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Robust and MaxMin Optimization under
Matroid and Knapsack Uncertainty Sets∗

Anupam Gupta† Viswanath Nagarajan‡ R. Ravi§

Abstract

Consider the following problem: given a set system(U,Ω) and an edge-weighted graphG = (U,E) on the
same universeU , find the setA ∈ Ω such that the Steiner tree cost with terminalsA is as large as possible—
“which set inΩ is the most difficult to connect up?” This is an example of amax-min problem: find the set
A ∈ Ω such that the value of some minimization (covering) problemis as large as possible.

In this paper, we show that for certain covering problems which admit good deterministic online algorithms,
we can give good algorithms for max-min optimization when the set systemΩ is given by ap-system or knapsack
constraints or both. This result is similar to results for constrained maximization of submodular functions.
Although many natural covering problems are not even approximately submodular, we show that one can use
properties of the online algorithm as a surrogate for submodularity.

Moreover, we give stronger connections between max-min optimization and two-stage robust optimization,
and hence give improved algorithms for robust versions of various covering problems, for cases where the
uncertainty sets are given byp-systems andq knapsacks.

1 Introduction

Recent years have seen a considerable body of work on the problem of constrained submodular maximization:
you are given a universeU of elements, a collectionΩ ⊆ 2U of “independent” sets and a submodular function
f : 2U → R≥0, and the goal is to solve the optimization problem of maximizing f over the “independent” sets:

max
S∈Ω

f(S). (Max-f )

It is a classical result that whenf is a linear function and(U,Ω) is a matroid, the greedy algorithm solves this
exactly. Furthermore, results from the mid-1970s tell us that even whenf is monotone submodular and(U,Ω)
is a partition matroid, the problem becomes NP-hard, but thegreedy algorithm is a e

e−1 -approximation—in fact,
greedy is a2-approximation for monotone submodular maximization subject toany matroid constraint. Recent
results have shed more light on this problem: it is now known that whenf is a monotone submodular function and
(U,Ω) is a matroid, there exists aee−1 -approximation algorithm. We can remove the constraint of monotonicity, and
also generalize the constraintΩ substantially: the most general results say that iff is a non-negative submodular
function, and ifΩ is ap-system,1 then one can approximateMax-f to within a factor ofO(p); moreover, ifΩ is
the intersection ofO(1) knapsack constraints then one can approximateMax-f to within a constant factor.

Given this situation, it is natural to ask:For which broad classes of functions can we approximately solve theMax-
f problem efficiently?(Say, subject to constraintsΩ that form ap-system, or given by a small number of knapsack
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constraints, or both.) Clearly this class of functions includes submodular functions. Does this class contain other
interesting subclasses of functions which are far from being submodular?

In this paper we consider the case of “max-min optimization”: heref is a monotone subadditive function defined
by a minimization covering problem, a natural subset of all subadditive functions. We show conditions under
which we can do constrained maximization over such functions f . For example, given a set system(U,F), define
the “set cover” functionfSC : 2U → Z≥0, wheref(S) is the minimum number of sets fromF that cover the
elements inS. This functionfSC is not submodular, and in fact, we can show that there is no submodular function
g such thatg(S) ≤ fSC(S) ≤ α g(S) for sub-polynomialα. (SeeSection 6.) Moreover, note that in general
we cannot even evaluatefSC(S) to better than anO(log n)-factor in polynomial time. However, our results imply
maxS∈Ω fSC(S) can indeed be approximated well. In fact, the result that onecould approximately maximizefSC
subject to a cardinality constraint was given by Feige et al.[10]; our results should be seen as building on their
ideas. (See also the companion paper [15].)

At a high level, our results imply that if a monotone functionf is defined by a (minimization) covering problem, iff
is subadditive, and if the underlying (minimization) covering problem admits good deterministic online algorithms,
then there exist good approximation algorithms forMax-f subject top-systems andq knapsacks. (All these terms
will be made formal shortly.) The resulting approximation guarantee for the max-min problem depends on the
competitive ratio of the online algorithm, andp andq. Moreover, the approximation ratio improves if there is a
better algorithm for the offline minimization problem, or ifthere is a better online algorithm for a fractional version
of the online minimization problem.

Robust Optimization. Our techniques and results imply approximation algorithmsfor covering problems in the
framework of robust optimization as well. In the robust optimization framework, there are two stages of decision
making. E.g., in a generic robust optimization problem, oneis not only given a set system(U,Ω), but also an
inflation parameterλ ≥ 1. Then one wants to perform some actions in the first stage, andthen given a setA ∈ Ω
in the second stage, perform another set of actions (which can now depend onA) to minimize

(cost of first-stage actions)+max
A∈Ω

λ · (cost of second-stage actions)

subject to the constraint that the two sets of actions “cover” the demand setA ∈ Ω. As an example, in robust set
cover, one is given another set system(U,F): the allowed actions in the first and second stage are to pick some
sub-collectionsF1 andF2 respectively fromF , and the notion of “coverage” is that the union of the sets inF1∪F2

must containA. (If λ > 1, actions are costlier in the second stage, and hence there isa natural tension between
waiting for the identity ofA, and over-anticipating in the first stage without any information aboutA.)

Note that robust and max-min problems are related, at least in one direction: ifλ = 1, there is no incentive to
perform any actions in the first stage, in which case the robust problem degenerates into a max-min optimization
problem. In this paper, we show a reduction in the other direction as well—if one can solve the max-min problem
well (and if the covering problem admits a good deterministic online algorithm), then we get an algorithm for the
robust optimization version of the covering problem as well. The paper of Feige et al. [10] gave the first reduction
from the robust set-cover problem to the max-min set cover problem, for the special case whenΩ =

(U
k

)

; this result
was based on a suitable LP-relaxation. Our reduction extends this in two ways: (a) the constraint setsΩ can now
be p-systems andq knapsacks, and (b) much more importantly, the reduction nowapplies not only to set cover,
but to many sub-additive monotone covering problems (thosewith deterministic online algorithms, as mentioned
above). Indeed, it is not clear how to extend the ellipsoid-based reduction of [10] even for the Steiner tree problem;
this was first noted by Khandekar et al. [22].

Our Results and Techniques. Our algorithm for the max-min problem is based on the observation that the cost
of a deterministic online algorithm for the underlying minimization covering problem definingf can be used as
a surrogate for submodularity in certain cases; specifically, we show that the greedy algorithm that repeatedly
picks an element maintaining membership inΩ and maximizing the cost of the online algorithm gives us a good
approximation to the max-min objective function, as long asΩ is ap-system.

2



We also show how to reduce the problem of maximizing such a function over the intersection ofq knapsacks to
nO(1/ǫ2) runs of approximately maximizing the function over a singlepartition matroid at a loss of a factor of
q(1 + ǫ), or instead tonO(q/ǫ2) runs of approximately maximizing over a different partitonmatroid at a loss of a
factor of (1 + ǫ)—this reduction is fairly general and is likely to be of interest in other contexts as well. These
results appear inSection 3.

