the kth coordinate. Then for any t > 0,

P(Y − EY > t) ≤ exp

( −2t2
∑n

k=1 c
2
k

)

.

of Lemma 11. Let e = (e(1), . . . , e(T ))T , and e′k = (e(1), . . . , e′(k), . . . , e(T ))T be
formed by replacing e(k) with an independent and identically distributed copy e′(k).
Then

|g1(e)− g1(e
′
k)| ≤

1

w + 1
β

w
∑

m=0

|f(m)(e(k)− e′(k))|

≤ 2

w + 1
ǫβ

w
∑

m=0

|f(m)| =: ck.

Hence

T
∑

k=1

c2k =
4ǫ2β2T

(w + 1)2

(

w
∑

m=0

|f(m)|
)2

≤ 4ǫ2β2 T

(w + 1)σ2
||fw||2.

By Lemma 14,

P(g′1(e)− Eg′1(e) > u) ≤ exp

(

−u2

2ǫ2β2 T
(w+1)σ2 (||fw||)2

)

.

Substituting this into (26) and (24) finishes the proof. �

Bounding the loss due to prediction error. In this section we prove the following
concentration result for the loss due to correlated prediction error.

Lemma 15. The loss due to prediction error has Berstein type tail: for any u > 0,

P(g2 > u+ V2) ≤ exp

(

−u2

8ǫ2λ( T
w+1F (w) + u)

)

.(27)

To prove Lemma 15, we characterize g2 as a convex function of e in Lemma 16.
We then show that this is a self-bounding function. Combining convexity and self-
bounding property of g2, Lemma 17 makes use of the convex Log-Sobolev inequality
to prove concentration of g2.

Lemma 16. The expectation of g2 is Eg2 = V2, and g2 is a convex quadratic
form of e. Specifically, there exists a matrix A ∈ R

T×T , such that g2 = 1
2 ||Ae||2.

Furthermore, the spectral radius of λ of AAT satisfies λ ≤ F (w).

Hence, (27) is equivalent to a concentration result of g2:

P(g2 > V2 + u) = P(g2 − Eg2 > u).

The method of bounded difference used in the previous section is not good for a
quadratic function of e because the uniform bound of |g2(e) − g2(e

′
k)| is too large

since

|g2(e)− g2(e
′
k)| =

1

2
|(e − e′(k))TATA(e + e′(k))|,
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where the (e+e′(k)) term has T non-zero entries and a uniform upper bound of this
will be in Ω(T ). Instead, we use the fact that the quadratic form is self-bounding.
Let h(e) = g2(e)− Eg2(e). Then

||∇h(e)||2 = ||ATAe||2 = (Ae)T (AAT )(Ae)

≤ λ(Ae)T (Ae) = 2λ[h(e) + EV2].

We now introduce the concentration bound for a self-bounding function of a col-
lection of random variables. The proof uses the convex Log-Sobolev inequality [27].

Lemma 17. Let f : Rn → R be convex and random variable X be supported on
[−d/2, d/2]n. If E[f(X)] = 0 and f satisfies the self-bounding property

(28) ||∇f ||2 ≤ af + b,

for a, b > 0, then the tail of f(X) can be bounded as

(29) P {f(X) > t} ≤ exp

( −t2

d2(2b+ at)

)

.

Now to complete the proof of Lemma 15, apply Lemma 17 to the random variable
Z = h(e) to obtain

P{g2 − Eg2 > u} ≤ exp

(

− u2

8λmaxǫ2(2V2 + u)

)

for t > 0, i.e.,

P{g2 > u+ v2} ≤ exp

(

− u2

8λmaxǫ2(2V2 + t)

)

=exp

(

−u2

8ǫ2λ( T
w+1F (w) + u)

)

.

7. Concluding Remarks

Making use of predictions about the future is a crucial, but under-explored,
area of online algorithms. In this paper, we have introduced a general colored
noise model for studying predictions. This model captures a range of important
phenomena for prediction errors including, general correlation structures, prediction
noise that increases with the prediction horizon, and refinement of predictions as
time passes. Further it allows for worst-case analysis of online algorithms in the
context of stochastic prediction errors.

