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Abstract

We consider streaming over a peer-to-peer network with homogeneous nodes in which a
single source broadcasts a data stream to all the users in the system. Peers are allowed to
enter or leave the system (adversarially) arbitrarily. Previous approaches for streaming in this
setting have either used randomized distribution graphs or structured trees with randomized
maintenance algorithms. Randomized graphs handle peer churn well but have poor connectivity
guarantees, while structured trees have good connectivity but have proven hard to maintain under
peer churn. We improve upon both approaches by presenting a novel distribution structure with
a deterministic and distributed algorithm for maintenance under peer churn; our result is inspired
by a recent work [1] proposing deterministic algorithms for rumor spreading in graphs.

A key innovation in our approach is in having redundant links in the distribution structure.
While this leads to a reduction in the maximum streaming rate possible, we show that for the
amount of redundancy used, the delay guarantee of the proposed algorithm is near optimal. We
introduce a tolerance parameter that captures the worst-case transient streaming rate received
by the peers during churn events and characterize the fundamental tradeoff between rate, delay
and tolerance. A natural generalization of the deterministic algorithm achieves this tradeoff
near optimally. Finally, the proposed deterministic algorithm is robust enough to handle various
generalizations: ability to deal with heterogeneous node capacities of the peers and more
complicated streaming patterns where multiple source transmissions are present.



1. Introduction

In peer-to-peer (P2P) streaming, a low-capacity server uploads the content to a small number of clients
which, together with the other clients (a total of n peers), then exchange the content among themselves.
This is similar to the rumor spreading problem, in which a rumor from a source node is propagated
to all the nodes of an unknown network. However unlike rumor spreading, where only a single rumor
is communicated to neighbors over many rounds, in streaming new “rumors” arrive continuously in an
online fashion and need to be forwarded fast and effectively in order to prevent message loss. Limited
upload capacity of peers disallows flooding-type message forwarding. Further, peers can arrive or depart
the system at will (peer churn), requiring scheduling algorithms to be designed in order to effectively
utilize the upload capacity available and to ensure playback continuity with small delay.

In this work, we consider the problem of constructing and maintaining a P2P overlay network G(V,E)
in a distributed fashion subject to the following restrictions. Peers can contact other peers, if they know
their addresses, and form data carrying communication links on G(V,E). While new addresses can be
learnt by the peers by talking to their neighbors in G(V,E), peers have a constant bound on (i) the
number of addresses they can remember at any time, (ii) out-degree and (iii) upload capacity. Also, peers
have only local knowledge of the topology of the graph G(V,E). A server node receives data packets
continuously as a live-stream from a source external to the network. The problem now is to construct
G(V,E) in order to distribute the data-stream from the source to all the peers. Additionally, we want to
distribute the packets as quickly as possible (delay) and as many as possible in any given time duration
(rate). As such there exist many algorithms that can stream optimally in this setting [2], [3]. However, in
practical P2P systems [4], peers seldom stay in the network all the time. To model this we let the nodes
enter or exit the system arbitrarily. With this additional assumption on peer dynamics, repairing G(V,E)
to maintain fresh flow of packets to the peers, and ensuring good delay at the same time, becomes
a challenging issue. In particular, we consider a setting where the number of simultaneous connected
departures is bounded (see section 2) but require that the peers may suffer a loss of at most a constant
number of packets after each round of departure. For example, if any one peer departs the system then
the remaining peers can experience a rate loss for at most a constant number of rounds before continuing
to receive the full rate as before.

A popular method used by some early systems, was to divide the content into multiple substreams
and distribute via multicast trees having disjoint interior nodes [2], [3], [5]–[7]. This way any peer could
be an interior node in one multicast tree where it utilizes its upload bandwidth. While trees offer good
playback rate and delay, managing trees in a distributed fashion can be very difficult under peer churn.
It is known that the complexity of maintaining trees grows with the number of nodes [8], [9]. Hence,
random sampling by the peers has commonly been used to help maintain the distribution trees [10].
Another line of work introduced randomness in the construction of the distribution graphs themselves
in order to handle the problems associated with peer churn [11]. Whenever a neighboring peer leaves,
the peer chooses a new neighbor randomly as its new neighbor. While the distributed nature of the peer
pairing makes unstructured networks robust to peer churn, connectivity is sacrificed because some of the
peers may not be well connected due to the inherent randomness.

Thus, while structured algorithms promise connectivity to all the peers and have deterministic O(log n)
delay guarantees, a fundamental limitation is their vulnerability to peer churn. Randomized algorithms,
on the other hand, provide only probabilistic guarantees for delay, convergence time and connectivity
guarantees are weaker. Besides few algorithms (an exception is [11]) provide a formal guarantee on the
transient rates received by the peers. A similar trend can be found in the literature on gossip, where a
long line of algorithms tried to reduce the spreading time for randomized gossip [12]–[14]. However,
recently a deterministic distributed algorithm for gossip was proposed in [1]. Apart from being faster and
more robust than previous randomized algorithms, the deterministic nature has the advantage of running
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time guarantees holding with certainty instead of with high probability. Inspired by this, we propose
and analyze a novel distribution structure for P2P streaming that can be maintained deterministically,
distributedly by the peers and provides a strong transient rate guarantee under our departure model.

1.1. Our Results

The foremost challenge for the streaming problem in the setting discussed above is the design of
the algorithm to construct and maintain the P2P overlay. This is in contrast to the literature on gossip
wherein the model and algorithms, to some extent (such as uniform random gossip [13], [14]), are fairly
standard and much of the innovation is in the analysis. Our main result is the design of the distribution
structure and algorithm that is (i) distributed, (ii) deterministic and (iii) has constant repair time to ensure
connectivity. As far as the authors are aware, no other algorithm in the literature has all of the above
properties. The key innovation is the introduction of redundancy in the network. Assuming the peers
have an upload capacity of C each, the delay provided by our algorithm is given by the following.

Theorem 1. In the steady state if there are n peers in the system, the streaming delay is bounded by
log2(n+ 1) + 2R

C−R + log2(1− R
C )− 2 for a rate R ∈ (0, C).

The above delay of our algorithm has an additional term of O(1/(C−R)) as compared to the O(log n)
delay of tree based structures, such as in [3], [10]. However, the latter tree based algorithms do not have
constant repair time under churn. Peer departures can cause a sudden loss of transmission links and
can lead to loss of connectivity in the multicast graphs. Under such events, the data rate received by
some peers can drop considerably until the trees are repaired. Having redundancy in the network helps
in this regard in ensuring continuity of streaming without outages under peer churn. The penalties paid
due to the introduction of redundant links facilitate: (i) deterministic graph management and (ii) ensure
continuity of playback under peer churn events. In our second result, we show that for the amount of
redundancy used, the delay guarantee of the algorithm is order optimal.

Theorem 2. For streaming using multiple structured graphs, each carrying partial flows, if each of
the substream graphs have enough capacity redundancy to handle arbitrary node departures, then the
maximum delay across the substream graphs is at least log∆(n) + R

2(C−R) + log∆

(
2(C−R)

R

)
− c, where

c = (∆− 2) log∆

(
∆!
2

)
+ loge(∆− 1) + 2, for a rate R, degree bound ∆ and n ≥ 3R

C−R .

Thus, we claim that the R/(C −R) term in the delay is fundamental for all algorithms guaranteeing
continuity of playback. We also guarantee a transient rate equal to the original rate under bounded
departure events. The transient rate can be traded for delay as discussed in section 6. Hence apart from
providing deterministic guarantees for delay and churn management, the algorithm offers key insights
into the continuity aspect of the playback rate. It also extends readily for all-cast streaming, where every
peer has a stream to be broadcast, and the case where the peers have heterogeneous upload capacities
(Appendices C and D).

