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ABSTRACT
The Internet is a man-made complex system under constant attacks
(e.g., Advanced Persistent Threats and malwares). It is therefore
important to understand the phenomena that can be induced bythe
interaction between cyber attacks and cyber defenses. In this paper,
we explore the rich phenomena that can be exhibited when the de-
fender employs active defense to combat cyber attacks. To the best
of our knowledge, this is the first study that shows thatactive cyber
defense dynamics(or more generally,cybersecurity dynamics) can
exhibit the bifurcation and chaos phenomena. This has profound
implications for cyber security measurement and prediction: (i) it
is infeasible (or even impossible) to accurately measure and predict
cyber security under certain circumstances; (ii) the defender must
manipulate the dynamics to avoid suchunmanageable situationsin
real-life defense operations.

Categories and Subject Descriptors
D.4.6 [Security and Protection]

General Terms
Security, Theory

Keywords
Active cyber defense, active cyber defense dynamics, cyberattack-
defense dynamics, cybersecurity dynamics, cyber securitymodels

1. INTRODUCTION
Malicious attacks in cyberspace will remain to be a big problem

for the many years to come. This is fundamentally caused by the
complexity of the Internet and computer systems (e.g., we cannot
assure that a large software system has no security vulnerabilities).
It is therefore important to understand and characterize the phe-
nomena that can be exhibited at the global level of a cyber system,
ranging from an enterprise network to the entire cyberspace. The
emerging framework ofCybersecurity Dynamics[34, 35, 7, 4] of-
fers a systematic approach for understanding, characterizing, and
quantifying the phenomena as well as cyber security in general.
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The current generation of cyber defenses is often based onre-
activetools that are known to have limited success. For example,
infected/compromised computers cannot be cleaned up even by us-
ing multiple anti-malware tools together [21]. Moreover, reactive
defense has a fundamental limitation, namely that the effect of at-
tacks is automatically amplified by network connectivity, but the
effect of reactive defenses is not. Thisattack-defense asymmetry
had been implied by studies such as [29, 6, 3, 28, 39], but was not
explicitly pointed out until [36].

One approach to overcoming the aforementioned attack-defense
asymmetry is to adoptactive cyber defense, which is to use the
same mechanism that is exploited by attackers. More specifically,
active defense aims to spread some “white” worms (calleddefense-
ware in this paper) to automatically identify and “kill” the mali-
cious malwares in compromised/infected computers [2, 1, 30, 26,
16, 18, 14, 31]. In some sense, active cyber defense already takes
place in cyberspace because (for example) the malware calledWelchia
attempts to “kill" the malware calledBlaster in compromised
computers [26, 22], but it may take some years for full-scaleac-
tive cyber defenses to arise [18, 27, 32]. The first mathematical
model for studying theglobal effectivenessof active cyber defense
has been proposed recently [36]. In this paper, we further the study
of active cyber defense dynamics from anewperspective.

Our contributions. We substantially extend some aspects of the
first mathematical model of active cyber defense dynamics [36] (to
be fair, we should note that [36] offers some perspectives that are
not considered in our model as well). The extensions can be char-
acterized as follows. First, we accommodate more generalattack-
poweranddefense-powerfunctions, meaning that our results are
applicable to a broader setting than what is investigated in[36].
Second, we allow theattack network structureto be different from
the defense network structure, which are assumed to be identical
in [36]. This is important and realistic because the attack-defense
interaction structures are often “overlay” networks on topof some
physical networks, and as such, the defender and the attacker can
use different structures based on their own defense/attackstrate-
gies.

The extended model allows us to explore the rich phenomena
that can be exhibited by active cyber defense dynamics. Specifi-
cally, we show that active cyber defense dynamics can exhibit the
bifurcation and chaos phenomena (we call themunmanageable sit-
uations in cyber security). To the best of our knowledge, this is
the first study that shows that bifurcation and chaos are relevant in
the cyber security domain. These phenomena indicate limitations
on the measurement and prediction of cyber security, and highlight
that cyber defenders must manipulate the (active) cyber defense
dynamics to avoid such unmanageable situations in real-life cyber
defense operations.
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Disclaimer. The active cyber defense strategy explored in the present
paper does not advocate that defenders should retaliate from at-
tackers, because it is well known that the attackers, or morepre-
cisely the IP addresses that are launching attacks against the vic-
tims, could well be victims that are abused by the real attackers as
stepping stones. Moreover, defensewares (i.e., “white” worms) are
meant to clean up the compromised computers, not to compromise
the secure computers. Most important of all, the active defense
operations should be contained within the networks under the de-
fender’s jurisdiction (e.g., an enterprise network defender may use
active defense to clean up the enterprise network but not going be-
yond the enterprise’s perimeter). This can be assured, for example,
by making the enterprise’s computers and firewalls recognize de-
fensewares via digital signatures. This means that the enterprise
computers will only run defensewares that are accompanied with
digital signatures that can be verified by the computers’ hardware
via an embedded signature verification key, and that the firewall
recognizes and blocks out-bound defensewares.

The rest of the paper is organized as follows. In Section 2, we
present our active cyber defense dynamics model. In Section3, we
analyze equilibria (or attractors) of active cyber defensedynamics.
In Section 4, we explore the transition between attractors.In Sec-
tion 5, we investigate the emergence of bifurcation. In Section 6,
we explore the chaos phenomenon. We discuss related prior work
in Section 7 and conclude the paper in Section 8.

The main notations we use are summarized as follows.

R,R+,C the sets of real numbers, positive real numbers
and complex numbers, respectively

ℜ(ω),ℑ(ω) the real and imaginary parts of complex num-
berω ∈ C, respectively

In then× n identity matrix
GB , AB GB = (V,EB) is thedefense network struc-

ture, AB is the adjacency matrix ofGB

GR, AR GR = (V,ER) is the attack network struc-
ture, AR is the adjacency matrix ofGR

Nv,G′ Nv,G′ = {u ∈ V ′ : (u, v) ∈ E′} is
the neighbors ofv in graph/networkG′ =
(V ′, E′)

deg(v,G′) deg(v) = |Nv | is node v’s in-degree in
graph/networkG′ = (V ′, E′)

DA′ DA′ = [dvv ]n×n is a diagonal matrix corre-
sponding to adjacency matrixA′ = [a′

vu]n×n,
wheredvv =

∑n

u=1 avu is the in-degree of
nodev in graphG′ corresponding toA′

λ(M) the set of eigenvalues of matrixM
λ1(M) the eigenvalue ofM with the largest real part

(or λ1 whenM is clear from the context)
Bv(t),Rv(t) the probability that nodev ∈ V is in sateblue

(i.e., secure) and statered (i.e., compromised)
at timet, respectively

〈Bv(t)〉 the average portion ofblue nodes at timet ≥
0, namely〈Bv(t)〉 =

1
|V |

∑

v∈V
Bv(t)

B(t),R(t) B(t) = [B1(t), . . . , Bn(t)], R(t) =
[R1(t), . . . , Rn(t)], wheren = |V |

B∗ the homogeneous equilibrium ofB(t) ast →
∞, namelyBv(t) = σ ∀v ∈ V ast → ∞

f(·), g(·) f(·) : [0, 1] → {0}∪R
+ is the defense-power

function, g(·) : [0, 1] → {0} ∪ R
+ is the

attack-power function
θv,BR(t) the probability that the state of nodev changes

from blue to red at timet
θv,RB(t) the probability that the state of nodev changes

from red to blue at timet

2. EXTENDED ACTIVE CYBER DEFENSE
DYNAMICS MODEL

Review of the model in [36]. Suppose attacker and defender in-
teract in a cyber system that consists of a finite node population
V = {1, 2, · · · , n}, where each node can abstract/represent a com-
puter. At any timet ≥ 0, a nodev ∈ V is in one of two states:
blue, meaning that the node is secure but vulnerable to attacks;
red, meaning that the node is compromised. For a given cyber
system, the attacker spreads computer malwares (e.g., Advanced
Persistent Threats) to compromise computers, while the defender
spreadsdefensewares(e.g., “white” worms) to detect and clean up
(or “cure") the compromised computers. Suppose both the mal-
wares and the defensewares spread over the sameattack-defense
network structure, namely a finite simple graphG = (V,E), where
V = {1, 2, · · · , n} is the vertex set mentioned above, andE is the
edge set such that(u, v) ∈ E means (i) a compromised nodeu
can attack a secure nodev and (ii) a secure nodeu can use active
defense to detect and clean up a compromised nodev.