We then turn to robust optimization. InSection 4, we show that given a deterministic online algorithm for the
covering functionf , and an approximate max-min optimization algorithm forf over a familyΩ, we get an algo-
rithm for two-stage robust version of the underlying covering problem with uncertainty setΩ—the approximation
guarantee depends on both the competitive ratio of the online algorithm, as well as the approximation guarantee of
the max-min problem.

Note that we can combine this latter reduction (using max-min algorithms to get robust algorithms) with our first
reduction above (using online algorithms to get max-min algorithms); inSection 5, we give a more careful analysis
that gives a better approximation than that obtained by justnaively combining the two theorems together.

Finally, in Section 6, we show that some common covering problems (vertex cover and set cover) give rise to
functionsf that cannot be well-approximated (in a mutliplicative sense) by any submodular function, but still
admit good maximization algorithms by our results inSection 3.

1.1 Related Work

Constrained submodular maximization problems have been very widely studied [24, 11, 29, 6, 30, 23]. However,
as we mention above, the set cover and vertex cover functionsare far from submodular. Interestingly, in a recent
paper on testing submodularity [27], Seshadhri and Vondrak conjecture that the success of greedy maximization
algorithms may depend on a more general property than submodularity; this work provides further corroboration
for this, since we show that in our context online algorithmscan serve as surrogates for submodularity.

Feige et al. [10] first considered thek-max-min set cover subject toΩ =
(U
k

)

(the “cardinality-constrained” case)—
they gave anO(logm log n)-approximation algorithm for the problem withm sets andn elements. They also
showed anΩ( logm

log logm ) hardness of approximation fork-max-min (andk-robust) set cover. The results in this paper
build upon ideas in [10], by handling more general covering problems and setsΩ. To the best of our knowledge,
none of thek-max-min problems other than min-cut have been studied earlier; note that the min-cut function is
submodular, and hence the associated max-min problem can besolved using submodular maximization.

The study of approximation algorithms for robust optimization was initiated by Dhamdhere et al. [8, 14]: they
study the case when the scenarios were explicitly listed, and gave constant-factor approximations for several com-
binatorial optimization problems. Again, the model with implicitly specified (and exponentially many) scenarios
Ω was considered in Feige et al. [10], where they gave anO(logm log n)-approximation for robust set cover in the
cardinality-constrained caseΩ =

(

U
k

)

. Khandekar et al. [22] noted that the techniques of [10] did not seem to imply
good results for Steiner tree, and developed new constant-factor approximations fork-robust versions of Steiner
tree, Steiner forest on trees and facility location, again for the cardinality-constrained case. We investigate many
of these problems in the cardinality-constrained case of both the max-min and robust models in the companion
paper [15], and obtain approximation ratios better than the online competitive factors. On the other hand, the goal
in this paper is to give a framework for robust and max-min optimization under general uncertainty sets.

2 Preliminaries

2.1 Deterministic covering problems

A covering problemΠ has a ground-setE of elements with costsc : E → R+, andn covering requirements (often
called demands or clients), where the solutions to thei-th requirement is specified—possibly implicitly—by a
family Ri ⊆ 2E which is upwards closed (since this is a covering problem). Requirementi is satisfiedby solution
F ⊆ E iff F ∈ Ri. The covering problemΠ = 〈E, c, {Ri}

n
i=1〉 involves computing a solutionF ⊆ E satisfying
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all n requirements and having minimum cost
∑

e∈F ce. E.g., in set cover, “requirements” are items to be covered,
and “elements” are sets to cover them with. In Steiner tree, requirements are terminals to connect to the root and
elements are the edges; in multicut, requirements are terminal pairs to be separated, and elements are edges to be
cut.

The min-cost covering function associated withΠ is:

fΠ(S) := min

{

∑

e∈F

ce : F ∈ Ri for all i ∈ S

}

.

2.2 Max-min problems

Given a covering problemΠ and a collectionΩ ⊆ 2[n] of “independent sets”, themax-minproblemMaxMin(Π)
involves finding a setω ∈ Ω for which the cost of the min-cost solution toω is maximized,

max
ω∈Ω

fΠ(ω).

2.3 Robust covering problems

This problem, denotedRobust(Π), is atwo-stage optimizationproblem, where elements are possibly bought in the
first stage (at the given cost) or the second stage (at costλ times higher). In the second stage, some subsetω ⊆ [n]
of requirements (also called ascenario) materializes, and the elements bought in both stages must collectively
satisfy each requirement inω. Formally, the input to problemRobust(Π) consists of (a) the covering problem
Π = 〈E, c, {Ri}

n
i=1〉 as above, (b) an uncertainty setΩ ⊆ 2[n] of scenarios (possibly implicitly given), and (c) an

inflation parameterλ ≥ 1. A feasible solution toRobust(Π) is a set offirst stage elementsE0 ⊆ E (bought
without knowledge of the scenario), along with anaugmentation algorithmthat given anyω ∈ Ω outputsEω ⊆ E
such thatE0 ∪ Eω satisfies all requirements inω. The objective function is to minimize:

c(E0) + λ ·max
ω∈Ω

c(Eω).

Given such a solution,c(E0) is called the first-stage cost andmaxω∈Ω c(Eω) is the second-stage cost.

Note that by settingλ = 1 in any robust covering problem,the optimal value of the robust problem equals that of
its corresponding max-min problem.

As in [15], our algorithms for robust covering problems are based on the following type of guarantee. In [15] these
were stated fork-robust uncertainty sets, but they immediately extend to arbitrary uncertainty sets.

Definition 2.1 An algorithm is(α1, α2, β)-discriminating iff given as input any instance ofRobust(Π) and a
thresholdT , the algorithm outputs (i) a setΦT ⊆ E, and (ii) an algorithmAugmentT : Ω→ 2E , such that:

A. For every scenarioD ∈ Ω,
(i) the elements inΦT ∪ AugmentT (D) satisfy all requirements inD, and
(ii) the resulting augmentation costc (AugmentT (D)) ≤ β · T .

B. LetΦ∗ and T ∗ (respectively) denote the first-stage and second-stage cost of an optimal solution to the
Robust(Π) instance. If the thresholdT ≥ T ∗ then the first stage costc(ΦT ) ≤ α1 · Φ

∗ + α2 · T
∗.

Lemma 2.2 ([15]) If there is an(α1, α2, β)-discriminating algorithm for a robust covering problemRobust(Π),
then for everyǫ > 0 there is a

(

(1 + ǫ) ·max
{

α1, β + α2

λ

})

-approximation algorithm forRobust(Π).
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2.4 Desirable Properties of the Covering Problem

We now formalize certain properties of the covering problemΠ = 〈E, c, {Ri}
n
i=1〉 that are useful in obtaining

our results. Given a partial solutionS ⊆ E and a setX ⊆ [n] of requirements, any setEX ⊆ E such that
S ∪ EX ∈ Ri ∀i ∈ X is called anaugmentationof S for requirementsX. GivenX,S, define the min-cost
augmentation ofS for requirementsX as:

OptAug(X | S) := min{c(EX ) | EX ⊆ E andS ∪ EX ∈ Ri, ∀i ∈ X}.

Also defineOpt(X) := min{c(EX ) | EX ⊆ E andEX ∈ Ri ∀i ∈ X} = OptAug(X | ∅), for anyX ⊆ [n].

