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ABSTRACT

The Internet is a man-made complex system under constankatt
(e.g., Advanced Persistent Threats and malwares). It iefire
important to understand the phenomena that can be inductg:by
interaction between cyber attacks and cyber defensesislpdber,
we explore the rich phenomena that can be exhibited whenethe d
fender employs active defense to combat cyber attacks.€Toebt
of our knowledge, this is the first study that shows #ettve cyber
defense dynamig®r more generallycybersecurity dynamig€an
exhibit the bifurcation and chaos phenomena. This has pnafo
implications for cyber security measurement and predicti@) it

is infeasible (or even impossible) to accurately measudepagdict
cyber security under certain circumstances; (ii) the didemust
manipulate the dynamics to avoid susimanageable situatioris
real-life defense operations.

Categories and Subject Descriptors
D.4.6 [Security and Protectior]

General Terms
Security, Theory

Keywords

Active cyber defense, active cyber defense dynamics, aftteck-
defense dynamics, cybersecurity dynamics, cyber seauogels

1. INTRODUCTION

Malicious attacks in cyberspace will remain to be a big peabl
for the many years to come. This is fundamentally caused by th
complexity of the Internet and computer systems (e.g., waah
assure that a large software system has no security vulligealp.
It is therefore important to understand and characterizeptie-
nomena that can be exhibited at the global level of a cybeesys
ranging from an enterprise network to the entire cyberspate
emerging framework o€ybersecurity Dynamic84, 35, 7, 4] of-
fers a systematic approach for understanding, charaictgriand
quantifying the phenomena as well as cyber security in géner
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The current generation of cyber defenses is often basag-on
activetools that are known to have limited success. For example,
infected/compromised computers cannot be cleaned up gvestb
ing multiple anti-malware tools together [21]. Moreover, reactive
defense has a fundamental limitation, namely that the teffeat-
tacks is automatically amplified by network connectivityt the
effect of reactive defenses is not. Tligack-defense asymmetry
had been implied by studies such as [29, 6, 3, 28, 39], but was n
explicitly pointed out until [36].

One approach to overcoming the aforementioned attackisefe
asymmetry is to adopactive cyber defense, which is to use the
same mechanism that is exploited by attackers. More spatjfic
active defense aims to spread some “white” worms (calkfdnse-
ware in this paper) to automatically identify and “kill” the mali
cious malwares in compromised/infected computers [2, 1280
16, 18, 14, 31]. In some sense, active cyber defense alrasdg t
place in cyberspace because (for example) the malwareleallechia
attempts to “kill" the malware calleBlaster in compromised
computers [26, 22], but it may take some years for full-seale
tive cyber defenses to arise [18, 27, 32]. The first mathexalati
model for studying thglobal effectivenessf active cyber defense
has been proposed recently [36]. In this paper, we furtrestihdy
of active cyber defense dynamics fromewperspective.

Our contributions. We substantially extend some aspects of the
first mathematical model of active cyber defense dynami6k (8

be fair, we should note that [36] offers some perspectivasdre
not considered in our model as well). The extensions can ae ch
acterized as follows. First, we accommodate more gerattatk-
power and defense-powefunctions, meaning that our results are
applicable to a broader setting than what is investigatefB6f
Second, we allow thattack network structuréo be different from
the defense network structyrevhich are assumed to be identical
in [36]. This is important and realistic because the attaetense
interaction structures are often “overlay” networks on eégome
physical networks, and as such, the defender and the atteake
use different structures based on their own defense/attake-
gies.

The extended model allows us to explore the rich phenomena
that can be exhibited by active cyber defense dynamics. ifspec
cally, we show that active cyber defense dynamics can exthiei
bifurcation and chaos phenomena (we call thenmanageable sit-
uationsin cyber security). To the best of our knowledge, this is
the first study that shows that bifurcation and chaos areasten
the cyber security domain. These phenomena indicate tionits
on the measurement and prediction of cyber security, ardigrg
that cyber defenders must manipulate the (active) cyberndef
dynamics to avoid such unmanageable situations in reatjiber
defense operations.
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Disclaimer. The active cyber defense strategy explored in the presen2. EXTENDED ACTIVE CYBER DEFENSE

paper does not advocate that defenders should retaliate dte
tackers, because it is well known that the attackers, or rpoge
cisely the IP addresses that are launching attacks aghmstid-
tims, could well be victims that are abused by the real agexcks
stepping stones. Moreover, defensewares (i.e., “white’twg) are
meant to clean up the compromised computers, not to compeomi
the secure computers. Most important of all, the active rife
operations should be contained within the networks undedtg:
fender’s jurisdiction (e.g., an enterprise network detgnday use
active defense to clean up the enterprise network but nogdue-
yond the enterprise’s perimeter). This can be assuredx&mgle,
by making the enterprise’s computers and firewalls recegde-
fensewares via digital signatures. This means that themite
computers will only run defensewares that are accompanigd w
digital signatures that can be verified by the computersiare
via an embedded signature verification key, and that the ditew
recognizes and blocks out-bound defensewares.

The rest of the paper is organized as follows. In Section 2, we
present our active cyber defense dynamics model. In Segtive
analyze equilibria (or attractors) of active cyber defedgeamics.
In Section 4, we explore the transition between attractiorSec-
tion 5, we investigate the emergence of bifurcation. In idadb,
we explore the chaos phenomenon. We discuss related pritar wo
in Section 7 and conclude the paper in Section 8.

The main notations we use are summarized as follows.

R,RT,C | the sets of real numbers, positive real numblers
and complex numbers, respectively
R(w), S(w) | the real and imaginary parts of complex num-
berw € C, respectively
I, | then x n identity matrix
GB,Ap | Gg = (V, EB) is thedefense network strug-
ture, Ap is the adjacency matrix df 5
Gr,Ar | Gr = (V, ER) is theattack network struc-
ture, A is the adjacency matrix @i r
Nyg' | Nygw = {u € V' (u,v) € E'}is
the neighbors ofv in graph/networkG’ =
(V' E)
deg(v,G") | deg(v) = |N,| is node v's in-degree in
graph/networlG’ = (V', E")

Dy | Dy = [dov]nxn is @ diagonal matrix corret
sponding to adjacency matriX’ = [a,,]nxn,
whered,, = >_I'_, av. is the in-degree of
nodev in graphG’ corresponding tot’

A(M) | the set of eigenvalues of matri
A1 (M) | the eigenvalue of\f with the largest real part

(or A1 when M is clear from the context)
the probability that node € V is in sateblue
(i.e., secure) and stated (i.e., compromised
at timet, respectively

the average portion dflue nodes at time

0, namely(B. (1)) = 57 3=, cv Bu(t)

2

B(t),R(t) | B(t) = [Bi(t),...,Ba(t)], R(t) =
[R1(t),..., Rn(t)], wheren = |V|
B* | the homogeneous equilibrium 8(t) ast —

oo, namelyB, (t) = o Vv € V ast — oo
f(-) :[0,1] — {0}UR™ is the defense-powe
function, g(-) : [0,1] — {0} UR™ is the
attack-power function

the probability that the state of nodechanges|
from blue to red at timet

the probability that the state of nodechanges|
from red to blue at timet

=

0v,Br(1)

0v,rB(1)

DYNAMICS MODEL

Review of the model in [36]. Suppose attacker and defender in-
teract in a cyber system that consists of a finite node pdpualat