1.2. Related Work

A standard approach in structured streaming involved multicast trees, and often with constant-degree
nodes [23]–[25]. Several approaches have been presented towards the management of the trees. Algorithms
in [2], [5], [7] used centralized control. Pastry [17], a routing substrate, was used by the SplitStream
algorithm in [3] for tree construction and maintenance. Other distributed lookup protocols have also
been proposed in [15], [16]. In [10], an asynchronous distributed algorithm was presented to construct
and manage multiple distribution trees by means of random sampling done by the peers. In the other
research direction of unstructured P2P networks, where each node communicates with a random subset
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Flow dissemination graph type Graph maintenance algorithm References

Centralized [2], [5], [7]
Structured Involves randomness [3], [6], [10], [15]–[17]

Deterministic This paper
Unstructured Random [11], [18]–[22]

Table 1. Summary of comparison with previous work for flow based streaming.

of other peers, much of the previous theoretical studies of the delay performance have focused primarily
on fully connected networks with homogeneous capacities; examples include [18]–[20] which make
interesting connections between P2P streaming networks and gossip and epidemic models to analyze the
maximum streaming delay. In [11], multiple random Hamiltonian cycles were contructed and superposed.
The distribution is then done over the union of the cycles. A key idea was to exploit the fact that the
superposition of random directed Hamiltonian cycles is an expander with high probability. Additionally,
Hamiltonian cycles are easy to maintain in response to peer churn, a fact that was first noted in the case of
undirected graphs in [26]. Some other formats of unstructured P2P include mesh based streaming in [21],
[22], in which packets were distributed over a randomly constructed mesh. A comparison between the
previous work discussed above and this work has been presented in Table 1. We note that the idea of
using redundancy to counter transient effects has been observed in other contexts as well [27], [28].

2. System Model

The P2P overlay network G(V (t), E(t)), where the time t is slotted, is assumed to be an undirected
node capacitated graph in which all the peers have a uniform upload capacity of C and a constant bound
∆ on the number of upload links allowed. In addition to the upload capability, we let the nodes be able
to communicate O(log nmax(t)) bits of information in any round t as control messages through the edges
where nmax(t) denotes the maximum number of peers that were in the system up until time t. Peers have
a constant amount of memory for storing M addresses (node ID’s) and are allowed to arrive and depart
from the system arbitrarily. When a peer departs, the node and all the edges connected to it are lost
immediately; only the neighbors of the departing peer(s) in G(V (t), E(t)) are aware of this event. Let
us call the maximally connected sets among the departing peers, in G(V (t), E(t)), as “peer departure
blocks”. For example, if G(V (t), E(t)) is as in Figure 2(a) and peers 3, 5 and 6 leave the system at the
same time, then {3}, {5,6} constitute the peer departure blocks. We assume that peer departure blocks,
at any time, are of size at most K. Here K has a linear dependence on M . Peer arrivals, in which a
new peer becomes part of the overlay, happens at most one at a time. We also assume communication
happens as a flow (or equivalently as time-shared discrete messages) and do not consider network coding
in this paper. Notation: for any positive integer n, [n] denotes the set {1, 2, . . . , n}.

In the above model of peer dynamics, peers can potentially arrive or depart frequently. As such the
P2P network can be constantly changing to adapt to that. Let us call such a state of the network, which is
in the process of reconfiguring itself, as a transient state. We call a state where the network is no longer
changing as a steady state. This can happen, for example, if the time gap following a churn event and
until the next churn event is large. In the following section, we discuss the steady state network structure
of our algorithm.
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(a) (b) (c)

Figure 1. An example showing the directed graphs (a) T1, (b) U1, and (c) G1 for a network with
n = 11 peers and m = 3. The node indices correspond to the peer labels for G1 and node S is the
stream source.

3. Overview of Steady State Structure

In the following sections, we let C = 1 without loss of generality. We also let K = 1 in the departure
model. Let us consider a streaming of rate R ≤ 1 done over T distribution graphs. Each distribution graph
then is used to disseminate a rate R/T substream to the peers. Let Gi(V (t), Ei(t)), for i = 1, . . . , T ,
denote the directed graph for broadcasting the ith substream, where V (t) and Ei(t) denote the set of all
users in the system and the set of links used for the ith substream at time t respectively. Each user is
interested in receiving all the m substreams (we do not assume any coding done over the data stream
such as Multiple Description Coding (MDC) [3]). For ease of notation, we will drop the argument t from
Gi(t), Ei(t) etc. and denote them simply by Gi, Ei etc., with the time aspect implicitly understood. Let us
consider rational rates of the form R = m/(m+ 1) for m ∈ Z+. Here we divide the stream into T = m
substreams of rate 1/(m+ 1) each. Any other general rate R can be handled using m = dR/(1−R)e.
Consider the steady state structure of G1, i.e., after the graph has converged and when there is no more
peer churn. Let there be n nodes in the system in the steady state. Then, G1 is the union of two graphs
T1 and U1 described below.

Steady state: T1 is a directed binary tree with its root connected to the server and spans all the n
nodes. It is balanced in that for every degree two node, the size of the left subtree and the right subtree
differ by at most one. We call the left outgoing edge as the primary edge and the right outgoing edge as
the secondary edge. The corresponding children are called primary and secondary children respectively.
The degree two nodes in T1 are all close to the root of the tree, i.e., no degree one node has a directed
path leading to a degree two node. Further, the chain of degree one nodes leading to the leaf, for every
leaf, consists of at least m− 1 nodes and at most 2m− 2 nodes including the leaf node. In Figure 1(a),
we have illustrated T1 for n = 11 and m = 3. Now, given T1, U1 consists of edges that connect each
leaf node of T1 to the secondary child of the last degree 2 node in the path from the root to the leaf,
such that, the secondary child itself does not lie in the path. For the T1 shown in Figure 1(a), the graph
U1 has been illustrated in Figure 1(b). The steady state graph G1 is the union of T1 and U1 and has been
shown in Figure 1(c). Finally, the nodes in G1 are labelled from the set of labels {1, . . . , n}. The root
node connected to the server has the label 1. For any degree two node v in T1 with label l and a left
subtree L(v), its primary child has the label l+ 1 while the secondary child has the label l+ |L(v)|+ 1
where |L(v)| denotes the number of nodes in L(v). This has also been shown in Figure 1(c).

The other substream graphs G2, . . . , Gm also have a similar topological structure, but the peers with
out-degree two in each of the Ti’s are different. This is illustrated in Figure 2. Each of the Gi also has its
own labeling similar to G1, i.e., every peer has m labels associated with it for the m substreams. From
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(a) (b) (c)

Figure 2. An example showing a steady state topology of G1, G2 and G3 for n = 11 and R = 3/4
(m = 3). The node labels shown are with respect to the first substream.

the above discussion, it is easy to see the proof of Theorem 1.
Non steady-state: Now, at any time instant not necessarily in the steady state, Ti as a subgraph of Gi

is the shortest path graph for the peers from the server. The remaining edges form the edges in Ui. This
redundancy in the form of edges in Ui is critical for the algorithm to handle peer churn. For convenience,
we have summarized key characteristics of the distribution graphs by the following properties.

Property 1. For all i ∈ [m], there exists a directed path from the server to all the peers in Gi.

Property 2. For all i ∈ [m], (i) every node has an out-degree of either one or two in Gi, (ii) every
secondary child has an incoming edge from a leaf of Ti and (iii) any node has an out-degree of two in
at most one substream graph.

Property 3. In any steady state configuration, for all i ∈ [m], we have (i) Properties 1 and 2 are satisfied,
(ii) the sizes of the primary and secondary subtrees of any degree two node in Ti differ by at most one,
(iii) the chain of degree one nodes in Ti have atleast m− 1 nodes and at most 2m− 2 nodes including
the leaf and (iv) no degree two peer has a degree one parent in Ti.

These properties are used in the presentation of our algorithm in section 4 and also in the subsequent
sections. We now present the algorithm.

4. Algorithm

The algorithm consists of a set of procedures that are run in parallel (and distributedly) by each
peer. Since the algorithm is flow-based, deterministic and distributed, the message forwarding (peer and
piece selection) itself is straight-forward and is discussed in section 4.1. Sections 4.2 and 4.3 discuss
the operations that are required for the primary goal of ensuring connectivity and bandwidth whenever
peers depart or arrive. The remaining sections 4.4 and 4.5 deal with the secondary goal of balancing
the topology in order to minimize the delay. For conciseness, the detailed pseudo-code and illustrative
representations of the procedures are moved to Appendix A.

4.1. Label Control

Peer labels and addresses sent as control messages can be used by other peers to get an estimate of the
sizes of their subtrees. This information is used by several procedures to follow, including the balancing
subroutine. Each peer has to forward at most one (label, address) pair in each of the Gi. They cost at
most log2 nmax(t) bits per round which is minimal compared to the packet sizes. Suppose there are n
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nodes in the system. The node labeled n has an edge (n, S) in Ui where S is the server. Hence, node
1 knows the maximum label index n through S. Now, any degree two node in Ti sends the label of its
secondary child as the control message to its primary child. It sends the label received from its parent
in Ti as the control message to its primary child. A degree one node in Gi simply forwards the control
message received from its parent to its child. By sending control messages as above, any node with label
v in substream graph Gi receiving a control message l from its parent can know that the labels of the
peers in its subtree ranges from v+ 1 to l− 1. For example, in Figure 2(a) node 2 receives the message
l = 7 since the label of the secondary child connected to node 1 is 7. As such the labels of the nodes in
the subtree of node 2 range from 3 to 6.

