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Abstract

Consider the following problem: given a set syst@if2) and an edge-weighted gragh= (U, E) on the
same universé#, find the setd € Q such that the Steiner tree cost with termindlss as large as possible—
“which set in{2 is the most difficult to connect up?” This is an example ahax-min problemfind the set
A € Q such that the value of some minimization (covering) probigs large as possible.

In this paper, we show that for certain covering problemsivlaidmit good deterministic online algorithms,
we can give good algorithms for max-min optimization whemgbt systerf is given by ap-system or knapsack
constraints or both. This result is similar to results fonstrained maximization of submodular functions.
Although many natural covering problems are not even apprately submodular, we show that one can use
properties of the online algorithm as a surrogate for suhrawity.

Moreover, we give stronger connections between max-miimigetion and two-stage robust optimization,
and hence give improved algorithms for robust versions eioua covering problems, for cases where the
uncertainty sets are given pysystems ang knapsacks.

1 Introduction

Recent years have seen a considerable body of work on théepralf constrained submodular maximization:
you are given a universE of elements, a collectiof C 2V of “independent” sets and a submodular function
f:2Y — R, and the goal is to solve the optimization problem of maxingzf over the “independent” sets:

max f(S). (Max-f)
It is a classical result that whefis a linear function andU, (?) is a matroid, the greedy algorithm solves this
exactly. Furthermore, results from the mid-1970s tell @ #ven whery is monotone submodular anid, 2)
is a partition matroid, the problem becomes NP-hard, bugteedy algorithm is a5 -approximation—in fact,
greedy is &-approximation for monotone submodular maximization eabjoany matroid constraint. Recent
results have shed more light on this problem: it is now kndwat Wwhenf is a monotone submodular function and
(U, Q) is a matroid, there exists g -approximation algorithm. We can remove the constraint @fatonicity, and
also generalize the constraftsubstantially: the most general results say thétig a non-negative submodular
function, and if§2 is ap—systerrﬂ then one can approximabax- f to within a factor ofO(p); moreover, ifQ2 is
the intersection of)(1) knapsack constraints then one can approxirvds- f to within a constant factor.

Given this situation, it is natural to askor which broad classes of functions can we approximatelyestneMax-
f problem efficientlyZSay, subject to constraintsthat form ap-system, or given by a small number of knapsack
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constraints, or both.) Clearly this class of functions uidels submodular functions. Does this class contain other
interesting subclasses of functions which are far fromdpsifomodular?

In this paper we consider the case of “max-min optimizatidrére f is a monotone subadditive function defined
by a minimization covering problem, a natural subset of abagiditive functions. We show conditions under
which we can do constrained maximization over such funstjori-or example, given a set systéii, F), define
the “set cover” functionfsc : 2V — Z>¢, where f(S) is the minimum number of sets froth that cover the
elements inS. This functionfsc is not submodular, and in fact, we can show that there is nmedilar function

g such thatg(S) < fsc(S) < a g(S) for sub-polynomiale. (SeeSection F) Moreover, note that in general
we cannot even evaluajg(.S) to better than a®(log n)-factor in polynomial time. However, our results imply
maxgseq fsc(S) can indeed be approximated well. In fact, the result thatomudd approximately maximizgsc
subject to a cardinality constraint was given by Feige effldl}; our results should be seen as building on their
ideas. (See also the companion pafig.)

At a high level, our results imply that if a monotone functipis defined by a (minimization) covering problemfif

is subadditive, and if the underlying (minimization) cangrproblem admits good deterministic online algorithms,
then there exist good approximation algorithmsNtax- f subject top-systems ang knapsacks. (All these terms
will be made formal shortly.) The resulting approximationagantee for the max-min problem depends on the
competitive ratio of the online algorithm, apdandg. Moreover, the approximation ratio improves if there is a
better algorithm for the offline minimization problem, otfifere is a better online algorithm for a fractional version
of the online minimization problem.

Robust Optimization. Our techniques and results imply approximation algoritfiongovering problems in the
framework of robust optimization as well. In the robust opiaation framework, there are two stages of decision
making. E.g., in a generic robust optimization problem, @neot only given a set systeii/, 2), but also an
inflation parameteA > 1. Then one wants to perform some actions in the first stagetheemdgiven a setl € )

in the second stage, perform another set of actions (whicmoa depend o) to minimize

(cost of first-stage actions)) max A - (cost of second-stage actions)
S

subject to the constraint that the two sets of actions “caer demand sefl € ). As an example, in robust set
cover, one is given another set systéif) F): the allowed actions in the first and second stage are to picles
sub-collectionsF; and.F; respectively fromF, and the notion of “coverage” is that the union of the set&iin 7
must containA. (If A > 1, actions are costlier in the second stage, and hence thareatiral tension between
waiting for the identity of4, and over-anticipating in the first stage without any infation aboutA.)

Note that robust and max-min problems are related, at leashé direction: ifA = 1, there is no incentive to
perform any actions in the first stage, in which case the tgmablem degenerates into a max-min optimization
problem. In this paper, we show a reduction in the other dor@s well—if one can solve the max-min problem
well (and if the covering problem admits a good determiaistiline algorithm), then we get an algorithm for the
robust optimization version of the covering problem as wEfie paper of Feige et afl§]] gave the first reduction
from the robust set-cover problem to the max-min set covalpm, for the special case whén= (g) this result
was based on a suitable LP-relaxation. Our reduction egtéms in two ways: (a) the constraint sétscan now
be p-systems an@ knapsacks, and (b) much more importantly, the reduction applies not only to set cover,
but to many sub-additive monotone covering problems (thgedeterministic online algorithms, as mentioned
above). Indeed, it is not clear how to extend the ellipsadeal reduction ofid] even for the Steiner tree problem;
this was first noted by Khandekar et #7].