V ={1,2,---,n}, where each node can abstract/represent a com-
puter. At any timel > 0, a nodev € V is in one of two states:
blue, meaning that the node is secure but vulnerable to attacks;
red, meaning that the node is compromised. For a given cyber
system, the attacker spreads computer malwares (e.g.néeda
Persistent Threats) to compromise computers, while thendef
spreadslefensewarege.g., “white” worms) to detect and clean up
(or “cure") the compromised computers. Suppose both the mal
wares and the defensewares spread over the sétaek-defense
network structurenamely a finite simple grapfl = (V, E), where

V ={1,2,---,n} is the vertex set mentioned above, dnids the
edge set such thdu,v) € E means (i) a compromised node

can attack a secure nodeand (ii) a secure node can use active
defense to detect and clean up a compromised node

Our extension to the model in [36].Rather than assuming the at-
tacker and defender use the samtack-defense network structure
we consider two network structures: ttlefense network structure
Gp = (V, Ep) over which defensewares spread, anddttack
network structureGr = (V, Er) over which malwares spread.
Both network structures are directed or undirected grapscif-
ically, (u,v) € Ep means a secure nodecan use active defense
to “cure” a compromised node, and(u,v) € Er means a com-
promised node: can attack a secure node We do not make any
restrictions on the attack/defense network structuregEbthat we
assumés 5 andG  are simple graphs with no self-eddgegzor the
purpose of illustrating results, we will use random graphsaen-
crete examples though.)

Denote byAs = [aZ,].x. the adjacency matrix offz where
aB, = 1lifand only if (u,v) € Ep. Denote byAr = [a,]nxn
the adjacency matrix aff zr wherea’, = 1 if and only if (u,v) €
Er. Note that the representation accommodates both direotkd a
undirected graphs. Denote B, () and R, (¢) the probability that
nodev € V is in stateblue (i.e., secure) and stated (i.e., com-
promised) at time, respectively.

ev, BR(t)

B R
(Blue) (Red)

0, re(D)

Figure 1: The state transition diagram for a nodev € V.

Figure 1 depicts the state transition diagramifmtividual node
v € V, whered, rp(t)is the probability that node's state changes
fromred to blue at timet, andé., gz (t) is the probability that node
v's state changes froflue to red at timet. This leads to the fol-
lowing master equation of active cyber defense dynamics:

B, (1)
det(t) = 0u,rB(t) - Ry(t) — Ou,BR(t) - Bu(t) "
# = 0,,8r(t) - Bo(t) — 0u,rB(t) - Ry(t)

In order to specifyd,, rz(t), we use the concept afefense-
power function £(-) : [0,1] — {0} U R™, which abstracts the

LIt is possible to accommodawivilege escalatiorin the present
model, by treating a computer as a set of nodes that corrdspon
different privileges. We leave the details to future inigestion.



power of the defenseware in detecting and cleaning up compro with all possible attack-power and defense-power funstiaswell

mised (ed) nodes. In order to specif},, sz (), we use the concept
of attack-powefunctiong(-) : [0, 1] — {0}UR™, which abstracts
the power of the malware in compromising secuski¢) nodes.
It is intuitive that both defense-power and attack-powercfions
should be dependent on the defense and attack networkustrsict
respectively. Therefore, we have the following generatifor

Ov,r(t) = f(m Z Bu(t)>7
Pronlt) g(ﬁz B’”“)

whereN, ¢, = {u :
bors in graphGg and Ny, = {u :
nodewv’s neighbors in grapliz .

For the present characterization study, it is sufficienteguire
that the defense-power and attack-power functions possess
basic properties. First, we hay&0) = 0 because active defense
must be launched from soni#ue node, andyg(1) = 0 because
attack must be launched from somexl node. Second, we have

(u,v) € Ep} is the set of node’s neigh-
(u,v) € Egr} is the set of

f(z) > 0forz € (0,1] because any active defense may succeed,
andg(z) > 0 for z € [0,1) because any attack may succeed.
Third, the two functions do not have to abide by any specific re

lation, except that they are differentiable (for the sakemdlytic
treatment).

As a result, the master equation of active cyber defensenglyna
ics, namely Eq. (1), becomes:

dB;t(t) _ g (m HG%GB Bu(t)> Ro(t) —
g (m uE;v,GR B“(t)> o
/ (ﬁ NZ Bu<t>) Ry (t)
Since 482 | dEu(t) _  holds for allt > 0 and allv € V,

B,(t) + R.(t) = 1forall t and allv € V. Therefore, we only
need to consider the following master equationdar V:

dBy(t 1
dt( ) _ f (m ME;G Bu(t)> [1—Bv(t)] _

1
! (m uez%,:G Bu(t)> By(t). )

The main research task is to analyze system (2) far allV'.

Remark. When we investigatspecificattacks and defenses, we
need to obtain their concrete attack-power and defenseifowc-
tions. Similarly, when we investigatgpecificcyber systems, we
need to obtain the concrete attack and defense networkistesc
These are important research problems that are orthogoriaet
focus of the present paper becauseaharacterization studgeals

as all possible attack and defense network structures.inoiple,
these functions and structures do exist, although how &irobtem
is an excellent problem for future investigation.

3. EQUILIBRIA AND THEIR STABILITY

Equilibrium is an important concept for quantifying cybercs-
rity. Supposer is the equilibrium under certain active defense. We
can quantify the effectiveness of active defense via thenaif
o-effectivenesbecause the dynamics convergertdvioreover, the
stability of an equilibrium reflects the consequence/effect of per-
turbations, which can be caused (for example) by manimriati
to the initial global state (e.g., the defender manuallyacte up
some compromised computers before launching active defens
more effectiveness — this may sound counterintuitive, batiu-
ally shows the value of rigorous characterization studyabee the
defender would not know this tactics otherwise).

We consider a class of equilibria of Eq. (2), namely homoge-
neous equilibridBy, - - - , B;Jwith B} = ... = B} = o € [0,1].
This class contains the following:

e All-blue equilibrium, denoted byB* = 1; B; = 1 for all
v € V (i.e., active defense is-effective.

e All-red equilibrium, denoted byB* = 0; B; = 0 for all

v € V (i.e., active defense i&effective.

e o-equilibrium, denoted by3* = o € (0,1); B, = o for all
v € V (i.e., active cyber defense dseffectiv.

The Jacobian matrix of (2) near an equilibrium is denoted by

M = [(1 - O')f,(O')DZ;AB - Jg'(a)D;;AR] _

[£(0) + 9(0)] I @®
3.1 Existence and Stability of Equilibria

We show that homogeneous equilibria exist under the foligwi
hypothesis (or condition):

Hy: there exists some € [0, 1] such that(1 — o) -
f(o) =0 -g(o) holds.

ProPoOsITION 1. Under hypothesidy, B* = o € [0,1] is
an equilibrium of (2). MoreoverB* is stable iff¢(x) < 0 for all
w1 € X(M), and unstable iiR(;:) > 0 for somep € A(M).

PrRoOOF Under hypothesiklo, namely(1—o)-f(o) = o-g(0),
we see thal3), = o satisfies

dB.t) _ (j _

- o) f(0) - g(c) =0,
ThusB* = o is an equilibrium.

To see the stability of equilibriumB™ = o € [0, 1], we consider
a small perturbation t&*, namelyoB = [B1 — By, -+ ,Bn —
B]. The linearization system of Eq. (2) ne&t leads to

déB
dt

YoveV.