Our extension to the model in [36].Rather than assuming the at-
tacker and defender use the sameattack-defense network structure,
we consider two network structures: thedefense network structure
GB = (V,EB) over which defensewares spread, and theattack
network structureGR = (V,ER) over which malwares spread.
Both network structures are directed or undirected graphs.Specif-
ically, (u, v) ∈ EB means a secure nodeu can use active defense
to “cure” a compromised nodev, and(u, v) ∈ ER means a com-
promised nodeu can attack a secure nodev. We do not make any
restrictions on the attack/defense network structures, except that we
assumeGB andGR are simple graphs with no self-edges.1 (For the
purpose of illustrating results, we will use random graphs as con-
crete examples though.)

Denote byAB = [aB
vu]n×n the adjacency matrix ofGB where

aB
vu = 1 if and only if (u, v) ∈ EB. Denote byAR = [aR

vu]n×n

the adjacency matrix ofGR whereaR
vu = 1 if and only if (u, v) ∈

ER. Note that the representation accommodates both directed and
undirected graphs. Denote byBv(t) andRv(t) the probability that
nodev ∈ V is in stateblue (i.e., secure) and statered (i.e., com-
promised) at timet, respectively.

B 

(Blue)

R 

(Red)

v, BR(t)

v, RB(t)

Figure 1: The state transition diagram for a nodev ∈ V .

Figure 1 depicts the state transition diagram forindividual node
v ∈ V , whereθv,RB(t) is the probability that nodev’s state changes
from red to blue at timet, andθv,BR(t) is the probability that node
v’s state changes fromblue to red at timet. This leads to the fol-
lowing master equation of active cyber defense dynamics:










dBv(t)

dt
= θv,RB(t) ·Rv(t)− θv,BR(t) ·Bv(t)

dRv(t)

dt
= θv,BR(t) ·Bv(t)− θv,RB(t) ·Rv(t)

(1)

In order to specifyθv,RB(t), we use the concept ofdefense-
power function f(·) : [0, 1] → {0} ∪ R

+, which abstracts the

1It is possible to accommodateprivilege escalationin the present
model, by treating a computer as a set of nodes that correspond to
different privileges. We leave the details to future investigation.



power of the defenseware in detecting and cleaning up compro-
mised (red) nodes. In order to specifyθv,BR(t), we use the concept
of attack-powerfunctiong(·) : [0, 1] → {0}∪R

+, which abstracts
the power of the malware in compromising secure (blue) nodes.
It is intuitive that both defense-power and attack-power functions
should be dependent on the defense and attack network structures,
respectively. Therefore, we have the following general form:

θv,RB(t) = f





1

deg(v,GB)

∑

u∈Nv,GB

Bu(t)



 ,

θv,BR(t) = g





1

deg(v,GR)

∑

u∈Nv,GR

Bu(t)





whereNv,GB
= {u : (u, v) ∈ EB} is the set of nodev’s neigh-

bors in graphGB andNv,GR
= {u : (u, v) ∈ ER} is the set of

nodev’s neighbors in graphGR.
For the present characterization study, it is sufficient to require

that the defense-power and attack-power functions possesssome
basic properties. First, we havef(0) = 0 because active defense
must be launched from someblue node, andg(1) = 0 because
attack must be launched from somered node. Second, we have
f(x) > 0 for x ∈ (0, 1] because any active defense may succeed,
and g(x) > 0 for x ∈ [0, 1) because any attack may succeed.
Third, the two functions do not have to abide by any specific re-
lation, except that they are differentiable (for the sake ofanalytic
treatment).

As a result, the master equation of active cyber defense dynam-
ics, namely Eq. (1), becomes:

dBv(t)

dt
= f





1

deg(v,GB)

∑

u∈Nv,GB

Bu(t)



Rv(t)−

g





1

deg(v,GR)

∑

u∈Nv,GR

Bu(t)



Bv(t)

dRv(t)

dt
= g





1

deg(v,GR)

∑

u∈Nv,GR

Bu(t)



Bv(t)−

f





1

deg(v,GB)

∑

u∈Nv,GB

Bu(t)



Rv(t)

Since dBv(t)
dt

+ dRv(t)
dt

= 0 holds for all t ≥ 0 and allv ∈ V ,
Bv(t) + Rv(t) = 1 for all t and allv ∈ V . Therefore, we only
need to consider the following master equation forv ∈ V :

dBv(t)

dt
= f





1

deg(v,GB)

∑

u∈Nv,GB

Bu(t)





[

1−Bv(t)
]

−

g





1

deg(v,GR)

∑

u∈Nv,GR

Bu(t)



Bv(t). (2)

The main research task is to analyze system (2) for allv ∈ V .

Remark. When we investigatespecificattacks and defenses, we
need to obtain their concrete attack-power and defense-power func-
tions. Similarly, when we investigatespecificcyber systems, we
need to obtain the concrete attack and defense network structures.
These are important research problems that are orthogonal to the
focus of the present paper because ourcharacterization studydeals

with all possible attack-power and defense-power functions as well
as all possible attack and defense network structures. In principle,
these functions and structures do exist, although how to obtain them
is an excellent problem for future investigation.

3. EQUILIBRIA AND THEIR STABILITY
Equilibrium is an important concept for quantifying cyber secu-

rity. Supposeσ is the equilibrium under certain active defense. We
can quantify the effectiveness of active defense via the notion of
σ-effectivenessbecause the dynamics converge toσ. Moreover, the
stability of an equilibrium reflects the consequence/effect of per-
turbations, which can be caused (for example) by manipulations
to the initial global state (e.g., the defender manually cleans up
some compromised computers before launching active defense for
more effectiveness — this may sound counterintuitive, but it actu-
ally shows the value of rigorous characterization study because the
defender would not know this tactics otherwise).

We consider a class of equilibria of Eq. (2), namely homoge-
neous equilibria[B∗

1 , · · · , B
∗
n] with B∗

1 = . . . = B∗
n = σ ∈ [0, 1].

This class contains the following:

• All- blue equilibrium, denoted byB∗ = 1; B∗
v = 1 for all

v ∈ V (i.e., active defense is1-effective).

• All- red equilibrium, denoted byB∗ = 0; B∗
v = 0 for all

v ∈ V (i.e., active defense is0-effective).

• σ-equilibrium, denoted byB∗ = σ ∈ (0, 1); B∗
v = σ for all

v ∈ V (i.e., active cyber defense isσ-effective).