4.2. Label Update

In the presence of peer churn, the labeling structure of section 3 might no longer be valid – some
labels are no longer in the system, while others require new labels to be assigned to them. As such, a
label update procedure constantly tries to keep the node labels updated in order to achieve the desired
structure. In any substream graph the departure of a peer affects the labels of only those nodes which
have a label greater than the label of the departed peer in that graph. For example in Figure 2(a) the
departure of node 4 will cause the labels of nodes 5 – 11 to decrease by one. As such the labels can be
updated by broadcasting the label of the departed peer and the flag “−1”, which essentially directs all
nodes having a label value greater than the label of the departed peer to reduce their value by 1. This
update can be performed quickly by using the edges of all m substream graphs in order to do the global
broadcast.

4.3. Peer Churn

An important characteristic of our present structure is the ease with which peer departures can be
handled. Whenever a peer with (out) degree one in Gi departs, a natural way to restore connectivity is
for its child to connect to its parent. Further, the structure of the distribution graphs (Property 2) ensures
that every secondary child of a degree two peer in Gi, receives an edge in Ui. As such, when a degree
two peer departs, then the primary child connects to its parent, while the secondary child continues to
receive the stream from the redundant edge in Ui. For example, in Figure 2(a) (i) if peer 1 departs, the
edge (s, 2) is formed; 7 receives the stream from 6; (ii) if peer 5 departs, the edges (2, 6), (4, 6) are
formed; (iii) if peer 6 departs, the edge (5, 7) is formed. Hence, the Gi’s continue to satisfy Property 2
even under peer departures.

The arrival procedure, whenever a new peer enters the system, should also be such that Property 2
holds after the arrival. However, the main objective for any arriving peer is to first receive all the m
substreams. Whenever a new node arrives into the system it can contact an arbitrary node. The contacted
node includes the new node as its child in all Gi’s where it has a degree one. In substreams where
the new node has not yet been included (because the contacted node has a degree two), the new node
can request to be the parent of one of its children from the previous substream trees. These operations
preserve Properties 1 and 2. The departure and arrival procedures have been illustrated in Figures 3 and 4
respectively in Appendix A.

4.4. Active Balance

This procedure is used as a sub-routine in the balancing algorithm of section 4.5. Our balancing
procedure is such that, even if only one of the trees Ti is balanced, it can induce its topology onto the
other substream trees in a cyclic fashion. The present procedure, Active Balance, is used only when none
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of the Ti’s are balanced. In this case, Active Balance tries to balance the first tree T1, which can then
balance the other trees. In this sense, it is used only as a last resort while balancing.

From section 4.1 we know that peers can estimate the size(s) of the subtree(s) below them in each
of the Ti’s by using the label messages received. If the labels have been updated, for any degree two
node in G1 with a label v and incoming control message l from its parent, if the label of its secondary
child is not equal to (v + l)/2, then it is clear that the left and the right subtrees of v are not balanced.
As such, v breaks its secondary edge and connects to the node with label (v + l)/2. Note that while v
knows that it needs to connect to the node labeled (v + l)/2, it might not know the physical address in
order to initiate and complete the connection. One way to do this is for v to request the physical address
from the tracker server. Another alternative is to gossip the physical address of the desired node. The
new links are also formed such that Property 2 holds, i.e., whenever a peer with in-degree one in Gi
receives a new edge from a peer upstream, then the old edge becomes an edge in Ui while the new edge
becomes the primary receiving edge in Ti. If the in-degree of the receiving peer is two, then the primary
edge is broken.

4.5. Induced Balance

As mentioned in the previous section 4.4, Induced Balance is the primary balancing procedure of our
algorithm and includes a collection of sub-routines. Let us assume that the graph T1 is balanced. Then
every leaf node in T1 has an edge in U1 going to a secondary child. We associate the degree two parent
of such a secondary child with each of the degree one chain of nodes above the leaf. For example, in
Figure 2(a), nodes {3,4}, {5,6} and {8,9} are associated with nodes 2, 1 and 7 respectively (the last set
of peers {10,11} are atypical and are not associated with any degree two peer). Now, the way G2 can be
induced from G1 is through a series of steps in which (i) the top-most node of the chain takes the place
of the degree two node, (ii) the entire chain moves up by a node and (iii) the degree two node takes the
place of the leaf node. For instance, in Figure 2(b) (as induced by Figure 2(a)), node 5 has taken the
place of node 1, 6 has moved up and node 1 has taken the position of the leaf node 6. Implementing
these three steps at all leaf nodes ensures that the resulting G2 is structurally the same as G1 but with
a fresh set of degree two nodes. This can be done in a distributed fashion, since the peers in the degree
one chain receive the address of the secondary child of the associated degree two node by the label
forwarding procedure (section 4.1).

As such, whenever a tree Ti is balanced, it tries to initiate the above three step procedure to induce
its topology onto Ti+1 (modulo m, i.e., Tm+1 ≡ T1). If Ti+1 is already balanced, then such a request is
turned down. Inducing the topology of Gi+1 from a balanced Gi takes at most 5 rounds in our algorithm
(Appendix A). Therefore, if at least one of the Ti’s is balanced, then in at most 5m rounds, we expect
all the trees to get balanced. If any degree two peer in T1 is not balanced for 5m rounds, we initiate the
Active Balance procedure in section 4.4 in order to balance T1.

Also, the inducing procedure is initiated by the first node in the degree one chain such as nodes 3,5
or 8 in Figure 2(a). However, the request is made only if such nodes cannot already be a degree two
node in Gi – if the degree one chain below a node is too long (> 2m − 2), then a secondary edge is
formed within Gi itself. Similarly, if either of the subtrees of a degree two node contain less than m− 1
nodes, then the secondary edge is broken. This ensures that (iii) of Property 3 holds.

Thus, we have addressed the key issues of bandwidth management, connectivity and delay in the
algorithm. In the following section, we give the proof of Theorem 1. The fast reconfiguration property
and the linear scaling of K with M has been proved in Propostion 3 in the Appendix B.
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5. Proof of Theorem 1

Proposition 1. In any steady state configuration Property 3 is satisfied. Conversely, any G1, . . . , Gm
satisfying Property 3 are stable states for the system.

Proof: Any peer that is completely disconnected from any of G1, . . . , Gm can enter the system as
a new peer by contacting the server. As such, in the steady state all peers are part of the substream
graphs and satisfy Property 1. Properties 2–(i) and (iii) are locally enforced by the peers. Now, for any
G1, . . . , Gm satisfying Property 1, the forwarding of the label addresses by procedure Label Control
(section 4.1) makes sure that the leaf nodes of T1, . . . , Tm connect to their corresponding secondary
children. Hence Property 2–(ii) holds. Properties 3–(ii), (iii) and (iv) follow because of the procedures in
Induced Balance (section 4.5). The balancing algorithm ensures that subtrees of every degree two peer is
balanced. The supplementary procedures in Induced Balance also ensure that the degree one chains are
between m−1 and 2m−2 nodes long as discussed in section 4.5. By the same procedure, if any degree
one peer has a degree two child, then a new secondary edge is formed by the degree one peer since
the subtree below it has to have larger than 2m − 2 peers. For the converse, consider any G1, . . . , Gm
satisfying Property 3. The only procedures that change the topology of the graphs are in Induced Balance
(section 4.5). However, since the graphs are already balanced and the degree one chains have between
m − 1 and 2m − 2 nodes, neither the balancing algorithm nor the supplementary procedures change
anything.

Proof of Theorem 1: In the steady state, since Property 1 holds, we have that the length of the
degree one chains range from m− 1 to 2m− 2. A balanced binary tree of depth d has 2d−1 leaves and
2d − 1 nodes. Therefore, we must have 2d−1(m− 1) + 2d − 1 ≤ n,

⇒ d ≤ log2

(
n+ 1

m+ 1

)
(1)

⇒ D ≤ log2

(
n+ 1

m+ 1

)
+ 2m− 2 (2)

= log2(n+ 1) + log2(1−R) +
2R

1−R
− 2. (3)

For a general upload capacity of C instead of 1, by proportionately scaling the substream rates, we have
the required delay bound.

