arXiv:1503.06007v1 [cs.GT] 20 Mar 2015

Distributed Time-Sensitive Task Selection
in Mobile Crowdsensing

Man Hon Cheung™#, Richard Southwell#, Fen Hou", and Jianwei Huang#
“Department of Electrical and Computer Engineering, University of Macau, Macau
#Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong, China

mhcheung@ie.cuhk.edu.hk, richardsouthwell254@gmail.com, fenhou@umac.mo,
jwhuang@ie.cuhk.edu.hk

ABSTRACT

With the rich set of embedded sensors installed in smart-
phones and the large number of mobile users, we witness
the emergence of many innovative commercial mobile crowd-
sensing applications that combine the power of mobile tech-

nology with crowdsourcing to deliver time-sensitive and location-

dependent information to their customers. Motivated by
these real-world applications, we consider the task selection
problem for heterogeneous users with different initial loca-
tions, movement costs, movement speeds, and reputation
levels. Computing the social surplus maximization task al-
location turns out to be an NP-hard problem. Hence we
focus on the distributed case, and propose an asynchronous
and distributed task selection (ADTS) algorithm to help the
users plan their task selections on their own. We prove the
convergence of the algorithm, and further characterize the
computation time for users’ updates in the algorithm. Sim-
ulation results suggest that the ADTS scheme achieves the
highest Jain’s fairness index and coverage comparing with
several benchmark algorithms, while yielding similar user
payoff to a greedy centralized benchmark. Finally, we illus-
trate how mobile users coordinate under the ADTS scheme
based on some practical movement time data derived from
Google Maps.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed

Systems— Distributed applications

Keywords

Mobile crowdsensing; crowdsourcing; game theory

1. INTRODUCTION

Today’s smartphones and wearable devices include a rich
set of embedded sensors, such as cameras, microphones, global
positioning systems (GPS), thermometers, and accelerome-
ters [4l[10]. Thanks to the large number of mobile users and
their inherent mobility, we are witnessing the rise of mobile
crowdsensing (MCS), where individuals use their mobile de-
vices to collectively extract and share information related to
some phenomenon of interest. Applications of MCS include
traffic jam alerts, wireless indoor localization, and small cell
network monitoring.

Recently, commercial MCS platforms, such as Gigwalk [6]
and Field Agent [3], combine the power of mobile technology
with crowdsourcing to provide their customers with time-

sensitive and location-dependent information related to their
stores and products. For example, in Field Agent [3], there
are two types of tasks, namely audit and research. An audit
task mainly involves fact finding and data gathering (such
as checking on-shelf availability and prices), while a research
task mainly involves the collection of users’ opinions and
insights (such as surveys and shop-alongs). For a location-
dependent and time-sensitive sensing task, such as checking
the on-shelf availability of Coca-Cola in a convenience store
on Main Street at 9am, the users need to collect the data
at the precise time and location. With this information,
a district manager can reduce the cost of taking invento-
ries, while maintaining the proper stock levels at different
stores. Currently, several well-known brands and retailers
(such as Coca-Cola and Johnson & Johnson) are among the
customers of Gigwalk and Field Agent. This suggests that
the collection of location-dependent and time-sensitive data
using MCS is a practice of growing importance.

A key question for MCS platforms is how to find users
to complete tasks, while accounting for the users’ different
initial locations, movement costs, movement speeds, and rep-
utation levels? A number of recent results have focused on
the centralized task allocation in MCS, with the objectives
of either improving the energy efficiency or maximizing the
social surplus. For example, Sheng et al. in [14] considered
opportunistic energy-efficient collaborative sensing. Given
a set of roads, mobile devices, and their trajectories, the
objective is to find a sensing schedule that minimizes the
total energy consumption by reducing redundancy in sens-
ing. Zhao et al. in [15] considered fair and energy-efficient
task allocation in MCS, and solved a min-max aggregate
sensing time problem. He et al. in [7] considered social sur-
plus maximization for location-dependent task scheduling
in MCS. They formulated a task scheduling problem, where
the objective is to maximize the overall net reward of all
the users, subject to the time budget of each user and the
sensing redundancy constraint of each sensing task.