The Jacobian matrix of (2) near an equilibrium is denoted by

M =
[

(1− σ)f ′(σ)D−1
AB

AB − σg
′(σ)D−1

AR
AR

]

−
[

f(σ) + g(σ)
]

In. (3)

3.1 Existence and Stability of Equilibria
We show that homogeneous equilibria exist under the following

hypothesis (or condition):

H0: there exists someσ ∈ [0, 1] such that(1 − σ) ·
f(σ) = σ · g(σ) holds.

PROPOSITION 1. Under hypothesisH0, B∗ = σ ∈ [0, 1] is
an equilibrium of (2). Moreover,B∗ is stable ifℜ(µ) < 0 for all
µ ∈ λ(M), and unstable ifℜ(µ) > 0 for someµ ∈ λ(M).

PROOF. Under hypothesisH0, namely(1−σ)·f(σ) = σ·g(σ),
we see thatB∗

v = σ satisfies

dBv(t)

dt
= (1− σ) · f(σ)− σ · g(σ) = 0, ∀ v ∈ V.

ThusB∗ = σ is an equilibrium.
To see the stability of equilibriumB∗ = σ ∈ [0, 1], we consider

a small perturbation toB∗, namelyδB = [B1 − B∗
1 , · · · , Bn −

B∗
n]. The linearization system of Eq. (2) nearB∗ leads to

dδB

dt
=

{

[

(1− σ)f ′(σ)D−1
AB

AB − σg
′(σ)D−1

AR
AR

]

−

[

f(σ) + g(σ)
]

In

}

δB, (4)

whereIn is the identity matrix of sizen. Note thatM as defined in
Eq. (3) is the coefficient matrix of linear system (4). The stability
of equilibriumB∗ = σ is determined by the eigenvalues of matrix



M . For the general caseGB = (V,EB) 6= GR = (V,ER), it can
be shown that

λ(M) = λ

(

(1− σ)f ′(σ)D−1
AB

AB −

σg
′(σ)D−1

AR
AR

)

−
[

f(σ) + g(σ)
]

. (5)

If ℜ(µ) < 0 for all µ ∈ λ(Mσ), B∗ = σ is locally stable; if
ℜ(µ) > 0 for someµ ∈ λ(M), B∗ = σ is locally unstable.

Proposition 1 can be simplified whenσ = 0 andσ = 1.

COROLLARY 1. If g(1) = 0, thenB∗ = 1 is an equilibrium. It
is locally stable if−g′(1) < f(1) and locally unstable if−g′(1) >
f(1).

If f(0) = 0, thenB∗ = 0 is an equilibrium. It is locally stable
if f ′(0) < g(0) and locally unstable iff ′(0) > g(0).

PROOF. To prove the first part, we observe thatg(1) = 0 im-
pliesH0 holds forσ = 1, namely thatB∗ = 1 is an equilibrium of
system (2). Forσ = 1, it can be shown that Eq. (4) becomes

dδB

dt
= =

[

− g
′(1)D−1

AR
AR − f(1)In

]

δB.

Proposition 1 says that a sufficient condition under which equilib-
rium B∗ = 1 is locally stable is

−g
′(1)ℜ(µ) < f(1), ∀ µ ∈ λ

(

D
−1
AR

AR

)

. (6)

Sinceg(1) = 0 and g(x) ≥ 0 for x ∈ [0, 1], g(x) is locally
non-increasing atx = 1 and thus−g′(1) ≥ 0. Since the sum
for every row in matrixD−1

AR
AR equals 1, the Perron-Frobenius

theorem [10] says that its largest eigenvalue is1. From Eq. (6), we
have

−g
′(1)ℜ(µ) < −g

′(1) < f(1), ∀ µ ∈ λ
(

D
−1
AR

AR

)

.

That is, if −g′(1) < f(1), thenB∗ = 1 is locally stable; if

−g′(1) > f(1), there exists at least one eigenvalueµ0 ∈ λ
(

D−1
AR

AR

)

,

sayµ0 = 1, such that−g′(1)ℜ(µ0) − f(1) > 0, meaning that
B∗ = 1 is locally unstable.

To prove the second part, we observe thatf(0) = 0 impliesH0

with σ = 0, namely thatB∗ = 0 is an equilibrium of (2). For
σ = 0, Eq. (4) becomes

dδB

dt
=

{

[

(1− 0) · f ′(0)D−1
AB

AB − 0 · g′(0)D−1
AR

AR

]

−

[

f(0) + g(0)
]

In

}

δB

=
[

f
′(0)D−1

AB
AB − g(0)In

]

δB.

Proposition 1 says that the sufficient condition for equilibriumB∗ =
0 to be locally stable is

f
′(0)ℜ(µ) < g(0), ∀ µ ∈ λ

(

D
−1
AB

AB

)

. (7)

Sincef(0) = 0 and f(x) ≥ 0 for x ∈ [0, 1], f(x) is locally
non-decreasing atx = 0 and thusf ′(0) ≥ 0. Since the largest
eigenvalue ofD−1

AB
AB is 1, from Eq. (7) we have

f
′(0)ℜ(µ) < f

′(0) < g(0), ∀ µ ∈ λ
(

D
−1
AB

AB

)

.

That is, iff ′(0) < g(0), thenB∗ = 0 is locally stable; iff ′(0) >

g(0), there exists at least one eigenvalueµ0 ∈ λ
(

D−1
AB

AB

)

, say

µ0 = 1, such thatf ′(0)ℜ(µ0) − g(0) > 0, meaning thatB∗ = 0
is locally unstable.

In the special caseGB = GR, namelyAB = AR, we immedi-
ately obtain the following corollary of Proposition 1:

COROLLARY 2. Suppose hypothesisH0 holds andGB = GR =
G (i.e.,AB = AR = A). Letµ1 be the eigenvalue ofD−1

A A that
has the smallest real part. If the attack-power and defense-power
functions satisfy one of the following two conditions:

(i). (1−σ)f ′(σ)−σg′(σ) > 0 and
f(σ) + g(σ)

(1− σ)f ′(σ)− σg′(σ)
> 1,

(ii). (1 − σ)f ′(σ) − σg′(σ) < 0 and
f(σ) + g(σ)

(1− σ)f ′(σ)− σg′(σ)
<

ℜ(µ1), then equilibriumB∗ = σ ∈ [0, 1] is locally stable.
If the attack-power and defense-power functions satisfy one of

the two following conditions:

(i). (1−σ)f ′(σ)−σg′(σ) > 0 and
f(σ) + g(σ)

(1− σ)f ′(σ)− σg′(σ)
< 1,

(ii). (1 − σ)f ′(σ) − σg′(σ) < 0 and
f(σ) + g(σ)

(1− σ)f ′(σ)− σg′(σ)
>

ℜ(µ1), then equilibriumB∗ = σ ∈ [0, 1] is locally unstable.

3.2 Examples
Example 1: Stability effect of different defense-power functions
vs. a fixed attack-power function. SupposeGB = GR is an
Erdös-Rényi (ER) random graph instanceG = (V, E) with |V | =
2, 000 and edge probabilityp = 0.005 (i.e., every pair of nodes is
connected with probability 0.005, independent of each other). We
consider attack-power functiong(x) = 1−x against the following
four scenarios of defense-power functionf(x):

• Scenario I:f(x) = x2, meaning thatB∗ = 0 is stable and
B∗ = 1 is unstable.

• Scenario II:f(x) = x2+x, meaning thatB∗ = 0 is unstable
andB∗ = 1 is stable.

• Scenario III:f(x) = x2 + 1
2
x, meaning thatB∗ = 0 and

B∗ = 1 are stable, butB∗ = 1
2

is unstable.

• Scenario IV:f(x) = −2x2 + 2x, meaning thatB∗ = 1
2

is
stable, butB∗ = 0 andB∗ = 1 are unstable.