In Section 7, we show that the above delay of the algorithm is order optimal. We now briefly discuss
the scenario of a lowered redundacy in the network.

6. Rate-Delay-Tolerance Tradeoff

Tree based algorithms, such as [3], [10], have a delay guarantee of dlog2 ne for a streaming rate of
R = 1, while the algorithm we have presented has a weaker delay guarantee of order O(log n+1/(1−R))
(Theorem 1) for a rate R ≤ 1 in steady state. This can be explained by introducing a parameter called
tolerance, τ . In the streaming algorithm discussed in sections 3 – 5, we had incorporated redundant
capacity into the individual substream graphs using the edges in Ui, i ∈ [m]. Now, consider a scenario
in which the the redundancy is reduced by a factor of 1 − τ for some 0 ≤ τ ≤ 1, i.e., let the edges in
Ui,∀i ∈ [m], have a rate of (1− τ)/m instead of 1/m for R = m/(m+ 1). The following proposition
demonstrates the gain in the delay obtained for a lowered redundancy.

Proposition 2. For a tolerance parameter τ , the steady state delay guaranteed by the algorithm is
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bounded by

D(R, τ, n) ≤ log2(n+ 1)− log2

(
R(1− τ)

1−R
+ 1

)
+

2R(1− τ)

1−R
− 2, 0 ≤ τ ≤ 1, (4)

for n peers in the system and a rate of R.

Proof: In the steady state of the original algorithm, the peers had a degree of one in all the substream
graphs or they had a degree two in one of the graphs and degree one in all the rest. By a slight
modification, we can make the algorithm more symmetric where every peer with degree two in some Ti
is necessarily a leaf node in some other tree in the steady state. This leads to a more even distribution
of capacity, i.e., any peer has degree one in m− 2 trees and degree zero, two in one tree each or it has
degree one in all the trees in the steady state. This corresponds to a total upload capacity of mr and
(m − 2)r + r + r(1 − τ) respectively, where r denotes the rate carried by each tree Ti. Therefore, we
must have mr + (1 − τ)r ≤ 1 ⇒ r ≤ 1

m+1−τ . As such, in this scenario we can support a total rate of
R = m/(m + 1 − τ) across the m substream trees, which is higher than the rate m/(m + 1) of our
algorithm. Since the topology is the same in both cases, by substituting for m in Equation (3) for delay,
we get the desired bound in Equation (4).

Proposition 2 shows that for a rate of R, the steady state delay obtained by lowering the amount of
redundancy in the system is lower. The extreme case in which there is no redundancy at all in the system,
i.e. τ = 1, corresponds to tree based algorithms with a deterministic delay of dlog2 ne. Thus, we have
obtained a relationship which shows the tradeoff between rate, delay and redundancy for the framework
of our algorithm.

For τ = 0, one implication of the way the substream graphs are structured (Property 2) is that
connectivity of the nodes within the substream graphs (Property 1) directly translates to availability of
download bandwidth from which peers can receive packets at a full rate of R = m/(m+ 1). However,
if we reduce the redundancy in the graphs, i.e., for τ > 0, then with peer churn some of the peers have
an upper bound of (1 − τ)/(m + 1) on the substream rates, even if the graphs are connected, until the
graph stabilizes. It is important to note that, there is always enough capacity for the peers in the union
of the substream graphs since every peer uploads at a rate at least as much as the download rate. The
substream graphs essentially introduce an asymmetry in the distribution of the capacity of each node
across the different substreams in order to reduce delay. The stabilization algorithm ensures that the
excess capacity available in any substream graph is effectively transferred to those in need. However, for
the duration of the stabilization, even with connectivity assumptions, we can only guarantee a rate of
(1−τ)m/(m+1) = (1−τ)R for the peers. This highlights the drawback with using a non-zero tolerance
τ ; a large tolerance parameter can cause the transient drops in the rate received to be large. Hence, the
lower rate and larger delay of our algorithm, compared to the tree based algorithms mentioned in the
beginning of this section, has the advantage of guaranteed continuous playback at full rate even during
peer churn.

7. Converse

The streaming algorithm we have presented involved binary trees in the substream graphs.In general,
the distribution graphs for streaming can be of any topology. However, in this section, we show that the
steady state delay of our algorithm in Theorem 1, is order optimal within the general class of algorithms
that use multiple arbitrarily structured graphs with redundancies for streaming.

Consider a directed tree with n nodes, where the nodes have out-degrees ranging from 0 to l. Let
d(i) denote the fraction of the nodes having an out-degree of i, for i = 0, . . . , l. It is clear that the tree
with the lowest depth, for a given (d(0), . . . , d(l)), has the largest degree nodes on the very top followed
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by the second largest degree nodes and so on. A lower bound for the depth of such a tree is given by
(Proposition 4 in Appendix)

D ≥ d(1)

d(0)
+ logl

(
1 +

l∑
k=2

nd(k)(k − 1)

)
− (l − 2) logl

(
l!

2

)
. (5)

We now show that the delay in Theorem 1 is order optimal among any algorithm satisfying the conditions
of Theorem 2. The full proof of Theorem 2 has been presented in Appendix B.

Proof sketch of Theorem 2: A general streaming algorithm can work over any connected graph of n
vertices (mesh), where each vertex has an out-degree of at most ∆. In the steady state, if communication
happens via flow (copy + forward), and is deterministic, then one can always consider the flow to be an
union of many constant rate sub-flows. Therefore, without loss of generality let us consider T trees with
the ith tree carrying a rate of ri. The full topology of the multicast streams can include more edges than
just the trees above. The trees simply correspond to the routes by which the packets arrive earliest from
the source to the peers. Now, suppose any one node departs the system; then at least one or more of the
trees are broken. As such, reception of flow at full rate is hindered for some of the nodes and needs to
be restored as fast as possible, if not immediately. Restoring is possible only by contacting another node
in the tree corresponding to the substream, that is still connected to the server. Here, we are looking at
a class of algorithms in which such a restoration is done by means of redundant links. Within this class
of algorithms (that are solutions to the problem) we have the converse result stated in the theorem.

Let d(j)
i denote the fraction of nodes having an out-degree of j in tree i. Clearly,

d
(0)
i + d

(1)
i + . . .+ d

(l)
i = 1, ∀i = 1, . . . , T. (6)

Since any tree with n nodes has n− 1 edges, we have

n(d
(1)
i + 2d

(2)
i + . . .+ (l − 1)d

(l−1)
i + ld

(l)
i ) = n− 1, ∀i = 1, . . . , T. (7)

Now, every degree i node for i ≥ 2 needs atleast i−1 redundant edges because of the capacity requirement
in the theorem. As such, the cumulative node capacity constraint becomes

T∑
i=1

(n− 1)ri + n(d
(2)
i + 2d

(3)
i + . . .+ (l − 1)d

(l)
i )ri ≤ n. (8)

The proof essentially obtains a lower bound for the expression in Equation (5) based on above Equa-
tions (6), (7) and (8). The delay for the i-th tree Di can be lower bounded as

Di ≥
1

d
(0)
i

− (loge(l − 1) + 2) + logl

(
1 + nd

(0)
i

)
− (l − 2) logl

(
l!

2

)
, ∀i = 1, . . . , T. (9)

The right hand side of the above is a decreasing function of d(0)
i in (0, 1). Equations (6), (7) and (8) also

yield

min
i
d

(0)
i ≤

1

R
− 1 +

2

n
(10)

(the proofs for Equations (9) and (10) have been discussed in Appendix B). Letting i∗ = arg min d
(0)
i ,

the overall delay for the system can be bounded by the delay of the i∗-th tree:

⇒ D ≥ logl n+
R

2(1−R)
+ logl

(
2(1−R)

R

)
− (l − 2) logl

(
l!

2

)
− loge(l − 1)− 2 (11)

for n ≥ 3R/(1−R). For l = ∆ and a node capacity of C (rather than 1) replacing R by R/C, we get
the desired theorem. Hence we can conclude that the steady state delay in our algorithm, Theorem (1),
is order optimal for the class of algorithms satisfying the property in the theorem.
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8. Conclusion

We have presented a deterministic algorithm for streaming over structured distribution graphs in a
peer-to-peer network. The algorithm has the peer churn handling capability of unstructured algorithms
combined with the deterministic delay guarantees of structured algorithms, thus offering the best of both
worlds. We have also identified a tolerance parameter, that is related to the transient rate guarantee, and
have discussed its relationship to rate and delay. Continuity of streaming playback is an important quality
of service metric that has been overlooked in the P2P streaming literature. For the class of algorithms we
discussed, we have shown that an additional delay of R/(C−R) is the price paid for ensuring continuity.
In general, other forms of adding redundancy exist – particularly coding techniques such as MDC or
network coding. It would be interesting to study how these other methods interact with delay, rate and
continuity. Implementing the present algorithm for practical real-world performance evaluation is also an
important future direction.
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Appendix A.
Algorithm

In the following we have presented the pseudo-code for the procedures discussed in sections 4.1– 4.5.
Illustrations have also been included.