To illustrate the insights that can be gained from incorporating a general model
of prediction noise into online algorithms, we have focused on online optimization
problems with switching costs, specifically, an online LASSO formulation. Our
results highlight that a simple online algorithm, AFHC, can simultaneously achieve
a constant competitive ratio and a sublinear regret in expectation in nearly any
situation where it is feasible for an online algorithm to do so. Further, we show
that the cost of AFHC is tightly concentrated around its mean.

We view this paper as a first step toward understanding the role of predictions
in the design of online optimization algorithms and, more generally, the design of
online algorithms. In particular, while we have focused on a particular, promising
algorithm, AFHC, it is quite interesting to ask if it is possible to design online
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algorithms that outperform AFHC. We have proven that AFHC uses the asymp-
totically minimal amount of predictions to achieve constant competitive ratio and
sublinear regret; however, the cost of other algorithms may be lower if they can use
the predictions more efficiently.

In addition to studying the performance of algorithms other than AFHC, it would
also be interesting to generalize the prediction model further, e.g., by considering
non-stationary processes or heterogeneous e(t).
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Appendix A. Proofs for Section 3

A.1. Proof of Theorem 1. For a contradiction, assume that there exists an al-
gorithm A′ that achieves constant competitive ratio and sublinear regret with con-
stant lookahead. We can use algorithm A′ to obtain another online algorithm A
that achieves constant competitive ratio and sublinear regret without lookahead.
This contradicts Theorem 4 of [4], and we get the claim.

Consider an instance {c1, c2, . . . , cT } without lookahead. We simply “pad” the
input with ℓ copies of the zero function 0 if A′ has a lookahead of ℓ. That is the
input to A′ is: c1,0, . . . ,0, c2,0, . . . ,0, c3,0, . . .

We simulate A′ and set the tth action of A equal to the ((t − 1)(ℓ + 1) + 1)th
action of A′. Note that the optimal values of the padded instance are equal to the
optimal values of the given instance. Also, by construction, cost(A) ≤ cost(A′).
Therefore, if A′ achieves constant competitive ratio and sublinear regret then so
does A, and the claim follows.

Appendix B. Proofs for Section 5

B.1. Proof of Theorem 3.

Proof. Let (xALG,t)
T
t=1 be the solution produced by online algorithm ALG. Then

cost(ALG) ≥1

2

T
∑

t=1

||yt −KxALG,t||2

=
1

2

T
∑

t=1

||(I −KK
†)yt||2 + ||KK

†
yt −KxALG,t||2,

by the identity (I − KK†)K = 0. Let ǫt = xALG,t − K†yt|t−1, i.e., ǫt =

xALG,t−K†(yt|0 −
∑t−1

s=1 f(t− s)e(s)). Since all predictions made up until t can be
expressed in terms of y·|0 and e(τ) for τ < t, which are independent of e(t), and all
other information (internal randomness) available to ALG is independent of e(t)
by assumption, ǫt is independent of e(t). It follows that

Ee[cost(ALG)] ≥ Ee[||KK
†
yt −K(K†

yt|t−1 + ǫt)||2]

=
1

2

T
∑

t=1

Ee\e(t)Ee(t)|e\e(t)||KK
†
e(t)T −Kǫt||2(30)

=
1

2

T
∑

t=1

Ee\e(t)(||R1/2
e ||2KK† + ||(Ee(t)ǫtǫ

T
t )

1/2||2KT K)

≥T

2
||R1/2

e ||2KK† ,

where the first equality uses the identity (I − KK†)K = 0, and the second uses
the independence of ǫt and e(t). �
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B.2. Proof of Theorem 4. By Theorem 3, if E[cost(ALG)] ∈ o(T ), there must
be some t such that ǫt is not independent of e(t). By expanding the square term in
(30) and noting it is nonnegative:

E[e(t)TKǫt] ≤ 1

2
||R1/2

e ||2KK†,F +
1

2
||(EǫtǫTt )1/2||2KT K,F .

Each nonzero E[e(t)TKǫt] can at most make one term in (30) zero, since there

are T terms in (30) that are each lower bounded by 1
2 ||R

1/2
e ||2, and by assumption

E[cost(ALG)] is sublinear. There can be at most a sublinear number of t such that
E[e(t)TKǫt] = 0.

For every other t, we must have E[e(t)TKǫt] > 0. Let lt = E[e(t)TKǫt] > 0, and
at = ||(EǫtǫTt )1/2||2KKT ,F > 0.

