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ABSTRACT
Workflows capture complex operational processes and in-
clude security constraints limiting which users can perform
which tasks. An improper security policy may prevent cer-
tain tasks being assigned and may force a policy violation.
Deciding whether a valid user-task assignment exists for a
given policy is known to be extremely complex, especially
when considering user unavailability (known as the resiliency
problem). Therefore tools are required that allow automatic
evaluation of workflow resiliency. Modelling well defined
workflows is fairly straightforward, however user availabil-
ity can be modelled in multiple ways for the same workflow.
Correct choice of model is a complex yet necessary concern
as it has a major impact on the calculated resiliency. We de-
scribe a number of user availability models and their encod-
ing in the model checker PRISM, used to evaluate resiliency.
We also show how model choice can affect resiliency compu-
tation in terms of its value, memory and CPU time.

Categories and Subject Descriptors
H.4.1 [Information Systems Applications]: Office Au-
tomation—workflow management ; I.6.5 [Simulation and
Modelling]: Model Development—modelling methodologies

General Terms
Security, Reliability, Human Factors

Keywords
Workflow Satisfiability Problem, Markov Decision Process,
Probabilistic Model Checker

1. INTRODUCTION
Workflows capture the logical processes of achieving busi-
ness goals and are used in almost all business domains in-
cluding finance, healthcare and eScience [5, 9, 12]. Although
the definition of what a workflow is may vary within these
domains, a workflow typically consists of atomic tasks (the

work) that are logically ordered (the flow) to produce the
required outcome [1].

Tasks must be assigned to users in order to be performed,
often in-line with business rules and regulatory requirements
defined within a workflow security policy [3]. A policy can
limit task execution only to qualified users and limit access
to (often) sensitive information which is needed by a user
during the course of their duties. Workflow policies typically
come with three main constraints 1) user-task permissions
stating which users can perform which tasks; 2) separation
of duties stating which tasks must be performed by distinct
users to limit fraud and error [7]; 3) binding of duties stating
tasks that must be performed by the same user providing
consistency and limiting the dissemination of information
across multiple tasks [14].

A workflow security policy designer is tasked with defining a
policy that not only meets all business security requirements
but also allows the workflow to proceed to completion with-
out hindrance [4, 15]. In practice this exercise is often not
trivial in light of limited user numbers, large workflows and
complex security requirements. Finding an assignment of
users to tasks that allows a workflow to finish without being
forced to terminate early or violate its security policy deems
the workflow as satisfiable. It is the job of the policy designer
to ensure such an assignment exists as an outcome of their
drafted policy. Solving this problem, known as the workflow
satisfiablility problem (WSP) is an ongoing research problem
and is well studied in the literature [8, 20]. The WSP has
been shown to be NP-hard meaning every combination of
users to tasks may have to be tried before finding an assign-
ment which satisfies a workflow.

The WSP is all well and good if one assumes users will al-
ways be available. If this is the case, a satisfiable workflow
will always complete in every instance. However in practice,
users become unavailable due to a number of reasons some
of which may be unforeseen, e.g. preoccupation or sickness.
It follows that a satisfiable workflow before execution may
become unsatisfiable during its operation. The workflow re-
siliency problem extends the WSP by finding an assignment
if one exists, to satisfy a given workflow under an assumption
that some users may become unavailable.

Availability is usually defined in terms of up-time. That is,
states of a system are labelled either up or down, and the
fraction of time in the states labelled up corresponds to the



system’s availability. In [19], Meyer and Sanders provide a
general approach to the definition of metrics such as this. In
this paper we discuss a more specific notion of availability,
namely the availability of users, which can be present or not.

User unavailability in workflows was introduced by Wang
and Li [20], who considered a qualitative approach where
users are either available or not. A workflow is classified as
k resilient if the workflow can still be satisfied regardless of
which k users become absent. Mace et al [17] considered
a more quantitative approach by assigning probabilities to
users becoming absent. Calculating the resiliency of a work-
flow was shown to be equivalent to finding the optimal policy
of a Markov Decision Process (MDP) [6]. This approach is
practical in the sense it provides a level of resiliency (success
rate) to workflows that must work but cannot be made fully
resilient in every case.

It is useful then to provide tools and methodologies to work-
flow security policy designers enabling them to automati-
cally calculate the resiliency offered by a workflow security
policy. Such tools can be beneficial in a number of ways,
they can 1) enable policy comparability in terms of work-
flow resiliency; 2) identify resiliency changes following policy
modifications; 3) ensure a policy provides the minimum re-
quirement of resiliency; 4) highlight extra user level require-
ments, and unworkable processes and policies; 5) provide
resiliency indicators and assurance to business leaders and
process designers;

A well defined workflow consisting of ordered tasks and users
constrained by a security policy is fairly straightforward to
model [8, 17]. On the other hand, capturing user avail-
ability in a model relies on, and is only as good as, the
availability inputs provided by the environment. This may
for example involve users with non-deterministic or proba-
bilistic availabilities for workflow tasks. Depending on the
information available and other contextual inputs, a user
availability model could be defined in multiple ways for the
same workflow. Making the correct choice of model becomes
a complex yet necessary issue as it has a major impact on
the resiliency calculated for a workflow. A poor choice may
result in a flawed and misleading resiliency value.