Figure 2 plots the phase portraits of〈Bv(t)〉 =
1

|V |

∑

v∈V
Bv(t),

the portion of secure nodes. We observe that the simulation results
confirm the analytic results. Specifically, Figure 2(a) shows that
〈Bv(t)〉 converges toB∗ = 0 whenBv(0) < 1 for all v ∈ V ; Fig-
ure 2(b) shows that〈Bv(t)〉 converges toB∗ = 1 whenBv(0) > 0
for all v ∈ V ; Figure 2(c) shows that〈Bv(t)〉 converges toB∗ = 1
whenBv(0) > 0.5 for all v ∈ V and converges toB∗ = 0 when
Bv(0) < 0.5 for all v ∈ V ; Figure 2(d) shows that〈Bv(t)〉 con-
verges toB∗ = 0.5 when0 < Bv(0) < 1 for all v ∈ V .

time t f(x) g(x) B∗

[0, 150] f(x) = x2 + x g(x) = 1− x B∗ = 1

[150, 300] f(x) = x2 g(x) = 1− x B∗ = 0

[300, 400] f(x) = −2x2 + 2x g(x) = 1− x B∗ = 0.5

[400, 500] f(x) = x2 + 1
2
x g(x) = 1− x B∗ = 1

Table 1: The dynamics go to the respective equilibriumB∗

under some combinations of defense-power functionf(x) and
attack-power function g(x).
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(a) Scenario I:B∗ = 0 is stable,
B∗ = 1 is unstable.
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(b) Scenario II:B∗ = 0 is unsta-
ble,B∗ = 1 is stable.
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(c) Scenario III:B∗ = 0 and
B∗ = 1 are stable,B∗ = 1

2
is

unstable.
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(d) Scenario IV:B∗ = 0 and
B∗ = 1 are unstable,B∗ = 1

2
is stable.

Figure 2: Phase portraits of the four scenarios confirming the
stabilities of the equilibria, where x-axis represents time, and
y-axis represents the portion of secure nodes〈Bv(t)〉.

Now we study the stability of the equilibria. For theGB = GR

mentioned above, we consider the above four scenarios as high-
lighted in Table 1. More specifically, for timet ∈ [0, 150], the
defense-power function isf(x) = x2 + x and the attack-power
function is g(x) = 1 − x (i.e, the above Scenario I); for time
t ∈ [150, 300], the defense-power function isf(x) = x2 and
the attack-power function isg(x) = 1 − x (i.e., the above Sce-
nario II); for time t ∈ [300, 400], the defense-power function is
f(x) = −2x2+2x and the attack-power function isg(x) = 1−x
(i.e., the above Scenario IV); for timet ∈ [400, 500], the defense-
power function isf(x) = x2 + 1

2
x and the attack-power function

is g(x) = 1− x (i.e., the above Scenario III).
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Figure 3: Active cyber defense dynamics lack persistent equi-
librium due to frequent perturbations.

Figure 3 plots a very probable scenario that can happen to the
portion of secure nodes, where three small perturbations are im-
posed att = 150, 300, 400. This scenario is very probable because
it can explain why the cyber security state may rarely enter some
persistent equilibrium. Specifically, the initial valueBv(0), v ∈ V ,
is randomly chosen from interval(0, 0.01] by the uniform distribu-
tion. At t = 150, we find that〈Bv(150)〉 = 1. We then impose
a small perturbation on eachBv(150), by replacingBv(150) with
Bv(150) − εv whereεv is an independent random variable of a
uniform distribution in the interval[0, 0.01] for all v ∈ V . Simi-
larly, we replaceBv(300) with Bv(300) + εv andBv(400) with
Bv(400) − εv for all v ∈ V . Figure 3 illustrates that under small

perturbations, the overall cyber security dynamics never enter any
persistent equilibrium. This offers one possible explanation why
real-life cyber security is perhaps never in any equilibrium.
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(a) ν = 0.5
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(b) ν = 0.8
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(c) ν = 0.85
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(d) ν = 1
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(e) ν = 1.5
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(f) ν = 2

Figure 4: Phase portraits of the portion of secure nodes
〈Bv(t)〉: f(x, ν) = νx− 2x2 and g(x) = (1− 2x)2.

Example 2: Stability effect of parameterized defense-power func-
tions vs. a fixed attack-power function.SupposeGB = GR is an
ER graphG = (V,E)with |V | = 2, 000, but with edge probability
p = 0.5. We consider the following parameterized defense-power
function f(x, ν) with parameterν ∈ (0,+∞) and fixed attack-
power functiong(x):

f(x, ν) = νx− 2x2
, g(x) = (1− 2x)2.

Figure 4 plots the phase portraits of〈Bv(t)〉 with ν = 0.5, 0.8,
0.85, 1, 1.5, 2, respectively. The portraits can be classified into
three classes. Figures 4(a)-4(b) show that there is one stable equi-
librium B∗ = 0. Figure 4(c) shows that there are three equilibria
B∗ = 0, 0.38, 0.2, where the first two are stable but the last one
is unstable. Figures 4(d)-4(f) show that there exist two equilibria
B∗ = 0, σ with σ > 0, whereB∗ = 0 is unstable andB∗ = σ

is stable. We observe that active cyber defense dynamics exhibit
different phenomena with respect to different parameters.More-
over, we observe a sort of phase transition in parameterν: when
ν ≤ 0.8, the global cyber security state converges toB∗ = 0 al-
most regardless of the initial value; whenν ≥ 1, the global cyber
security state converges to someB∗ = σ > 0 almost regardless
of the initial value; when0.8 < ν = 0.85 < 1, the global cyber
security state converges to some equilibrium dependent upon the
initial value.

We summarize the discussion in this section into:

INSIGHT 1. Active cyber defense dynamics may rarely enter
into any equilibrium because of perturbations to the globalsecu-
rity state as caused by the manual cleaning of some compromised
computers (Figure 2), and/or because of perturbations to the at-
tack/defense power function as caused by the introduction of a new
attack/defense method (Figures 3-4 )



4. TRANSITION BETWEEN MULTIPLE
ATTRACTORS

We are now ready to precisely characterize thetransition be-
tween the equilibria, which reflects the consequence/effect of the
defender manipulating the initial global security state (e.g., man-
ually cleaning up some compromised computers before launch-
ing active defense) and/or manipulating the attack/defense network
structure (e.g., by changing the network access control policy to
block/allow certain computers to communicate with certainother
computers).

4.1 Transition Between the All-blue and All- red
Equilibria

Under the conditions mentioned in Corollary 1, namely,f(0) =
g(1) = 0, system (2) has two locally stable equilibriaB∗ = 1 and
B∗ = 0. LetB =

[

B1, B2, · · · , Bn

]

∈ [0, 1]n andR = 1−B =
[

1 − B1, 1 − B2, · · · , 1 − Bn

]

∈ [0, 1]n, wheren = |V |. For
τ∗
1 , τ

∗
2 ∈ (0, 1), we define two setsΞGB ,τ∗

1
andΞGR,τ∗

2
as follows:

ΞGB ,τ∗

1
=

{

B ∈ [0, 1]n
∣

∣

∣

∣

1

deg(v,GB)

∑

u∈Nv,GB

Bu ≥ τ
∗
1 ,∀v ∈ V

}

, (8)

ΞGR,τ∗

2
=

{

R ∈ [0, 1]n
∣

∣

∣

∣

1

deg(v,GR)

∑

u∈Nv,GR

Ru ≥ τ
∗
2 , ∀v ∈ V

}

. (9)

The following Theorem 1, whose proof is deferred to the Ap-
pendix, gives the transition between the all-blue and all-red equi-
libria by manipulating the initial stateB(0).