An easy consequence of the fact that costs are non-negative is the following:

Property 2.3 (Monotonicity) For any requirementsX ⊆ Y ⊆ [n] and any solutionS ⊆ E, OptAug(X|S) ≤
OptAug(Y |S). Similarly, for anyX ⊆ [n] and solutionsT ⊆ S ⊆ E, OptAug(X | S) ≤ OptAug(X | T ).

From the definition of coverage of requirements, we obtain:

Property 2.4 (Subadditivity) For any two subsets of requirementsX,Y ⊆ [n] and any partial solutionS ⊆ E,
we haveOptAug(X | S) + OptAug(Y | S) ≥ OptAug(X ∪ Y | S).

To see this property: ifFX ⊆ E andFY ⊆ E are solutions corresponding toOptAug(X | S) andOptAug(Y | S)
respectively, thenFX ∪ FY ∪ S covers requirementsX ∪ Y ; so OptAug(X ∪ Y | S) ≤ c(FX ∪ FY ) ≤
c(FX ) + c(FY ) = OptAug(X | S) + OptAug(Y | S).

We assume two additional properties of the covering problem:

Property 2.5 (Offline Algorithm) There is anαoff-approximation (offline) algorithm for the covering problem
OptAug(X | S), for anyS ⊆ E andX ⊆ [n].

Property 2.6 (Online Algorithm) There is a polynomial-time deterministicαon-competitive algorithm for the on-
line version ofΠ = 〈E, c, {Ri}

n
i=1〉.

2.5 Models of Downward-Closed Families

All covering functions we deal with are monotone non-decreasing. So we may assume WLOG that the collection
Ω in bothMaxMin(Π) andRobust(Π) is downwards-closed, i.e. A ⊆ B andB ∈ Ω =⇒ A ∈ Ω. In this paper
we consider the following well-studied classes:

Definition 2.7 (p-system) A downward-closed familyΩ ⊆ 2[n] is called ap-system iff:

maxI∈Ω,I⊆A |I|

minJ∈Ω,J⊆A |J |
≤ p, for eachA ⊆ [n],

whereΩ ⊆ Ω denotes the collection ofmaximal subsetsin Ω. Sets inΩ are calledindependent sets. We assume
access to a membership-oracle, that given any subsetI ⊆ [n] returns whether or notI ∈ Ω.

Definition 2.8 (q-knapsack) Givenq non-negative vectorsw1, . . . , wq : [n] → R+ and capacitiesb1, . . . , bq ∈
R+, theq-knapsack constrained family is:

Ω =

{

A ⊆ [n] :
∑

e∈A

wj(e) ≤ bj , for all j ∈ [q]

}

.
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These constraints model a rich class of downward-closed families. Some interesting special cases ofp-systems are
p-matroid intersection [26] and p-set packing [18, 4]; see the appendix in [6] for more discussion onp-systems.
Jenkyns [21] showed that the natural greedy algorithm is ap-approximation for maximizing linear functions over
p-systems, which is the best known result. Maximizing a linear function overq-knapsack constraints is the well-
studied class of packing integer programs (PIPs), eg. [28]. Again, the greedy algorithm is known to achieve an
O(q)-approximation ratio. When the number of constraintsq is constant, there is a PTAS [7].

3 Algorithms for Max-Min Optimization

In this section we give approximation algorithms for constrained max-min optimization, i.e. Problem (Max-f )
wheref is given by some underlying covering problem andΩ is given by somep-system andq-knapsack. We first
consider the case whenΩ is ap-system. Then we show that any knapsack constraint can be reduced to a1-system
(specifically a partition matroid) in a black-box fashion; this enables us to obtain an algorithm forΩ being the
intersection of ap-system andq-knapsack. The results of this section assume Properties2.4and2.6.

3.1 Algorithm for p-System Constraints

The algorithm given below is a greedy algorithm, however it is relative to the objective of the online algorithmAon

from Property2.6rather than the (approximate) function value itself.

Algorithm 1 Algorithm for MaxMin(Π) underp-system
1: input: the covering instanceΠ that definesf andp-systemΩ.
2: let current scenarioA0 ← ∅, counteri← 0, input sequenceσ ← 〈〉.
3: while (∃e ∈ [n] \ Ai such thatAi ∪ {e} ∈ Ω) do
4: ai+1 ← argmax {c(Aon(σ ◦ e))− c(Aon(σ)) : e ∈ [n] \Ai andAi ∪ {e} ∈ Ω}.
5: let σ ← σ ◦ ai+1, Ai+1 ← Ai ∪ {ai+1}, i← i+ 1.
6: end while
7: let D ← Ai be the independent set constructed by the above loop.
8: output solutionD.

Theorem 3.1 Assuming Properties2.4and2.6 there is a((p+ 1)αon)-approximation algorithm forMaxMin(Π)
underp-systems.

Proof: The proof of this lemma closely follows that in [6] for submodular maximization over ap-system. We use
slightly more notation that necessary since this proof willbe used in the next section as well.

Suppose that the algorithm performedk iterations; letD = {a1, · · · , ak} be the ordered set of elements added by
the algorithm. Defineσ = 〈〉, G0 := ∅, andGi := Aon(σ ◦ a1 · · · ai) for eachi ∈ [k]. Note thatG0 ⊆ G1 ⊆ · · · ⊆
Gk. It suffices to show that:

OptAug(B | G0) ≤ (p+ 1) · c(Gk \G0) for everyB ∈ Ω. (3.1)

This would implyOpt(B) ≤ (p + 1) · c(Gk) ≤ (p + 1)αon · Opt(D) for everyB ∈ Ω, and hence thatD is the
desired approximation.

We use the following claim proved in [6], Appendix B (this claim relies on the properties of ap-system).

Claim 3.2 ([6]) For anyB ∈ Ω, there is a partition{Bi}
k
i=1 ofB such that for alli ∈ [k],

1. |Bi| ≤ p, and

2. For everye ∈ Bi, we have{a1, · · · , ai−1}
⋃

{e} ∈ Ω.
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For any sequenceπ of requirements and anye ∈ [n] defineAug(e;π) := c(Aon(π ◦ e)) − c(Aon(π)). Note that
this function depends on the particular online algorithm. From the second condition in Claim3.2, it follows that
each element ofBi was a feasible augmentation to{a1, . . . , ai−1} in the ith iteration of thewhile loop. By the
greedy choice,

c(Gi)− c(Gi−1) = Aug(ai;σ ◦ a1 · · · ai−1) ≥ max
e∈Bi

Aug(e;σ ◦ a1 · · · ai−1)

≥
1

|Bi|

∑

e∈Bi

Aug(e;σ ◦ a1 · · · ai−1)

≥
1

|Bi|

∑

e∈Bi

OptAug({e} | Gi−1) (3.2)

≥
1

|Bi|
· OptAug(Bi | Gi−1) (3.3)

≥
1

p
· OptAug(Bi | Gi−1). (3.4)

Above equation (3.2) is by the definition ofGi−1 = Aon(σ ◦ a1 · · · ai−1), equation (3.3) uses the subadditivity
Property2.4, and (3.4) is by the first condition in Claim3.2.