{[a=o1r@Da s - o' 1031 1] -

[1(0) + ato] 1. o5 @

wherel, is the identity matrix of size.. Note thatM as defined in
Eq. (3) is the coefficient matrix of linear system (4). Thebgity
of equilibrium B* = ¢ is determined by the eigenvalues of matrix



M. For the general casép = (V, Eg) # Gr = (V, Er), itcan
be shown that

AM) = A<(1—a)f’(a)D;}3AB_

79 (@)D Ar) - [10) +a(e)]. ®)

If R(p) < 0forall p € AN(Ms), B* = o is locally stable; if
R(p) > 0for somep € A(M), B* = o is locally unstable. [J

Proposition 1 can be simplified when= 0 ando = 1.

COROLLARY 1. If g(1) = 0, thenB* = 1 is an equilibrium. It
is locally stable if-¢’(1) < f(1) and locally unstable if-¢g’(1) >
fQ).
If f(0) =0, thenB* = 0 is an equilibrium. It is locally stable
if f(0) < g(0) and locally unstable iff’(0) > g(0).

PROOF To prove the first part, we observe thgtl) = 0 im-
pliesHy holds foro = 1, namely thatB* = 1 is an equilibrium of
system (2). For = 1, it can be shown that Eq. (4) becomes

déB ' _

== - [— g (1)D;} Ag — f(1)fn] SB.
Proposition 1 says that a sufficient condition under whichilds
rium B* = 1 is locally stable is

—g (OR() < f(1), Vuer(DahAr). ®)

Sinceg(1) = 0 andg(xz) > 0 for z € [0,1], g(z) is locally
non-increasing at = 1 and thus—g’(1) > 0. Since the sum

for every row in matrixD;}l?AR equals 1, the Perron-Frobenius

theorem [10] says that its largest eigenvalug.isrom Eq. (6), we
have

—g' ()R() < —g'(1) < F(1), V€ A(D3}Ar).

That is, if —¢’(1) < f(1), thenB* = 1 is locally stable; if

—g'(1) > f(1), there exists at least one eigenvaluec A(D;;AR),

sayuo = 1, such that—g’(1)R(uo) — f(1) > 0, meaning that
B* = 1lislocally unstable.

To prove the second part, we observe théi) = 0 impliesHo
with o = 0, namely thatB* = 0 is an equilibrium of (2). For
o =0, Eq. (4) becomes

déB

TS { [(1 —0)- f(0)Dx, A —0- g'(O)DZ;AR} —

[f(o) + g(O)]In}(SB

= [f'(o)D;}s Ap — g(O)In] SB.

Proposition 1 says that the sufficient condition for equililm B* =
0 to be locally stable is

FOR(p) < 9(0), ¥peA(Ds}Az). )
Since f(0) = 0 and f(z) > 0 for x € [0,1], f(x) is locally
non-decreasing at = 0 and thusf’(0) > 0. Since the largest
eigenvalue oiDgll3 Apis 1, from Eq. (7) we have
FO)R() < £(0) < g(0), ¥peA(Da}Az).

Thatis, if f'(0) < ¢(0), thenB* = 0 is locally stable; iff’(0) >
9(0), there exists at least one eigenvajuge € A(D;}S AB), say

wo = 1, such thatf’ (0)R(uo) — g(0) > 0, meaning thaB* = 0
is locally unstable. [

In the special casé€'s = Gr, namelyAp = Agr, we immedi-
ately obtain the following corollary of Proposition 1:

COROLLARY 2. Suppose hypothedi¥o holds andGs = Gr =
G (i.e.,Ap = Ar = A). Letu, be the eigenvalue cﬂ);lA that
has the smallest real part. If the attack-power and defemeer
functions satisfy one of the following two conditions:
- / / f(o) +g(0)
(). 1—0o)f'(0)—0cg'(c) > 0and = a)}”’((a)) — 0('9’)(0')
.. , , o) +glo
(i). 1—o0)f'(c)—0og'(c) < 0and 0= 0)/(0) - 09(0)
R(u1), then equilibriumB* = o € [0, 1] is locally stable.

If the attack-power and defense-power functions satiséy an
the two following conditions:

f(o) +g(0)

). (1—0)f'(c)—0cg'(o )
). A=0)f (o) —0og'(c) > 0and T F o) = g @)
(i). (1—0)f'(c) —og'(c) < 0and f(o) +9(0)

(1-0)f'(0) —0g'(0)
R(u1), then equilibriumB* = o € [0, 1] is locally unstable.

> 1,

<1,

3.2 Examples

Example 1: Stability effect of different defense-power futions
vs. a fixed attack-power function. SupposeGg = Gr is an
Erdds-Rényi (ER) random graph instar@e= (V, E) with |V | =
2,000 and edge probability = 0.005 (i.e., every pair of nodes is
connected with probability 0.005, independent of eachrpthdfe
consider attack-power functigr(xz) = 1 — x against the following
four scenarios of defense-power functipfr):

e Scenario I:f (x) = 2, meaning tha3* = 0 is stable and
B* = 1lis unstable.

e Scenario Il:f (z) = 2>+, meaning thaB* = 0 is unstable
andB* = 1is stable.

e Scenario lll:f(z) = z* + 1z, meaning that3* = 0 and
B* =1 are stable, buB* = 1 is unstable.

e Scenario IV:f(z) = —2z* + 2z, meaning thaB* = 1 is
stable, butB* = 0 andB* = 1 are unstable.

Figure 2 plots the phase portraits(@?, (t)) = ‘—\1/‘ > vev Bo(t),
the portion of secure nodes. We observe that the simulagisults
confirm the analytic results. Specifically, Figure 2(a) shdhat
(By(t)) converges tdB* = 0 whenB, (0) < 1forallv € V; Fig-
ure 2(b) shows thatB,(t)) converges t3* = 1 whenB,(0) > 0
forall v € V; Figure 2(c) shows thgtB, (t)) converges tB™ = 1
whenB,(0) > 0.5 for all v € V and converges t&* = 0 when
B,(0) < 0.5 forall v € V; Figure 2(d) shows thatB,(t)) con-
verges taB* = 0.5 when0 < B, (0) < 1forallv € V.

timet f(x) g(x) B*

0, 150] flx)=z"+z g(zr)=1—2 | B =1
150,300] | f(z) = 27 g(zr)=1—2 | B"=0
300,400] | f(z) = -2z +2z2 | g(z)=1—z | B* =05
400,500] | f(z) = 2"+ 1a glx)y=1—-2 | B* =1

Table 1: The dynamics go to the respective equilibriumB*
under some combinations of defense-power functiorf(x) and
attack-power function g(x).



perturbations, the overall cyber security dynamics nemégreany
persistent equilibrium. This offers one possible explamatvhy
= =3 real-life cyber security is perhaps never in any equilitwriu
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Figure 2: Phase portraits of the four scenarios confirming tte .
stabilities of the equilibria, where z-axis represents time, and o o9
y-axis represents the portion of secure node&B, (t)). Lo o

§>33/ o

Now we study the stability of the equilibria. For tiiés = Gr o gf
mentioned above, we consider the above four scenarios &s hig 74 5 0 W 12 1 % o2 N
lighted in Table 1. More specifically, for time € [0, 150], the (e)v=15 Hrv=2

defense-power function ig(x) = z* + z and the attack-power
function isg(z) = 1 — «z (i.e, the above Scenario I); for time
t € [150,300], the defense-power function i&(z) = = and

the attack-power function ig(z) = 1 — z (i.e., the above Sce-
nario I1); for time ¢ € [300, 400], the defense-power function is

Figure 4: Phase portraits of the portion of secure nodes
(By(t)): f(z,v) = ve —2z* and g(z) = (1 — 22).

f(z) = —2x* + 22 and the attack-power functionggz) = 1 —
(i.e., the above Scenario IV); for timtec [400, 500], the defense-
power function isf(z) = 2* + %:c and the attack-power function

Example 2: Stability effect of parameterized defense-powdunc-
tions vs. a fixed attack-power function.Suppose&>z = Gr is an
ER graphG = (V, E) with |V| = 2, 000, but with edge probability

p = 0.5. We consider the following parameterized defense-power
function f(x,v) with parameterr € (0, +o00) and fixed attack-

1 : ‘ : ‘ — ‘ power functiong(x):
0.8 ‘ ] f(l’7’/):”$_25527 g(x):(1—2$)2.