THEOREM 1. LetGB = (V,EB) andGR = (V,ER) be two
arbitrary graphs. Suppose thatf(·) and g(·) are continuous with
f(0) = g(1) = 0.
Case 1:Suppose the attack-power and defense-power functions sat-
isfy,∀ z ∈ [τ∗

1 , 1) and∀B ∈ ΞGB ,τ∗

1
and someα > 0,

f (z) > α · z, (10)

f

(

1

deg(v,GB)

∑

u∈Nv,GB

Bu

)

+

g

(

1

deg(v,GR)

∑

u∈Nv,GR

Bu

)

≤ α (11)

If initial valueB(0) ∈ ΞGB ,τ∗

1
, then lim

t→∞
Bv(t) = 1 ∀v ∈ V .

Case 2:Suppose the attack-power and defense-power functions sat-
isfy,∀ z ∈ [τ∗

2 , 1) and∀R ∈ ΞGR,τ∗

2
and someβ > 0,

g (1− z) > β · z and

f

(

1−
1

deg(v,GB)

∑

u∈Nv,GB

Ru

)

+

g

(

1−
1

deg(v,GR)

∑

u∈Nv,GR

Ru

)

≤ β (12)

If initial valueR(0) ∈ ΞGR,τ∗

2
, then lim

t→∞
Rv(t) = 1 ∀v ∈ V .

The cyber security meaningof Theorem 1 is: Under a certain
condition (case 1), the defender needs to manipulate the initial global

security stateB(0) to belong toΞGB ,τ∗

1
to make active defense

1-effective; this says what the defender should strive to do. Under
certain other circumstances (case 2), the defender should make sure
that the initial global security stateB(0) does not causeR(0) =
1 − B(0) ∈ ΞGR,τ∗

2
, because in this regime active defense is0-

effective; this says what the defender should strive to avoid.

For the following two corollaries, we define

ΞGB ,τ∗ =






B ∈ [0, 1]n

∣

∣

∣

∣

∣

1

deg(v,GB)

∑

u∈Nv,GB

Bu > τ
∗
,∀ v ∈ V







,

ΘGR,τ∗ =






B ∈ [0, 1]n

∣

∣

∣

∣

∣

1

deg(v,GR)

∑

u∈Nv,GR

Bu < τ
∗
, ∀ v ∈ V







.

On one hand, the following Corollary 3 says that whenτ∗
1 =

τ∗
2 = τ∗, we obtain the same threshold for the transitions.

COROLLARY 3. Supposef(·) andg(·) are continuous withf(0) =
g(1) = 0. There exist constantsτ ∈ (0, 1) andα > 0 such that
the following two conditions hold:
(i) The attack-power and the defense-power functions satisfyf (z) >
α · z for any z ∈ (τ∗, 1), and for anyB ∈ ΞGB ,τ∗

f





1

deg(v,GB)

∑

u∈Nv,GB

Bu



+ g





1

deg(v,GR)

∑

u∈Nv,GR

Bu





≤ α.

(ii) The attack-power and the defense-power functions satisfyg (z) >
α(1− z) for any z ∈ (0, τ∗), and for anyB ∈ ΘGR,τ∗

f





1

deg(v,GB)

∑

u∈Nv,GB

Bu



+ g





1

deg(v,GR)

∑

u∈Nv,GR

Bu





≤ α.

If initial value B(0) ∈ ΞGB ,τ∗ , then lim
t→∞

Bv(t) = 1 ∀ v ∈ V ; if

initial valueB(0) ∈ ΘGR,τ∗ , then lim
t→∞

Bv(t) = 0 ∀ v ∈ V .

On the other hand, the following Corollary 4 makes a connection
to [36], by accommodating Theorems 1, 5, 8 and 9 in [36] as a
special case withGB = GR andα = 1.

COROLLARY 4. SupposeGB = GR = G = (V,E) andf(·),
andg(·) are continuous withf(0) = g(1) = 1. There existτ∗ ∈
(0, 1) andα > 0 such that the attack-power and defense-power
functions satisfy

f (z) + g (z) ≤ α ∀z ∈ [0, 1]

and the defense-power function satisfy

f (z) > α · z ∀z ∈ (τ∗
, 1) andf (z) < α · z ∀z ∈ (0, τ∗).

If initial valueB(0) ∈ ΞG,τ∗ , then lim
t→∞

Bv(t) = 1 for all v ∈ V ;

if initial value B(0) ∈ ΘG,τ∗ , then lim
t→∞

Bv(t) = 0 for all v ∈ V .
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(a) f(x), g(x) and thresholdτ∗ = 0.5 satisfy the condition of
transition betweenB∗ = 0 andB∗ = 1
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(b) Transition induced by varying initial value〈Bv(0)〉

Figure 5: Transition between equilibria B∗ = 0 andB∗ = 1 as
induced by varying the initial value.

4.2 Example
We consider the transition between equilibriaB∗ = 0 andB∗ =

1 as caused by varying the initial valueB(0). We use two concrete
defense-power and attack-power functions:

f(x) =
1

e−10x+5 + 1
, g(x) = 2(1− x)2,

which are plotted in Figure 5(a). The graphsGB andGR are two
ER graph instances with|V | = 2, 000 andp = 0.5. We consider
the transition induced by varying the initial value〈Bv(0)〉 between
0 and1. Figure 5(b) shows that when〈Bv(0)〉 > 0.5, the dynamics
converge toB∗ = 1; when〈Bv(0)〉 < 0.5, the dynamics converge
toB∗ = 0.

The exploration in this section can be summarized as:

INSIGHT 2. A small change in the initial global security state,
in the model parameters, in the attack network structure, orin the
defense network structure can lead to substantial change inactive
cyber defense dynamics. A rigorous characterization, suchas The-
orem 1, can offer precise guidance on “what the defender should
strive to do” and “what the defender should strive to avoid” (e.g.,
how to manipulate the dynamics to benefit the defender ratherthan
the attacker).

5. HOPF BIFURCATION
We consider Hopf bifurcation near equilibriumB∗ = σ ∈ (0, 1)

under condition(1− σ) · f(σ) = σ · g(σ). Recall that the stability
of B∗ = σ ∈ (0, 1) depends onλ1(M), whereM , as defined in
Eq. (3), is the Jacobian matrix of system (2). In the rest of the

paper, we may simplify the notationλ1(M) asλ1 unless there is
potential ambiguity.

Consider differentiable defense-power and attack-power func-
tionsf(x, ν) andg(x, ν) with parameterν. Suppose∂f

∂ν
, ∂g

∂ν
and

∂M
∂ν

all depend onν. Consider the following critical condition for
Hopf bifurcation:

ℜ(λ1) = 0 and ℑ(λ1) 6= 0. (13)

It is known that if (13) holds for someν = ν∗, λ1(ν) is differen-
tiable inν, and dλ1

dν
6= 0 atν = ν∗, then system (2) exhibits Hopf

bifurcation [24]. Therefore, we need to find the critical valueν∗.
For this purpose, we adopt the approach described in [20] to inves-
tigate howλ1 depends on the permutation toM , namely to conduct
a perturbation spectral analysis to compute the perturbation toλ1,
denoted byδλ1, as caused by perturbation toM , denoted byδM .