Summing over all iterationsi ∈ [k], we obtain:

c(Gk)− c(G0) =

k
∑

i=1

Aug(ai;σ ◦ a1 · · · ai−1) ≥
1

p

k
∑

i=1

OptAug(Bi | Gi−1) ≥
1

p

k
∑

i=1

OptAug(Bi | Gk)

where the last inequality follows from monotonicity sinceGi−1 ⊆ Gk for all i ∈ [k].

Using subadditivityProperty 2.4, we getc(Gk)− c(G0) ≥
1
p ·OptAug(∪

k
i=1Bi | Gk) =

1
p ·OptAug(B | Gk).

Let J := argmin{c(J ′) | J ′ ⊆ E, andGk ∪ J ′ ⊆ Re, ∀e ∈ B}. i.e. OptAug(B | Gk) = c(J). Observe that
J ∪ (Gk \G0) is a feasible augmentation toG0 that covers requirementsB. Thus,

OptAug(B | G0) ≤ c(J) + c(Gk \G0) = OptAug(B | Gk) + c(Gk \G0) ≤ (p+ 1) · c(Gk \G0).

This completes the proof. �

3.2 Reducing knapsack constraints to partition matroids

In this subsection we show that every knapsack constraint can be reduced to a suitable collection of partition
matroids. This property is then used to complete the algorithm forMaxMin(Π) whenΩ is given by ap-systemand
a q-knapsack. Observe that even a single knapsack constraint need not correspond exactly to a smallp-system: eg.
the knapsack with weightsw1 = 1 andw2 = w3 = · · · = wn = 1

n , and capacity one is only an(n − 1)-system
(since both{1} and{2, 3, · · · , n} are maximal independent sets). However we show that any knapsack constraint
can beapproximatelyreduced to a partition matroid (which is a1-system). The main idea in this reduction is an
enumeration method from Chekuri and Khanna [7].

Lemma 3.3 Given any knapsack constraint
∑n

i=1wi · xi ≤ B and fixed0 < ǫ ≤ 1, there is a polynomial-time
computable collectionP1, · · · ,PT of T = nO(1/ǫ2) partition matroids such that:

1. For everyX ∈ ∪Tt=1Pt, we have
∑

i∈X wi ≤ (1 + ǫ) ·B.

2. {X ⊆ [n] |
∑

i∈X wi ≤ B} ⊆ ∪Tt=1Pt.
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Proof: Let δ = ǫ/6 andβ = δB
n . WLOG we assume thatmaxni=1wi ≤ B. Partition the groundset[n] into

G := ⌈ log(n/δ)log(1+δ)⌉ groups as follows.

Sk :=

{

{i ∈ [n] : wi ≤ β} if k = 0
{

i ∈ [n] : β · (1 + δ)k−1 < wi ≤ β · (1 + δ)k
}

if 1 ≤ k ≤ G

Let T denote the number of non-negative integer partitions of⌈G/δ⌉ into G parts. Note that,

T :=

(

⌈G/δ⌉ +G− 1

G− 1

)

≤ exp(⌈G/δ⌉ +G− 1) ≤ nO(1/δ2).

We will define a collection ofT partition matroidson [n], each over the partition{S0, S1, . . . , SG}. For any integer
partition τ = {Uk}

G
k=1 of ⌈G/δ⌉ (i.e. Uk ≥ 0 are integers and

∑

k Uk = ⌈G/δ⌉), define a partition matroidPτ
that has boundsNk(τ) on each partSk, where

Nk(τ) :=

{

∞ if k = 0

⌊ n·(Uk+1)
G·(1+δ)k−1

⌋ if 1 ≤ k ≤ G

Clearly this collection can be constructed in polynomial time for fixedǫ. We now show that this collection of
partition matroids satisfies the two properties in the lemma.

(1) Consider anyX ⊆ [n] that is feasible for some partition matroid, sayPτ . The total weight of elementsX ∩ S0

is at mostn · β ≤ δ · B. For any group1 ≤ k ≤ G, the weight of elementsX ∩ Sk is at most:

|X ∩ Sk| · β (1 + δ)k ≤ Nk(τ) · β (1 + δ)k ≤ δ(1 + δ)(Uk + 1) ·
B

G

Hence the total weight of all elements inX is at most:

δB + δ(1 + δ)
B

G
·

(

G
∑

k=1

Uk +G

)

≤ δB + δ(1 + δ)
B

G
·

(

G

δ
+ 1 +G

)

≤ δB + δ(1 + δ)
B

G
·

(

G

δ
+ 2G

)

≤ δB + (1 + δ) · (B + 2δ B)

≤ B + 6δ B.

Above we useδ ≤ 1. Finally sinceδ = ǫ/6, we obtain the first condition.

(2) Consider anyY ⊆ [n] that satisfies the knapsack constraint, i.e.
∑

i∈Y wi ≤ B. We will show thatY is
feasible inPτ , for some integer partitionτ of ⌈G/δ⌉ as above. For each1 ≤ k ≤ G let Qk denote the weight of
elements inY ∩ Sk, andUk be the unique integer that satisfiesUk ·

δB
G ≤ Qk < (Uk + 1) · δBG . Defineτ to be the

integer partition{Uk}
G
k=1. We have

∑

k Uk ≤ G/δ, which follows from the factB ≥
∑

k Qk ≥
δB
G ·

∑

k Uk. By
increasingUks arbitrarily so that they total to⌈G/δ⌉, we obtain a feasible integer partitionτ . We now claim that
Y is feasible forPτ . Since each element ofSk has weight at leastβ · (1 + δ)k−1, we have

|Y ∩ Sk| ≤
Qk

β (1 + δ)k−1
≤

(Uk + 1) · δB/G

(1 + δ)k−1 · δB/n
=

n · (Uk + 1)

G · (1 + δ)k−1
.

Since|Y ∩ Sk| is integral, we obtain|Y ∩ Sk| ≤ ⌊
n·(Uk+1)

G·(1+δ)k−1
⌋ ≤ Nk(τ). Thus we obtain the second condition.�
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3.3 Algorithm for p-System andq-Knapsack Constraints

Here we considerMaxMin(Π) whenΩ is the intersection ofp-systemM and aq-knapsack (as in Definition2.8).
The idea is to reduce theq-knapsack to a single knapsack (losing factor≈ q), then use Lemma3.3 to reduce the
knapsack to a 1-system, and finally apply Theorem3.1on the resultingp+ 1 system. Details appear below.

By scaling weights in the knapsack constraints, we may assume WLOG that each knapsack has capacity exactly
one; letw1, · · · , wq denote the weights in theq knapsack constraints. We also assume WLOG that each singleton
element satisfies theq-knapsack; otherwise such elements can be dropped from the groundset.

Algorithm 2 Algorithm for MaxMin(Π) underp-system andq-knapsack

1: Approximate theq-knapsack by a single knapsack with weights
∑q

j=1w
j and capacityq; applying Lemma3.3

with ǫ = 1
2 on this knapsack, let{Pj}Lj=1 denote the resulting partition matroids (noteL = nO(1)).