Figure 4 plots the phase portraits @, (¢)) with v = 0.5,0.8,
0.85,1, 1.5, 2, respectively. The portraits can be classified into
0.4r 1 three classes. Figures 4(a)-4(b) show that there is onke stghi-

librium B* = 0. Figure 4(c) shows that there are three equilibria
0.2 B* = 0,0.38,0.2, where the first two are stable but the last one
is unstable. Figures 4(d)-4(f) show that there exist twoildmia
% 50 100 150 200 250 300 350 400 450 500 B* = 0,0 with o > 0, whereB* = 0 is unstable and3™ = o
t is stable. We observe that active cyber defense dynamidbiexh
different phenomena with respect to different parametétere-
over, we observe a sort of phase transition in parametevhen
v < 0.8, the global cyber security state convergessto = 0 al-
) ) most regardless of the initial value; when> 1, the global cyber

Figure 3 plots a very probable scenario that can happen to thesecurity state converges to soBé = o > 0 almost regardless
portion of secure nodes, where three small perturbatioasnar of the initial value; wher0.8 < v = 0.85 < 1, the global cyber
posed at = 150, 300, 400. This scenario is very probable because security state converges to some equilibrium dependem t
it can explain why the cyber security state may rarely ernenes initial value.
persistent equilibrium. Specifically, the initial valé& (0), v € V, We summarize the discussion in this section into:
is randomly chosen from intervéd, 0.01] by the uniform distribu-
tion. Att = 150, we find that(B,(150)) = 1. We then impose
a small perturbation on eadh, (150), by replacingB, (150) with
B, (150) — &, wheree, is an independent random variable of a
uniform distribution in the intervalo, 0.01] for all v € V. Simi-
larly, we replaceB, (300) with B,(300) + &, and B, (400) with
B, (400) — &, for all v € V. Figure 3 illustrates that under small

isg(z) =1—z (i.e., the above Scenario IlI).

0.6r

>

B ()0

Figure 3: Active cyber defense dynamics lack persistent edu
librium due to frequent perturbations.

INSIGHT 1. Active cyber defense dynamics may rarely enter
into any equilibrium because of perturbations to the globatu-
rity state as caused by the manual cleaning of some compedmis
computers (Figure 2), and/or because of perturbations ® dhk
tack/defense power function as caused by the introducfiamew
attack/defense method (Figures 3-4)



4. TRANSITION BETWEEN MULTIPLE
ATTRACTORS

We are now ready to precisely characterize ttansition be-
tween the equilibria, which reflects the consequencefetitthe
defender manipulating the initial global security statey(eman-
ually cleaning up some compromised computers before launch
ing active defense) and/or manipulating the attack/defeeswork
structure (e.g., by changing the network access contratyptd
block/allow certain computers to communicate with ceriatiner
computers).

4.1 Transition Between the Allbiue and All-red
Equilibria
Under the conditions mentioned in Corollary 1, namgl§)) =
g(1) = 0, system (2) has two locally stable equilibfig = 1 and
B*=0.LetB = [By,Bs,--- ,B,] €[0,1]"andR =1-B =
[1 - Bi,1—Bs,---,1— By, €[0,1]", wheren = |V|. For
1,75 € (0,1), we define two setSg,, -+ and=¢,,-; as follows:

=

=Gp, 7y =
1
Be0,1]"| ——— B,>1,WweVy, (8
oo iy X peziwer) ®
EGr,rp =
1
Rel[0,1]" | ———— R.>m YweVy. (9
Rew i T nezmiwer) ©
v,GRr

The following Theorem 1, whose proof is deferred to the Ap-
pendix, gives the transition between theldlie and allved equi-
libria by manipulating the initial statB(0).

THEOREM 1. LetGp = (V, Ep) andGr = (V, Er) be two
arbitrary graphs. Suppose thgf(-) and g(-) are continuous with
f(0)=g(1)=0.

security stateB(0) to belong to=¢, -+ to make active defense
1-effective this says what the defender should strive to do. Under
certain other circumstancesase 2, the defender should make sure
that the initial global security sta®(0) does not caus®(0) =

1 - B(0) € Zg,,-;, because in this regime active defens@-is
effective this says what the defender should strive to avoid.

For the following two corollaries, we define

Ecp,rr =
1
Bel0,1]" | —— Bu>1"YoeV,
{ 01" Fegto, o) ue;g }
v,Gp
@GRYT* =
1
Becl0,1]" | ———— B, <7t YveV,.
[ ] deg(U7GR) uENZG }
v,GR

On one hand, the following Corollary 3 says that whgh =
75 = 7%, we obtain the same threshold for the transitions.

COROLLARY 3. Suppos¢(-) andg(-) are continuous witkf (0) =
g(1) = 0. There exist constants € (0,1) anda > 0 such that
the following two conditions hold:

(i) The attack-power and the defense-power functions satisfy >
a-z forany z € (7%,1), and foranyB € Eq,, =

1
f ( Z Bu) 9 (deg(v,GR)

“ENU,GB
(i) The attack-power and the defense-power functions satiafy >
a(l —z) forany z € (0,7"),and foranyB € O¢,, =

1
deg(v,GB)

> Bu>

uENU,GR
< a.

Case 1:Suppose the attack-power and defense-power functions sat-

isfy,V z € [r,1)andV B € Egy,; and somex > 0,

f(z)>a-z (10)
(s o),
deg(0.Ga) , o= "
1
i 2, 7)< v e

Ifinitial value B(0) € ¢, -7, thentlim B,(t)=1YveV.
—00

Case 2:Suppose the attack-power and defense-power functions sat

isfy,V z € [15,1) andV R € Egp,r; and somes > 0,
g(l—2z)>p-zand

1
f<1 ~ =0T UG%:G Ru> +
1
g<1 ~ deg(v,Gr) uez%:,GR Ru) =7 e

Ifinitial value R(0) € Eg -3, thentlim R,(t)=1Yv e V.
— 00

The cyber security meaningf Theorem 1 is: Under a certain
condition g€ase }, the defender needs to manipulate the initial global

1

1
f(deg(wGB) Z Bu) +g<deg(v7GR) Z Bu)

UENv,GB UENv,GR

< a.

If initial value B(0) € Eq -+, thentlim B,(t) =1Yv e V;if
— 00
initial value B(0) € ©gp, -+, thentlim B,(t)=0Yv e V.
— 00

On the other hand, the following Corollary 4 makes a conpecti
to [36], by accommodating Theorems 1, 5, 8 and 9 in [36] as a
special case witli 5 = Gr anda = 1.