Hence, at time t, the algorithm can produce prediction y′t|t−1 = yt|t−1 +
1
wt

Kǫt,

where the coefficient wt is chosen later. Then the one step prediction error variance:

E||yt − y
′
t|t−1||2 = E||e(t)− 1

wt
Kǫt||2

= ||R1/2
e ||2F − 2

wt
lt +

1

w2
t

at.

Pick any wt > at/2lt. Then E||yt − y′t|t−1||2 < ||R1/2
e ||2F = E||yt − yt|t−1||2. Hence

ALG can produce better one-step prediction for all but sublinearly many t.

B.3. Proof of Lemma 7. To prove Lemma 7, we use the following Lemma.

Lemma 18. The competitive difference of FHC with fixed (w + 1)-lookahead for
any realization is given by

cost(FHC
(k)) ≤cost(OPT ) +

∑

τ∈Ωk

β||(x∗
τ−1 − x

(k)
τ−1)||1

+
1

2

∑

τ∈Ωk

τ+w
∑

t=τ

||KK
†(yt − yt|τ−1)||2.

where x∗
t is the action chosen by the dynamic offline optimal.

of lemma 7. Note that cost(FHC(k)) is convex. The result then follows with a
straightforward application of Jensen’s inequality to Lemma 18. By the definition
of AFHC, we have the following inequality:

cost(AFHC) ≤ 1

w + 1

w
∑

k=0

cost(FHC
(k))

By substituting the expression for cost(FHC(k)) into the equation above and
simplifying, we get the desired result. �

Before we prove Lemma 18, we first introduce a new algorithm we term OPEN .
This algorithm runs an open loop control over the entire time horizon, T . Specif-
ically, it chooses actions xt, for t ∈ 1, ..., T , that solves the following optimization
problem:

min
1

2

T
∑

t=1

(yt|0 −Kxt)
2 + β||(xt − xt−1)||1

FHC(k) can be seen as starting at xk
FHC,τ−1, using prediction y·|τ−1, and run-

ning OPEN from τ to τ +w. Then repeating with updated prediction y·|τ+ω. We
first prove the following Lemma characterizing the performance of OPEN .
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Lemma 19. Competitive difference of OPEN over a time horizon, T , is given by

cost(OPEN) − cost(OPT ) ≤
T
∑

t=1

1

2
||ŷt − yt||2KK†

Proof. Recall that the specific OCO we are studying is

(31) min
x

T
∑

t=1

1

2
||yt −Kxt||2 + β||(xt − xt−1)||1

where xt ∈ R
n, yt ∈ R

m, K ∈ R
m×n and the switching cost, β ∈ R+.

We first derive the dual of (31) by linearizing the l1 norm which leads to the
following equivalent expression of the objective above:

min
x,z

1

2

T
∑

t=1

||yt −Kxt||2 + β1
T
zt

s.t. zt ≥ xt − xt−1, zt ≥ xt−1 − xt, ∀t.
Hence the Lagrangian is

L(x, z; λ̄, λ) =
1

2

T
∑

t=1

||yt −Kxt||2 + 〈λ̄t − λt, xt − xt−1〉

+ 〈β1− (λ̄t + λt), zt〉.
where we take λT+1 = 0 and x0 = 0.
Let λt = λ̄t − λt and wt = λ̄t + λt. Dual feasibility requires wt ≤ β1, ∀t, which

implies −β1 ≤ λt ≤ β1, ∀t. Dual feasibility also requires 〈β1− wt, zt〉 = 0, ∀t.
Now by defining st = λt − λt+1 and equating the derivative with respect to xt

to zero, the primal and dual optimal x∗
t , s

∗
t must satisfy KTKx∗

t = KT yt − s∗t .