2: For eachj ∈ [L], defineΣj :=M
⋂

Pj ; note that eachΣj is a(p+ 1)-system.
3: Run the algorithm from Theorem3.1under eachp+ 1 system{Σj}Lj=1 to obtain solutions{Ej ∈ Σj}Lj=1.
4: Let j∗ ← argmaxLj=1 c (Aon(Ej)).

5: PartitionEj∗ into {ωi}
3q+1
i=1 such that eachωi ∈ Ω, as per Claim3.5.

6: Outputωi∗ wherei∗ ← argmax3q+1
i=1 c (Aoff (ωi)). Here we use the offline algorithm from Property2.5.

We now establish the approximation ratio of this algorithm.

Claim 3.4 Ω ⊆ ∪Lj=1Σj .

Proof: For anyω ∈ Ω, we have
∑

e∈ω w
i(e) ≤ 1 for all i ∈ [q]. Hence

∑

e∈ω

∑q
i=1w

i(e) ≤ q, i.e. it satisfies the

combined knapsack constraint. Now by Lemma3.3 (2), we obtainω ∈
⋃L

j=1Pj . Finally, sinceω ∈ Ω ⊆ M, we
haveω ∈ ∪Lj=1Σj. �

Claim 3.5 For eachτ ∈ ∪Lj=1Σj there exists a collection{ωi}
3q+1
i=1 such thatτ =

⋃3q+1
ℓ=1 ωℓ, andωℓ ∈ Ω for all

ℓ ∈ [3q + 1]. Furthermore, this is computable in polynomial time.

Proof: Consider anyτ ∈ Σ := ∪Lj=1Σj. Note thatτ ∈ M, so any subset ofτ is also inM (which is downwards-

closed). We will show that there is a partition ofτ into {ωℓ}
3q
ℓ=1 such that eachωℓ satisfies theq-knapsack. This

suffices to prove the claim. Sinceτ ∈
⋃L

j=1Pj , by Lemma3.3 (1) it follows that
∑

e∈τ

∑q
i=1 w

i(e) ≤ 3
2q.

Starting with the trivial partition ofτ into singleton elements, greedily merge parts as long as each part satisfies the
q-knapsack, until no further merge is possible. (Note that the trivial partition is indeed feasible since each element
satisfies theq-knapsack.) Let{ωℓ}

r
ℓ=1 denote the parts in the final partition; we will showr ≤ 3q+1 which would

prove the claim. Consider forming⌊r/2⌋ pairs from{ωℓ}
r
ℓ=1 arbitrarily. Observe that for any pair{ω, ω′}, it must

be thatω ∪ ω′ violatessomeknapsack; so
∑

e∈ω∪ω′

∑q
i=1w

i(e) > 1. Thus
∑

e∈τ

∑q
i=1 w

i(e) > ⌊r/2⌋. On the
other hand,

∑

e∈τ

∑q
i=1w

i(e) ≤ 3
2q, which impliesr < 3q + 2. �

Theorem 3.6 Assuming Properties2.4, 2.5 and2.6, there is anO((p + 1) (q + 1)αoff αon)-approximation algo-
rithm for MaxMin(Π) under ap-system andq-knapsack constraint.

Proof: LetOptj denote the optimal value ofMaxMin(Π) underp+1 systemΣj, for eachj ∈ [L]. By Claim3.4we
havemaxLj=1Optj ≥ Opt, the optimal value ofMaxMin(Π) underΩ. Observe that Theorem3.1actually implies
c(Aon(Ej)) ≥

1
p+2 · Optj for eachj ∈ [q]. Thusc(Aon(Ej∗)) ≥

1
p+2 · Opt; henceOpt(Ej∗) ≥

1
αon (p+2) · Opt.

Now consider the partition{ωi}
3q+1
i=1 of Ej∗ from Claim 3.5. By the subadditivity property,

∑3q+1
i=1 Opt(ωi) ≥

Opt(Ej∗); i.e. there is somei′ ∈ [3q+1] with Opt(ωi′) ≥
1

αon (p+2)(3q+1) ·Opt. Thus thei∗ found using the offline

algorithm (Property2.5) satisfiesOpt(ωi∗) ≥
1

αon αoff (p+2)(3q+1) · Opt. �
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Remark: We can obtain a better approximation guarantee ofO((p + 1) (q + 1)αon) in Theorem3.6 using ran-
domization. This algorithm is same as Algorithm 2, except for the last step, where we outputωℓ for ℓ ∈ [3q + 1]
chosenuniformly at random. From the above proof of Theorem3.6, it follows that:

E[Opt(ωℓ)] =
1

3q + 1

3q+1
∑

i=1

Opt(ωi) ≥
Opt(Ej∗)

3q + 1
≥

1

αon (p+ 2)(3q + 1)
·Opt.

4 General Framework for Robust Covering Problems

In this section we present an abstract framework for robust covering problems underany uncertainty setΩ, as long
as we are given access to offline, online and max-min algorithms for the base covering problem. Formally, this
requires Properties2.5, 2.6and the following additional property (recall the notationfrom Section2).

Property 4.1 (Max-Min Algorithm) There is anαmm-approximation algorithm for the max-min problem: given
inputS ⊆ E, MaxMin(S) := maxX∈Ω min{c(A) | S ∪A ∈ Ri, ∀i ∈ X}.

Theorem 4.2 UnderProperties 2.4, 2.5, 2.6and4.1, there is anO(αoff ·αon · αmm)-approximation algorithm for
the robust covering problemRobust(Π) = 〈E, c, {Ri}

n
i=1,Ω, λ〉.

Proof: The algorithm proceeds as follows.

Algorithm 3 Algorithm Robust-with-General-Uncertainty-Sets
1: input: theRobust(Π) instance and thresholdT .
2: let countert← 0, initial online algorithm’s inputσ = 〈〉, initial online solutionF0 ← ∅.
3: repeat
4: sett← t+ 1.
5: let Et ⊆ [n] be the scenario returned by the algorithm ofProperty 4.1onMaxMin(Ft−1).
6: let σ ← σ ◦ Et, andFt ← Aon(σ) be the current online solution.
7: until c(Ft)− c(Ft−1) ≤ 2αon · T
8: setτ ← t− 1.
9: output first-stage solutionΦT := Fτ .

10: output second-stage solutionAugmentT where for anyω ⊆ [n], AugmentT (ω) is the solution of the offline
algorithm (Property 2.5) for the problemOptAug(ω | ΦT ).

As always, letΦ∗ ⊆ E denote the optimal first stage solution (and its cost), andT ∗ the optimal second-stage cost;
so the optimal value isΦ∗ + λ · T ∗. We prove the performance guarantee using the following claims.

Claim 4.3 (General 2nd stage)For anyT ≥ 0 andX ∈ Ω, elementsΦT
⋃

AugmentT (X) satisfy all the require-
ments inX, andc(AugmentT (X)) ≤ 2αoff · αmm · αon · T .