Our Results and Techniques. Our algorithm for the max-min problem is based on the obgienvahat the cost

of a deterministic online algorithm for the underlying nmmization covering problem defining can be used as

a surrogate for submodularity in certain cases; speciicale show that the greedy algorithm that repeatedly
picks an element maintaining membershigirand maximizing the cost of the online algorithm gives us adgoo
approximation to the max-min objective function, as longlds ap-system.
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We also show how to reduce the problem of maximizing such etimm over the intersection of knapsacks to
nO/<) runs of approximately maximizing the function over a singtition matroid at a loss of a factor of
q(1 + ¢€), or instead t00@/<*) runs of approximately maximizing over a different partitoatroid at a loss of a
factor of (1 + ¢)—this reduction is fairly general and is likely to be of irgst in other contexts as well. These

results appear ifection B

We then turn to robust optimization. we show that given a deterministic online algorithm for the
covering functionf, and an approximate max-min optimization algorithm foover a family$2, we get an algo-
rithm for two-stage robust version of the underlying congrproblem with uncertainty s€i—the approximation
guarantee depends on both the competitive ratio of themalgorithm, as well as the approximation guarantee of
the max-min problem.

Note that we can combine this latter reduction (using max-atgorithms to get robust algorithms) with our first
reduction above (using online algorithms to get max-mimatgms); inSection bwe give a more careful analysis
that gives a better approximation than that obtained byrjastely combining the two theorems together.

Finally, in Section b we show that some common covering problems (vertex cowversahcover) give rise to
functions f that cannot be well-approximated (in a mutliplicative sgnisy any submodular function, but still
admit good maximization algorithms by our result§Section B

1.1 Related Work

Constrained submodular maximization problems have begnwidely studied p4, L1, 9, B, B3, B3]. However,

as we mention above, the set cover and vertex cover funcéiagar from submodular. Interestingly, in a recent
paper on testing submodularitf], Seshadhri and Vondrak conjecture that the success oflgmeaximization
algorithms may depend on a more general property than suldaray; this work provides further corroboration
for this, since we show that in our context online algoritteas serve as surrogates for submodularity.

Feige et al.[[Q)] first considered thé-max-min set cover subject o = (g) (the “cardinality-constrained” case)—
they gave arO(log m log n)-approximation algorithm for the problem with sets and: elements. They also
showed arf)( log’i g"”m) hardness of approximation férmax-min (andk-robust) set cover. The results in this paper
build upon ideas inf[d], by handling more general covering problems and €et3o the best of our knowledge,
none of thek-max-min problems other than min-cut have been studiedeeariote that the min-cut function is

submodular, and hence the associated max-min problem csoiMael using submodular maximization.

The study of approximation algorithms for robust optimizatwas initiated by Dhamdhere et &8, fL4]: they
study the case when the scenarios were explicitly listed gawe constant-factor approximations for several com-
binatorial optimization problems. Again, the model withpingitly specified (and exponentially many) scenarios
Q) was considered in Feige et 4L{, where they gave a@(log m log n)-approximation for robust set cover in the
cardinality-constrained case= (g) Khandekar et alfJ2] noted that the techniques did not seem to imply
good results for Steiner tree, and developed new constatasf approximations fok-robust versions of Steiner
tree, Steiner forest on trees and facility location, agairtlie cardinality-constrained case. We investigate many
of these problems in the cardinality-constrained case tf bte max-min and robust models in the companion
paper [L], and obtain approximation ratios better than the onlin@petitive factors. On the other hand, the goal
in this paper is to give a framework for robust and max-minration under general uncertainty sets.

2 Preliminaries

2.1 Deterministic covering problems

A covering problenmI has a ground-sdf of elements with costs: £ — R, andn covering requirements (often
called demands or clients), where the solutions tosttte requirement is specified—possibly implicitly—by a
family R; C 2 which is upwards closed (since this is a covering problengguRement is satisfiedby solution
F C Eiff F € R;. The covering problenil = (E, ¢, {R;}!",) involves computing a solutiof C F satisfying
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all n requirements and having minimum cgst.. - c.. E.g., in set cover, “requirements” are items to be covered,
and “elements” are sets to cover them with. In Steiner teglirements are terminals to connect to the root and
elements are the edges; in multicut, requirements arenairpairs to be separated, and elements are edges to be
cut.

The min-cost covering function associated withs:

fr(S) = min{z:c8 . FeR;forallie S}.

ecF

2.2 Max-min problems

Given a covering problerfl and a collectiof2 C 2" of “independent sets”, theax-minproblemMaxMin(II)
involves finding a set € Q2 for which the cost of the min-cost solution dois maximized,

g i)

2.3 Robust covering problems

This problem, denoteRobust(II), is atwo-stage optimizatioproblem, where elements are possibly bought in the
first stage (at the given cost) or the second stage (at\ciistes higher). In the second stage, some subset|n|

of requirements (also calledszenarig materializes, and the elements bought in both stages rollsttively
satisfy each requirement in. Formally, the input to problenRobust(IT) consists of (a) the covering problem
II = (E,c,{R;}~,) as above, (b) an uncertainty $etC 2["] of scenarios (possibly implicitly given), and (c) an
inflation parameten > 1. A feasible solution tdRobust(IT) is a set offirst stage elements;, C E (bought
without knowledge of the scenario), along withamgmentation algorithnthat given anyw € Q2 outputsk, C £
such thatFy U E,, satisfies all requirements in The objective function is to minimize:

c(Ep) + - max c(Ey).

Given such a solutior;(Ey) is called the first-stage cost anthx,cq ¢(E,, ) is the second-stage cost.

Note that by settings = 1 in any robust covering problenthe optimal value of the robust problem equals that of
its corresponding max-min problem

As in [[L§], our algorithms for robust covering problems are basederfdllowing type of guarantee. 1iL§] these
were stated fok-robust uncertainty sets, but they immediately extend bdrary uncertainty sets.