Different from the above literature, which focuses on the
collection of location-dependent data without any time con-
straints in a centralized fashion, we consider the case where
the service provider aims to collect time-sensitive and location-
dependent information for its customers through distributed
decisions of mobile users. The solution of such a problem
needs to balance the rewards and movement costs of the
users for completing tasks. The consideration along both
space and time dimensions makes the design of a good solu-
tion very challenging. The distributed nature of the solution

http://arxiv.org/abs/1503.06007v1

that is required by the current commercial platform such as
Gigwalk and Field Agent further complicates the analysis.
In this paper, we focus on solving the distributed time-

sensitive and location-dependent task selection problem, where

users are heterogeneous in their initial locations, movement
costs, movement speeds, and reputation levels. We for-
mulate the interactions among users as a non-cooperative
task selection game (TSG), and propose an asynchronous
and distributed task selection (ADTS) algorithm for each
user to compute her task selection and mobility plan. Each
user only requires limited information on the aggregate task
choices of all users, which is publicly available in many of to-
day’s crowdsourcing platforms, such as Amazon Mechanical
Turk (MTurk) [, Gigwalk [6], and Field Agent [3].

As a performance benchmark on the social surplus, we for-
mulate a centralized task allocation (CTA) problem, assum-
ing that all users are controlled by the service provider, and
show that it is an NP-hard problem. We propose a heuristic
greedy centralized algorithm that computes the approximate
centralized solution with a lower complexity.

To the best of our knowledge, this is the first paper that
considers distributed time-sensitive and location-dependent
data collection in MCS motivated by real-life commercial
applications. To summarize, the contributions of our work
are as follows:

e Practical MCS modeling: Motivated by commercial
MCS applications, we consider the collection of time-
sensitive and location-dependent sensing data by mul-
tiple users. We assume that the users are heteroge-
neous in their initial locations, movement costs, move-
ment speeds, and reputation levels.

o Asynchronous and distributed task selection algorithm:
We propose a distributed algorithm that helps the users
determine their task selections and mobility plans. Each
user only needs to know limited information on the
aggregate task choices readily available in the MCS
mobile apps.

e Convergence guaranteed: We show that the task selec-
tion game has the finite improvement property, which
means that users’ asynchronous best response updates
globally converge to a Nash equilibrium. We also show
that each best response update can be computed in
polynomial time.

e Balanced performance: Simulation results suggest that
the proposed asynchronous and distributed task selec-
tion scheme achieves the best performance in terms of
fairness and coverage comparing with various bench-
mark algorithms.

2. SYSTEM MODEL

We consider a mobile crowdsensing (MCS) platform that

involves the collection of time-sensitive and location-dependent

information in the form of photos, video, audio, data, opin-
ions, and feedback. In the platform, once a user has installed
the mobile app on her smartphone, she will be able to use
the built-in map to check the available tasks, together with
the task attributes including locations, execution times, and
rewards, as shown in Fig. [Il

More specifically, let £ = {1, ..., L} be the set of locations,
such as buildings, landmarks, or fields. Let 7 = {1,...,T}

1 2 3 4
User 1 &wa?ﬁ FéwAard: $1
= Time: 7

Time: 2

S @® /o [YK /s
Reward: $2 Reward: @
Time: 5 User2 Time: 2
9 10 1 / 2 @

13 14 1% o 16
: “;é:ggﬁﬁ“?".ﬁ;‘?s‘]/ &

@ Mobile User (High reputation)

A Research
’ Audit

Figure 1: In a MCS platform, we assume that the
service provider collects location-dependent time-
sensitive information with the help of the users.
Through the mobile app interface, the service
provider would announce the rewards, locations,
and execution times of the tasks to the users. Each
user then decides how to move and which tasks to
work on over the coming time slots.

Mobile User (Low reputation)

be the set of time slots. Let K = {1,..., K} be the set of
tasks. We describe the attributes related to a task as follows.

DEFINITION 1. (Task Attributes) Each task k € K is
associated with:

e A location [[k] € £ where the task must be performed.
e A time t[k] € T when the task must be executed].

e A reward amount p[k] > 0 for performing the task. In
the case where multiple users perform the same task,
the reward is shared evenly among them [2].

For example, for task 5 in Fig. [l we have [[5] = 12, ¢[5] =
10, and p[5] = $5. Notice that there can be multiple tasks
at the same location, such as [[6] = [[7] = 15.