Note by premultiplying the equation above by x∗
t
T , we have 〈x∗

t , s
∗
t 〉 = 〈Kx∗

t , yt〉−
||Kx∗

t ||2. If instead we premultiply the same equation by (KT )†, we have after some
simplification that Kx∗

t = (KK†)yt−(KT )†s∗t . We can now simplify the expression
for the optimal value of the objective by using the above two equations:

cost(OPT ) =
T
∑

t=1

1

2
||yt −Kx∗

t ||2 + 〈x∗
t , s

∗
t 〉

=

T
∑

t=1

1

2
||yt||2 −

1

2
||KK†yt − (KT )†s∗t ||2(32)

Observe that (32) implies s∗t minimizes the following expression
∑T

t=1 ||KK†yt−
(KT )†s∗t ||2 over the constraint set S = {st|st = λt − λt+1,−β1 ≤ λt ≤ β1 for 1 ≤
t ≤ T, λT+1 = 0}.

cost(OPEN) − cost(OPT ) = p(x̂; y)− p(x; y)

=p(x̂; ŷ)− p(x; y) + p(x̂; y)− p(x̂; ŷt)

=

T
∑

t=1

1

2
||ŷt||2 −

1

2
||Kx̂t||2 −

1

2
||yt||2 +

1

2
||Kx

∗
t ||2

+
1

2
||yt −Kx̂t||2 −

1

2
||ŷt −Kx̂t||2
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Expanding the quadratic terms, using the property of the pseudo-inverse that
K†KK† = K†, and using the fact that Kx∗

t = KK†yt − (KT )†s∗t , we have

cost(OPEN)− cost(OPT )

=
T
∑

t=1

1

2

(

||KK
†
yt − (KT )†s∗t ||2 − ||(KK

†
yt − (KT )†ŝt)||2

)

+
1

2

(

||ŷt − yt||2 − ||(I −KK
†)(ŷt − yt)||2

)

≤
T
∑

t=1

1

2
||ŷt − yt||2 −

1

2
||(I −KK

†)(ŷt − yt)||2

=
T
∑

t=1

1

2
||KK

†(ŷt − yt)||2.

where the first inequality is because of the characterization of s∗t following (32).
�

of Lemma 18. The proof is a straightforward application of Lemma 19. Summing
the cost of OPEN for all τ ∈ Ωk and noting that the switching cost term satisfying
the triangle inequality gives us the desired result. �

B.4. Proof of Theorem 5. We first define the sub-optimality of the open loop
algorithm over expectation of the noise. E[||(yt− ŷt)||2KK† ] is the expectation of the
projection of the prediction error t+ 1 time steps away onto the range space of K,
given by:

E[||(yt − ŷt)||2KK† ] = E||
t
∑

s=1

KK
†(f(t− s)e(s))||2

=E[

t
∑

s1=1

t
∑

s2=1

e(s1)
T
f(t− s1)

T (KK
†)T (KK

†)f(t− s2)e(s2)]

=tr(
t
∑

s1=1

t
∑

s2=1

f(t− s1)
T (KK

†)(KK
†)f(t− s2)E[e(s2)e(s1)

T ])

=

t−1
∑

s=0

tr(f(s)T (KK
†)f(s)Re),

where the last line is because E[e(s1)e(s2)
T ] = 0 for all s1 6= s2, and KK†K =

K. Note that this implies ||ft−1||2 =
∑t−1

s=0 tr(f(s)
T f(s)Re). We now write the

expected suboptimality of the open loop algorithm as

E[cost(OPEN)− cost(OPT )] ≤
T
∑

t=1

1

2
E[||yt − ŷt||2KK† ]

=
1

2

T−1
∑

s=0

T−1
∑

t=s

tr(f(s)TKK
†
f(s)Re)

=
1

2

T−1
∑

s=0

(T − s)tr(f(s)TKK
†
f(s)Re) = F (T − 1)

where the first equality is by rearranging the summation.
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Now we take expectation of the expression we have in Lemma 7. Taking expec-
tation of the second penalty term (prediction error term), we have:

1

w + 1

w
∑

k=0

∑

τ∈Ωk

τ+w
∑

t=τ

E
1

2
||(KK†)(yt − yt|τ−1)||2

=
1

2(w + 1)

w
∑

k=0

∑

τ∈Ωk

F (w) =
T

2(w + 1)
F (w)

We now need to bound the first penalty term (switching cost term). By taking
the subgradient with respect to xt and by optimality we have ∀t = 1, . . . , T

0 ∈ KT (Kx∗
t − yt) + β∂||(x∗

t − x∗
t−1)||1 + β∂||(x∗

t+1 − x∗
t )||1

⇒x∗
t ∈ [(KTK)−1(KT yt − 2β1), (KTK)−1(KT yt + 2β1)]

where the implication is because the sub-gradient of a 1-norm function || · ||1 is
between −1 to 1.