Definition 2.1 An algorithm is(aq, as, §)-discriminatingiff given as input any instance &obust(l1) and a
thresholdT", the algorithm outputs (i) a sdr C £, and (i) an algorithmAugment : Q — 2F, such that:

A. For every scenarid € ),
(i) the elements i@ U Augment,(D) satisfy all requirements i, and
(i) the resulting augmentation cos{Augment, (D)) < - T.
B. Let®* and T (respectively) denote the first-stage and second-stageot@ optimal solution to the
Robust (M) instance. If the threshol@ > 7™ then the first stage cos{®r) < ay - * + ag - T™.

Lemma 2.2 ([L§]) If there is an(aq, as, 3)-discriminating algorithm for a robust covering probleRobust (),
then for every: > 0 there is a((1 + €) - max { a1, 8 + %2 })-approximation algorithm foRobust(I).



2.4 Desirable Properties of the Covering Problem

We now formalize certain properties of the covering problém= (E,c,{R;}!" ;) that are useful in obtaining
our results. Given a partial solutiofi C E and a setX C [n] of requirements, any sdix C E such that
SUEFEx € R; Vi € X is called anaugmentationof S for requirementsX. Given X, S, define the min-cost
augmentation of for requirementsX as:

OptAug(X | S) :=min{c¢(Ex) | Ex C FandSUFEyx € R;, Vi € X}.
Also defineOpt(X) := min{c¢(Ex) | Ex C FandEx € R; Vi € X} = OptAug(X | (), forany X C [n].
An easy consequence of the fact that costs are non-negative following:

Property 2.3 (Monotonicity) For any requirementsX’ C Y C [n] and any solutionS C E, OptAug(X|S) <
OptAug(Y'|S). Similarly, for anyX C [n] and solutionsI' C S C E, OptAug(X | S) < OptAug(X | T).

From the definition of coverage of requirements, we obtain:

Property 2.4 (Subadditivity) For any two subsets of requirememXs Y C [n] and any partial solutionS C E,
we haveOptAug(X | S) + OptAug(Y | S) > OptAug(X UY | 5).

To see this property: iFxy C F andFy C F are solutions corresponding @ptAug(X | S) andOptAug(Y | S)
respectively, thenFx U Fy U S covers requirementX U Y; so OptAug(X UY | S) < ¢(Fx U Fy) <
co(Fx) + ¢(Fy) = OptAug(X | S) + OptAug(Y | S).

We assume two additional properties of the covering problem

Property 2.5 (Offline Algorithm) There is anag-approximation (offline) algorithm for the covering probie
OptAug(X | S), foranyS C Fand X C [n].

Property 2.6 (Online Algorithm) There is a polynomial-time deterministig,-competitive algorithm for the on-
line version ofll = (E, ¢, {R;}" ).

2.5 Models of Downward-Closed Families

All covering functions we deal with are monotone non-desi So we may assume WLOG that the collection
Q in both MaxMin(IT) andRobust(IT) is downwards-closed.e. A C BandB € 2 = A € Q. In this paper
we consider the following well-studied classes:

Definition 2.7 (p-system) A downward-closed famil2 C 2"/ is called ap-system iff:

MaXreq rcA ||

<p

- <p, foreachA C [n],
M yeq jcA ]|

whereQ C Q denotes the collection @haximal subseti €. Sets in) are calledindependent set3Ne assume
access to a membership-oracle, that given any subsefn] returns whether or nof € Q.

Definition 2.8 (¢-knapsack) Givengq non-negative vectors!,... w? : [n] — R, and capacities, ... by €
R, , theg-knapsack constrained family is:

0= {AQ [n] : ij(e) < b;, forall j € [q]}

e€A



These constraints model a rich class of downward-closediémSome interesting special caseg«fystems are
p-matroid intersectionfd] and p-set packing [[8, f]; see the appendix irff] for more discussion op-systems.
Jenkyns 7] showed that the natural greedy algorithm is-approximation for maximizing linear functions over
p-systems, which is the best known result. Maximizing a lifeaction overg-knapsack constraints is the well-
studied class of packing integer programs (PIPs), Bf. [Again, the greedy algorithm is known to achieve an
O(q)-approximation ratio. When the number of constraipis constant, there is a PTAR-][

3 Algorithms for Max-Min Optimization

In this section we give approximation algorithms for coaisted max-min optimization, i.e. Problerivéx-f)
wheref is given by some underlying covering problem diés given by some-system and-knapsack. We first
consider the case whéhis ap-system. Then we show that any knapsack constraint can beeddo al-system
(specifically a partition matroid) in a black-box fashiohjstenables us to obtain an algorithm forbeing the
intersection of a-system and-knapsack. The results of this section assume Prop@&#endP.§.

3.1 Algorithm for p-System Constraints

The algorithm given below is a greedy algorithm, howeves ielative to the objective of the online algorith#y,,
from PropertyP.@rather than the (approximate) function value itself.

Algorithm 1 Algorithm for MaxMin(II) underp-system

1. input: the covering instancH that definesf andp-system(2.

2: let current scenariol, «+ (), counteri + 0, input sequence < ().

3: while (3e € [n] \ 4; such that4; U {e} € ) do
4 a;q1 < argmax {c(Apn(coe)) —c(Am(o)) = e€[n]\ A; andA; U{e} € Q}.
5: leto <~ ocoa;r1, Aitr %AiU{aH_l}, 141+ 1.
6
7
8

. end while
: let D + A; be the independent set constructed by the above loop.
: output solutionD.

Theorem 3.1 Assuming PropertieB.4andR.@there is a((p + 1) aon)-approximation algorithm foMaxMin(I1)
underp-systems.

Proof: The proof of this lemma closely follows that ifi][for submodular maximization overzasystem. We use
slightly more notation that necessary since this proof lgllused in the next section as well.

Suppose that the algorithm performedterations; letD = {a4, - - - , a; } be the ordered set of elements added by
the algorithm. Define = (), Gy := 0, andG; := A,y (0 0ay - - - a;) for eachi € [k]. Note thatGy C G; C --- C
G,. It suffices to show that:

OptAug(B | Go) < (p+1) - (G \ Go) for everyB € ). (3.2)

This would implyOpt(B) < (p+ 1) - ¢(Gg) < (p + 1) aon - Opt(D) for everyB € Q, and hence thab is the
desired approximation.