Let Z = {1,...,1} be the set of users, who can move
through space and perform tasks. Given a user’s initial loca-
tion, the set of tasks that she chooses to work on is influenced
by her movement time, movement cost, and reputation. For-
mally, we define a user’s attributes as follows.

DEFINITION 2. (User Attributes) Each user i € Z is as-
sociated with:

e An initial location It e L.
15" = 6 in Fig.)

(For example, we have

e An (integer valued) movement time Ai’l, > 1, which
equals the number of time slots it takes user i to move
from location [to location 1.

e A (real valued) movement cost cé’ll

move from location [to location I.

> 0 for user i to

e A non-empty set K; C K of tasks that user i is eligible
for.

'Each task k only takes one time slot to execute, and it
cannot be executed before the corresponding time ¢[k].

If a user has specified her mode of transportation (e.g.,
walking, cycling, driving, or taking the bus), then her mo-
bile device can retrieve data from Google Maps and local
public transportation databases to compute her movement
time and movement cost. For example, user ¢ may have a

zero cost (i.e., cﬁ’l/ = 0) for walking, and a linear cost for
drivinda.

The set of eligible tasks K; often relates to the reputation
of user 7. Reputation mechanisms are commonly found in
crowdsensing applications, such as Gigwalk [6] and MTurk
[1l, to allocate tasks based on users’ past performance. A
service provider can reserve the more complicated but higher
paying tasks (e.g., research tasks) for users with higher rep-
utations. For example, in Fig. [l the lower reputation user
1 can only work on the audit tasks, so K1 = {1,3,4,5,7};
whereas the higher reputation user 2 can work on both the
audit and research tasks, so Ko = {1,...,7}.

Given the rewards, locations, and execution times of dif-
ferent tasks, each user needs to decide how she should move
and which tasks she should select in order to maximize her
total profit (i.e., reward minus movement cost). In Section[3]
we formulate the task selection of multiple users as a task se-
lection game, and propose an ADTS algorithm. In Section
@l we establish a performance benchmark under the ideal
centralized task allocation scenario. We use simulations to
evaluate the performance of our proposed algorithms in Sec-
tion Bl and draw conclusions in Section [6l

3. DISTRIBUTED TASK SELECTION GAMES

In this section, we formulate the users’ task selection prob-
lem as a task selection game (TSG), where each user aims
to maximize her own payoff. We also study the equilibria
and convergence properties of the game.

3.1 Task-Time Routing

A user’s decision making includes two aspects. First, she
must choose which locations to visit over the 7' time slots
(i.e., selecting a route through space-time). Second, she
must choose which tasks to do along that route. However,
since each task k is only identified with a single location [[k]
and time t[k], we can simplify the modeling by just consid-
ering how the users select different tasks at different times
(i.e., choosing a route through task-time).

Since a user may choose not to work on any task, for each
user i we define an initial virtual task k™' e K;, which
occurs at all time slots ¢[k™*] € 7 and at the same location
Ik = JiM® (user i’s initial location) with a zero reward
(i.e., plk™'] = 0),

To clearly describe the task-time routing decision prob-
lem, we use a sequences of task-time points, described in
Definition [B] to represent a user’s task-time route. We say
that a task-time route is available to a user when it is phys-
ically possible for her to visit the corresponding locations
over the time slots, and she is eligible to perform each of the
tasks at those locations.

DEFINITION 3. (Available Task-Time Route) An avail-
able task-time route for a user i is a sequence

ri= ((kit)), (K2, 60) ... (ki) € (K xT)" (1)

L . P
*We can set the movement cost c;' = oo if a user i is

unwilling or unable to travel from location [to location I’.

Figure 2: Task-time routes chosen by two users with
audit (red circles) and research (blue circle) tasks.

of n task-time points (for some n > 1) which satisfies the
following conditions:

1. Time increases: 1 =1t} <t? < ... <t} <T.
2. The user is eligible for the tasks: ki k?,... k' € K;.

3. Sequence starts at the initial virtual task: ki = kM.

et —tf =

4. Sequence accounts for movement time: t]

a a+1
Agkiw[kﬁ], for each a € {1,...,n— 1}.

Condition 1 accounts for the fact that time is always in-
creasing. Condition 2 ensures that the users are eligible to
perform each of their chosen tasks. Condition 3 ensures that
the user begins at her initial location. Condition 4 ensures
that the time difference between successive elements in the
sequence of task-time elements is equal to the movement
time between the locations of the corresponding tasks. (In
other words, it ensures that the movement time is indeed
the time they spend moving.) When a user does not move,
we define Aé’l =1,Vi e Z,l € L to represent the fact that
the user stays at the same location after one time slot.