5.1 How to Estimateδλ1

Let x1 be the eigenvector ofM associated to eigenvalueλ1,
namely,Mx1 = λ1x1. For perturbationδM to M , M + δM

can be described asM(ν) + M ′(ν)δν. The perturbation toM
causes perturbationδλ1 to λ1 and perturbationδx1 to x1. That is,

(

M + δM
)(

x1 + δx1

)

=
(

λ1 + δλ1

)(

x1 + δx1

)

.

By ignoring the second-order term, we obtain

Mδx1 + δMx1 = λ1δx1 + δλ1x1. (14)

By multiplying both sides of Eq. (14) with the left eigenvector y1

corresponding toλ1, we obtain

y
⊤
1 Mδx1 + y

⊤
1 δMx1 = y

⊤
1 λ1δx1 + y

⊤
1 δλ1x1,

y
⊤
1 λ1δx1 + y

⊤
1 δMx1 = y

⊤
1 λ1δx1 + y

⊤
1 δλ1x1,

y
⊤
1 δMx1 = y

⊤
1 δλ1x1.

As a result, we can estimateδλ1 as

δλ1 =
y⊤
1 δMx1

y⊤
1 x1

, (15)

whereδM can be estimated depending on whether the perturba-
tion is to the attack and/or defense power (Case Abelow) or to the
attack/defense network structure (Case Bbelow).

Case A:δM is caused by perturbation to attack- and/or defense
power. Suppose the perturbation is imposed on parameterν in
the attack-power and defense-power functionsf(x, ν) andg(x, ν),
where ∂f

∂ν
and ∂g

∂ν
depend onν as mentioned above. The cyber

security meanings of such perturbations is (for example) that new
attack and/or defense techniques are introduced. Note that

δM(ν)

=

{

[

(1− σ)
∂f ′(σ, ν)

∂ν
D

−1
AB

AB − σ
∂g′(σ, ν)

∂ν
D

−1
AR

AR

]

−

[

∂f(σ, ν)

∂ν
+

∂g(σ, ν)

∂ν

]

In

}

δν.

In the special caseGB = GR = G (i.e., the adjacency matrix
AB = AR = A), we have

M =
[

(1− σ)f ′(σ)− σg
′(σ)

]

D
−1
A A−

[

f(σ) + g(σ)
]

In,



the eigenvalues ofM are
[

(1 − σ)f ′(σ) − σg′(σ)
]

µ −
[

f(σ) +

g(σ)
]

In for all µ ∈ λ(D−1
A A), and the perturbation can be rewrit-

ten as

δM(ν) =

{

[

(1− σ)
∂f ′(σ, ν)

∂ν
− σ

∂g′(σ, ν)

∂ν

]

D
−1
A A−

[

∂f(σ, ν)

∂ν
+

∂g(σ, ν)

∂ν

]

In

}

δν.

Hence, (15) becomes

δλ1 = y
⊤
1

{

[

(1− σ)
∂f ′(σ, ν)

∂ν
− σ

∂g′(σ, ν)

∂ν

]

D
−1
A A−

[

∂f(σ, ν)

∂ν
+

∂g(σ, ν)

∂ν

]

In

}

δν · x1

/

y
⊤
1 x1. (16)

Case B: δM is caused by perturbation to attack and/or de-
fense network structure. Suppose the perturbation is imposed on
GB = (V,EB) and/orGR = (V,ER) by adding/deleting edges.
The cyber security meaning of such perturbations is that thenet-
work is disrupted (e.g., edges are deleted by the attacker, or security
policies have changed) and then edges are added by the defender.
We assume that the number of added/deleted edges is small (com-
pared with|EB| and |ER|, respectively) so that we can approxi-
mately treatδM as a small perturbation. LetCB = D−1

AB
AB and

CR = D−1
AR

AR. Perturbations toAB andAR lead toAB + δAB

andAR + δAR, respectively. Correspondingly, we obtain the per-
turbations toCB andCR:

δCB = D
−1
AB+δAB

(AB + δAB)−D
−1
AB

AB,

δCR = D
−1
AR+δAR

(AR + δAR)−D
−1
AR

AR.

Then, the perturbation to Jacobian matrixM is

δM = (1− σ)f ′(σ)δCB − σg
′(σ)δCR.

From (15), we have

δλ1 =
y⊤
1

[

(1− σ)f ′(σ)δCB − σg′(σ)δCR

]

x1

y⊤
1 x1

.

Note that in the special caseGB = GR = G (i.e.,AB = AR = A)
with perturbationsδCB = δCR, we have

δM =
[

(1− σ)f ′(σ)− σg
′(σ)

]

δC,

δλ1 =
y⊤
1

[

(1− σ)f ′(σ)− σg′(σ)
]

δCx1

y⊤
1 x1

.

5.2 Example: Hopf Bifurcation Induced by
Perturbation to Parameter

In order to show that Hopf bifurcation can happen, we consider
an ER graphGB = GR = G = (V,E) with |V | = 2, 000
and edge probabilityp = 0.005. Let µ1 denote the eigenvalue of
D−1

A A with the smallest real part, whereA is the adjacency matrix
of G. For the ER graph, we haveℜ(µ1) = −0.3448. We consider
the following defense-power and attack-power functions:

f(x) = −4x2 + 4x, g(x, ν) =
(

νx−
ν

2

)2

,

wheref(x) does not depend onν. Recall that under condition
(1− σ)f(σ) = σg(σ), there exists equilibriumB∗ = σ ∈ (0, 1).

Whenν = 3, we have homogeneous equilibriumB∗ = 0.7,
which is locally stable according to the second condition inthe first
part of Corollary 2:

(1− σ)f ′(σ)− σg
′(σ, 3) = −3 < 0,

f(σ) + g(σ, 3)

(1− σ)f ′(σ)− σg′(σ, 3)
= −0.4 < ℜ(µ1) = −0.3448.

Whenν = 4, we have homogeneous equilibriumB∗ = 0.6667,
which is locally unstable according to the second conditionin the
second part of Corollary 2:

(1− σ)f ′(σ)− σg
′(σ, 4) = −4 < 0

f(σ) + g(σ, 4)

(1− σ)f ′(σ)− σg′(σ, 4)
= −0.3333 > ℜ(µ1) = −0.3448.

Therefore, there is acritical value betweenν = 3 andν = 4, at
whichℜ(λ1(M)) = 0. By conducting100 independent simulation
runs ofν ∈ [3, 4) with step-length 0.01, we find the critical value
ν = 3.8 and the corresponding equilibriumB∗ = 0.6724, where

(1− σ)f ′(σ)− σg
′(σ, 3.8) = 7− 3.81 < 0,

f(σ) + g(σ, 3.8)

(1− σ)f ′(σ)− σg′(σ, 3.8)
= −0.3448 = ℜ(µ1).

Figure 6(a) plots the periodic trajectory of〈Bv(t)〉 whenν =
4 > 3.8, which surrounds equilibriumB∗ = 0.6724. Figure
6(b) plots the periodic trajectory of〈Bv(t)〉 whenν = 5.05 >
3.8. Figure 6(c) plots the bifurcation diagram with respect toν ∈
(3, 6). Figure 6(d) plots the bifurcation diagram with respect to
ν ∈ (4.75, 5.5). We observe that whenν ∈ (5, 5.5), there are
not only two-periodic trajectories, but alsok-periodic trajectories
(k > 2). In summary, the periodic trajectories exhibit theperiod-
doubling cascadephenomenon.