Similarly, since x
(k)
τ−1 is the last action taken over a FHC horizon, we have that

for all τ ∈ Ωk,

x
(k)
τ−1 ∈ [(KT

K)−1(KT
yτ−1|τ−w−2 − β1),

(KT
K)−1(KT

yτ−1|τ−w−2 + β1)]

Taking expectation of one of the switching cost term and upper bounding with
triangle inequality:

E

∣

∣

∣

∣

∣

∣
(x∗

τ−1 − x
(k)
τ−1)

∣

∣

∣

∣

∣

∣

1

≤||K†||1E||yτ−1 − yτ−1|τ−2−w||1 + 3β||(KT
K)−1

1||1
≤||K†||1||fw ||+ 3β||(KT

K)−1
1||1(33)

where the first inequality is by the definition of induced norm, the second inequality
is due to concavity of the square-root function and Jensen’s inequality. Summing
(33) over k and τ , we have the expectation of the switching cost term. Adding
the expectation of both penalty terms (loss due to prediction error and loss due to
switching cost) together, we get the desired result.

B.5. Proof of Lemma 8. We first characterize cost(STA):

cost(STA) = min
x

1

2

T
∑

t=1

||yt −Kx||22 + β1
T
x

By first order conditions, we have the optimal static solution x = K†ȳ− β
T (K

TK)−1
1.

Substituting this to cost(STA) and simplifying, we have:

cost(STA) =
1

2

T
∑

t=1

(

||(I −KK
†)yt||22 + ||KK

†(yt − ȳ)||22
)

− β2
1

T (KTK)−1
1

2T
+ β1

T
K

†
ȳ
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Let C = β2
1

T (KTK)−1
1

2T . Subtracting cost(OPT ) in (32) from the above, we have
cost(STA)− cost(OPT ) equals:

1

2

T
∑

t=1

(||KK
†(yt − ȳ)||22 − ||KK

†
yt||22 + ||KK

†
yt − (KT )†s∗t ||22)

+ β1
T
K

†
ȳ − C

=
1

2

T
∑

t=1

(

||KK
†(yt − ȳ)− (KT )†s∗t ||22

)

+ 〈K†
ȳ, β1− λ1〉 −C

≥1

2

T
∑

t=1

(

||KK
†(yt − ȳ)− (KT )†s∗t ||22

)

− C

The first equality is by expanding the square terms and noting st = λt − λt+1.
The last inequality is because −β1 ≤ λt ≤ β1 and β1TK†ȳ being positive by
assumption that the optimal static solution is positive. Now we bound the first
term of the inequality above:

1

2

T
∑

t=1

(

||KK
†(yt − ȳ)− (KT )†s∗t ||22

)

≥1

2

T
∑

t=1

(

||KK
†(yt − ȳ)||2

)

−
T
∑

t=1

〈KK
†(yt − ȳ), (KT )†s∗t 〉

≥1

2

T
∑

t=1

(

||KK
†(yt − ȳ)||2

)

− 2β

T
∑

t=1

||KK
†(yt − ȳ)|| ||(KT )†1||

≥1

2

T
∑

t=1

(

||KK
†(yt − ȳ)||2

)

− 2B

√

√

√

√T

T
∑

t=1

||(KK†)(yt − ȳ)||2

where B = β||(KT )†1||2.
By subtracting C from the expression above and completing the sqaure, we have

the desired result.

B.6. Proof of Theorem 9. Using the results of Lemma 8, taking expectation and
applying Jensen’s inequality, we have:

Ee [cost(STA)− cost(OPT )]

≥Ee

[1

2

T
∑

t=1

||KK
†(yt − ȳ)||2− 2B

√

√

√

√T

T
∑

t=1

||(KK†)(yt − ȳ)||2 − C
]

≥1

2





√

√

√

√

Ee

T
∑

t=1

(||KK†(yt − ȳ)||2)− 2B
√
T





2

− 2B2
T −C.

Hence by Theorem 5, the regret of AFHC is

sup
ŷ

(

Ee[cost(AFHC)−cost(OPT ) + cost(OPT )−cost(STA)]
)

≤ V T+ 2B2
T+ C− 1

2
inf
ŷ





√

√

√

√

Ee

T
∑

t=1

||(yt − ȳ)||2
KK† − 2B

√
T





2

.