We use the following claim proved i§], Appendix B (this claim relies on the properties gf-aystem).

Claim 3.2 ([]) ForanyB € Q, there is a partition{ B; }*_, of B such that for alli € [k],

1. |B;| <p,and

2. For everye € B;, we have{ay, - ,a;,—1} J{e} € Q.
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For any sequence of requirements and any € [n] defineAug(e; m) := c(Apn(m o €)) — c¢(Aon(m)). Note that
this function depends on the particular online algorithmonf the second condition in Claif12, it follows that
each element oB; was a feasible augmentation fa, ..., a;_1} in thei'" iteration of thewhile loop. By the
greedy choice,

c(G;) — e(Gi—1) = Aug(a;;o0ay---a;—1) > max Aug(e;ooay---a;_1)

eceB;
1
> Z Aug(e;ooar---a;—1)
|BZ| e€B;
1
> > OptAug({e} | Gi-1) (3.2)
‘BZ’ ecB;
1
> VA - OptAug(B; | Gi-1) (3.3)
> % - OptAug(B; | Gi-1). (3.4)

Above equationff.2) is by the definition ofG;_1 = A,,(0 0 a1 - a;—1), equation uses the subadditivity
PropertyR.4, and 8.9) is by the first condition in Clair8.2

Summing over all iterations € [k|, we obtain:

c(Gr) — c(Go) = ZAUE; (a;o0ay---aj_1) p Z OptAug(B; | Gi-1) p ZOptAug(B | G)

=1 =1 =1
where the last inequality follows from monotonicity sinGe_; C Gy, for all i € [k].
Using subadditivityProperty 2J4we gete(G) — ¢(Go) > 5 - OptAug(UL_, B; | Gi) =

Let J := argmin{c(J’) | J' C E, andG} U J" C R, Ve € B}. i.e. OptAug(B | G
J U (Gy \ Gy) is a feasible augmentation &, that covers requiremenfs. Thus,

» - OptAug(B | Gy).
k) = c(J). Observe that

OptAug(B | Go) < ¢(J) + c(Gy \ Go) = OptAug(B | Gi) + ¢(Gi \ Go) < (p+1) - ¢(Gi \ Go).
This completes the proof. |
3.2 Reducing knapsack constraints to partition matroids

In this subsection we show that every knapsack constramtbeareduced to a suitable collection of partition
matroids. This property is then used to complete the alyoriior MaxMin(I1) when(2 is given by gp-systemand

a g-knapsack. Observe that even a single knapsack constegdtmot correspond exactly to a smabystem: eg.
the knapsack with weights, = 1 andws = wy = -+ = w,, = % and capacity one is only gm — 1)-system
(since both{1} and{2,3,--- ,n} are maximal independent sets). However we show that anyskelonstraint
can beapproximatelyreduced to a partition matroid (which islasystem). The main idea in this reduction is an
enumeration method from Chekuri and Khanfjh [

Lemma 3.3 Given any knapsack constraidt_, w; - z; < B and fixed) < e < 1, there is a polynomial-time
computable collectio;, - - - , Pr of T = n®(1/<*) partition matroids such that:

1. ForeveryX ¢ U _1Pi, we have) ", w; < (1 +¢) - B.
2. {X Cn]|>Yexwi <B}C ul P,



Proof: Letd = ¢/6 and = %B. WLOG we assume thahax] ; w; < B. Partition the grounds€t] into

G:= Hgg((fﬁgﬂ groups as follows.

{i €n]: w2<6} if k=0
fien]:B-1+8)f 1 <w, <p-(1+6)F} f1<k<G

Let T’ denote the number of non-negative integer partitiong®fd] into G parts. Note that,

T := (fG/ég;tf— 1) < exp([G/5] + G — 1) < nC1/%),

We will define a collection of " partition matroidson [n], each over the partitiofiSy, S1, ..., Sg}. For any integer
partitionT = {U,}¢_, of [G/4] (i.e. Uy > 0 are integers and_, Uy, = [G/§]), define a partition matroid®.
that has bound#/(7) on each parfy, where

N 00 if k=0
b(7) 1= g ifl<k<G

Clearly this collection can be constructed in polynomigidifor fixede. We now show that this collection of
partition matroids satisfies the two properties in the lemma

(1) Consider anyX C [n] that is feasible for some partition matroid, s8y. The total weight of element& N S
isat mostn - 5 < § - B. For any groupl < k < @, the weight of elementX” N Sj, is at most:

X OS] B(1+8) < Ny(r) - B(1+0) <801+ 0)(Tp+1)- 2

G
Hence the total weight of all elementsis at most:
6B+51+5 ZUkJrG < sB+s1+02- (Se14a
- G \¢
B (G
< -
< 5B+6(1+6)G <5+2G>
< 6B+ (1+6)-(B+20B)
< B+6/B.

Above we usé < 1. Finally sincej = ¢/6, we obtain the first condition.

(2) Consider anyy” C [n] that satisfies the knapsack constraint, i}, .y w; < B. We will show thatY is
feasible inP,, for some integer partitiom of [G/J] as above. For each< k < @ let Q;, denote the weight of
elements inY” N .S, andUy be the unique integer that satisfiés - 22 < Q. < (U +1)- ‘”3. Definer to be the
integer partition{U,}¢_,. We have}", Uy < G/5, which follows from the fact > 3, Qk > 8.5 Uy. By
increasingUys arbitrarily so that they total tpG//d], we obtain a feasible integer partition We now claim that
Y is feasible forP,. Since each element &f, has weight at least - (1 4 §)*~!, we have

Qk - (Up+1)-6B/G  n-(Uy+1)

|Yﬁ5k|_5(1+5)k 1= (1+6)F1-6B/n G.(1_|_5)k—1.

Since|Y N S| is integral, we obtainY” N Sy| < L%J < Ni(7). Thus we obtain the second conditidil.