5.3 Example: Hopf Bifurcation Induced by
Perturbation to Attack/Defense Network
Structures

For the purpose of demonstrating the bifurcation phenomenon
caused by perturbation to network structures, we use two randomly
generated ER graph examplesGB = (V, EB) andGR = (V,ER),
both with |V | = 2, 000 and p = 0.005. The average degree
is 10.0565 for GB and 11.1865 for GR. We use the following
defense-power and attack-power functions:

f(x) = −4x2 + 4x, g(x, ν) =
(

νx−
ν

2

)2

with ν = 6

We perform100 iterations of operations toGR as follows: during
each of the first50 iterations, we delete 226 edges (or1% of the
edges in the originalER) chosen independently and uniformly at
random; during each of the following50 iterations, we add 226
edges chosen independently and uniformly random among all the
unconnected edges. That is, we delete and then add50% edges of
the original|ER|.

Figure 7 demonstrates that theperiod-doubling cascadephe-
nomenon appears and finally leads to chaos after deleting more
than 36% edges and before adding 14% edges. We observe that
eventually the diagram becomes stable after adding the samenum-
ber of edges as those deleted. (Note that Figure 7 is not symmetric
because the added edges are random and in general are different
from the edges that are deleted.)

The following insight summarizes the exploration of this section.

INSIGHT 3. Active cyber defense dynamics can exhibit Hopf bi-
furcation, when the attack/defense power varies in certainparame-
ter regimes and/or when the attack/defense network structure varies
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(b) Periodic trajectory of〈Bv(t)〉 w/ ν = 5.05
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(c) Bifurcation diagram w/ν ∈ (3, 6)
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Figure 6: Limit cycle and Hopf bifurcation diagram, where 〈Bv〉 are the extremum points of〈Bv(t)〉 in time period t ∈ (1000, 2000).
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Figure 7: Hops bifurcation induced by perturbation to the net-
work structure.

in certain patterns. These situations are “unmanageable” because
it would be infeasible, if not impossible, to estimate the global secu-
rity state in real-time. Therefore, the defender must strive to avoid
such unmanageable situations by manipulating the dynamicscare-
fully (e.g., by disrupting the bifurcation condition or containing the
attack-power of the adversary).

6. CHAOS
Figure 6(c) shows that the number of periodic points increase

with parameterν, which hints that system (2) can exhibit the chaos
phenomenon. To see this, we consider the caseGB = GR. In this

case, system (2) becomes

dBv(t)

dt
= f





1

deg(v,G)

∑

u∈Nv,G

Bu(t)





[

1−Bv(t)
]

−

g





1

deg(v,G)

∑

u∈Nv,G

Bu(t)



Bv(t).

Let F
(

Bv(0), t
)

denote the right-hand part. ConsiderBv(0) and
Bv(0) + εv(0) for all v ∈ V , whereεv(0) ∈ R

n is a small pertur-
bation to the initial pointBv(0). Then, we have∀v ∈ V ,

εv(t) = F
(

Bv(0) + εv(0), t
)

− F
(

Bv(0), t
)

= DF
(

Bv(0), t
)

· εv(0),

whereDF
(

Bv(0), t
)

is the Jacobian matrix of the mapF at timet.
By the QR decomposition of matrixε(t) = [ε1(t), ε2(t), · · · , εn(t)]
wheren = |V |, we obtain matrix

ε(t) = q(t) · r(t),

whereq(t) is an orthogonal matrix andr(t) is an upper triangular
matrix. Note thatε(t) = q(t) and the diagonal elementλii(t) of rt
at timet is the exponential magnification, wherei ∈ {1, 2, · · · , n}.
Thus, the average rate of divergence or convergence of the two tra-
jectories

{

F
(

Bv(0), t
)∣

∣t ≥ 0
}

and{F
(

Bv(0)+εv(0), t
)∣

∣t ≥ 0
}

for all v ∈ V is defined by

Li = lim
t→∞

1

t
lnλii(t),

whereLi for i = 1, 2, · · · , n are the Lyapunov characteristic ex-
ponents. It is known [24] that under some mild conditions, the



above limit exists and is finite for almost all initial valuesB(0) =
[B1(0), B2(0), · · · , Bn(0)] and for almost all matricesε(0). Note
thatMLE = max1≤i≤n Li indicates whether the dynamical sys-
tem is chaotic or not. More specifically, whenMLE > 0, a small
perturbation to the initial value will lead to an exponential separa-
tion and therefore leads to the chaos phenomenon.

Example. Consider an ER graph instanceGB = GR with |V | =
2, 000 andp = 0.005, and the following defense-power and attack-
power functions:

f(x) = −4x2 + 4x, gν(x) =
(

νx−
ν

2

)2

.
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(a) MLE with ν: MLE > 0 indicates chaos.
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(b) 〈Bv(t)〉 for ν = 8 exhibits chaos.

Figure 8: Active cyber defense dynamics exhibit the chaos phe-
nomenon:GB = GR with |V | = 2, 000 and p = 0.005.

Figure 8(a) plots theMLE with respect toν. We observe that
MLE > 0 whenν > 5, meaning that system (17) exhibit chaos
for ν > 5. Figure 8(b) plots the phase portrait of〈Bv(t)〉 (i.e., the
average of theBv(t)’s for all v ∈ V ) whenν = 8, which hints the
emergence of chaos. This means that the defender should strive to
avoid the parameter regimeν > 5. This leads to the following:

INSIGHT 4. Active cyber defense dynamics can be chaotic, mean-
ing that it is impossible to predict the global cyber security state
because it is too sensitive to the accuracy of the estimated initial
global security state. Therefore, the defender must striveto avoid
such unmanageable situations (e.g., by disrupting the attacks to as-
sureν ≤ 5 in the above example).

7. RELATED WORK
Cybersecurity Dynamics is a framework for modeling and quan-

tifying cyber security from a holistic perspective (ratherthan mod-
eling and analyzing security of components or building-blocks) [34,
35, 36, 17]. This framework builds on a large body of literature
across Computer Science, Mathematics and Statistical Physics (cf.

[7, 4, 33, 37, 38, 17, 39, 29, 6, 3, 28, 23, 11, 12] and the references
therein), which can be further traced back to the century-old studies
on biological epidemic models [19, 13, 8].

As a specific kind of cybersecurity dynamics, active cyber de-
fense dynamics were firstrigorouslymodeled and studied in [36],
despite that the idea of active defense has been discussed and de-
bated for many years [14, 31, 18, 16, 26, 30, 1, 2]. We move
a significant step beyond [36], by separating theattack network
structurefrom thedefense network structure, and by considering
more general attack and defense power functions. To the bestof
our knowledge, we are the first to show that bifurcation and chaos
are relevant in the cyber security domain, and to discuss thecyber
security implications of these phenomena. Following [36],Lu et
al. [17] investigate optimal active defense strategies in the Control-
Theoretic and Game-Theoretic frameworks. Our study is comple-
mentary to [17] as we leave it to future work to investigate optimal
strategies in our setting.

It is worth mentioning that models of Lotka-Volterra type [9]
capture the predator-prey dynamics, which are however different
from the active cyber defense dynamics. Active cyber defense dy-
namics may be seen as thenon-linear generalization of the so-
called Voter model in complex networks [25, 15]. Somewhat re-
lated to our work is [5], which considers chaotic dynamics indiscrete-
time limited imitation contagion model on random networks.

8. CONCLUSION
We have explored the rich phenomena that can be exhibited by

active cyber defense dynamics. To the best of our knowledge,our
study is the first to show that bifurcation and chaos are relevant
in the cyber security domain. The implication is of high practical
value: In order to make cyber security measurement and prediction
feasible, the defender must manipulate the cyber security dynamics
to avoid theseunmanageable situations.