Let S(T ) = Ee

∑T
t=1 ||yt − ȳ||2KK† . By the above, to prove AFHC has sublinear

regret, it is sufficient that
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(34) V T + 2B2
T − 1

2
inf
ŷ
(
√

S(T )− 2B
√
T )2 < g(T )

for some sublinear g(T ). By the hypothesis of Theorem 9, we have inf ŷ S(T ) ≥
(8A+ 16B2)T .

Then, S(T ) ≥ (
√
2V T + 4B2T + 2B

√
T )2, and (34) holds since V T + 2B2T −

1
2 inf ŷ(

√

S(T )− 2B
√
T )2 ≤ V T + 2B2T − 1

2

(√
2V T + 4B2T

)2
= 0.

Appendix C. Proofs for Section 6

C.1. Proof of Lemma 12. By the triangle inequality, we have

g1 =
1

w + 1

w
∑

k=0

∑

τ∈Ωk

β|x∗
τ−1 − x

(k)
τ−1|

≤ 1

w + 1

w
∑

k=0

∑

τ∈Ωk

β
(

|x∗
τ−1 − yτ−1|+ |yτ−1 − yτ−1|τ−w−2|

+ |yτ−1|τ−w−2 − x
(k)
τ−1|

)

.

By first order optimality condition, we have x∗
τ−1 ∈ {yτ−1 − 2β, yτ−1 + 2β}, and

x
(k)
τ−1 ∈ {yτ−1|τ−w−2 − β, yτ−1|τ−w−2 + β}. Hence, by the prediction model,

g1 ≤ 3β2T

w + 1
+

β

w + 1

w
∑

k=0

∑

τ∈Ωk

∣

∣

∣

∣

∣

∣

τ−1
∑

s=1∨(τ−w−2)

f(τ − 1− s)e(s)

∣

∣

∣

∣

∣

∣

C.2. Proof of Lemma 13. Note that by Lemma 12, we have

Eg
′
1(e) ≤

β

w + 1

w
∑

k=0

∑

τ∈Ωk

E

∣

∣

∣

∣

∣

∣

τ−1
∑

s=1∨(τ−w−2)

f(τ − 1− s)e(s)

∣

∣

∣

∣

∣

∣

≤ β

w + 1

w
∑

k=0

∑

τ∈Ωk

√

√

√

√σ2

w
∑

s=0

f2(s) =
βT

w + 1
||fw ||2.

where the second inequality is by Jensen’s inequality and taking expectation.

C.3. Proof of Lemma 16. By definition of g2 and unraveling the prediction
model, we have

g2 =
1

w + 1

w
∑

k=0

∑

τ∈Ωk

τ+w
∑

t=τ

1

2
(yt − yt|τ−1)

2

=
1

w + 1

w
∑

k=0

∑

τ∈Ωk

τ+w
∑

t=τ

1

2
(

t
∑

s=τ

f(t− s)e(s))2.

Writing it in matrix form, it is not hard to see that

g2 =
1

w + 1

w
∑

k=0

1

2
||Ake||2,
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where Ak has the block diagonal structure given by

(35) Ak = diag(A1
k, A

2
k, . . . , A

2
k, A

3
k),

6

and there are the types of submatrices in Ak given by, for i = 1, 2, 3:

A
i

k
=











f(0) 0 . . . 0
f(1) f(0) . . . 0

.

.

.
.
.
.

. . .
.
.
.

f(vi) f(vi−1) . . . f(0)











,

where v1 = k − 2 if k ≥ 2 and v1 = k +w− 1 otherwise. v2 = w, v3 = (T − k + 1)
mod (w+1). Note that in fact, the matrix A2

k is the same for all k. Hence, we have

g2 =
1

2
e
T (

1

w + 1

w
∑

k=0

A
T
kAk)e =

1

2
||Ae||2,

where we define A to be such that ATA = 1
w+1

∑w
k=0 A

T
k Ak, this can be done

because the right-hand side is positive semidefinite, since Ak is lower triangular.
The last equality is because all A2

l has the same structure. Let λ be the maximum
eigenvalue of AAT , which can be expressed by

λ = max
||x||=1

x
T
AA

T
x

=
1

w + 1
max
||x||=1

w
∑

k=0

x
T
AkA

T
k x ≤ 1

w + 1

w
∑

k=0

λk,

where λk is the maximum eigenvalue of AkA
T
k . Note that Ak has a block diagonal

structure, hence AkA
T
k also has block diagonal structure, and if we divide the vector

x = (x1, x2, . . . , xm) into sub-vectors of appropriate dimension, then by the block
diagonal nature of AkA

T
k , we have

x
T
AkA

T
k x =x

T
1 A

1
kA

1
k
T
x1 + x

T
2 A

2
kA

2
k
T
x2 + . . .