Based on the example in Fig. [[l by considering task 1 to
task 4, we show an example of the task-time routes of two
users in Fig. Here the solid and empty circles represent
task-time points with and without positive rewards, respec-
tively. When a user’s route passes through a solid circle, it
means that the user works on the task (e.g., user 2 works on
task 3 at time 5). On the other hand, when a user’s route
passes through an empty circle, it means that the user is
only physically present at the location of a task, but she is
not working on the task (e.g., user 2 is at location [[3] at
time 3). In this way, a user can move to the location of a
task before the actual execution time of that task (e.g., user
2 arrives at location of task 3 at time 3, while the execution
time of task 3 is at time 5).

In Fig. @ we suppose that a low reputation user 1 has
movement times Allllmt’l[l] = 1 and All[l]’lm = 3, while a
high reputation user 2 has movement times Alzlzmt’l[zl] =1,
Alzw'l[:)’] =1, and ALZ[S]'”Q] = 2. The purple and green curves
represent the two task-time routes: r1 = ((ki"", 1), (1,2), (3,5),
(3,6), (3,7) and 2 = ((k3", 1), (4,2),(3,3), (3,4), (3,5), (2,7)).

3.2 Task Sdelection Game

Based on the discussion aforementioned, we can formulate
the users’ task selection problem as a TSG, where users act
as players that choose available task-time routes.

In the task-time routing framework, changing tasks will of-
ten involve changing locations and hence will involve move-
ment costs. To allow a user to move to the location of a
task before its execution time, we define the time-dependent
reward p*[k,t'] for task k € K and time ¢’ € T as

* / k 5 lf t, =tlk 5
i) = [P 1k
0, otherwise.

For example, in Fig.2] the rewards for task-time points (3, 3)
and (3,5) are p*[3,3] = 0 and p*[3,5] = p[3] = $2, respec-
tively. We assume that the reward p*[k, '] is evenly shared
among all the users who have chosen to work on task k at
time ¢’ (i.e., the task-time point (k,t").)

DEFINITION 4. (Task-time points) Let us define the task-
time points of a task-time route r; in () to be the set V(r;) =
{(k}7 tll) , (kf7 tf) yeoos (Rt} of all task-time points vis-
ited by the route r; € R;, where R; denotes the set of all
available task-time routes of user 1.

The payoff U;(r) that user ¢ gets for choosing route r; in
@ in a strategy profile » = (r1,...,77) € R1 X ... X Ry is
equal to

n *[1.0 1a n—1

(r) <a_1 () T2 (2)
where m & (r) = |{j € Z : (k,t) € V(r;)}| is the number
of routes that pass through task-time point (k,¢). The first
term in (2]) corresponds to the total reward that user i ob-
tains (taking into account how the reward is shared evenly
when multiple users perform the same task). The second
term in (2]) corresponds to the total movement cost, which
user i spends in order to travel to the locations of the se-
lected tasks.

DEFINITION 5. (Task selection game) A task selection

game Q = (I7 LK, T, (p*[k7 t])keK,teT7 (Ci’l 7A§’l)iEI;l»l’€£)7
involves each user (player) ¢ choosing an available task-time
route (strategy) m; € R; and receiving the payoff in ().

DEFINITION 6. (Task-time point pairs) The task-time point
pairs E(r;) of a task-time route r; in () is the set E(r;) =
{00y, (e)] = 1, m =1

point pairs subsequently visited by the route r;.

of task-time

a 1eett
ci[kl MIET be the move-

et gi ([(k¢,), (ke 041)]) =
ment cost between two adjacent task-time points of user .
The payoff of user i in (@) can be rewritten as

Ui(r) = Z - Z gie). (3)

(k,t)eV(r;) e€E(r;)

p* [k, 1]
m(k:t) ()

3.3 Equilibrium Existence and Convergence
Analysis

Before analyzing the task selection games, let us recall

some commonly used definitions from game theory. Let

r—i=(r1i,...,7i—1,7i41,...,7rr) denote the strategies of all

the users except user i. A strategy profile can be written as
r=(ri,r_;).