Proof: It is clear thatΦT
⋃

AugmentT (X) satisfy all requirements inX. By the choice of setEτ+1 in line 5
of the last iteration, for anyX ∈ Ω we have:

OptAug(X | Fτ ) ≤ αmm ·OptAug(Eτ+1 | Fτ ) ≤ αmm · (c(Fτ+1)− c(Fτ )) ≤ 2αmm · αon · T

The first inequality is byProperty 4.1, the second inequality uses the fact thatFτ+1 ⊇ Fτ (since we use
an online algorithm to augment inline 6),2 and the last inequality follows from the termination condition in
line 7. Finally, sinceAugmentT (X) is anαoff -approximation toOptAug(X | Fτ ), we obtain the claim. �

2This is the technical reason we need an online algorithm. If instead we had used an offline algorithm to computeFt in step6 then
Ft 6⊇ Ft−1 and we could not upper bound the augmentation costOptAug(Et | Ft−1) by c(Ft)− c(Ft−1).
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Claim 4.4 Opt(∪t≤τEt) ≤ τ · T ∗ +Φ∗.

Proof: Since eachEt ∈ Ω (these are solutions toMaxMin), the bound on the second-stage optimal cost gives
OptAug(Et | Φ

∗) ≤ T ∗ for all t ≤ τ . By subadditivity (Property 2.4) we haveOptAug(∪t≤τEt | Φ
∗) ≤

τ · T ∗, which immediately implies the claim. �

Claim 4.5 Opt(∪t≤τEt) ≥
1

αon
· c(Fτ ).

Proof: Directly from the competitiveness of the online algorithm in Property 2.6. �

Claim 4.6 (General 1st stage)If T ≥ T ∗ thenc(ΦT ) = c(Fτ ) ≤ 2αon · Φ
∗.

Proof: We havec(Fτ ) =
∑τ

t=1 [c(Ft)− c(Ft−1)] > 2αonτ · T ≥ 2αonτ · T
∗ by the choice in Step (7).

Combined withClaim 4.5, we haveOpt(∪t≤τEt) ≥ 2τ ·T ∗. Now usingClaim 4.4, we haveτ ·T ∗ ≤ Φ∗, and
henceOpt(∪t≤τEt) ≤ 2 · Φ∗. Finally usingClaim 4.5, we obtainc(Fτ ) ≤ 2αon · Φ

∗. �

Claim 4.3andClaim 4.6imply that the above algorithm is a(2αon, 0, 2αmmαonαoff)-discriminating algorithm
for the robust problemRobust(Π) = 〈E, c, {Ri}

n
i=1,Ω, λ〉. Now usingLemma 2.2we obtain the theorem. �

Explicit uncertainty sets An easy consequence ofTheorem 4.2is for the explicit scenariomodel of robust
covering problems [8, 14], whereΩ is specified as a list of possible scenarios. In this case, theMaxMin problem can
be solved using theαoff-approximation algorithm fromProperty 2.5which implies anO(α2

off
αon)-approximation

for the robust version. In fact, we can do slightly better—observing that in this case, the algorithm for second-
stage augmentation is the same as the Max-Min algorithm, we obtain anO(αoff · αon)-approximation algorithm
for robust covering with explicit scenarios. As an application of this result, we obtain anO(log n) approximation
for robust Steiner forest with explicit scenarios, which isthe best known result for this problem.

5 Robust Covering underp-System andq-Knapsack Uncertainty Sets

Recall that any uncertainty setΩ for a robust covering problem can be assumed WLOG to bedownward-closed,
i.e. X ∈ Ω andY ⊆ X implies Y ∈ Ω. Eg., in thek-robust modelΩ = {S ⊆ [n] : |S| ≤ k}. Hence it is
of interest to obtain good approximation algorithms for robust covering whenΩ is specified by means of general
models for downward-closed families. In this section, we consider the two well-studied models ofp-systems and
q-knapsacks (Definitions2.7and2.8).

The result of this section says the following:if we can solve both the offline and online versions of a covering
problem well, we get good algorithms forRobust(Π) under uncertainty sets given by the intersection ofp-systems
andq-knapsack constraints. Naturally, the performance depends onp andq; we note that this is unavoidable due
to complexity considerations. Based on Theorem4.2 it suffices to give an approximation algorithm for the max-
min problem underp-systems andq-knapsack constraints; so Theorem3.6combined with Theorem4.2implies an
O
(

(p+ 1)(q + 1)α2
on α

2
off

)

-approximation ratio. However, we can obtain a better guarantee by considering the
algorithm forRobust(Π) directly. Formally we show that:

Theorem 5.1 Under Properties 2.4, 2.5 and 2.6, the robust covering problemRobust(Π)〈E, c, {Ri}
m
i=1,Ω, λ〉

admits anO ((p+ 1) · (q + 1) · αoff · αon)-approximation guarantee whenΩ is given by the intersection of ap-
system andq-knapsack constraints.

The outline of the proof is same as for Theorem3.6. We first consider the case when the uncertainty set is ap-
system (subsection 5.1); then using the reduction in Lemma3.3we solve a suitable instance ofRobust(Π) under
a (p + 1)-system uncertainty set.
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5.1 p-System Uncertainty Sets

In this subsection, we considerRobust(Π) when the uncertainty setΩ is somep-system. The algorithm is a combi-
nation of the ones in Theorem4.2and Theorem3.1. We start with an empty solution, and use the online algorithm
to greedily try and build a scenario of large cost. If we do finda “violated” scenario which is unhappy with the
current solution, we augment our current solution to handlethis scenario (again using the online algorithm), and
continue. The algorithm is given as Algorithm 4 below.

Algorithm 4 Algorithm Robust-with-p-system-Uncertainty-Sets
1: input: theRobust(Π) instance and boundT .
2: let countert← 0, initial online algorithm’s inputσ = 〈〉, initial online solutionF0 ← ∅.
3: repeat
4: sett← t+ 1.
5: let current scenarioAt

0 ← ∅, counteri← 0.
6: while (∃e ∈ [n] \ At

i such thatAt
i ∪ {e} ∈ Ω) do

7: ai+1 ← argmax{c(Aon(σ ◦ e))− c(Aon(σ)) | e ∈ [n] \ Ai andAi ∪ {e} ∈ Ω}.
8: let σ ← σ ◦ ai+1, At

i+1 ← At
i ∪ {ai+1}, i← i+ 1.

9: end while
10: let Et ← At

i be the scenario constructed by the above loop.
11: let Ft ← Aon(σ) be the current online solution.
12: until c(Ft)− c(Ft−1) ≤ 2αon · T
13: setτ ← t− 1.
14: output first-stage solutionΦT := Fτ .
15: output second-stage solutionAugmentT where for anyω ⊆ [n], AugmentT (ω) is the solution of the offline

algorithm (Property2.5) for the problemOptAug(ω | ΦT ).

We first prove a useful lemma about the behavior of thewhile loop.

Lemma 5.2 (Max-Min Lemma) For any iterationt of therepeat loop, the scenarioEt ∈ Ω has the property that
for any other scenarioB ∈ Ω, OptAug(B | Ft−1) ≤ (p+ 1) · c(Ft \ Ft−1).

Proof: The proof is almost identical to that of Theorem3.1.