+ x
T
m−1A

2
kA

2
k
T
xm−1 + x

T
mA

3
kA

3
k
T
xm.

Hence, if we denote the maximum eigenvalues of λi
k as the maximum eigenvalue

of the matrix Ai
kA

i
k
T
, then we have

λk = max
x

xTAkA
T
k x

xTx

= max
x1,...,xm

xT
1 A

1
kA

1
k
T
x1 + xT

2 A
2
kA

2
k
T
x2 + . . .+ xT

mA3
kA

3
k
T
xm

xT
1 x1 + . . .+ xT

mxm

≤ max
x1,...,xm

max(λ1
k, λ

2
k, λ

3
k) · (xT

1 x1 + . . .+ xT
mxm)

xT
1 x1 + . . .+ xT

mxm

≤ max(λ1
k, λ

2
k, λ

3
k),

where λi
k is the maximum eigenvalue of Ai

k for i ∈ {1, 2, 3}. As Ai
kA

i
k
T

are all
positive semidefinite, we can bound the maximum eigenvalue by trace, and note
that A1

k and A3
k are submatrix of A2

k, we have

λk ≤ max(λ1
k, λ

2
k, λ

3
k) ≤ tr(A2

kA
2
k
T
) =

1

σ2
F (w).

6The submatrix A2
k is repeated

⌊

T−k+1
ω+1

⌋

times in Ak for k ≥ 2, and
⌊

T−k−ω
ω+1

⌋

times

for otherwise.
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C.4. Proof of Lemma 17. To prove the lemma, we use the following variant of
Log-Sobolev inequality

Lemma 20 (Theorem 3.2, [27]). Let f : Rn → R be convex, and random variable
X be supported on [−d/2, d/2]n, then

E[exp(f(X))f(X)]− E[exp(f(X))] logE[exp(f(X))]

≤d2

2
E[exp(f(X))||∇f(X)||2].

We will use Lemma 20 to prove Lemma 17. Denote the moment generating
function of f(X) by

m(θ) := Eeθf(X), θ > 0.

The function θf : Rn → R is convex, and therefore it follows from Lemma 20 that

E
[

eθfθf
]

− E
[

eθf
]

lnE
[

eθf
]

≤ d2

2
E
[

eθf ||θ∇f ||2
]

,

θm′(θ)−m(θ) lnm(θ) ≤ 1

2
θ2d2E[eθf ||∇f ||2].

By to the self-bounding property (28),

θm′(θ) −m(θ) lnm(θ) ≤ 1

2
θ2d2E[eθf(X)(af(X) + b)]

=
1

2
θ2d2 [am′(θ) + bm(θ)] .

Since m(θ) > 0, dividing by θ2m(θ) gives

(36)
d

dθ

[(

1

θ
− ad2

2

)

lnm(θ)

]

≤ bd2

2
.

Since m(0) = 1 and m′(0) = Ef(X) = 0, we have

lim
θ→0+

(

1

θ
− ad2

2

)

lnm(θ) = 0,

and therefore integrating both sides of (36) from 0 to s gives

(37)

(

1

s
− ad2

2

)

lnm(s) ≤ 1

2
bd2s,

for s ≥ 0. We can bound the tail probability P{f > t} with the control (37) over
the moment generating function m(s).

In particular,

P{f(X) > t} = P

{

esf(X) > est
}

≤ e−st
E

[

esf(X)
]

= exp[−st+ lnm(s)]

≤ exp

[

−st+
bd2s2

2− asd2

]

,

for s ∈ [0, 2/(ad2)]. Choose s = t/(bd2 + ad2t/2) to get

P{f(X) > t} ≤ exp

( −t2

d2(2b+ at)

)

.
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