In this paper we model workflows and user availability us-
ing the model checking tool PRISM [16] which is able to
calculate the resiliency of workflows modelled as MDPs. We
do not state which choice of availability model to take but
instead explore PRISM’s capability to encode a variety of
user models containing non-deterministic and probabilistic
availabilities. We also show how model choice can impact
resiliency computation, not only in terms of the resiliency
value but also in terms of memory and CPU time.

The rest of the paper is as follows. Section 2 gives an
overview of related work, Section 3 discusses the workflow
satisfiability problem whilst Section 4 describes workflow re-
siliency. Section 5 discusses encoding workflows and user
availability in PRISM, Section 6 provides analysis of how
the choice between user availability models affects resiliency
computation, whilst concluding remarks are given in Sec-
tion 7.

t1

[u1, u2]

t2

[u2, u3]

t3

[u1, u3]

Flow of work

Assignment
constraint

SoD

Figure 1: Running example workflow

2. RELATED WORK
Model checking has been used by Armando et al. [2] to for-
mally model and automatically analyse security constrained
business processes to ensure they meet given security prop-
erties. He et al. in [10] also use modelling techniques to
analyse security constraint impact in terms of computational
time and resources on workflow execution.

Herbert et al. in [11] model workflows expressed in BPMN
as MDPs. The probabilistic model checker PRISM [16],
is utilised to check various probabilistic properties such as
reaching particular states of interest, or the occurrence and
ordering of certain events. Assuming resiliency is the prop-
erty we want to verify, a similar approach can be taken to
calculate workflow resiliency. Quantitative access control
using partially-observable MDPs is presented by Martinelli
et al. in [18] which under uncertainty, aims to optimise the
decision process for a sequence of access requests.

However, to the best of our knowledge, there is no current
literature on the impact user availability model choice can
have on the automatic analysis of workflow resiliency, which
is the focus of this paper.

3. WORKFLOW SATISFIABILITY
In this section we give a simple workflow definition before de-
scribing the process of assigning users to tasks whilst meet-
ing security constraints, known as the workflow satisfiability
problem (WSP).

3.1 Workflow
In the literature a workflow commonly consists of a partially
ordered set of tasks (T,<), such that for any two tasks t, t′ ∈
T , if t < t′ then t must be performed before t′ in any instance
of the workflow [8, 20].

Running example. As a running example to illustrate
the different concepts presented here, we consider a sim-
ple workflow shown in Figure 1 where T = {t1, t2, t3} and
t1 < t2 < t3, meaning the only valid execution sequence is
〈t1, t2, t3〉.

Next we define a set of users U that comes with a security
policy over the set of tasks T . In general, a security policy
is a triple p = (P, S,B) where:

• P ⊆ U×T are user-task permissions, such that (u, t) ∈
P if, and only if u is allowed to perform t.
• S ⊆ T ×T are separations of duty, such that (t, t′) ∈ S

if, and only if the users assigned to t and t′ are distinct.
• B ⊆ T × T are bindings of duty, such that (t, t′) ∈ B

if, and only if the same user is assigned to t and t′.
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Figure 2: Workflow state diagram

Running example. We now consider a set of users U =
{u1, u2, u3} and a security policy p1 = (P1, S1, B1) that states:

• P1 = {(u1, t1), (u2, t1), (u2, t2), (u3, t2), (u1, t3), (u3, t3)}
• S1 = {(t1, t3), (t2, t3)}
• B1 = ∅

Figure 1 illustrates p1, where the dotted arrows signify the
constraints given in S1. A label [um, ..., un] states the users
that are authorised by P1 to execute ti.

Definition 1 (Workflow). A workflow is a tuple w =
((T,<), U, p), where T is a partially ordered set of tasks, U
is a set of users, and p is a security policy.

3.2 Assignment
A workflow assignment is a relation A ⊆ U × T , such that
(ui, ti) ∈ A is a user-task assignment indicating ui is as-
signed to ti. Informally, any A is valid if a) task ordering is
respected; b) any user-task assignment is permitted; c) sep-
aration and binding constraints are respected; d) no task is
executed twice.

A given assignment A is complete if it includes a user-task
assignment for every task in the workflow, or partial oth-
erwise. The WSP therefore consists of finding an assign-
ment A that is both valid and complete which we denote
as A ` WSP . In general the WSP has been shown to be
NP-hard, in other words, all possible user-task assignments
may have to be checked to solve it [20].

Imagine we want to find A ` WSP for our running ex-
ample and begin by assigning u1 to t1 and u3 to t2 to
form the partial assignment A′ = {(u1, t1), (u3, t2)}. Al-
though this assignment is valid, there is no u ∈ U such
that A′ ∪ {(u, t3)} ` WSP , meaning the workflow can-
not finish correctly. However, with the partial assignment
{(u1, t1), (u2, t2)}, we can add (u3, t3) to form a complete
and valid assignment.