COROLLARY 4. Supposé€ip = Gr = G = (V, E) and f(-),
and g(-) are continuous witty (0) = g(1) = 1. There exist™ €
(0,1) and @ > 0 such that the attack-power and defense-power
functions satisfy

f(z)+g(2) <a Vzel0,1]
and the defense-power function satisfy
fR)>a-zVze (", 1)andf (2) < a-zVze (0,77).

If initial value B(0) € Zq,,+, thenlim B, (t) = 1forall v € V;

t—o0

if initial value B(0) € B¢, -, thentlim B,(t)=0forallv e V.
—00
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Figure 5: Transition between equilibria B* = 0and B* =1 as
induced by varying the initial value.

4.2 Example

We consider the transition between equiliblia = 0 andB* =
1 as caused by varying the initial vali3(0). We use two concrete
defense-power and attack-power functions:

1

@)= s
which are plotted in Figure 5(a). The grapfi$s andGr are two
ER graph instances witfy’| = 2,000 andp = 0.5. We consider
the transition induced by varying the initial val{iB,, (0)) between
0 andl. Figure 5(b) shows that wheiB, (0)) > 0.5, the dynamics
converge taB* = 1; when(B,(0)) < 0.5, the dynamics converge
to B* = 0.

The exploration in this section can be summarized as:

g(z) =2(1 - 2)%,

INSIGHT 2. A small change in the initial global security state,
in the model parameters, in the attack network structurandhe
defense network structure can lead to substantial changetine
cyber defense dynamics. A rigorous characterization, ssschhe-
orem 1, can offer precise guidance on “what the defender lshou
strive to do” and “what the defender should strive to avoid.g.,
how to manipulate the dynamics to benefit the defender raltiaer
the attacker).

5. HOPF BIFURCATION

We consider Hopf bifurcation near equilibriuBi® = o € (0, 1)
under conditionl — o) - f(o) = o - g(o). Recall that the stability
of B* = ¢ € (0,1) depends om\; (M), whereM, as defined in
Eq. (3), is the Jacobian matrix of system (2). In the rest ef th

paper, we may simplify the notatioky (M
potential ambiguity.

Consider differentiable defense-power and attack-powac-f
tions f(z,v) andg(z,v) with parametew. Suppose3L, 22 and
IM 31l depend onv. Consider the following critical condltlon for

Hopf bifurcation:

) as\; unless there is

R(A1) =0 and (A1) # 0. (23)
It is known that if (13) holds for some = v*, A1 (v) is differen-
tiable inv, and £ £ 0 atv = v*, then system (2) exhibits Hopf
bifurcation [24]. Therefore, we need to find the criticalual ™.
For this purpose, we adopt the approach described in [20)&st
tigate how\; depends on the permutationi®, namely to conduct
a perturbation spectral analysis to compute the pertumbati\;,
denoted by \1, as caused by perturbation ié, denoted by M.

5.1 How to Estimatesi,

Let x; be the eigenvector o/ associated to eigenvalug,
namely, Mx; = A\ix;. For perturbatioM to M, M + éM
can be described a&/(v) + M'(v)dv. The perturbation ta\/
causes perturbatioh\; to A1 and perturbatiodx; to x;. That s,

(M —+ 5M) (X1 + 5X1) = ()\1 + 5}\1) (X1 —+ 5X1) .
By ignoring the second-order term, we obtain
M(SX1 —+ 5MX1 = )\15){1 —+ 5}\1X1. (14)

By multiplying both sides of Eq. (14) with the left eigenvecy
corresponding td\, we obtain

yIM(le + y;rfiMxl = y;r)\lfixl + yf&)\lxh

yiA0x1 +y] 0Mx1 =y M\idx1 + vy dA1x1,

yi0Mx1 = y| 6A1x1.
As a result, we can estimade\; as

yvi 6Mx,

SAL =
yixi

(15)
where§ M can be estimated depending on whether the perturba-
tion is to the attack and/or defense pow€aée Abelow) or to the
attack/defense network structurease Bbelow).

Case A:5 M is caused by perturbation to attack- and/or defense
power. Suppose the perturbation is imposed on parameter
the attack-power and defense-power functigfs, v) andg(z,v),
Where% and % depend orv as mentioned above. The cyber
security meanings of such perturbations is (for examplaf) tiew
attack and/or defense techniques are introduced. Note that

OM (v)

{ {(1 —o0) af’a(z7 V) DZ;AB — Ui@g'é? v) DZ;AR
9f(o,v)  Og(o,v)
{ ov * ov ]I"}éy'

In the special cas&'p =
Ap = Ar = A), we have

M= [(1-0)f'(0) —og'(0)| D4" A~

Gr = G (i.e., the adjacency matrix

[f(@) +g(0)]In,



the eigenvalues ol are[(1 — o) f'(0) — og/(0) | — [f(o) +
g(o)] I, forall p € A(D ;' A), and the perturbation can be rewrit-
ten as

i~ (o2 g
9f(o,v) | 99(o,v)
{ ov + v :|In}(51/.
Hence, (15) becomes
0A1 = le{ [(1 - U)aféj’ v) -~ Uagé()z, V)]DzlA B
20 2] L / STx (16)

Case B:dM is caused by perturbation to attack and/or de-
fense network structure. Suppose the perturbation is imposed on
Gp = (V,Ep) andlorGr = (V, Er) by adding/deleting edges.
The cyber security meaning of such perturbations is than#te
work is disrupted (e.g., edges are deleted by the attaaksecorrity
policies have changed) and then edges are added by the defend
We assume that the number of added/deleted edges is snmaH (co
pared with| Eg| and |Er|, respectively) so that we can approxi-
mately treab M as a small perturbation. Léip = Dg;AB and

Cr = D;;AR. Perturbations tolp and Ar lead toAp + 0Ap
andAr + 0 Ag, respectively. Correspondingly, we obtain the per-
turbations toC'z andCr:

5Cp Dyt ysa,(As+0Ap) — Dy, Ag,
5Cr Dy} 54, (AR +6AR) — Dy Ag.
Then, the perturbation to Jacobian matkikis

M =(1—0)f'(0)Cg — og'(0)dCR.

From (15), we have
vi [(1= o)1 (@)3Cz - 09/ (0)5Cx]x:
}’1TX1 ‘

Note thatin the special casés = Gr = G (i.e.,Ap = Ar = A)
with perturbation®C'gs = 6Cr, we have

(1=0)f (0) = og'(0)] 6C,

yi [(1=0)f'(0) — og'(0)] 60

-
Y1 X1

oA =

oM

oA

5.2 Example: Hopf Bifurcation Induced by
Perturbation to Parameter
In order to show that Hopf bifurcation can happen, we comside
an ER graphGp = Gr = G = (V,E) with |V| = 2,000
and edge probability = 0.005. Let i1 denote the eigenvalue of
D" A with the smallest real part, wherkis the adjacency matrix
of G. For the ER graph, we haw(u1) = —0.3448. We consider
the following defense-power and attack-power functions:
2 _ _v 2

J(@) = 12> + 42, g(o.v) = (va - 1),
where f(z) does not depend on. Recall that under condition
(1 —0)f(o) = og(o), there exists equilibriunB* = o € (0, 1).