Consider any iterationt of therepeat loop in Algorithm 4 that starts with a sequenceσ of elements (that have been
fed to the online algorithmAon). LetA = {a1, · · · , ak} be the ordered set of elements added by the algorithm in
this iteration. DefineG0 := Aon(σ), andGi := Aon(σ ◦ a1 · · · ai) for eachi ∈ [k]. Note thatFt−1 = G0 and
Ft = Gk, andG0 ⊆ G1 ⊆ · · · ⊆ Gk. It suffices to show thatOptAug(B | G0) ≤ (p + 1) · c(Gk \ G0) for every
B ∈ Ω. But this is precisely Equation (3.1) from the proof of Theorem3.1. �

Corollary 5.3 (Second Stage)For anyT ≥ 0 andB ∈ Ω, elementsΦT
⋃

AugmentT (B) satisfy all the require-
ments inB, andc(AugmentT (B)) ≤ 2αoff · αon · (p+ 1) · T .

Proof: Observe thatΦT = Fτ = Aon(σ), so the first part of the corollary follows from the definitionof AugmentT .
By Lemma 5.2and the termination condition online 12, we haveOptAug(B | Fτ ) ≤ (p+2)·(c(Fτ+1)−c(Fτ )) ≤
2(p+2)αon T . NowProperty 2.5guarantees that the solutionAugmentT (B) found by this approximation algorithm
has cost at most2αoff · αon · (p+ 2)T . �

It just remains to bound the cost of the first-stage solutionFτ . BelowΦ∗ denotes the optimal first-stage solution
(and its cost); andT ∗ is the optimal second-stage cost.

Lemma 5.4 (First Stage) If T ≥ T ∗ thenc(ΦT ) = c(Fτ ) ≤ 2αon · Φ
∗.

Proof: For any setX ⊆ [n] of requirements letOpt(X) denote the minimum cost to satisfyX. Firstly, observe
thatOpt(∪t≤τEt) ≤ τ · T ∗ +Φ∗. This follows from the fact that each of theτ scenariosEt are inΩ, so the bound
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on the second-stage optimal cost givesOptAug(Et | Φ
∗) ≤ T ∗ for all t ≤ τ . By subadditivity (Assumption 2.4)

we haveOptAug(∪t≤τEt | Φ
∗) ≤ τ · T ∗, which immediately implies the inequality. Now, we claim that

Opt(∪t≤τEt) ≥
1

αon
· c(Fτ ) ≥

1
αon
· 2αonτ · T

∗ = 2τ · T ∗. (5.5)

The first inequality follows directly from the competitiveness of the online algorithm inAssumption 2.6. For the
second inequality, we havec(Fτ ) =

∑τ
t=1 [c(Ft)− c(Ft−1)] > 2αonτ · T ≥ 2αonτ · T

∗ by the terminal condition
in Step 12. Putting the upper and lower bounds onOpt(∪t≤τEt) together, we haveτ · T ∗ ≤ Φ∗, and hence
Opt(∪t≤τEt) ≤ 2 · Φ∗. Using the competitiveness of the online algorithm again, we obtainc(Fτ ) ≤ 2αon ·Φ

∗. �

From Corollary 5.3andLemma 5.4, it follows that our algorithm is(2αon, 0, 2αoff αon · (p+ 1))-discriminating
(cf. Definition2.1) to Robust(Π). Thus we obtain Theorem5.1 for the caseq = 0.

5.2 Algorithm for p-Systemsand q-Knapsacks

Here we considerRobust(Π) when the uncertainty setΩ is the intersection ofp-systemM and aq-knapsack.
The algorithm is similar to that in Subsection3.3. Again, by scaling weights in the knapsack constraints, we
may assume WLOG that each knapsack has capacity exactly one;let w1, · · · , wq denote the weights in theq
knapsack constraints. We also assume WLOG that each singleton element satisfies theq-knapsack. The algorithm
for Robust(Π) underΩ works as follows.

Algorithm 5 Algorithm Robust withp-system andq-knapsack Uncertainty Set
1: Consider a modified uncertainty setΩ′ that is given by the intersection ofM and thesingle knapsackwith

weight-vector
∑q

j=1w
j and capacityq.

2: Applying the algorithm in Lemma3.3 to this single knapsack withǫ = 1, let {Pj}Lj=1 denote the resulting

partition matroids (noteL = nO(1)).
3: For eachj ∈ [L], define uncertainty-setΣj :=M

⋂

Pj ; note that eachΣj is a(p+ 1)-system.
4: LetΣ← ∪Lj=1Σj. SolveRobust(Π) underΣ using the algorithm of Theorem5.6.

Recall Claims3.4and3.5which hold here as well.

Lemma 5.5 Anyα-approximate solution toRobust(Π) underΣ is a(3q+1)α-approximate solution toRobust(Π)
under uncertainty-setΩ.

Proof: Consider the optimal first-stage solutionΦ∗ to Robust(Π) underΩ, letT ∗ denote the optimal second-stage
cost andOpt the optimal value. Letτ ∈ Σ be any scenario, with partition{ωi}

3q+1
i=1 given by Claim3.5. Using the

subadditivity Property2.4, we haveOptAug(τ |Φ∗) ≤
∑3q+1

ℓ=1 OptAug(ωℓ|Φ
∗) ≤ (3q+1) ·T ∗. Thus the objective

value ofΦ∗ for Robust(Π) underΣ is at mostc(Φ∗) + λ · (3q + 1)T ∗ ≤ (3q + 1) · Opt.

Claim 3.4 implies that for any solution, the objective value ofRobust(Π) underΩ is at most that ofRobust(Π)
underΣ. Thus the lemma follows. �

For solvingRobust(Π) underΣ, note that althoughΣ itself is not anyp′-system, it is theunion of polynomially-
many(p + 1)-systems. We show below that a simple extension of the algorithm in Subsection5.1 also works for
unions ofp-systems; this would solveRobust(Π) underΣ.

Theorem 5.6 There is anO((p + 1)αoff αon)-approximation forRobust(Π) when the uncertainty set is given by
the union of polynomially-manyp-systems.

Proof: LetΣ = ∪Lj=1Σj denote the uncertainty set where eachΣj is ap-system. The algorithm forRobust(Π) un-
derΣ is just Algorithm 4 where we replace the body of the repeat-loop (ie. lines 4-11) by:

1: sett← t+ 1.
2: for (j ∈ [L]) do
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3: let current scenarioAj ← ∅,
4: while (∃e ∈ [n] \ Aj such thatAj ∪ {e} ∈ Σj) do
5: e∗ ← argmax{c(Aon(σ ◦ Aj ◦ e))− c(Aon(σ ◦ Aj)) | e ∈ [n] \ Aj andAj ∪ {e} ∈ Ω}.
6: Aj ← Aj ∪ {e

∗}.
7: end while
8: Let∆j ← c(Aon(σ ◦ Aj))− c(Aon(σ)).
9: end for

10: let j∗ ← argmax{∆j | j ∈ [L]}, andEt ← Aj∗.
11: let σ ← σ ◦ Et andFt ← Aon(σ) be the current online solution.