3.3 Quantitative Satisfaction
In [17], Mace et al took a quantitative approach by showing
the solution to the WSP is equivalent to finding the optimal
policy of a Markov Decision Process (MDP) [6]. The MDP
presented is based on the state transition diagram shown
in Figure 2, which depicts an abstracted view of a work-
flow assignment process. Each node represents one of four
system states read as follows: 1) ready to select user-task
assignment; 2) ready to check user-task assignment satisfies
policy; 3) policy checked; 4) workflow terminated.

Each directed arrow between two states s and s′ indicates a
transition from s to s′. The five transitions are read as:

• step: get the next workflow task t and a perspective
user u to assign to t
• check: check assignment (u, t) satisfies security policy
• assign: (u, t) satisfies security policy
• fail: (u, t) does not satisfy security policy
• finish: no more tasks to assign

Solving the MDP involves calculating the optimal value func-
tion on every possible state. Roughly speaking, the MDP
takes the transition step for each u ∈ U and next task t,
assigning the user to t who maximises the expected reward
collected by the process. The value function returns a re-
ward of 1 if there exists A `WSP , or 0 otherwise.

4. WORKFLOW RESILIENCY
Solving the WSP assumes users will always be available for
future tasks, however in practice, sickness, vacation, heavy
workloads, etc., can cause users to fail. It is important to
take this into account when finding A ` WSP for a given
workflow. This is called the resiliency problem, whether
a workflow can be satisfied even when some users become
absent.

It may be the case that selecting a user-task assignment
leads to a situation where all valid users for a future task
will have failed or have a low probability of availability. To
give a flavour for this, in our running example we choose
A = {(u1, t1), (u2, t2), (u3, t3)} ` WSP . However, imag-
ine u3 has a very high probability of failing at or before t3,
observed from previous workflow logs. If u3 does fail, t3
cannot be reassigned to any other user meaning the work-
flow cannot finish. If we chose a different assignment A′ =
{(u2, t1), (u2, t2), (u3, t3)} ` WSP , intuitively the workflow
is more resilient as t3 can be reassigned to u1 and still finish
if u3 did indeed fail.

4.1 Quantitative Resiliency
Wang and Li defined an approach to calculate a valid assign-
ment if one exists, that is resilient to up to k users failing, in
other words declaring a workflow to be either k resilient or
not [20]. In many cases, finding an assignment for a workflow
that is resilient to every combination of k user failures may
be impossible, yet the workflow must still work. Yet finding
a valid assignment that is resilient in 9 out of 10 cases is
better than choosing a valid assignment that is resilient in
only 1 out of 10 cases. In [17], Mace et al extend their ap-
proach by introducing probabilistic user failures and show
that computing the optimal policy of an MDP is equivalent
to finding A `WSP that maximises the value function. The
value function returns 0 < v ≤ 1 if there exists A ` WSP
where v indicates the probability of the workflow to finish,
or 0 otherwise.

4.2 User Availability
Understanding when users will and will not be available is
an obvious requirement when calculating resiliency, which
may be deduced from a mixture of operational logs, be-
havioural analysis and user submissions (known and ten-
tative absences). Another influential aspect is how the un-
availability of users is modelled in the corresponding MDP.



Introducing user availability into the MDP involves updat-
ing the transition step shown in Figure 2 to include setting
the availability of the user, based on some given probability.
Transition step is now read as:

• step: get the next workflow task t, a perspective user
u to assign to t, and the availability of u.

The MDP arrives at state 2 with the next task and a per-
spective user to be assigned, who is either available of not
available. As the MDP takes the transition step for each
user, it follows availability must be set for all u ∈ U .

4.3 Availability Models
In [20], Wang and Li introduce three categories of resiliency,
each using a different availability model: static resiliency,
where users can only fail before the start of the workflow;
decremental resiliency, where users can fail during the work-
flow, and cannot become available again; and dynamic re-
siliency, where users can fail and later become available dur-
ing the workflow. These three resiliency categories form the
basis of the work in [17] which predominately focuses on the
decremental model.

Two main modelling approaches can be considered; the first
simplistic approach consists of encapsulating the availability
of all users for every task as a whole such that every user
is given the same availability probability; the second, more
complex approach consists of considering users individually
such that different availability probabilities can be applied
to each user. We focus on the latter approach unless stated
otherwise.

We now consider a non-exhaustive number of ways a user’s
availability can be modelled, ranging from simple non-deter-
ministic models to more complex models involving depen-
dent user failure probabilities. Selecting which model to use
may be dependent on the environment and user availability
data such that the most accurate model possible can be cho-
sen, or it could be a trade-off between high accuracy and fast
computation. For ease of identification throughout the rest
of this paper each availability model of interest is labelled
ami.

4.3.1 Non-deterministic Models
It may be the case that the availability of a user for a task is
simply unknown, or non-deterministic. Therefore the avail-
ability of a user can be considered as binary, they are either
available of not for a given user-task assignment. To effect
a dynamic model (am1), a user’s availability is either true
(available) or false (unavailable) for each task. In our run-
ning example the availability for u3 may, for example be true
for t1, false for t2 and true for t3.