Whenv = 3, we have homogeneous equilibriuBr = 0.7,
which is locally stable according to the second conditioth@first
part of Corollary 2:

(1-0)f'(0) —0g'(0,3)
f(o) +9(0,3)

(I-0)f'(0) —0og'(a,3)

Whenv = 4, we have homogeneous equilibriuBi* = 0.6667,

which is locally unstable according to the second conditiothe
second part of Corollary 2:

(1=0)f'(0) —0g'(0,4)
flo) +9(0,4)
(1=0)f'(0) —0g'(0,4)

Therefore, there is eritical value betweenv = 3 andv = 4, at
whichR(\1 (M)) = 0. By conductingl00 independent simulation
runs ofv € [3,4) with step-length 0.01, we find the critical value
v = 3.8 and the corresponding equilibrium* = 0.6724, where

(1—0)f' (o) —0g'(0,3.8) 7—-381<0,
f(o) +g(0,3.8)
(1=0)f'(0) —0og'(0,3.8)

Figure 6(a) plots the periodic trajectory 6B, (t)) whenv =
4 > 3.8, which surrounds equilibriunB* = 0.6724. Figure
6(b) plots the periodic trajectory afB,(t)) whenv = 5.05 >
3.8. Figure 6(c) plots the bifurcation diagram with respectte
(3,6). Figure 6(d) plots the bifurcation diagram with respect to
v € (4.75,5.5). We observe that when € (5,5.5), there are
not only two-periodic trajectories, but algeperiodic trajectories
(k > 2). In summary, the periodic trajectories exhibit theriod-
doubling cascad@henomenon.

5.3 Example: Hopf Bifurcation Induced by
Perturbation to Attack/Defense Network
Structures

For the purpose of demonstrating the bifurcation phenomeno
caused by perturbation to network structures, we use twaoraty
generated ER graph exampleg = (V, Eg) andGr = (V, ER),
both with |[V| = 2,000 andp = 0.005. The average degree
is 10.0565 for G and 11.1865 for Gr. We use the following
defense-power and attack-power functions:

-3<0,

—0.4 < R(p1) = —0.3448.

-4 <0

—0.3333 > R(u1) = —0.3448.

—0.3448 = R(11).

2
flz) = —42° + 4z, g(z,v) = (Vm - %) with v = 6

We perform100 iterations of operations t6'r as follows: during
each of the firs6t0 iterations, we delete 226 edges (3% of the
edges in the originaEr) chosen independently and uniformly at
random; during each of the following0 iterations, we add 226
edges chosen independently and uniformly random amongeall t
unconnected edges. That is, we delete and therb@@ddedges of
the original| Er|.

Figure 7 demonstrates that tiperiod-doubling cascadghe-
nomenon appears and finally leads to chaos after deleting mor
than 36% edges and before adding 14% edges. We observe that
eventually the diagram becomes stable after adding the same
ber of edges as those deleted. (Note that Figure 7 is not sgimme
because the added edges are random and in general arendiffere
from the edges that are deleted.)

The following insight summarizes the exploration of thistsan.
INSIGHT 3. Active cyber defense dynamics can exhibit Hopf bi-

furcation, when the attack/defense power varies in cepai@me-
ter regimes and/or when the attack/defense network strelgaries
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in certain patterns. These situations are “unmanageabletause
itwould be infeasible, if notimpossible, to estimate tlubgl secu-
rity state in real-time. Therefore, the defender must sttivavoid
such unmanageable situations by manipulating the dynacaics
fully (e.g., by disrupting the bifurcation condition or daming the
attack-power of the adversary).

6. CHAOS

Figure 6(c) shows that the number of periodic points in@eas
with parameter, which hints that system (2) can exhibit the chaos
phenomenon. To see this, we consider the ¢ase= Gr. In this
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»(t)) in time period ¢ € (1000, 2000).

case, system (2) becomes

dBy(t)
dt ! degv Q) > Bl [I_B”(t)}_
uENvG
g deg v, G) Z Bu Bu(t).

Let F'(B,(0),t) denote the right-hand part. Consider(0) and
B, (0) 4+ €,(0) for all v € V, wheree, (0) € R™ is a small pertur-
bation to the initial pointB,, (0). Then, we hav&'v € V,

eo(t) = F(By(0)+eu(0),t) — F(Bu(0),t)
DF (B,(0),t) - £,(0),

whereDF (B, (0),t) is the Jacobian matrix of the mapat timet.
By the QR decomposition of matri{t) = [e1(t),e2(t), -+ ,en(t)]
wheren = |V|, we obtain matrix

e(t) = q(t) - r(t),

whereq(t) is an orthogonal matrix ancl(¢) is an upper triangular
matrix. Note that(¢) = ¢(¢) and the diagonal elemeht; (t) of r;
attimet is the exponential magnification, where {1,2,--- ,n}.
Thus, the average rate of divergence or convergence of theaw
jectories{ F'(B,(0),t)|t > 0} and{F (B, (0) +&.,(0),t)|t > 0}
forall v € V' is defined by

LZ‘ = lim l In /\ii(t)7

t—oo

whereL; fori = 1,2,---
ponents.

,n are the Lyapunov characteristic ex-
It is known [24] that under some mild conditiong th



above limit exists and is finite for almost all initial valuBg0) = [7,4,33,37,38,17, 39, 29, 6, 3, 28, 23, 11, 12] and the ratas
[B1(0), B2(0), - - -, B»(0)] and for almost all matrices(0). Note therein), which can be further traced back to the centudystldies
that MLE = maxi<;<» L; indicates whether the dynamical sys- on biological epidemic models [19, 13, 8].

tem is chaotic or not. More specifically, wh&fLE > 0, a small As a specific kind of cybersecurity dynamics, active cyber de
perturbation to the initial value will lead to an exponehsiepara- fense dynamics were firsigorously modeled and studied in [36],
tion and therefore leads to the chaos phenomenon. despite that the idea of active defense has been discusdetkan

bated for many years [14, 31, 18, 16, 26, 30, 1, 2]. We move
a significant step beyond [36], by separating #tack network
structurefrom the defense network structyrand by considering
more general attack and defense power functions. To theobest
our knowledge, we are the first to show that bifurcation arebsh
are relevant in the cyber security domain, and to discussyther
security implications of these phenomena. Following [36],et
0.06. al. [17] investigate optimal active defense strategiebénGontrol-
Theoretic and Game-Theoretic frameworks. Our study is ¢emp
mentary to [17] as we leave it to future work to investigatéropl
strategies in our setting.

It is worth mentioning that models of Lotka-Volterra type [9
capture the predator-prey dynamics, which are howeveereifit
from the active cyber defense dynamics. Active cyber defelys
namics may be seen as then-linear generalization of the so-
-0.02r called Voter model in complex networks [25, 15]. Somewhat re
< ‘ ‘ ‘ ‘ ‘ ‘ lated to our work is [5], which considers chaotic dynamicdistrete-

T3 4 s s 7 8 9 10 time limited imitation contagion model on random networks.

v

(a) MLE with »: MLE > 0 indicates chaos. 8. CONCLUSION

Example. Consider an ER graph instan¢s = Gr with |V| =
2,000 andp = 0.005, and the following defense-power and attack-
power functions:

f(z) = —42® + 4z, g.(z) = (I/CC — —)2.

o

o

=
T

o

o

]
T

Maximal Lyapunov
exponent (MLE)
o

0804 We have explored the rich phenomena that can be exhibited by

0.602r active cyber defense dynamics. To the best of our knowleaige,
0.6 study is the first to show that bifurcation and chaos are agiev
0598 in the cyber security domain. The implication is of high pieea
value: In order to make cyber security measurement andgiieali
A feasible, the defender must manipulate the cyber secuynitgirdics
to avoid theseinmanageable situations
0.592r Interesting problems for future research include: Firg,need
0.59" to characterize non-homogeneous equilibria as we onlysteton
homogeneous equilibria. Second, we need to characterizghwh
graph structure is more advantageous to the other (&.is ER
graph butG'r is power-law graph). Third, we need to explore the
chaos phenomenon further (e.g., multi-direction chaosjirth, we
need to systematically validate the models.
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(b) (B, (t)) for v = 8 exhibits chaos.