3.3 Algorithm for p-System andg-Knapsack Constraints

Here we consideMaxMin(II) when(2 is the intersection of-systemM and ag-knapsack (as in Definitio.§).
The idea is to reduce thgknapsack to a single knapsack (losing factor)), then use Lemm@.3 to reduce the
knapsack to a 1-system, and finally apply Theofefon the resulting + 1 system. Details appear below.

By scaling weights in the knapsack constraints, we may as3tnOG that each knapsack has capacity exactly
one; letw!, - - -, w? denote the weights in theknapsack constraints. We also assume WLOG that each singlet
element satisfies theknapsack; otherwise such elements can be dropped frontdbedset.

Algorithm 2 Algorithm for MaxMin(II) underp-system and-knapsack

1: Approximate thej-knapsack by a single knapsack with weigE§:1 w’ and capacity;; applying Lemm#-3
with e = % on this knapsack, Ie{t’Pj}JL:1 denote the resulting partition matroids (ndte= n°(\).
For eachy € [L], defineX; := M () P;; note that eaclt; is a(p + 1)-system.
Run the algorithm from Theoref.] under eaclp + 1 system{X:;}/-_ to obtain solutiond E; € 3}/,
Letj* < argmaxf 1 ¢ (Aon(Ej)).
Partition ;- into {w; }>41" such that each; € ©, as per ClainB.3

Outputw;- wherei* < arg max>?T" ¢ (A,f;(wi)). Here we use the offline algorithm from Propeltg.

We now establish the approximation ratio of this algorithm.
Claim 3.4 Q C Uf_ 5.

Proof: For anyw € , we have}, . w'(e) < 1foralli € [g]. Henced" ., S°7  w'(e) < ¢, i.e. it satisfies the
combined knapsack constraint. Now by Lenfghd(2), we obtainu € Ule P;. Finally, sincew € Q@ C M, we
havew € Uf_, 3. |
Claim 3.5 For eachr € UL_,3); there exists a collectiofw;};7}" such thatr = [ J;7}" wy, andw, € 0 for all
¢ € [3¢g+1]. Furthermore this is computable in polynomial time.

Proof: Consider anyr € X := UJLZIEJ-. Note thatr € M, so any subset af is also inM (which is downwards-
closed). We will show that there is a partition ointo {WE}?L such that eachy, satisfies the-knapsack. This
suffices to prove the claim. Since € UJLZIP]-, by LemmaB:3 (1) it follows that}", . "9, wi(e) < 2q.
Starting with the trivial partition of into singleton elements, greedily merge parts as long dspat satisfies the
g-knapsack, until no further merge is possible. (Note thatttivial partition is indeed feasible since each element
satisfies theg-knapsack.) Le{w,};_, denote the parts in the final partition; we will shew< 3¢ + 1 which would
prove the claim. Consider forming-/2] pairs from{w,}}_, arbitrarily. Observe that for any pajt,w’}, it must

be thatw U w’ violatessomeknapsack; s~ ., . > i, w'(e) > 1. Thus)" ., >°% | wi(e) > |r/2]. On the
other handy ... >, wi(e) < 3¢, which impliesr < 3¢ + 2. ]

Theorem 3.6 Assuming PropertieR.4, .5 andP.§, there is anO((p + 1) (g + 1) coff con)-approximation algo-
rithm for MaxMin(II) under ap-system ang-knapsack constraint.

Proof: Let Opt; denote the optimal value daxMin(II) underp+ 1 system;, for eachj € [L]. By ClaimB.4we
havemaLxJL:1 Opt > Opt, the optimal value oMaxMin(IT) underS2. Observe that Theoref1 ] actually implies
c(Aon(Ej)) > p+2 - Opt; for eachj € [q]. Thusc(Aon(Ej-)) = 1 - Opt; henceOpt(Ej+) > m - Opt.
Now consider the partitiow; }>t" of E;- from Claim B3 By the subadditivity propertyz3qu1 Opt(w;) >
Opt(Ej-); i.e. there is somé € 3¢+ 1] Wlth Opt(wz) 7 - Opt. Thus thei™ found using the offline

— Qon (P+2)(3q+1
algorithm (Propertf.5) satisfiesOpt(w;) > - Opt. [ |

—  Qlon Quoff (p+2)(3q+1)



Remark: We can obtain a better approximation guarante® + 1) (¢ + 1) aon) in TheoremB.§ using ran-
domization. This algorithm is same as Algorithm 2, exceptie last step, where we output for ¢ € [3q + 1]
choseruniformly at random From the above proof of Theore, it follows that:

E[Opt Opt(w > - Opt.
ElOpt{w)] = < +1Z Pw) 2 5 T 2 o o 26T D 0P
4 General Framework for Robust Covering Problems

In this section we present an abstract framework for robostiing problems undemy uncertainty se, as long
as we are given access to offline, online and max-min algostfor the base covering problem. Formally, this
requires Propertig®.5, .8 and the following additional property (recall the notatfoom Sectiorf).

Property 4.1 (Max-Min Algorithm) There is am,,-approximation algorithm for the max-min problem: given
input.S C E, MaxMin(S) := maxxeqomin{c(A) | SUA € R;, Vi € X}.

Theorem 4.2 UnderProperties 2.4R.5 B.8andf.1, there is anD (awf - con - amm )-approximation algorithm for
the robust covering problemobust(M) = (E, ¢, {R;}7_,, 2, ).

Proof: The algorithm proceeds as follows.

Algorithm 3 Algorithm Robust-with-General-Uncertainty-Sets

1. input: theRobust(II) instance and threshold.

2: let countert «+ 0, initial online algorithm’s inputr = (), initial online solutionF} + (.

3: repeat

4 sett <t + 1.

5. let E; C [n] be the scenario returned by the algorithnfPobperty 4Jlon MaxMin(F;_1).
6: leto < oo E;, andF; «+ A,, (o) be the current online solution.

7: until ¢(F}) — c(Fi—1) <2000 - T

8: setr «—t— 1.

9: output first-stage solutiomy := F..