A.1.Label Control

Algorithm 1 Message Forwarding algorithm for node v in Gi
Require: degree of node in Ti and the addresses, labels of children;

1: procedure FORWARD(msg, l, add) . msg: streaming message; l: label; add: address
2: if degree = 2 then
3: send (msg, secondary child’s label and address) to primary child in Ti;
4: send (msg, l, add) to secondary child in Ti;
5: else if degree = 1 then
6: send (msg, l, add) to child in Ti;
7: else
8: send (msg) to child in Ui;
9: end if

10: end procedure

A.2.Label Update

Algorithm 2 Label Update Algorithm for node v in all substream graphs
Require: label of parent node(s) of v in Gi, i = 1, . . . ,m;

1: procedure UPDATE(i, l, f, t) . l: label of departed/arrived node in tree i at time t; f : flag
2: if this label update not already done and label(v) ≥ li then . check using time-stamp t
3: label(v) ← li + fi
4: end if
5: forward (i, l, f, t) to all edges (undirected) other than the received edge in T1 ∪ T2 ∪ . . . ∪ Tm;
6: end procedure

A.3.Peer Churn

Figures 3 and 4 illustrate the node departure and arrival procedures respectively as discussed in
section 4.3.
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(a) (b) (c)

Figure 3. An example illustrating the change in the topology of G1, from Figure 2(a), due to the
departure of (a) node 4, a leaf node in T1, (b) node 3, a degree one node in T1 and (c) node 2, a
degree two node in T1.

(a) (b) (c)

Figure 4. Topologies of G1, G2 and G3 respectively, due to the arrival of a new node denoted by *.
The newly arrived peer is assumed to have contacted the node 6 in Figure 2 initially.

Algorithm 3 Edge update algorithm under parent departures for node v in Gi
Require: labels of children in Ti; parent(s) of v in Ti and Ui (if any) and their parents;

1: procedure DEPARTURE(p)
2: if v is not a secondary child of p then
3: form the edges (q, v) and (r, v) as appropriate; . q, r: p’s parents in Ti, Ui (if any)
4: label(v) ← label(v)-1;
5: broadcast label update message (i, label(v)− 1,−1, t) along all edges of

⋃m
i=1 Ti;

6: else
7: no action; (r, v) becomes part of Ti from Ui; . r: v’s parent in Ui
8: end if
9: end procedure
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Algorithm 4 Edge update algorithm under node arrivals for node v in Gi
Require: labels of children in Ti; parent p of v in Ti; parent r of v in Ui if any;

1: procedure ARRIVAL(q) . q: node that requests to become parent
2: if q requests to insert itself between p and v then
3: if degree(v) 6= 2 in Ti then
4: break (p, v) and form the edge (q, v) in Ti;
5: else if label(vs) 6= d(label(v) + l)/2e then . l: control label received from p
6: break (p, v) and form the edge (q, v) in Ti;
7: else reject request by q to connect to v; retain old edge (p, v);
8: end if
9: else if q requests to insert itself between r and v then

10: break (r, v) and form the edge (q, v) in Ui;
11: give p’s address to q; . q then requests to insert itself above p in tree Ti+1

12: end if
13: if label(v) not consistent with label of parent(s) then update label and broadcast the label update

message; . see procedure DEPARTURE

14: end procedure

A.4.Active Balance

Algorithm 5 Balancing of a degree two node v in tree T1

Require: labels of primary child vp and secondary child vs in T1; parent p of v in T1;
1: procedure ACTIVEBALANCE(l) . l: control label received from parent in T1

2: if label(vs) 6= d(label(v) + l)/2e and p is balanced then
3: break the edge (v, vs) in T1;
4: find the node u have the label d(label(v) + l)/2e in Gi;
5: form the edge (v, u);
6: end if
7: end procedure

A.5.Induced Balance

In section 4.5 we have discussed a three step procedure by which peers in a balanced graph Gi can
induce its topology to a subsequent unbalanced Gi+1. The procedures REQUEST, RESPOND and INDUCE

are used to implement this.
By the control label forwarding algorithm FORWARD, in algorithm 1, all degree one children of degree

two parents receive the addresses of the secondary children of their corresponding degree two nodes in
Gi (such as node 3 receiving the address of node 5 in Figure 2(a)). As such, in the first step, these nodes
contact those secondary children. This is presented in Algorithm 6 as the procedure REQUEST. Since
all secondary children of degree two nodes receive such a request, they can exchange this information
among their neighbors in order to let the requesting degree one nodes know who their prospective parents
will be in the subsequent graph. Indeed, procedure RESPOND in Algorithm 7 returns the address of the
prospective parent and position (primary or secondary) in the subsequent tree to any requesting degree
one node. In the last step, the degree one nodes request to insert themselves in the edge between the
prospective parent and child in the subsequent tree (returned by RESPOND). This is done by procedure
INDUCE in Algorithm 8. Procedure REQUEST takes 1 time slot, while procedures RESPOND and INDUCE

takes 3 and 1 time slots respectively. As such, the entire operation occupies at most 5 time slots.
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Algorithm 6 Step 1 of algorithm for node v to form the induced graph edges in Gi+1 from Gi
Require: physical address of control label node q received from parent p of v in Ti;

1: procedure REQUEST(q)
2: if degree(v) = 1 and degree(p) = 2 in Ti then
3: if label difference is > 2m− 2 in Ti then
4: create secondary edge
5: else if p is balanced then
6: make an induced graph request to q;
7: end if
8: else if degree(v) = 2 and (l – label(vs) < m− 1 or label(vs) − label(vp) < m− 1) then
9: break the edge to vs;

10: end if
11: end procedure

(a) (b) (c)

Figure 5. A possible steady state topology for G1, G2 and G3 respectively for n = 12. Notice that
Property 3 holds.

Note that INDUCE makes an insertion request to the child of its prospective parent in Gi+1. The
ARRIVAL routine running in the prospective child allows the insertion to take place only if the prospective
child is unbalanced (if its a degree two node). This step ensures that if Gi+1 is already well balanced,
then it is not perturbed by Gi. This has been illustrated in Figure 5, where node 7 in G3 tries to break
the edge (S, 1) in G1 but is refused. Similarly, the procedure REQUEST makes a request only if it cannot
already be a degree two node in Gi. For example, if the degree one chain below a node is too long
(> 2m−2), then it can form a secondary edge within Gi itself. In addition, a request is made only if the
parent of the requesting node is balanced, to ensure that if Gi is ill balanced then it does not propogate
its structure to Gi+1. REQUEST also makes sure that the degree one chains are at least m−1 nodes long,
by breaking secondary edges if either of the subtrees contain less than m− 1 nodes.

In section 4.4 we discussed a balancing procedure ACTIVEBALANCE in Algorithm 5 that actively tries
to break and make new connections whenever the labels of the children hint at unbalanced subtrees. We
remarked that such an active balancing algorithm is not necessary. Consider the example of the departure
of node 1 in Figure 2. This results in the topologies shown in Figure 6 for G1, G2 and G3. Notice that
G2 and G3 are balanced while G1 is not. Hence if G3 induces the topology Ĝ1 onto G1, the graph G1

can be balanced. This is illustrated in Figure 7 where node 4 first connects to the server and then forms
its secondary edge to node 7. Hence by being conservative in breaking secondary edges, we can speeden
the balancing process. We reiterate that the ability of nodes to reject an incoming insertion request by
another node (ARRIVAL), and the ability to make a degree two connection only if the inducing tree
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Algorithm 7 Algorithm for node v to respond to an induced graph request
Require: parent p and children of v in Ti;

1: procedure RESPOND(q) . q makes the request to v
2: send q’s address to p;
3: if degree(v) = 2 then send address received from vs to vp;
4: end if
5: if degree(v) = 2 and v is a primary child then
6: flag ← primary;
7: send (address received from p, flag) to vs;
8: else if degree(v) = 2 and v is a secondary child then
9: flag ← secondary;

10: send (q’s address, flag) to vs;
11: else no action;
12: end if
13: return (address, flag) received from p to q;
14: end procedure

Algorithm 8 Algorithm for node v to form the induced graph edges in Gi+1 from Gi
Require: return values (address q, flag) of procedure REQUEST

1: procedure INDUCE(q, flag)
2: request the flag child of q to insert itself between q and flag child of q;
3: end procedure

is balanced (REQUEST) makes sure that an ill balanced graph cannot induce its structure onto a well
balanced subsequent substream graph. Noting that it can take up to m rounds for the cyclic inducing
process to propagate from one graph to all the remaining, we have the following balancing algorithm.