Figure 8: Active cyber defense dynamics exhibit the chaos

nomenon: Gz = G with [V| = 2,000 and p = 0.005. Acknowledgement We thank the reviewers for their useful com-
ments and Marcus Pendleton for proofreading the paper. Wen-
Figure 8(a) plots theVILE with respect tar. We observe that lian Lu was supported in part by the National Natural Scisnce

MLE > 0 whenv > 5, meaning that system (17) exhibit chaos Foundation of China under Grant No. 61273309, the Program
for v > 5. Figure 8(b) plots the phase portrait(dﬁv (t)) (i.e., the for New Century Excellent Talents in University (NCET-1339),
average of the3, (¢)’s for all v € V) wheny = 8, which hints the the Programme of Introducing Talents of Discipline to Unsie
emergence of chaos. This means that the defender showelstri  ties (B08018), and the Laboratory of Mathematics for Nogdin

avoid the parameter regime> 5. This leads to the following: Science, Fudan University. Shouhuai Xu was supported inkyar
ARO Grant #W911NF-12-1-0286 and NSF Grant #1111925. Any

INSIGHT 4. Active cyber defense dynamics can be chaotic, meanepinions, findings, and conclusions or recommendationsessgd
ing that it is impossible to predict the global cyber secustate in this material are those of the author(s) and do not nerbssa
because it is too sensitive to the accuracy of the estimatiédli reflect the views of any of the funding agencies.
global security state. Therefore, the defender must stovavoid
such unmanageable situations (e.qg., by disrupting thekstéo as- 9. REFERENCES

surev < 5 in the above example). [1] D. Aitel. Nematodes — beneficial wormist tp : / /www.
immunityinc.com/downloads/nematodes.pdf,
7. RELATED WORK Sept. 2005.
Cybersecurity Dynamics is a framework for modeling and guan  [2] F. Castaneda, E. Sezer, and J. Xu. Worm vs. worm:
tifying cyber security from a holistic perspective (rathiean mod- preliminary study of an active counter-attack mechanism. |
eling and analyzing security of components or buildingek&) [34, Proceedings of ACM WORM'Qpages 83-93, 2004.

35, 36, 17]. This framework builds on a large body of literatu [3] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and
across Computer Science, Mathematics and Statisticald3hgs. C. Faloutsos. Epidemic thresholds in real netwoAGM



Trans. Inf. Syst. Secud0(4):1-26, 2008.

[4] G.Da, M. Xu, and S. Xu. A new approach to modeling and
analyzing security of networked systemsFroceedings of
HotSoS’14 pages 6:1-6:12.

[5] P.S. Dodds, K. D. Harris, and C. M. Danforth. Limited
imitation contagion on random networks: Chaos,
universality, and unpredictabilitphys. Rev. Lett.
110:158701, Apr 2013.

[6] A. Ganesh, L. Massoulie, and D. Towsley. The effect of
network topology on the spread of epidemicsPhoceedings
of IEEE Infocom 20052005.

[7] Y. Han, W. Lu, and S. Xu. Characterizing the power of
moving target defense via cyber epidemic dynamics. In
Proceedings of HotSoS'1gages 10:1-10:12.

[8] H. Hethcote. The mathematics of infectious diseaSé&M
Reyv, 42(4):599-653, 2000.

[9] J. Hofbauer and K. Sigmund:he theory of evolution and

dynamical system&ambridge University Press, 1998.

R. Horn and C. JohnsoMatrix Analysis Cambridge

University Press, 1985.

[11] J. Kephart and S. White. Directed-graph epidemiolaljic
models of computer viruses. IREE Symposium on Security
and Privacy pages 343-361, 1991.

[12] J. Kephart and S. White. Measuring and modeling compute
virus prevalence. HEEE Symposium on Security and
Privacy, pages 2-15, 1993.

[13] W. Kermack and A. McKendrick. A contribution to the

mathematical theory of epidemid3roc. of Roy. Soc. Lond.

A, 115:700-721, 1927.

J. Kesan and C. Hayes. Mitigative counterstriking:

Self-defense and deterrence in cyberspbiagvard Journal

of Law and Technology (forthcoming, available at SSRN:

http://ssrn.com/abstract=1805163).

P. L. Krapivsky. Kinetics of monomer-monomer surface

catalytic reactionsPhys. Rev. A45:1067-1072, Jan 1992.

H. Lin. Lifting the veil on cyber offensd EEE Security &

Privacy, 7(4):15-21, 2009.

[17] W. Lu, S. Xu, and X. Yi. Optimizing active cyber defense
dynamics. InProceedings of GameSec’li3ages 206-225.

[18] W. Matthews. U.s. said to need stronger, active cyber
defenseshttp://www.defensenews.com/story.
php?1=4824730, 1 Oct 2010.

[19] A. McKendrick. Applications of mathematics to medical
problems Proc. of Edin. Math. Soceifyl4:98-130, 1926.

[20] A. Milanese, J. Sun, and T. Nishikawa. Approximating

spectral impact of structural perturbations in large nekso

Phys. Rev. E81:046112, Apr 2010.

J. Morales, S. Xu, and R. Sandhu. Analyzing malware

detection efficiency with multiple anti-malware prograrms.

Proceedings of 2012 ASE CyberSecurity’'12

R. Naraine. 'friendly’ welchia worm wreaking havoc.

http://www.internetnews.com/ent—news/

article.php/3065761/Friendly-Welchia

-Worm—-Wreaking—-Havoc.htm, August 19, 2003.

R. Pastor-Satorras and A. Vespignani. Epidemic spngeaid

scale-free network$2RL, 86(14):3200-3203, 2001.

R. RobinsonDynamical Systems: Stability, Symbolic

Dynamics, and Chaos (2dn Editiol@RC Press, 1999.

C. Schneider-Mizell and L. Sander. A generalized voter

model on complex networkdournal of Statistical Physics

136(1):11, 2008.

[10]

[14]

[15]

[16]

[21]

[22]

(23]

[24]

[25]

[26] B. Schneier. Benevolent wormisttp: //www.
schneier.com/blog/archives/2008/02/
benevolent_worm_1.html, February 19, 2008.

[27] L. Shaughnessy. The internet: Frontline of the nextavar
http://www.cnn.com/2011/11/07/us/darpa/,
November 7, 2011.

[28] P. Van Mieghem, J. Omic, and R. Kooij. Virus spread in
networks.|EEE/ACM Trans. Netw17(1):1-14, Feb. 2009.

[29] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos.
Epidemic spreading in real networks: An eigenvalue
viewpoint. InProceedings of SRDS’'0Bages 25-34.