Recording the current availability of a user allows a decre-
mental model to be established (am2). If a user is unavail-
able for a task t they will remain unavailable for each re-
maining task t′ in the workflow, where t < t′. In our run-
ning example, the availability for u3 to be true for t1, false
for t2 and false for t3 corresponds to a valid decremental
model. A static availability model (am3) can be established
by noting the current task. If no task has been selected (the
workflow has not started), the availability of a user may be

set as true or false. Once the first task t1 has been selected,
if the availability of a user is true it remains true for the
entire workflow, if it is false it remains false. In our running
example, the availability for u3 to be true for t1, true for t2
and true for t3 corresponds to a valid static model.

4.3.2 Probabilistic Models
It may be the case that some probability of availability can
be applied to a user based, for example, on previous work-
flow logs and behavioural analysis. The most simple proba-
bilistic model is to derive a single probability applied to ev-
ery user for every task. However such an approach is likely
to be impractical and provide little value.

A more complex variation (am4) is to state a different prob-
abilistic availability for each user which is applicable to all
tasks in the workflow. In our running example, u1 may have
a probabilistic availability of 0.96 for t1, t2 and t3, u2 may
have a probabilistic availability of 0.75 for t1, t2 and t3,
and so on. Another possibility (am5) is to state a different
probabilistic availability for each task in the workflow which
is applicable to all users. This is equivalent to saying any
user u has the probabilistic availability p for task t. In our
running example, u1, u2 and u3 may have a probabilistic
availability of 0.98 for t1, 0.78 for t2 and 0.93 for t3.

A further variation (am6) is to apply a different probability
for each user to be available for each task. In our running
example, u1 may have a probabilistic availability of 0.85 for
t1, 0.97 for t2 and 0.64 for t3, u2 may have a probabilistic
availability of 1 for t1, 0.98 for t2 and 0.86 for t3, and so
on. Notice how the probabilistic models introduced so far
have independent probabilities. Note also that the models
discussed in this section could be dynamic, decremental or
static as described in Section 4.3.1.

We now consider more dependent probabilistic availability
models. The first (am7) considers the current availability of
a user such that a user may have a different probability of
availability if currently available to one if currently unavail-
able. In our running example, if u3 was available for t2 their
probability of being available for the next task t3 may be
0.98, whereas if u3 was unavailable for t2 their probability
of being available for t3 may only be 0.3.

Similarly, availability of a user u may depend on the current
availability of another user u′ (am8) or a combination of
both u and u′ (am9). Many other more complex variations
can also be imagined involving combinations of current user
availabilities, current task and the historic availability of
previous tasks.

4.3.3 Bounded Models
It could be desirable and more realistic allowing only a pro-
portion of users to fail rather than allowing the unlikely pos-
sibility of every user failing. A bounded decremental model
(am10) introduces a threshold k to limit the maximum num-
ber of users failing during the operation of a workflow, sim-
ilar to [20]. This means at least |U | − k users will always
be available for a task, although they may not be autho-
rised to perform it. The threshold k may for example be the
observed average number of users failing across all previous
instances of a workflow.



Such a model must consider all possible failures of up to k
users. For example, all k users may become unavailable at
the same point or at different points in the workflow. Be-
ing decremental in nature, once a user is unavailable they
remain so for the rest of the workflow. In our running ex-
ample, imagine k=2 such that up to 2 users may become
unavailable. User u2 being available throughout the work-
flow whilst u1 failing at t2 and u3 failing at t3 would be one
valid user failure case for am10, as would u1 being available
throughout whilst u2 and u3 both fail at t2. The cases where
only one or even no users fail would be valid for k=2 whereas
all three users failing would not.

A more dynamic model am11 can be defined by applying a
threshold k to each task, in other words up to k users may
become unavailable for a task independent of previous user
failures. This model is dynamic in the sense that a user who
has failed for task t may become available for the next task
t′.

5. WORKFLOW MODELLING
There are many ways to solve an MDP including dynamic
programming (e.g. value iteration) [13]. This technique is
provided by the probabilistic model checking tool PRISM,
which enables the specification, construction and analysis
of probabilistic models such as MDPs [16]. PRISM is an
intuitive choice as it can model both probabilistic and non-
deterministic choice, and gives an efficient way to solve an
MDP whilst providing analysis data regarding computation
overheads.

5.1 Prism Modelling Language
A PRISM model definition constitutes a number of interac-
tive modules that contain one or more local variables and
commands as follows:

module name
variables
commands

endmodule

The values of a module’s local variables define the module’s
state while the values of all variables across every module
determines the global state of the model. Each variable is
defined with a name, a type restricted to a finite range of
integers or a Boolean, and an initial value:

name : type init value

The behaviour of a module is described through a set of
local commands. Each command contains a guard and one
or more probabilistic updates, taking the form:

[label] guard →prob1 : update1 & ... & probn : updaten;

A guard is a predicate over both local variables and those
contained in other modules. If a command’s guard equates
to true, the guard’s corresponding updates take place as-
signing one or more local variables with new values. The
probability of update1 is prob1 and so forth such that the
sum of prob1 to probn is 1. Only one of the updates will take
place with its given probability assuming the guard is true.
If a command contains only one update with probability 1,

the probability value can be omitted. Updating variables is
equivalent to a state transition causing the model to move
from its current state to a new state. Given a variable i an
update is defined in PRISM as ( i ’=x) where x is the new
value assigned to i .