Algorithm 9 Balancing algorithm for node v in G1

Require: labels of primary child vp and secondary child vs in T1;
1: procedure INDUCEDBALANCE(l) . l: control label received from parent in T1

2: if label(vs) 6= d(label(v) + l)/2e for Tcount ≥ Tthreshold then . with Tthreshold = 5m
3: run ACTIVEBALANCE(l);
4: else if label(vs) 6= d(label(v) + l)/2e for Tcount < Tthreshold then
5: Tcount ← Tcount + 1 in the next time slot;
6: else Tcount ← 0;
7: end if
8: end procedure

That is, we wait Tthreshold = 5m rounds before breaking any secondary edge to form a new secondary
edge. If after 5m time slots the labels are still incorrect, then the node breaks its secondary edge in tree
T1 as per ACTIVEBALANCE. This is because, if atleast one of the trees is balanced initially, then that
tree can initiate the rearrangement cycle across all substream trees which takes at most 5m rounds. If
none of the trees are balanced initially, then by initiating ACTIVEBALANCE tree T1 gets balanced, which
in turn causes the other trees to get balanced.
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(a) (b) (c)

Figure 6. Topology of (a) G1, (b) G2 and (c) G3 resulting from the departure of node 1 from
Figure 2. Notice that the edges (3, 6) in G2 and (4, 5) in G3 have been broken to preserve the
minimum length of 2 for the degree one chains.

(a) (b)

Figure 7. The process of node 4 in G3 of Figure 6 becoming a degree two node in G1.

A.6.Multiple Departures

So far we have been considering peer departures where only a single peer leaves the system at a
time. Since we have not imposed any departure restrictions in our model, in general peers could depart
in an arbitrary fashion including adversarial. Under such a scenario, the primary objective for the peers
is to ensure connectivity in all the substream graphs. For example, in the network shown in Figure 2 if
the nodes 1,3,4,5 and 6 all leave at the same time then the node 2 is completely disconnected in all the
graphs. As such, the performance is dictated by the amount of stored physical addresses, M , of the peers
currently in the system. If none of the peers in the memory are available, then the node has to contact
the server and re-enter the system as a new peer.

Appendix B.
Proofs

Consider the set of peers departing at time t. In the following proposition we show that the algorithm
has the required resilience capability under churn. We remind that M is the total amount of memory
available in each peer, while m is the number of substream graphs for a rate R = m/(m+ 1).

Proposition 3. If the peer departure blocks in each round are of size at most K = 1, then for a memoy of
M = m, the substream graphs G1, . . . , Gm always satisfy Properties 1 and 2. In general, the algorithm
requires a memory of M = Km.

Proof: Note that the sizes of the sets of departing peers that are connected in Gi is also bounded
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by K for any i. In section 4.3 we have discussed the case of a single peer departure. Since the repairing
procedure upon departure of any peer involves only the parent and children of the peer, arbitrary departures
with bounded (by 1) departure block sizes can also be handled similarly. Now, if G1, . . . , Gm satisfy
Properties 1 and 2, then it is easy to see that the repaired graphs resulting from a departure event
also satisfy Properties 1 and 2. Hence by induction we get the desired result for K = 1. In general,
connectivity of the peers is ensured if they have sufficient amount of memory to form new connections.
For a memory of M = Km, every peer can know the address of the K parent nodes above it in each
Gi. Here we ignore the secondary edges and consider the K parents in the resulting cycle graph (such as
1−2−3−4− . . .−11 in Figure 2(a)). Now, if the peer departure blocks consist of at most K nodes, then
in the worst case a block consists of the K parents of a peer. But in this case the peer can immediately
restore connectivity by making a connection to the K-th parent above it. Hence, the proposition follows.

Since the distribution graphs G1, . . . , Gm always satisfy Property 1, and their edges can support a
rate of 1/(m+ 1) we conclude that peers suffer a loss of packets in at most one time slot required for
the reconfiguration.

In the following, we present the proof of the lower bound for the tree depth mentioned in Equation (5).

Proposition 4. Any directed tree with n nodes, and where d(i) fraction of the nodes have an out-degree
of i for i = 0, 1, . . . , l, has a depth D that is bounded as

D ≥ d(1)

d(0)
+ logl

(
1 +

l∑
k=2

nd(k)(k − 1)

)
− (l − 2) logl

(
l!

2

)
. (12)

Proof: It is clear that the tree with the lowest depth, for a given (d(0), . . . , d(l)), has the largest
degree nodes on the very top followed by the second largest degree nodes and so on. Let us call a layer
of nodes at a particular depth as an i-layer if the largest degree node present in that layer has the degree
i. Further, let di, i = 1, . . . , l denote the number of of the i-layers in the tree. Therefore,

D =

l∑
i=0

di (13)

gives the depth of the tree. The proof proceeds by bounding the depth of each layer. The number of
nodes in the topmost layer of the graph, layer l, can be bounded as

1 + l + . . .+ ldl−2 ≤ nd(l) ≤ 1 + l + . . .+ ldl−1 (14)

(If no such dl exists, then dl = 0). This yields

logl(nd
(l)(l − 1) + 1) ≤ dl, (15)

ldl ≤ (nd(l)(l − 1) + 1)l. (16)

Now, in the second layer where there are nodes of degree l− 1 (or possibly lesser), since ldl constitutes
an upper bound on the number of degree l parents of degree l − 1 nodes and ldl−1(l − 1) constiutes a
lower bound, we must have

ldl−1(l − 1)(1 + (l − 1) + . . .+ (l − 1)dl−1−2) ≤ nd(l−1) ≤ ldl(1 + (l − 1) + . . .+ (l − 1)dl−1−1) (17)

⇒ ldl−1(1 + (l − 1) + . . .+ (l − 1)dl−1−2) ≤ nd(l−1) ≤ ldl(1 + (l − 1) + . . .+ (l − 1)dl−1−1). (18)

This yields

logl−1

(
nd(l−1)(l − 2)

ldl
+ 1

)
≤ dl−1, (19)

ldl(l − 1)dl−1 ≤ (nd(l−1)(l − 2) + nd(l)(l − 1) + 1)(l)(l − 1). (20)
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Using Equation (16) in (19) we have,

logl−1

(
nd(l−1)(l − 2)

(nd(l)(l − 1) + 1)l
+ 1

)
≤ dl−1. (21)

Similarly, we have in the (l − 2)th layer,

ldl−1(l − 1)(l − 1)dl−1−1(l − 2)(1 + (l − 2) + . . .+ (l − 2)dl−2−2) ≤ nd(l−2) (22)

⇒ ldl−1(l − 1)dl−1−1(1 + (l − 2) + . . .+ (l − 2)dl−2−2) ≤ nd(l−2) (23)

and nd(l−2) ≤ ldl(l − 1)dl−1(1 + (l − 2) + . . .+ (l − 2)dl−2−1), (24)

yielding

logl−2

(
nd(l−2)(l − 3)

ldl(l − 1)dl−1
+ 1

)
≤ dl−2 (25)

ldl(l − 1)dl−1(l − 2)dl−2 ≤ (nd(l−2)(l − 3) + nd(l−1)(l − 2) + nd(l)(l − 1) + 1)(l)(l − 1)(l − 2).
(26)

Using Equation (20) we have:

logl−2

(
nd(l−2)(l − 3)

(nd(l−1)(l − 2) + nd(l)(l − 1) + 1)(l)(l − 1)
+ 1

)
≤ dl−2. (27)

We continue this process for all the i-layers for i ≥ 2. Finally, in the last layer the number of degree
one chains is equal to the number of the leaves. As such, we must have

nd(1)

nd(0)
− 1 ≤ d1, (28)

d0 = 1. (29)

Therefore, from Equation (13) we have depth

D ≥ d(1)

d(0)
+

l∑
k=2

logk

(
1 +

nd(k)(k − 1)

(1 +
∑l

k′=k+1 nd
(k′)(k′ − 1))

∏l
k′′=k+1(k′′)