Interesting problems for future research include: First, we need
to characterize non-homogeneous equilibria as we only focused on
homogeneous equilibria. Second, we need to characterize which
graph structure is more advantageous to the other (e.g.,GB is ER
graph butGR is power-law graph). Third, we need to explore the
chaos phenomenon further (e.g., multi-direction chaos). Fourth, we
need to systematically validate the models.
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APPENDIX
Now we prove Theorem 1.

PROOF. We prove the theorem in the first statement withB(0) ∈
ΞGB ,τ∗

1
, and the second statement withR(0) ∈ ΞGR,τ∗

2
can be

proved similarly.
First, we see thatg(1) = 0 implies thatB∗ = 1 is an equilibrium

of (2) according to Proposition 1. Define

Vt = argmin
v∈V

Bv(t) =
{

u
∣

∣

∣
Bu(t) = min

v∈V
Bv(t)

}

for t ≥ 0. Since the caseminv Bv(0) = 1, namelyBv(t) = 1 for
all v ∈ V andt ≥ 0, is trivial, we assumeminv Bv(0) < 1 without
loss of any generality. For anyv(0) ∈ V0, the given condition (10)
implies 1

deg(v(0),GB)

∑

u∈Nv(0),GB

Bu(0) ≥ τ∗
1 , and thus we have

f





1

deg(v(0), GB)

∑

u∈Nv(0),GB

Bu(0)





≥ α ·
1

deg(v(0), GB)

∑

u∈Nv(0),GB

Bu(0),



where “=” holds only when 1
deg(v(0),GB)

∑

u∈Nv(0),GB

Bu(0) =

1. Let t = 0 andv = v(0). Using Eq. (2) and condition (11), we
have

dBv(0)(t)

dt

∣

∣

∣

∣

t=0

= f





1

deg(v(0), GB)

∑

u∈Nv(0),GB

Bu(0)





[

1−Bv(0)(0)
]

−

g





1

deg(v(0), GB)

∑

u∈Nv(0),GB

Bu(0)



Bv(0)(0)

≥ f





1

deg(v(0), GB)

∑

u∈Nv(0),GB

Bu(0)



− αBv(0)(0)

≥ α
(

Bv(0)(0)−Bv(0)(0)
)

(17)

= 0.

Since the equality signs hold in the two inequalities in Eq. (17) only
whenminv Bv(0) = 1, which corresponds to the trivial case men-
tioned above, we conclude thatminv∈V Bv(t) strictly increases in
a small time interval starting att = 0 except for the trivial case.

Let τ∗∗
1 > τ∗

1 such that 1
deg(v(0),GB)

∑

u∈Nv(0),GB

Bu(0) >

τ∗∗
1 for all v ∈ V . We now show that 1

deg(v,GB)

∑

u∈Nv,GB

Bu(t) >

τ∗∗
1 for all t > 0 and for allv ∈ V . Let t0 be the first time that

1
deg(v,GB)

∑

u∈Nv,GB

Bu(t) = τ∗∗
1 for somev ∈ V , i.e.

t0 =

inf







τ

∣

∣

∣

∣

∣

1

deg(v,GB)

∑

u∈Nv,GB

Bu(t) > τ
∗∗
1 ∀t ∈ [0, τ ),∀v ∈ V







.

We showt0 = +∞. Supposet0 < +∞. Let V ∗ be the node set
such that for eachv ∈ V ∗, 1

deg(v,GB)

∑

u∈Nv,GB

Bu(t) reaches

τ∗∗
1 for the first time. Then, for somev∗ ∈ V ∗, we know that

1
deg(v∗,GB)

∑

u∈Nv∗,GB

Bu(t) is not increasing att = t0. How-

ever, it can be shown that

d

dt





1

deg(v∗, GB)

∑

u∈Nv∗,GB

Bu(t)





∣

∣

∣

∣

∣

∣

t=t0

=
1

deg(v∗, GB)

∑

u∈Nv∗,GB

dBu(t)

dt

∣

∣

∣

∣

∣

∣

t=t0

≥
α

deg(v∗, GB)
·

∑

u∈Nv∗,GB





1

deg(u,GB)

∑

w∈Nu,GB

Bw(t)−Bu(t0)





≥ 0,

where the equality signs hold only for the trivial case as in the case
of Eq. (17) mentioned above (i.e., in all other cases the inequalities
are strict). So we reach a contradiction, which meanst0 = +∞.
Owing toτ∗∗

1 > τ∗
1 , we have 1

deg(v,GB)

∑

u∈Nv,GB

Bu(t) > τ∗
1

for all t > 0. That is,B(t) ∈ ΞGB ,τ∗

1
for all t.

Let t1 be the maximum time thatminv∈V Bv(t) is strictly in-

creasing, i.e

t1 = sup

{

t

∣

∣

∣

∣

min
v

Bv(t) is strictly increasing in[0, t)

}

.

We show thatt1 = +∞. Suppose thatt1 is finite, meaning that
minv∈V Bv(t) is not increasing at timet = t1. Since it holds that
minv∈V Bv(t1) > minv∈V Bv(0) > τ∗

1 , by replacingB(0) with
B(t1), we have

f





1

deg(v(t1), GB)

∑

u∈Nv(t1),GB

Bu(t1)





>
α

deg(v(t1), GB)

∑

u∈Nv(t1),GB

Bu(t1)

and therefore we can show

dBv(t1)(t)

dt

∣

∣

∣

∣

t=t1

≥ f





1

deg(v(t1), GB)

∑

u∈Nv(t1),GB

Bu(t1)



− αBv(t1)(t1)

≥ α





1

deg(v(t1), GB)

∑

u∈Nv(t1),GB

Bu(t1)−Bv(t1)(t1)





≥ 0,

where are inequalities are strict except for the trivial case — as
discussed in the case of Eq. (17). That is,minv∈V Bv(t) strictly
increases att = t1, which contradicts with the definition oft1.
Therefore, we havet1 = +∞ andminv∈V Bv(t) is strictly in-
creasing int ∈ [0,+∞).

In order to showlimt→∞ Bv(t) = 1 for all v ∈ V , we will prove
that limt→∞ minv∈V Bv(t) = 1 for limt→∞ minv∈V Bv(t) ≤
limt→∞ Bv(t). SinceBv(t) is the probability that nodev ∈ V
is blue at timet, we have0 ≤ Bv(t) ≤ 1 for all v ∈ V . Hence
limt→∞ minv∈V Bv(t) exists. Suppose for the sake of contradic-
tion thatlimt→∞ minv∈V Bv(t) < 1, meaningminv∈V Bv(t) <
1 for all t due to its strict increasing monotonicity. For anyv(t) ∈
Vt, under the condition that Eq. (10) holds, there existsε > 0 such
thatf(Bv(t)(t))− αBv(t)(t) > ε for all t.

Sinceminv∈V Bv(t) is strictly increasing fort ∈ [0,+∞),
there existsT > 0 such that

dBv(t)(t)

dt

= f





1

deg(v(t),GB)

∑

u∈Nv(t),GB

Bu(t)





[

1−Bv(t)(t)
]

−

g





1

deg(v(t),GB)

∑

u∈Nv(t),GB

Bu(t)



Bv(t)(t)

≥ f
(

Bv(t)(t)
)

− αBv(t)(t) > ε,

for all t > T . This leads to

Bv(t)(t) > Bv(T )(T ) + ε(t− T ).

Sinceminv∈V Bv(t) = Bv(t)(t) → ∞ ast → ∞, it contradicts
with Bv(t) ≤ 1. Therefore, we concludelim

t→∞
min
v∈V

Bv(t) = 1 and

lim
t→∞

Bv(t) = 1.