Labelling commands across modules with a common label
allows those commands to be synchronised such that a tran-
sition consists of all these commands operating in parallel.
Such a transition will only occur when the guards of all its
constituent commands equate to true. A guard of the form
true is an empty guard that always equates to true; com-
mands with such a guard are used to update local variables
regardless of their current value. These commands can still
be synchronised with others through labelling. A module
containing several commands whose guards all equate to true
will make a non-deterministic choice over which command
to perform:

[labeli] guardi →update1;
[labeli] guardi →update2;

Named expressions or formulas can be included in a PRISM
model to avoid the duplication of code and reduce the state
space. Essentially a formula’s expression can be substituted
by its name wherever the expression would be expected.

formula name = expression;

5.2 Workflow Encoding
We provide a PRISM encoding of our running example in
Appendix A. Note we use the variable t to indicate the cur-
rent task where t=0 indicates the workflow has not started
(no task has been selected), and t=−1 indicates the workflow
has terminated. The Boolean variable fail is set to true if
a user violates the security policy or is unavailable, or false

otherwise.

Probabilistic model verification can be performed automat-
ically by PRISM to analyse properties defined in temporal
logic. In terms of satisfiability we require PRISM to calcu-
late the maximum probability that a workflow will terminate
such that all tasks are assigned and all constraints satisfied.
This satisfiability property is defined in PRISM as:

Pmax=? [ F (t=−1) & (!fail) ]

where: Pmax =? asks PRISM to find the maximal probability
of the formula in between brackets to be true; the operator
F is the “Eventually” operator, i.e., F p is true if the state-
ment p eventually holds in the system. In this case, we ask
PRISM to find the maximal property so that, eventually, the
termination point has been reached, (t=−1) and the work-
flow has not failed, (! fail ). This probability is between 1 or
0, indicating the resiliency of the workflow.

5.3 Availability Encoding
In this section we examine PRISM’s capability of modelling
user availability by encoding the models ami discussed in
Section 4.3. Unless stated otherwise, user availability for
each ui ∈ U is encapsulated in a distinct module named
ui. The availability of ui for each task in the workflow is
assigned by a PRISM command labelled [ s ], synchronised



to occur in the [s] transition shown in Figure 2. If more
than one [ s ] command is defined for each user, only one will
execute dependant on its guard equating to true.

5.3.1 Non-deterministic Encodings
As the availability of a user ui is considered a binary prop-
erty, a single boolean fi is set to true if ui is available of
false if not. The non-deterministic dynamic model am1 can
be encoded as follows:

module ui

fi : bool init true ;

[ s ] true → (fi’=true);
[ s ] true → (fi’=false);
endmodule

To encode the non-deterministic decremental model am2 we
must ensure fi remains false if it is already false , as follows:

module ui

fi : bool init true ;

[ s ] fi → (fi’=true);
[ s ] fi → (fi’=false);
[ s ] ! fi → true ;
endmodule

To encode the non-deterministic static model am3 we must
ensure fi is only set before the first task (when t=0) and
remains the same for every other task, as follows:

module ui

fi : bool init true ;

[ s ] t=0 → (fi’=true);
[ s ] t=0 → (fi’=false);
[ s ] t!=0 → true ;
endmodule

5.3.2 Probabilistic Encodings
To encode the probabilistic model am4 only one availability
probability p is used for ui across all tasks. It follows that
a single [ s ] command is required with an empty guard, as
follows:

module ui

fi : bool init true ;

[ s ] true → p:(fi’=true) + 1− p:(fi’=false);
endmodule

In our running example, imagine u2 has a probability of
0.86 of being available for any task in the workflow. The
corresponding availability module for u2 under model am4

would be as follows:

module u2
f2 : bool init true ;

[ s ] true → 0.86:( f2’=true) + 0.14:(f2’=false );
endmodule

The probabilistic models am5 and am6 can be encoded in
the same way for each user ui, the difference is in the applied

probabilities. In am5 the probabilistic availability pi for ti
will be the same for all u ∈ U (|T | probabilities) whilst in
am6 they may be different (up to |U |× |T | probabilities). In
order to set a probabilistic availability before each task ti is
assigned (tn being the last task), a separate command [ s ] is
given for each ti, as follows:

module ui

fi : bool init true ;

[ s ] t=0 → p:(fi’=true) + 1− p:(fi’=false);
...
[ s ] t=n− 1 →pn:(fi’=true) + 1− pn:(fi’=false);
endmodule

The dependant probabilistic model am7 is encoded to al-
low for a different probabilistic availability to be set for user
ui according to the current availability of ui. This is ef-
fected with two [ s ] commands, the first executes if ui is
currently available (fi=true), the second executes otherwise.
Note how the number of commands could be increased with
more precise guards, such that the described behaviour can
be implemented for each individual task.