10: output second-stage solutiohugment, where for anyw C [n], Augment(w) is the solution of the offline

algorithm Property 2 for the problemOptAug(w | ®7).

As always, letd* C E denote the optimal first stage solution (and its cost), Bhthe optimal second-stage cost;
so the optimal value i®* + X\ - T*. We prove the performance guarantee using the followinignsla

Claim 4.3 (General 2nd stage)For any7T > 0 and X € (2, elementspr | Augment(X) satisfy all the require-
ments inX, andc(Augment (X)) < 200 * ¥mm - Qon * 1.

Proof: Itis clear that® | J Augment,(X) satisfy all requirements iX. By the choice of set; ;1 in
of the last iteration, for any € Q) we have:

OptAug(X ’ FT) < Omm - OptAug(ETH ’ F’T‘) < Omm - (C(Fr-i-l) - C(F’T)) < 20mm - Qon - T

The first inequality is byProperty 4]1 the second inequality uses the fact tifat.; 2 F. (since we use
an online algorithm to augment [me §),f| and the last inequality follows from the termination coruitin

fine 1. Finally, sinceAugment(X) is anaog-approximation tdptAug(X | F;), we obtain the claim. W

2This is the technical reason we need an online algorithmnsifeiad we had used an offline algorithm to complitén stepﬂ then
F, 2 F,—, and we could not upper bound the augmentation ©sug(E; | Fi—1) by ¢(Fi) — c(Fi—1).
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Claim4.4 Opt(UtSTEt) <7-T* 4 P*.

Proof: Since eaclE; € ) (these are solutions tdaxMin), the bound on the second-stage optimal cost gives

OptAug(E; | ®*) < T*for all t < 7. By subadditivity Property 2.p we haveOptAug(Ui<.E; | ®*) <
7 - T*, which immediately implies the claim. [ |

Claim 4.5 Opt(Ui<; Et) > 7= - ¢(F).

Proof: Directly from the competitiveness of the online algorithmProperty 2]6 |
Claim 4.6 (General 1st stage)lf ' > T* thenc(®r) = ¢(Fr) < 2 aon - ™.

Proof: We havec(F;) = Y.7_; [c(F}) — c¢(Fi—1)] > 2aonT - T > 2007 - T* by the choice in Steff.
Combined witHClaim 4.% we haveOpt(U,<, E;) > 27 - T*. Now usingClaim 4.4 we haver - T* < ®*, and
henceOpt(Ui<, E;) < 2 - ®*. Finally usingClaim 4.% we obtainc(F;) < 2aen - ®*. |

[Claim 4.8and[Claim 4.6imply that the above algorithm is @con, 0, 2ammonorf)-discriminating algorithm
for the robust problenRobust(M) = (E, ¢, { R; }"_;,Q, \). Now usingLemma 2.pwe obtain the theorem. H

Explicit uncertainty sets An easy consequence fheorem 4)2s for the explicit scenariomodel of robust
covering problemsf, [I4], where(2 is specified as a list of possible scenarios. In this casé/lthéMin problem can
be solved using the,g-approximation algorithm frorfProperty 2.5vhich implies anO (a2 ., )-approximation
for the robust version. In fact, we can do slightly better-setving that in this case, the algorithm for second-
stage augmentation is the same as the Max-Min algorithm, bte&roanO (a.ff - aon )-approximation algorithm
for robust covering with explicit scenarios. As an applimatof this result, we obtain af?(log n) approximation
for robust Steiner forest with explicit scenarios, whiclthis best known result for this problem.

5 Robust Covering underp-System andg-Knapsack Uncertainty Sets

Recall that any uncertainty sgtfor a robust covering problem can be assumed WLOG tddyenward-closed
ie. X € QandY C X impliesY € Q. Eg., in thek-robust model? = {S C [n] : |S| < k}. Hence itis
of interest to obtain good approximation algorithms forustbcovering when? is specified by means of general
models for downward-closed families. In this section, wasider the two well-studied models pfsystems and
g-knapsacks (Definitiong.7andp.9.

The result of this section says the following:we can solve both the offline and online versions of a cogeri
problem well, we get good algorithms fBiobust(IT) under uncertainty sets given by the intersectiop-sf/stems
and ¢-knapsack constraintsNaturally, the performance dependsoandg; we note that this is unavoidable due
to complexity considerations. Based on Theof@it suffices to give an approximation algorithm for the max-
min problem undep-systems ang-knapsack constraints; so TheorBg combined with Theorefd.2implies an

O ((p+1)(q+1) a2, aZs)-approximation ratio. However, we can obtain a better gutaeaby considering the
algorithm forRobust(II) directly. Formally we show that:

Theorem 5.1 Under [Properties 24P.5 and P.§, the robust covering problerRobust(M)(E, ¢, {R;}™, 2, \)
admits anO ((p+ 1) - (g + 1) - aoff - on )-appProximation guarantee whem is given by the intersection of &

system ang-knapsack constraints.

The outline of the proof is same as for TheorB. We first consider the case when the uncertainty setjis a
system [ubsection 511 then using the reduction in Lemrfia3 we solve a suitable instance Bbbust(IT) under
a(p + 1)-system uncertainty set.
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5.1 p-System Uncertainty Sets

In this subsection, we considBobust(IT) when the uncertainty s€tis somep-system. The algorithm is a combi-
nation of the ones in Theorefn2 and TheorenB.1 We start with an empty solution, and use the online algarith
to greedily try and build a scenario of large cost. If we do fntriolated” scenario which is unhappy with the
current solution, we augment our current solution to hattle scenario (again using the online algorithm), and
continue. The algorithm is given as Algorithm 4 below.

Algorithm 4 Algorithm Robust-withp-system-Uncertainty-Sets
1. input: theRobust(II) instance and bound.
2: let countert « 0, initial online algorithm’s input- = (), initial online solutionF} <« 0.

3: repeat

4 sett+t+1.

5. let current scenariol), < ), counteri < 0.