[30] N. Weaver and D. Ellis. White worms don’t worjtogin:

The USENIX Magazing1(6):33—38, 2006.

H. S. N. Wire. Active cyber-defense strategy best detar

against cyber-attackattp: //www.

homelandsecuritynewswire.com/active

—cyber-defense-strategy-best-deterrent

—against—-cyber—attacks, 28 June 2011.

J. Wolf. Update 2-u.s. says will boost its cyber arsenal

http://www.reuters.com/article/2011/11/

07/cyber-usa-offensive—

1idUSN1E7A61Y020111107, November 7, 2011.

M. Xu and S. Xu. An extended stochastic model for

quantitative security analysis of networked systelmi®rnet

Mathematics8(3):288-320, 2012.

S. Xu. Cybersecurity dynamics. Proceedings of

HotSoS’14 pages 14:1-14:2.

[35] S. Xu. Emergent behavior in cybersecurityAroceedings of
HotSoS’14 pages 13:1-13:2.

[36] S. Xu, W. Lu, and H. Li. A stochastic model of active cyber
defense dynamicsnternet Mathematicsl1(1):23-61, 2015.

[37] S. Xu, W. Lu, and L. Xu. Push- and pull-based epidemic
spreading in arbitrary networks: Thresholds and deeper
insights. ACM TAAS7(3):32:1-32:26, 2012.

[38] S. Xu, W. Lu, L. Xu, and Z. Zhan. Adaptive epidemic
dynamics in networks: Thresholds and cont&CM TAAS
8(4):19, 2014.

[39] S. Xu, W. Lu, and Z. Zhan. A stochastic model of multigru
dynamics|EEE TDSG 9(1):30-45, 2012.

[31]

[32]

[33]

[34]

APPENDIX

Now we prove Theorem 1.

PROOF. We prove the theorem in the first statement viBtf0) <
Eap.-;, and the second statement wit(0) € Z¢, -5 can be
proved similarly.

First, we see thaj(1) = 0implies thatB* = 1is an equilibrium
of (2) according to Proposition 1. Define

Vi = argmin B, (t) = {u ’ B, (t) = min B, (t)}
veV veV

for ¢t > 0. Since the casmin, B,(0) = 1, namelyB, (t) = 1 for
allv € V andt > 0, is trivial, we assumenin,, B, (0) < 1 without
loss of any generality. For any0) € Vo, the given condition (10)

implies B.(0) > 71", and thus we have

1
deg(v(0),GB) 4~uEN,(0),G

1

! mueN%,cBBu(O)
1

" ) Gy, 2 PO

uE€Ny(0),G



[T 1 —
where “=" holds only when;_——-—— ZUGNU(O),GB B.(0) =
1. Lett = 0 andv = v(0). Using Eq. (2) and condition (11), we

have

dBy ) (t)
dt

t=0

1
T\ G062 >, B.O [1—Bv(0)(0)]—

’uENu(o),GB

1
g muw%%f‘u(ﬂ) Bu(0)(0)
1
d deg(v(0), Gr) > Bu(0)| —aBuo(0)

u€Ny(0),65

A%

o (Bv(m (0) = By o) (0)) a7

0.

Since the equality signs hold in the two inequalities in Edq.) Only
whenmin, B, (0) = 1, which corresponds to the trivial case men-
tioned above, we conclude thatin,cv B, (¢) strictly increases in

a small time interval starting at= 0 except for the trivial case.

Let 7'1** > 7'1* such thatm ZueNu(O),GB Bu(O) >

*k 1
i forallv € V.. We now show thaf——"=— ZueNv’GB B.(t) >
7" forallt > 0 and for allv € V. Lett, be the first time that
FECRer] ZuENu,cB By (t) = 71 for somev € V, i.e.
to =

1
deg(v,GB)

inf < 7

> Bu(t)>mVEe[0,7), Vv eV

uEN,_,,GB

We showty = +oo. Supposé, < +oo. Let V* be the node set

such that for eacl € V™, g 3" cn, , Bu(t) reaches
B v,Gp

" for the first time. Then, for some* € V*, we know that

TE o Tg) Z“ENv*,GB B.(t) is not increasing at = to. How-

ever, it can be shown that

U
dt \ deg(v*,GB)

Y. Bu)

UEN ,*
vTCp t=to

B 1 dB.(t)
~ deg(v*,GB) Z dt

UEN .Gp

t=tg
a

deg(v*,Gg)

IV

>~ Bu(t) — Bul(to)

wWENy G g

1
Z deg(u, Gp)

uENU*,GB
> 0

where the equality signs hold only for the trivial case ahimdase
of Eqg. (17) mentioned above (i.e., in all other cases thelakiips
are strict). So we reach a contradiction, which means- +oo.
Owing tor™ > 7', we have ==y ZueNu,GB By(t) > 1
forallt > 0. Thatis,B(t) € Eg,,,,; for all ¢.

Let t; be the maximum time thahin,cv B, (t) is strictly in-

creasing, i.e
t1 = sup {t ' min B, (t) is strictly increasing in0, t)} .

We show that; = 4oo. Suppose that; is finite, meaning that
min,ev B,y (t) is not increasing at time = ¢;. Since it holds that
minyev By (t1) > minyev B, (0) > 71, by replacingB(0) with
B(t1), we have

1
N s B (t1
deg(v(t1), GB) uGN%;) el "
v GB
«
deo(v(t1) G r) Bu(tl)
deg(v(t1),GR) uENz(t;) 3
v GB
and therefore we can show
4B, (t)
dt it
1
= Tool(t) (7o) Bu(t —abB, t
= deg(v(t1),GB) 2. (t1) | =By (t)

uENv(h),GB

\Y]

1
T Gy 2= Belt) = Bua(t)

wENy(11),G
> 0,

where are inequalities are strict except for the trivialecas as
discussed in the case of Eq. (17). Thatisn,ecv By (t) strictly
increases at = t1, which contradicts with the definition af;.
Therefore, we haveé; = +oo andmin,ev By(t) is strictly in-
creasing int € [0, +00).

In order to showim; _, ., B, (t) = 1forallv € V, we will prove
that lim¢— oo minyey By (t) = 1 for lims— oo mingey By(t) <
lim;— o0 By (t). SinceB,(t) is the probability that node € V
is blue at timet, we haved < B,(t) < 1forallv € V. Hence
lim;—, oo minyev By () exists. Suppose for the sake of contradic-
tion thatlim; . minycv By (t) < 1, meaningmin,ecyv By (t) <
1 for all ¢ due to its strict increasing monotonicity. For anft) €
V%, under the condition that Eq. (10) holds, there exists 0 such
that f (B, (t)) — aByu)(t) > e for all £.

Since min,ev By (t) is strictly increasing fort € [0, +00),
there existd” > 0 such that

dBun (1)
dt
1
- f deg(v(t), GB) Z B. (t) [1 Bv(t)(t)]

WENy(1),G

Bu(t) | Bo (1)

1
9\ Qeg(v(t),Gp) >

WEN,(1),G
> f(Buw(®)) — aBuo(t) > <,
forallt > T'. This leads to
Byt (t) > Bur)(T) +e(t = T).

Sinceminyev By (t) = By)(t) = oo ast — oo, it contradicts
with B, (t) < 1. Therefore, we conclud;ﬁm néi‘r} B,(t)=1and
—00 v

lim B,(t)=1. O
t—o0

Vv