module ui

fi : bool init true ;

[ s ] fi → p:(fi’=true) + 1− p:(fi’=false);
[ s ] ! fi → p′:(fi’=true) + 1− p′:(fi’=false);
endmodule

The dependant probabilistic model am8 allows for a different
probabilistic availability to be set for user ui according to
the current availability of another user uj . PRISM allows
modules to read the status of variables in other modules (but
not update them). In our encoding fj denotes the current
availability of user uj .

module ui

fi : bool init true ;

[ s ] fj → p:(fi’=true) + 1− p:(fi’=false);
[ s ] ! fj → p′:(fi’=true) + 1− p′:(fi’=false);
endmodule

The dependant probabilistic model am9 is essentially a com-
bination of am7 and am8, encoded as follows:

module ui

fi : bool init true ;

[ s ] fi & fj → p:(fi’=true) + 1− p:(fi’=false);
[ s ] ! fi & !fj → p′:(fi’=true) + 1− p′:(fi’=false);
endmodule

5.3.3 Combined Encoding
PRISM’s state-based language is powerful enough to model
both non-deterministic and probabilistic user availability, al-
lowing us to combine both into a single encoding. In our run-
ning example, imagine for u2 we have no foresight of their
availability for t1 (non-deterministic), we predict a proba-
bilistic availability of 0.86 for t2, we predict a probabilistic
availability of 0.95 for t3 if u2 was available for t2, and a
probabilistic availability of 0.65 for t3 if u2 was not available



(failed) for t2. To clarify, the command [ s ] with the guard
t=0 is setting the availability of u2 for the next task t1, t=1

for the next task t2, and so forth. An encoding of this would
be as follows:

module u2
f2 : bool init true ;

[ s ] t=0 → (f2’=true);
[ s ] t=0 → (f2’=false );
[ s ] t=1 → 0.86:( f2’=true) + 0.14:(f2’=false );
[ s ] t=2 & f2 → 0.95:( f2’=true) + 0.05:(f2’=false );
[ s ] t=2 & !f2 → 0.65:( f2’=true) + 0.35:(f2’=false );
endmodule

5.3.4 Bounded Encodings
It is not trivial to encode non-deterministic bounded fail-
ures in PRISM. Encoding the step [s] in Figure 2 involves
synchronising all commands assigning the availability of all
users, in other words all these commands execute in parallel.
It is not possible to randomly limit the number of executed
commands to k or < k if some users have already failed. For
instance, in our running example we require at least 3 [ s ]

commands to assign their availability. If we want only 2 at
most users failing (i.e. k=2) it is not possible to allow either
1 or 2 commands to be executed in a non-deterministic way.

To encode am10 we explicitly state every possible user fail-
ure case within a single PRISM command [u] and assign a
probability to each case such that their total is 1. The same
decremental model is used in [17] where equal probabilities
for each user failure case are applied. For simplicity we also
consider an equiprobable model such that every combination
of failures of up to k users has an equal chance of occurring.
This means all failure cases must be evaluated when calcu-
lating workflow resiliency. In our encoding, the command
[u] assigns all user availabilities before the first workflow
task. This command can be imagined to be equivalent to
a new transition labelled users, from a new state 5 to the
existing state 1 shown in Figure 2.

A variable fi initialised to 0, holds the step at which user ui

fails. The value tn+1 indicates a user does not fail where
n is the number of tasks in the workflow. For example, in
our running example, the variable f1=4 can be read either
as u1 does not fail or u1 does fail but at some point after
the last task t3, which is of no consequence. Each possible
failure case is represented as a vector which includes every
user and their failure step. For instance, in the running
example u1 failing at t2, u2 failing at t3 and user u3 not
failing constitutes a single failure vector which is defined in
PRISM as a distinct probabilistic update, where q is the
number of all possible failure vectors:

1/q:(f1’=2) & (f2’=3) & (f3’=4)

The command [u] combines all probabilistic updates to make
an equiprobable choice over which failure vector to choose
before updating each variable fi accordingly:

[u] true → 1/q : update1 + . . . + 1/q : updateq;

In our running example, imagine we consider all failures of
up to 2 users (k = 2), creating 37 failure vectors. A single

t1

t2 t3

t4 t5

Figure 3: Analysis example workflow

module availability is used to capture all user availability as
follows:

module availability
f1 : [0..4] init 0;
f2 : [0..4] init 0;
f3 : [0..4] init 0;

[u] true → 1/37:(f1’=1)&(f2’=4)&(f3’=4)
+ . . . + 1/37:(f1’=4)&(f2’=4)&(f3’=4);

endmodule

To assess the availability of the perspective user pu for a par-
ticular task t, the formula av is added to the model definition
as follows:

formula av = (pu=1 & t<f1) | . . . | (pu=n & t<fn);

For example, if the failure step of u1 is t3 (f1=3) it follows
(pu=1 & t<f1) will be true when t=1 and t=2, in other words
u1 is available up until t3. A further implementation change
to encode am10 is to update the main module of the model
definition given in Appendix A. This includes inclusion of a
variable uf and command [u] as shown in Appendix B.