6: while (3e € [n] \ Al such thatdl U {e} € Q) do

7: aiy1 < argmax{c(Aon (o 0e)) — c(Aon(0)) | e € [n] \ A; andA; U {e} € Q}.
8: Ieta%aoaiH,AgH%AﬁU{aHl},ﬂ—i—i—l.

9: endwhile

10: let E; <+ Al be the scenario constructed by the above loop.

11:  let F} «+ A,, (o) be the current online solution.

12: until ¢(F}) — e(Fi—1) < 200n - T

13: setr <t — 1.

14: output first-stage solutio® := F..

15: output second-stage solutiohugment, where for anyw C [n], Augment,(w) is the solution of the offline
algorithm (Propert.5) for the problemOptAug(w | ®7).

We first prove a useful lemma about the behavior ofvitide loop.

Lemma 5.2 (Max-Min Lemma) For any iterationt of therepeatloop, the scenarid; € € has the property that
for any other scenarid € 2, OptAug(B | Fi—1) < (p+1) - c(Fi \ Fi—1).

Proof: The proof is almost identical to that of Theor@ni.

Consider any iterationof therepeatloop in Algorithm 4 that starts with a sequencef elements (that have been
fed to the online algorithm4,,,,). Let A = {a,,--- , ax} be the ordered set of elements added by the algorithm in
this iteration. DefingZy := A,,(0), andG; := A,,(0 o ay ---a;) for eachi € [k]. Note thatF;_; = G, and

F, = G, andGy C G; C --- C Gy. It suffices to show thaDptAug(B | Go) < (p+ 1) - ¢(Gk \ Go) for every

B € . But this is precisely Equatiof8(d) from the proof of Theorer.1. |

Corollary 5.3 (Second Stage)For anyT > 0 and B < (2, elementsb |  Augment-(B) satisfy all the require-
ments inB, andc(Augment(B)) < 2aff - @on - (p+ 1) - T

Proof: Observe thab, = F;; = A,,(0), so the first part of the corollary follows from the definitiohAugment.
By Lemma 5.Pand the termination condition we haveOptAug(B | F;) < (p+2)-(c(Fri1)—c(F,)) <
2(p+2)aon T. Now[Property 2. juarantees that the solutidmgment(B) found by this approximation algorithm
has cost at moStvf - aon - (p+2) T [ |

It just remains to bound the cost of the first-stage solufipn Below ®* denotes the optimal first-stage solution
(and its cost); and™ is the optimal second-stage cost.

Lemma 5.4 (First Stage) If " > T thenc(®r) = ¢(Fr) < 2aon - O*.

Proof: For any setX C [n] of requirements leOpt(X) denote the minimum cost to satisly. Firstly, observe
thatOpt (U<, E;) < 7-T* + ®*. This follows from the fact that each of thescenariog; are in{2, so the bound
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on the second-stage optimal cost gigstAug(E; | ®*) < T* for all t < 7. By subadditivity Assumption 2 ¥
we haveOptAug(Ui<,- E; | ) < 7 - T, which immediately implies the inequality. Now, we clainath

Opt(Ui<r By) > o= ¢(Fr) > 5= 2007 - T* = 27 - T*. (5.5)

The first inequality follows directly from the competitivess of the online algorithm For the
second inequality, we havéF;) = >~ [c(F}) — ¢(Fi—1)] > 2aonT - T > 20007 - T* by the terminal condition
in Putting the upper and lower bounds Opt(U;<, E;) together, we have - T* < &*, and hence
Opt(Ui<-Et) < 2- ®*. Using the competitiveness of the online algorithm agai@obtainc(F;) < 2aq, - *. W

From[Corollary 5.BandLemma 5.4 it follows that our algorithm ig2a,n, 0, 2af on - (p + 1))-discriminating
(cf. DefinitionP.3) to Robust(II). Thus we obtain Theoref] for the case; = 0.

5.2 Algorithm for p-Systemsand ¢-Knapsacks

Here we consideRobust(II) when the uncertainty sé? is the intersection op-systemM and ag-knapsack.
The algorithm is similar to that in Subsecti@3 Again, by scaling weights in the knapsack constraints, we
may assume WLOG that each knapsack has capacity exactlylaine!,--- ,w? denote the weights in the
knapsack constraints. We also assume WLOG that each singltment satisfies theknapsack. The algorithm
for Robust(IT) under2 works as follows.

Algorithm 5 Algorithm Robust withp-system and-knapsack Uncertainty Set
1: Consider a modified uncertainty s@t that is given by the intersection g¥1 and thesingle knapsackvith
Weight—vectorz;?:1 w! and capacity;.
2: Applying the algorithm in Lemm§.3 to this single knapsack with = 1, let {Pj}le denote the resulting
partition matroids (notd, = n°).
3: For eachy € [L], define uncertainty-set; := M (1 P;; note that eack; is a(p + 1)-system.
4: LetX UJLZIZJ-. SolveRobust(IT) undery: using the algorithm of Theoref 8.

Recall Claim$8.4 andB.§which hold here as well.

Lemma 5.5 Anya-approximate solution tRobust(IT) underX is a(3¢+1)a-approximate solution tRobust(IT)
under uncertainty-sef.

Proof: Consider the optimal first-stage soluti@ri to Robust(II) under(2, letT™* denote the optimal second-stage
cost andOpt the optimal value. Let € ¥ be any scenario, with partitioﬁuz-}?ﬂl given by ClaimB.3. Using the
subadditivity Propertf2-3, we haveOptAug(7|®*) < S"2H OptAug(w|®*) < (3¢ +1) - T*. Thus the objective
value of®* for Robust(II) underX is at mosic(®*) + A - (3¢ + 1) T* < (3¢ + 1) - Opt.

ClaimB.4 implies that for any solution, the objective valueRbbust(IT) under(2 is at most that oRobust(II)
underX. Thus the lemma follows. |

For solvingRobust(II) underX, note that althoug itself is not anyp’-system, it is thaunion of polynomially-
many(p + 1)-systems. We show below that a simple extension of the dhgorin Subsectiofp.] also works for
unions ofp-systems; this would solveobust(IT) underX.