)
. (30)

Now, the second term in the right-hand side of Equation (30), denoted by T , can be lower bounded as

T ≥
l∑

k=2

logl

(
1 +

nd(k)(k − 1)

(1 +
∑l

k′=k+1 nd
(k′)(k′ − 1))

∏l
k′′=k+1(k′′)

)
(31)

= logl

l∏
k=2

(
1 +

nd(k)(k − 1)

(1 +
∑l

k′=k+1 nd
(k′)(k′ − 1))

∏l
k′′=k+1(k′′)

)
(32)

= logl

l∏
k=2

(
(1 +

∑l
k′=k+1 nd

(k′)(k′ − 1))
∏l
k′′=k+1(k′′) + nd(k)(k − 1)

(1 +
∑l

k′=k+1 nd
(k′)(k′ − 1))

∏l
k′′=k+1(k′′)

)
(33)

≥ logl

l∏
k=2

(
(1 +

∑l
k′=k+1 nd

(k′)(k′ − 1)) + nd(k)(k − 1)

(1 +
∑l

k′=k+1 nd
(k′)(k′ − 1))

∏l
k′′=k+1(k′′)

)
(34)

= logl

((
1 +

l∑
k′=2

nd(k′)(k′ − 1)

)
l∏

k=2

(
1∏l

k′′=k+1(k′′)

))
(35)

≥ logl

(
1 +

l∑
k′=2

nd(k′)(k′ − 1)

)
− (l − 2) logl

(
l!

2

)
(36)
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thus proving the claim.
We now present the proofs of Equations (9) and (10) from section 7. For the sake of completeness

we have presented the full-proof of Theorem 2.
Proof of Theorem 2: Without loss of generality let us consider T trees with the ith tree carrying a

rate of ri. This is justified because if the flow is granular we can associate a shortest path tree with each
of the substreams. The full topology of the multicast streams itself can be bigger than the trees above.
The trees simply correspond to the routes by which the packets arrive earliest from the source to the
peers. Let d(j)

i denote the fraction of nodes having an out-degree of j in tree i. Clearly,

d
(0)
i + d

(1)
i + . . .+ d

(l)
i = 1, ∀i = 1, . . . , T. (37)

Since any tree with n nodes has n− 1 edges, we have

n(d
(1)
i + 2d

(2)
i + . . .+ (l − 1)d

(l−1)
i + ld

(l)
i ) = n− 1, ∀i = 1, . . . , T,

⇒ d
(1)
i + 2d

(2)
i + . . .+ (l − 1)d

(l−1)
i + ld

(l)
i = 1− 1

n
, ∀i = 1, . . . , T. (38)

Now, every degree i node for i ≥ 2 needs atleast i−1 redundant edges because of the capacity requirement
of the theorem. As such, the cumulative node capacity constraint becomes

T∑
i=1

(n− 1)ri + n(d
(2)
i + 2d

(3)
i + . . .+ (l − 1)d

(l)
i )ri ≤ n

⇒
T∑
i=1

(
1− 1

n
+ d

(2)
i + 2d

(3)
i + . . .+ (l − 1)d

(l)
i

)
ri ≤ 1. (39)

The proof essentially obtains a lower bound for the expression in Equation (5) based on above Equa-
tions (37), (38) and (39). Subtracting Equation (37) from (38) gives

d
(2)
i + 2d

(3)
i + . . .+ (l − 1)d

(l)
i = d

(0)
i −

1

n
, ∀i = 1, . . . , T. (40)

From the above, we have

d
(j)
i ≤

1

j − 1

(
d

(0)
i −

1

n

)
, (41)

and combined with Equation (37) we get

1 ≤ d(0)
i + d

(1)
i +

(
d

(0)
i −

1

n

)(
1 +

1

2
+ . . .+

1

l − 1

)
≤ d(0)

i + d
(1)
i +

(
d

(0)
i −

1

n

)
(loge(l − 1) + 1)

⇒ d
(1)
i ≥ 1− d(0)

i (loge(l − 1) + 2) +
1

n
(loge(l − 1) + 1)

⇒
d

(1)
i

d
(0)
i

≥ 1

d
(0)
i

− (loge(l − 1) + 2) +
1

nd
(0)
i

(loge(l − 1) + 1). (42)

Also, the second term in the delay lower bound in Equation (5) becomes

logl

(
1 +

l∑
k=2

nd(k)(k − 1)

)
= logl

(
1 + nd

(0)
i

)
. (43)
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As such, using Equations (42), (43) and (5) the delay for the i-th tree Di can now be lower bounded as

Di ≥
1

d
(0)
i

− (loge(l − 1) + 2) + logl

(
1 + nd

(0)
i

)
− (l − 2) logl

(
l!

2

)
, ∀i = 1, . . . , T. (44)

The derivative of the right-hand side above in Equation (44) with respect to d(0)
i is given by

− 1

(d
(0)
i )2

+
n

(1 + nd
(0)
i ) log l

(45)

which is strictly negative in 0 < d
(0)
i < 1. As such, the minima in the right-hand side of Equation (44)

is achieved by the largest achievable d(0)
i . Now, using Equations (37) and (38) in (39) we get

T∑
i=1

(
1− 2

n
+ d

(0)
i

)
ri ≤ 1,

⇒ min
i
d

(0)
i ≤

1

R
− 1 +

2

n
. (46)

Letting i∗ = arg min d
(0)
i , the overall delay for the system can be bounded by the delay of the i∗-th tree.

Hence, substituting Equation (46) in (44) we have

D ≥ 1

d
(0)
i∗

− (loge(l − 1) + 2) + logl

(
1 + nd

(0)
i∗

)
− (l − 2) logl

(
l!

2

)
≥ 1

1
R − 1 + 2

n

+ logl

(
1 + n

(
1

R
− 1 +

2

n

))
− (l − 2) logl

(
l!

2

)
− loge(l − 1)− 2

≥ logl n+
R

2(1−R)
+ logl

(
2(1−R)

R

)
− (l − 2) logl

(
l!

2

)
− loge(l − 1)− 2 (47)

for n ≥ 3R/(1−R). For l = ∆ and a node capacity of C (rather than 1) replacing R by R/C, we get
the desired theorem. Hence we can conclude that the steady state delay in our algorithm, Theorem (1),
is order optimal for the class of algorithms satisfying the conditions of Theorem 2.

Appendix C.
All-Cast

In the all-cast scenario, each peer in the system can have an independent data stream for broadcasting
to all the other peers. The symmetry of the distribution topology that we constructed for the broadcast
problem in sections 3 – 5 allows us to reuse the topology for all-cast. Let us assume the node capacities
of the peers proportionally scale as the number of streaming sources in the system. For example, if there
are k independent broadcasts then we will assume that the peers can support a total upload rate of k. The
rate of each independent stream and its substreams are the same as in the original algorithm. In the single
source broadcast graph the edges carrying the data streams were directed. However, since the edges of
the P2P network have been assumed to be undirected in our model in section 2, we allow data transfer
to happen both directions between any of the neighbours in the substream graphs Gi, i = 1, . . . ,m. As
such, let Ḡi denote the undirected version of the directed graph Gi for all i. Then, for any source node
v, the problem is to find a rooted (at the source), low depth, directed spanning tree (where the edges
point away from the source) in Ḡi subject to the node capacity constraints on the peers. One way to
ensure the capacity constraints is to find a route in Ḡi, for each independent broadcast stream, such that
the out-degree for the peers is the same as in Gi for all i.
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(a) (b) (c)

Figure 8. (a) The undirected network corresponding to the directed graph in Figure 2(a), (b) route
taken by the stream if node 5 is the source and (c) route taken by the stream for node 2 as the
source.

This can be done as follows. Consider the single source broadcast algorithm for a rate R = m/(m+1).
This results in the contruction of m substream graphs G1, . . . , Gm. Let v be any peer sourcing a data
stream. For substream i, if v is a degree two node in Ti, then v sends the substream to its primary child
and parent in Ti. Otherwise, if v is of degree one or zero, it sends the stream to its child in Ti or Ui
respectively. Now, for any node u that is receiving a substream from its neighbor, if u receives it from
any of the neighbors in Ti, it forwards the substream to the other neighbors in Ti. If u is a leaf-node in
Ti receiving messages from its parent, then u forwards the messages to it child in Ui. On the other hand,
if u receives the substream from its neighbor in Ui, then if u is of degree two in Ti and u’s parent in Ti
has not yet received the stream then it forwards it to its parent and primary child in Ti. If u’s parent has
received the stream, then it forwards to its children in Ti. If u has degree one, it forwards the message
to its child in Ti. This algorithm has been presented in Algorithm 10 and illustrated in Figure 8. In all of
the above operations, the amount of upload done by the nodes for each substream of each independent
stream is the same as in the original algorithm.