The more dynamic bounded model am11 can be encoded by
simply changing the command label from [u] to [ s ]. The
availability of each user is now assigned with up to k users
failing for each task in the transition [s] in Figure 2. Note
the state 5 and transition users required for am10 is not
required, nor are the changes to the main module given in
Appendix B.

6. ANALYSIS
In this section we look at how the different user availabil-
ity models previously described can affect resiliency com-
putation, not only in terms of value but also in terms of
complexity including model state space, memory and CPU
time.

For our analysis we consider a larger workflow example shown
in Figure 3 where T = {t1, t2, t3, t4, t5} and t1 < t2 <
t3 < t5 and t1 < t4 < t5. It follows that three valid task
execution sequences exist, 〈t1, t2, t3, t4, t5〉, 〈t1, t2, t4, t3, t5〉,
and 〈t1, t4, t2, t3, t5〉. The workflow also comes with users
U = {u1, u2, u3, u4}, and a security policy p2 = (P2, S2, B2)
where:

• P2 = {(u1, t1), (u2, t1), (u2, t2), (u3, t2), (u1, t3),
(u2, t3), (u2, t4), (u4, t4), (u1, t5), (u4, t5)}
• S2 = {(t2, t4), (t3, t4), (t4, t5)}
• B2 = {(t1, t3)}

We select for analysis the following availability models de-
scribed in Section 4.3 and encoded in Section 5.3:



Table 1: Analysis result averages

resiliency states transitions build time verify time memory file size size on disk
(%) (s) (s) (MB) (KB) (KB)

am1 100.00 8530 31321 0.219 0.015 - 2.51 4.00
am4 40.75 8530 31321 0.172 0.016 - 2.50 4.00
am6 78.76 8530 31321 0.172 0.016 - 3.21 4.00
am7 71.71 8530 31321 0.156 0.016 - 2.67 4.00
am10 42.69 50489 64377 0.125 0.172 1.3 8.95 12.00
am11 17.65 91232 3949682 0.062 0.359 17.5 8.90 12.00

• am1 : dynamic, non-deterministic
• am4 : dynamic, independent, probabilistic (simple)
• am6 : dynamic, independent, probabilistic (complex)
• am7 : dynamic, dependent, probabilistic
• am10 : decremental, bounded (k=2), probabilistic
• am11 : dynamic, bounded (k=2), probabilistic

Each availability model encoding is used in turn with the
workflow encoding given in Appendix A. The workflow re-
siliency is computed in PRISM using its default hybrid en-
gine1 run on a computing platform incorporating a 2.40Ghz
i7-4500U Intel processor and 8GB RAM. The results gener-
ated are given in Table 1.

6.1 Resiliency Analysis
Clearly changing the probability of a user being available is
going to change the overall resiliency value calculated for a
workflow. This applies to any probabilistic user availability
model making an exact comparison in terms of the calcu-
lated resiliency value challenging. The availability models
also vary in complexity, for example am1 is purely non-
deterministic, am4 considers 4 probabilities, whilst am6 con-
siders 20 probabilities.

Instead we place an arbitrary bounds of between 0.7 and 1
on the randomly generated probabilities for each availabil-
ity model. This experiment is run 50 times per model and
the averages taken. Bounding the probabilities ensures each
model is using roughly similar values. Even with this check
in place, the resiliency results in Table 1 exhibit a wide vari-
ation of between 100 and 17.65%. We do not suggest which
is the best model to use for resiliency calculation but in-
stead highlight that different model choices can impact the
resulting value for the same workflow.

With the non-deterministic model am1 there will always be
the possibility of a valid user being available for each task,
thus a 100% resiliency value is achieved. This is arguably of
little value in terms of resiliency analysis. However in terms
of the WSP, it indicates the workflow is satisfiable.

6.2 Resiliency Complexity
In this section we compare resiliency complexity given by
different availability models in terms of state space, compu-
tation time and memory. Such metrics are useful especially if
runtime resiliency analysis is required. Of course, complex-
ity metrics of this type will be somewhat dependent on the
computing platform and model checker used. The complex-
ity results given in Table 1 are placed under the following

1http://www.prismmodelchecker.org/manual/

columns:

• States - total number of reachable states in the PRISM
model
• Transitions - total number of transitions between states
• Build time - time to construct the model
• Verify time - time to compute resiliency
• Memory - total memory used to compute resiliency
• File size - size of PRISM model file
• Size on disk - amount of storage allocated by the OS

for the PRISM file.

In Table 1 we can see each of the unbounded availability
models, am1, am4, am6 and am7 all result in the same sized
model, i.e., same number of reachable states and number
of transitions between states. It follows that they all have
similar build and verification times. An obvious observation
is that a model complex to construct with many probabilities
such as am6, has the same computational complexity as a
much simpler model, e.g. am1. In other words the model
size will remain constant if the workflow and security policy
are not changed.