Consider any iterationt of the repeat loop. By Lemma5.2applied to eachp-systemΣj,

Claim 5.7 For eachj ∈ [L], we haveOptAug(B|Ft−1) ≤ (p + 1) ·∆j for everyB ∈ Σj.

By the choice of scenarioEt and sinceΣ =
⋃L

j=1Σj, we obtain:

Claim 5.8 For any iterationt of the repeat loop and anyB ∈ Σ, OptAug(B|Ft−1) ≤ (p+ 1) · c(Ft \ Ft−1).

Based on these claims and proofs identical to Corollary5.3and Lemma5.4, we obtain the same bounds on the first
and second stage costs of the final solutionFτ . Thus our algorithm is(2αon, 0, 2αoff αon · (p + 1))-discriminating,
which by Lemma2.2implies the theorem. �

Finally, combining Lemma5.5and Theorem5.6we obtain Theorem5.1.

Remark: In Theorem 5.1, the dependence on the number of constraints describing theuncertainty setΩ is in-
evitable (under some complexity assumptions). Consider a very special case of the robust covering problem on
ground-setE, requirementsE (wherei ∈ E is satisfied iff the solution containsi), a unit cost function onE,
inflation parameterλ = 1. The uncertainty setΩ is given by the intersection ofp different cardinality constraints
coming from someset packinginstance onE. In this case, the optimal value of the robust covering problem is
exactly the optimal value of the set packing instance. The hardness result from Håstad [17] now implies that this
robust covering problem isΩ(p

1

2
−ǫ) hard to approximate. We note that this hardness applies onlyto algorithms

having running time that is sub-exponential in both|E| andp; this is indeed the case for our algorithm.

Results forp-System andq-Knapsack Uncertainty Sets. We now list some specific results for robust covering
under uncertainty sets described byp-systems and knapsack constraints; these follow directly from Theorem 5.1
using known offline and (deterministic) online algorithms for the relevant problems.

Problem Offline ratio Online ratio p-system,q-knapsack Robust

Set Cover O(logm) O(logm · logn) [2] pq · log2 m · logn
Steiner Tree/Forest 2 [1, 13] O(log n) [19, 5] pq · logn

Minimum Cut 1 O(log3 n · log logn) [3, 16] pq · log3 n · log logn

Multicut logn [12] O(log3 n · log logn) [3, 16] pq · log4 n · log logn

6 Non-Submodularity of Some Covering Functions

In this section we show that some natural covering functionsare not even approximately submodular. Letf :
2U → R≥0 be any monotone subadditive function. We say thatf is α-approximately submodular iff there exists a
submodular functiong : 2U → R≥0 with g(S) ≤ f(S) ≤ α · g(S) for all S ⊆ U .

Consider the min-set-cover function,fSC(S) = minimum number of sets required to cover elementsS.

Proposition 6.1 The min-set-covering function is noto(n)-approximately submodular.

Proof: The proof follows from the lower bound onbudget-balancefor cross-monotone cost allocations. Immorlica
et al. [20] showed that there is noo(n)-approximately budget-balanced cross-monotone cost allocation for the set-
cover game. On the other hand it is known (see Chapter 15.4.1 in [25]) that any submodular-cost game admits
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a budget-balanced cross-monotone cost allocation. This also implies that anyα-approximately submodular cost
function (non-negative) admits anα-approximate budget-balanced cross-monotone cost allocation. Thus the min-
set-covering function can not beo(n)-approximately submodular. �

Similarly, for minimum multicut (fMMC(S) = minimum cost cut separating the pairs inS),

Proposition 6.2 The min-multicut function is noto(n1/3)-approximately submodular.

Proof: This uses the result that the vertex-cover game does not admit o(n1/3)-approximately budget-balanced
cross-monotone cost allocations [20]. Since multicut (even on a star graph) contains the vertex-cover problem, the
proposition follows. �

On the other hand, some other covering functions are indeed approximately submodular.

• The minimum-cut function (fMC(S) = minimum cost cut separating verticesS from the root) is in fact
submodular due to submodularity of cuts in graphs.

• The min-Steiner-tree (fST (S) = minimum length tree that connects verticesS to the root) and min-Steiner-
forest (fSF (S) = minimum length forest connecting the pairs inS) functions areO(log n)-approximately
submodular. When the underlying metric is a tree, these functions are submodular—in this case they reduce
to weighted coverage functions. Using probabilistic approximation of general metrics by trees, we can
write g(S) = ET∈T [f

T (S)] whereT is the distribution on dominating tree-metrics (from [9]) and fT

is the Steiner-tree/Steiner-forest function on treeT . Clearly g is submodular. Since there existsT that
approximates distances in the original metric within factor O(log n) [9], it follows that g alsoO(log n)-
approximatesfST (resp.fSF ).

While approximate submodularity of the covering problemΠ (eg. minimum-cut or Steiner-tree) yields direct
approximation algorithms forMaxMin(Π), it is unclear whether they help in solvingRobust(Π) (even under
cardinality-constrained uncertainty sets [15]). On the other hand, the online-algorithms based approachin this
paper solves bothMaxMin(Π) andRobust(Π), for uncertainty sets fromp-systems andq-knapsacks.
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[17] J. Håstad. Clique is hard to approximate withinn1−ǫ. Acta Mathematica, 182:105–142, 1999.

[18] Cor A. J. Hurkens and Alexander Schrijver. On the Size ofSystems of Sets Every t of Which Have an SDR,
with an Application to the Worst-Case Ratio of Heuristics for Packing Problems.SIAM J. Discrete Math.,
2(1):68–72, 1989.

[19] M. Imase and B.M. Waxman. Dynamic Steiner tree problem.SIAM J. on Discrete Mathematics, 4(3):369–
384, 1991.

[20] Nicole Immorlica, Mohammad Mahdian, and Vahab S. Mirrokni. Limitations of cross-monotonic cost-
sharing schemes.ACM Trans. Algorithms, 4(2):1–25, 2008.

[21] T. A. Jenkyns. The efficiency of the “greedy” algorithm.In 7th South Eastern Conference on Combinatorics,
Graph Theory and Computing, pages 341–350, 1976.

[22] Rohit Khandekar, Guy Kortsarz, Vahab S. Mirrokni, and Mohammad R. Salavatipour. Two-stage robust
network design with exponential scenarios. InESA, volume 5193 ofLecture Notes in Computer Science,
pages 589–600, 2008.

[23] A. Kulik, H. Shachnai, and T. Tamir. Maximizing submodular functions subject to multiple linear constraints.
In SODA, pages 545–554, 2009.

[24] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing submodular
set functions I.Mathematical Programming, 14:265–294, 1978.

[25] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. Algorithmic Game Theory. Cambridge
University Press, 2007.

16



[26] A. Schrijver. Combinatorial Optimization. Springer, 2003.

[27] C. Seshadri and Jan Vondrak. Is submodularity testable? arXiv: http://arxiv.org/abs/1008.0831, 2010.

[28] Aravind Srinivasan. Improved approximation guarantees for packing and covering integer programs.SIAM
J. Comput., 29(2):648–670, 1999.

[29] M. Sviridenko. A note on maximizing a submodular set function subject to knapsack constraint.Operations
Research Letters, 32:41–43, 2004.
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