Theorem 5.6 There is anO((p + 1) awff aon )-approximation forRobust(IT) when the uncertainty set is given by
the union of polynomially-many-systems.

Proof: LetX = UJLZIEJ- denote the uncertainty set where eaghs ap-system. The algorithm fdRobust(II) un-
derX is just Algorithm 4 where we replace the body of the repeagi@e. lines 4-11) by:

1. sett «— ¢+ 1.
2: for (j € [L]) do
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3. letcurrent scenariol; < 0,

4:  while (3e € [n] \ A; suchthatd; U {e} € ;) do

5: e* < argmax{c(Aon(0c0Ajoe)) —c(Am(ooAj)) |een\AjandA; U {e} € Q}.
6: Aj %AjU{e*}.

7. end while

8:  LetAj « c(Ap(o o 4j)) — c(Aon(0)).

9: end for

10: let j* < argmax{A; | j € [L]}, andE; < Aj-.
11: let o < 0 o E; andF; + A,y (o) be the current online solution.

Consider any iterationof the repeat loop. By Lemnfa2 applied to each-systemy;,
Claim 5.7 For eachj € [L], we haveOptAug(B|Fi—1) < (p+1) - A; for everyB € %;.

By the choice of scenarié; and sinceX = Ule ¥;, we obtain:

Claim 5.8 For any iterationt of the repeat loop and ani € ¥, OptAug(B|Fi—1) < (p+ 1) - ¢(F; \ Fi—1).

Based on these claims and proofs identical to Corofla§yand Lemmdb.4, we obtain the same bounds on the first
and second stage costs of the final solutioén Thus our algorithm i$2c.n, 0, 2a6r on - (p + 1))-discriminating,
which by Lemmg2.2implies the theorem. [ |

Finally, combining Lemm{.5 and Theorenb.gwe obtain Theorerp.1

Remark: In [Theorem 5]1the dependence on the number of constraints describingritertainty sef? is in-
evitable (under some complexity assumptions). Considerra special case of the robust covering problem on
ground-setF, requirements?” (wherei € E is satisfied iff the solution containg, a unit cost function orf,
inflation parameteA = 1. The uncertainty se is given by the intersection of different cardinality constraints
coming from someset packingnstance onE. In this case, the optimal value of the robust covering pabis
exactly the optimal value of the set packing instance. Thdress result from Hastaflf] now implies that this
robust covering problem iQ(p%‘E) hard to approximate. We note that this hardness appliestordjgorithms
having running time that is sub-exponential in b andp; this is indeed the case for our algorithm.

Results for p-System andg-Knapsack Uncertainty Sets. We now list some specific results for robust covering
under uncertainty sets described fegystems and knapsack constraints; these follow direatiy fTheorem 5]1
using known offline and (deterministic) online algorithras the relevant problems.

| Problem | Offline ratio | Online ratio | p-system,g-knapsack Robust |
Set Cover O(logm) O(logm - logn) [B] pq -log”m -logn
Steiner Tree/Forest 2 [fi, L3 O(logn) [L9 HI pq - logn
Minimum Cut 1 O(log” n - loglogn) [E, [16] pq - log®n - loglogn
Multicut logn [Q] O(log® n - loglogn) [E, [16] pq - log* n - loglogn

6 Non-Submodularity of Some Covering Functions

In this section we show that some natural covering functamgsnot even approximately submodular. lfet
2V — R>( be any monotone subadditive function. We say that a-approximately submodular iff there exists a
submodular functiory : 2V — Rxq with g(S) < £(S) < a - g(S) forall S C U.

Consider the min-set-cover functiofisc(.S) = minimum number of sets required to cover elements
Proposition 6.1 The min-set-covering function is nefn)-approximately submodular.

Proof: The proof follows from the lower bound doudget-balancéor cross-monotone cost allocatiansnmorlica
etal. showed that there is n@(n)-approximately budget-balanced cross-monotone costaltm for the set-
cover game. On the other hand it is known (see Chapter 1514Pj) that any submodular-cost game admits
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a budget-balanced cross-monotone cost allocation. Teisialplies that anyv-approximately submodular cost
function (non-negative) admits arapproximate budget-balanced cross-monotone cost ithacal hus the min-
set-covering function can not lagn)-approximately submodular. |

Similarly, for minimum multicut (71, (S) = minimum cost cut separating the pairsih
Proposition 6.2 The min-multicut function is n@;t(nl/3)—approximately submodular.

Proof: This uses the result that the vertex-cover game does nott adnli)-approximately budget-balanced
cross-monotone cost allocatiof)]. Since multicut (even on a star graph) contains the vertaer problem, the
proposition follows. |

On the other hand, some other covering functions are indegezimately submodular.

e The minimum-cut function fy;c(S) = minimum cost cut separating verticésfrom the root) is in fact
submodular due to submodularity of cuts in graphs.

e The min-Steiner-treef(S) = minimum length tree that connects vertice$o the root) and min-Steiner-
forest (fs(S) = minimum length forest connecting the pairsSi functions areO(log n)-approximately
submodular. When the underlying metric is a tree, thesetifume are submodular—in this case they reduce
to weighted coverage functions. Using probabilistic agjpnation of general metrics by trees, we can
write g(S) = Erer[fT(S)] whereT is the distribution on dominating tree-metrics (froffj)[and f7
is the Steiner-tree/Steiner-forest function on tiiée Clearly g is submodular. Since there exisfs that
approximates distances in the original metric within faciglog ») [H], it follows that g also O(log n)-

approximatessr (resp. fsr).

While approximate submodularity of the covering probléinleg. minimum-cut or Steiner-tree) yields direct
approximation algorithms foMaxMin(II), it is unclear whether they help in solvifngobust(II) (even under
cardinality-constrained uncertainty sefid]). On the other hand, the online-algorithms based appraachis
paper solves botMaxMin(II) andRobust(II), for uncertainty sets from-systems ang-knapsacks.
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