One noticeable observation is the difference in file size which
increases as more content (e.g. commands, probabilities,
etc) is added to the model as one would expect. For example,
am1 results in a file size of 2.51KB whilst the larger model
am6 results in a file of 3.21KB for this example. Despite
this the actual storage space allocated by the OS for all
four unbounded model files is the same at 4KB. Therefore
a simple model may use the same storage space as a more
detailed availability model.

The bounded availability models am10 and am11 result in a
large increase in the overall workflow model complexity. For
example, the state space using am11 is comprised of 91232
states compared with 8530 states when using an unbounded
availability model. Similarly, the number of transitions us-
ing am11 is 3949682 compared with 31321. This can be at-
tributed to the explicit encoding of all possible user failure
cases in these bounded availability models. The correspond-
ing computation times, memory usage and storage size are
also observed to increase in-line with the size of the workflow
model.

7. CONCLUSION
We have reused the result in [17] which considers the work-
flow satisfiability problem as a decision problem, reduced to
that of solving a Markov Decision Process (MDP). We have
provided an encoding of workflows as probabilistic models
and used the ability of the model checker PRISM to ef-



ficiently solve the resulting MDP. The workflow resiliency
problem is also automatically solved following the introduc-
tion of several user availability models.

We have shown that user availability can be modelled in
several ways for the same workflow, set of users and secu-
rity policy making the correct choice of model a complex yet
necessary concern due to its major impact on the computed
resiliency value. It is important that a workflow security pol-
icy designer is provided with suitable values when assessing
how resiliency would be impacted by a security policy. Ap-
propriate resiliency values are also useful to ensure a policy
provides the minimum requirement of resiliency; highlight-
ing extra user level requirements, unworkable processes and
policies; and in providing resiliency indicators and assurance
to business leaders and process designers. We also show how
model choice can impact resiliency computation in terms of
memory and CPU time.

In terms of future work we look to analyse different sizes
of workflow to understand how the complexity of comput-
ing resiliency scales and how the complexity metrics change.
We also look to develop suitable tools and methodologies
for workflow security policy designers enabling them to au-
tomatically calculate an appropriate resiliency value offered
by a workflow security policy.
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APPENDIX
A. WORKFLOW ENCODING
Here we provide a PRISM encoding of our running example.
Example encodings for the user availability modules u1, u2

and u3 are provided in Section 5.3.

module main
nt : bool init true ;
pc : bool init false ;
fail : bool init false ;

[ s ] nt → (nt’=false)&(pc’=false);
[p] !nt & !pc → (pc’=true);
[a] !nt & pc & pol → (nt’=true);
[e] nt → true ;
[ f ] !nt & pc & !pol & ! fail → ( fail ’=true);
endmodule



//task selection
module workflow
t : [−1..3] init 0;
t1 : bool init false ;
t2 : bool init false ;
t3 : bool init false ;

[ s ] !t1 → (t’=1)&(t1’=true);
[ s ] t1 & !t2 → (t’=2)&(t2’=true);
[ s ] t2 & !t3 → (t’=3)&(t3’=true);
[ s ] t3 → (t’=−1);
[ f ] true → (t’=−1);
endmodule

//user selection
module candidate
pu : [0..3] init 0;

[ s ] true → (pu’=1);
[ s ] true → (pu’=2);
[ s ] true → (pu’=3);
endmodule

// security policy
formula pol = perms & sods & av;

//permissions
formula p1 = t=1 & (pu=1 | pu=2);
formula p2 = t=2 & (pu=2 | pu=3);
formula p3 = t=3 & (pu=1 | pu=3);
formula perms = p1 | p2 | p3;

//separation of duties
module sod1
us1 : [0..3] init 0;
fs1 : bool init false ;

[p] (t=1 | t=3) & us1=0 →(us1’=pu);
[p] (t=1 | t=3) & us1!=0 & pu=us1 →(fs1’=true);
[p] (t!=1 & t!=3) | (us1!=0 & pu!=us1) →true;
endmodule

module sod2
us2 : [0..3] init 0;
fs2 : bool init false ;

[p] (t=2 | t=3) & us2=0 →(us2’=pu);
[p] (t=2 | t=3) & us2!=0 & pu=us2 →(fs2’=true);
[p] (t!=2 & t!=3) | (us2!=0 & pu!=us2) →true;
endmodule

formula sods = !fs1 & !fs2 ;

// availability
module u1
f1 : bool init true ;

...
endmodule

module u2
f2 : bool init true ;

...
endmodule

module u3
f3 : bool init true ;

...
endmodule

formula av = (pu=1 & f1) | (pu=2 & f2) | (pu=3 & f3);

B. BOUNDED ENCODING
Here we provide a PRISM encoding of the main module when
using the bounded user availability module described in Sec-
tion 5.3.4.

module main
uf : bool init false ;
nt : bool init true ;
pc : bool init false ;
fail : bool init false ;

[u] !uf → (uf′=true);
[ s ] uf & nt → (nt’=false)&(pc’=false);
[p] !nt & !pc → (pc’=true);
[a] !nt & pc & pol → (nt’=true);
[e] nt → true ;
[ f ] !nt & pc & !pol & ! fail → ( fail ’=true);
endmodule
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