Algorithm 10 Algorithm for node v to source / forward an all-cast message in Gi
Require: all neighbors in Gi;

procedure ALLCAST

Case: v is the source of msg
if degree(v) = 2 then

send msg to primary child and parent in Ti;
else

send msg to the child in Ti or Ui;
end if

Case: v receives msg from a neighbor
if degree(v) = 2 then

if msg was received from a neighbor in Ti, forward msg to the other two neighbors in Ti;
if msg was received from a neighbor in Ui and the parent in Ti has not yet received msg,

then forward msg to primary child and the parent in Ti; else forward msg to primary and secondary
children in Ti;

else
forward msg to the other neighbor in Ti or Ui;

end if
end procedure
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Proposition 5. For a substream graph Gi, i ∈ [m] satisfying Properties 1 and 2, procedure ALLCAST

ensures that all the nodes in Gi receive the substream for any source of the broadcast.

Proof: Suppose a node or a set of nodes do not receive the stream. Then we can always find a node
in that set whose parent in Ti or Ui have received the stream. It cannot happen that any parent in Ui
received the stream and the child did not. As such, the only possiblity is that the node is a secondary
child of a degree two node in Ti. But in this case, the primary child of the parent has received the stream.
Now, since the node is a secondary child it also has a parent in Ui which has not received the stream
(otherwise the node would have recived it). There exists a directed path comprising of only primary
edges, and tolerance edges from the primary child to the secondary child. Going backwards along this
path implies the primary child did not get the stream, which is a contradiction.

Proposition 6. In the steady state with n nodes, the delay of any of the streams in the all-cast is bounded
by

Dall-cast ≤ 2 log2(n+ 1) +
8R

1−R
+ 2 log2(1−R)− 8. (48)

Proof: For any degree two node in Ti, let T i and T i denote the tree above and below the node
respectively. From Equation (1), the depth of the degree two portion of Ti in the steady state is bounded by
d ≤ log2

(
n+1
m+1

)
and by Property 3, the length of the degree one chains are at most 2m−2. Now, it takes

at most 2d+2m−2 delay for the stream to reach all the nodes in T i. For T i it takes at most 2d+2(2m−2)
delay. Therefore, it takes at most 2d + 2(2m − 2) delay for any degree node that is a source. Now, if
any degree one node is the source, then it takes at most 2(2m− 2) rounds to reach a degree two node.
From there on it behaves as if the degree two node is the source and hence takes at most 2d+ 2(2m−2)
delay. Hence, the net delay bounded by 2d+ 4(2m− 2) ≤ 2 log2(n+ 1) + 8R

1−R + 2 log2(1−R)− 8 as
required.

Appendix D.
Heterogeneous Capacities

In a setting where peers have heterogeneous upload capacities, it is easily seen that the maximum
possible streaming capacity is equal to the sum upload capacity of the peers divided by the number of
peers [29]. Likewise, a (weak) lower bound for the maximum delay is Ω(log n) under constant node
degree bounds. Intuitively it seems possible to be able to trade one quantity for the other, such as rate for
delay etc. However, precisely characterizing the rate-delay-continuity tradeoff (analogous to section 6) in
the heterogeneous case remains an important future direction.

In this section we contribute to the above question, by considering the “low-rate low-delay” regime
(at zero-tolerance, τ = 0). Without loss of generality, let the peers have an upload capacity greater than
or equal to 1. Then this regime corresponds to streaming at a rate of R ≤ 1. The other direction is the
“high-rate high-delay” regime, and corresponds to transmission at an optimal (or near-optimal) rate as
discussed above. We have not considered this direction, and leave it for future work. The low rate regime
is similar in spirit to [10], where a few dedicated high capacity peers (or servers) assist in faster data
dissemination by being located in the top of the distribution trees.

The key idea here is to cluster together nodes of similar upload capacities and run the original algorithm
on the clusters separately. Let us first consider the homogeneous case, as before, but with multiple source
nodes providing the data stream instead of just one in each of the Gi’s.
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(a) (b) (c)

Figure 9. Example of a cluster C1 comprising of 12 nodes with 2 source nodes. (a), (b) and (c)
show the three substream graphs for R = 3/4.

D.1.Multiple Source Nodes

In our algorithm for the streaming model of section 2, for a rate of R = m/(m + 1), the server
provided the stream to a single node in the substream graphs G1, . . . , Gm. The receiving nodes have a
label 1 in their respective substream labeling in the steady state (Figure 2). Now, let us suppose there
are k1 ≥ 1 servers providing the substream for G1. In this case, we can expect the topology to comprise
of k1 balanced graphs (satisfying Properties 1 and 2) in the steady state. The steady state topology of
G1, G2 and G3 with 12 peers and 2 sources has been illustrated in Figure 9. We have remarked that the
end nodes of the substream graphs (such as nodes 10, 11 in Figure 2) are atypical and do not use their
full upload capacity across G1, . . . , Gm. However, while dealing with multiple servers, the extra capacity
in the end nodes can be used to connect to both the root node the parent tree and the subsequent tree.
The label information forwarded along these edges can be used for balancing the parent tree and also
for ensuring that the trees are of similar size.

D.2.Streaming in Clusters

Let C1 and C1+ denote the set of peers with upload capacity 1 and strictly larger than 1 respectively.
We assume that whenever new peers arrive they can obtain the address of an arbitrary peer in their
respective clusters. Then, for a rate of R = m/(m + 1), we let the peers in C1+ form and maintain
the distribution graphs exactly as before in section 4. However, since the peers have an upload capacity
strictly larger than 1, this does not use all of their capacity. The remaining capacity available in those
nodes are used as sources for the peers in the cluster C1 as in the previous section D.1. One way to do
this is to let the degree one children of degree two nodes use all of their extra capacity for sourcing that
substream to C1. In Figure 10 we have illustrated this for a cluster C1+ where every peer has an upload
capacity of 5/4 for a rate R = 3/4. Since each substream is of rate 1/4, the peers in C1+ can support up
to 5 outgoing edges. While 4 edges are used for the construction of the substream graphs, the remaining
edges (shown by dotted lines in the Figure) are used as source nodes for the lower capacity cluster C1.
For example, if C1 is as in Figure 9, then peers 2, 4 in Figure 10 can be the sources s1, s2 in Figure 9
corresponding to the first substream and so on.

Now, peer churn can happen in terms of peer arrivals and departures in both C1 and C1+. Since the
distribution graphs for the peers in C1+ are exactly as before, peer churn can also be handled similarly.
However, for the peers in C1, churn in C1+ translates as dynamics in the number of substream sources.
In addition, they have to handle the peer churn happening within their cluster. The latter is handled as
in the homogeneous scenario (section 4) since the distribution graphs of C1 have Properties 1 and 2 for
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(a) (b) (c)

Figure 10. A cluster C1+ with 6 peers. The nodes with dotted-red edges act as source nodes for
C1.

small block departures (Proposition 3), while the connectivity property ensures that the peers continue
to receive the stream even when some of the substream sources from C1+ leave the system.

As with churn management, balance has to be achieved in both the clusters. For the peers in C1+

using the algorithm of section 4 this is automatically guaranteed. However, for the nodes in C1, the delay
is minimized if the trees corresponding to each source in each substream are of similar size. Note that
every root node of a substream in C1 can know the size of its tree since it receives edges from its end
node and the end node of the previous tree. By exchange of this information among the root nodes, they
can direct the source nodes to make connections such that the trees are of similar sizes. For example, in
Figure 9(a) the end node 6 forwards the label information to the root nodes 1 and 7. Similarly node 12
forwards the label information to the two root nodes. As such, by taking the difference of the received
label, the root nodes 1 and 7 can know the size of their respective subtrees as 6. The root nodes can also
know the size of the neighboring tree by exchanging this informtion using the end nodes 6 and 12. As
such, if there are k sources, each subtree root can know the size of its own subtree and the neighboring
subtrees. The root nodes can then use this information to direct the source nodes for that substream to
find new root nodes such that the k subtrees are approximately equal in size. Then, balance within the
trees can be achieved as in the homogeneous case.

Thus, our algorithm can easily be extended to cover the “low-rate low-delay” regime of heterogeneous
networks. Details and analysis are left to the full-paper.
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