DEFINITION 7. (Better and best response updates) A
better response update, starting from some strategy r =
(ri,m—;), is an event where a single user i changes to an-
other strategy, r; € R, and increases her payoff as a result,
ie., Ui(ri,r—i) > Ui(ri, 7).

A best response update is a special type of better response
update, where the newly selected strategy r; maximizes user
i’s payoff among user i’s all possible better response updates.

DEFINITION 8. (Pure Nash equilibrium) A pure Nash
equilibrium (NE) is a strategy profile »*, where no user can
perform a better response update unilaterally.

DEFINITION 9. (Finite improvement property) A game
possesses the finite improvement property (FIP) when asyn-
chronoud] better response updates always converge to a pure
NE within a finite number of steps, irrespective of the initial
strategy profile or the users’ updating order.

Existence of the finite improvement property implies that
better response updating always leads to pure Nash equilib-
ria, which implies the existence of pure Nash equilibriaﬂ

THEOREM 1. Ewvery task selection game possesses the fi-
nite improvement property.

The proof of Theorem [is given in Appendix[Al We then
proceed to study how long it takes for a strategy profile to
converge to a pure NE. Theorem [2] ensures that each best
response update can be computed in polynomial time.

THEOREM 2. A best response update can be computed in
O(K3T?) time.

The proof of Theorem Rlis given in Appendix[Bl The proof
is constructive, as it allows us to compute best response
updates in polynomial time. Simulations suggest that the
number of best response updates required to reach a pure
Nash equilibrium grows linearly with the number of users in
a wide variety of scenarios, although a theoretical proof is
quite challenging to obtain.

3.4 Asynchronousand Distributed Task Selec-
tion Algorithm
Theorems [l and 2l guarantee the convergence of our asyn-
chronous and distributed task selection (ADTS) algorithm
(Algorithm[J). To initialize the algorithm, a user inputs her
private information on the movement cost (line 2), checks
the task descriptions (line 3), and then computes her move-

3 Asynchronous updates imply that there will be no two users
updating their strategies at the same time.

4Note that the time steps involved in understanding the con-
vergence of the best response updates is not the same time
slot that we introduced in Section 2

Algorithm 1 Asynchronous and distributed task selection
(ADTS) algorithm for user i € T.
1: Initialization

2: User Input: Movement cost ci’l/ VIl e L.
3: Check the task description, location [[k], time ¢[k], and reward
plk] for all task k € KC on the mobile app interface.

’
: Calculate movement time Aé’l , VI1,I" € L using Google Maps
data based on movement speed v;.
: Planning Phase: Task Selection Game

4
5
6: repeat
7
8
9

Check clock timer 7 on the mobile app.
ifrel;
Check the mobile app for the number of participants
q*1 for all (k,t) € H.

10: Calculate the number of participants excluding user ¢
itself: qﬁjﬁ“ = qFt) — qgk’t), v (k,t) € H.
11: Perform a best response update: Find a route r; € R;

that maximizes user i’s payoff:

*[k,t
Ui(ri,r—i) == AL > gile).
(k1) 4
(k,t)ev(r;) 94— e€E(r;)

12: Update the task selection decision:
(k,t))1, if (k,t) € V(ry), Kt 4
4 T {07 otherwise, vk t) €H. ()
13: Report g; := (qgk’t), V (k,t) € H) to the service provider.

14: end if

15: until 7 > 7max,
16: Data Collection and Sensing Phase
17: for each user : €

18: Move and complete the sensing task in each time slot ¢
based on the task selection plan 7;.
19: end for

ment time from Google Maps dataﬂ based on her speecﬂ
(line 4).

With the aggregate informatior] on the total number of
users working on different tasks (line 9) provided by the
service provider in Algorithm 2] each user performs a best
response update (lines 11 and 12), and claims the tasks by
sending her updated task selection g, = (qgk’t), v (k,t) €
H) to the service provider. Here, H = {(k,t) € K x T :
p*[k,t] > 0} is the set of task-time points that provide a
positive reward.

Notice that users only need to claim the tasks that they
are interested in working on, and do not need to reveal their
movement plans to the service provider. This will preserve
the privacy of users. Let I'; be the set of iterationdd during
which user ¢ updates her task selection strategy. We assume
that each user updates her strategy distributively and asyn-
chronously until a predefined iteration limit 7%*. We set
T t0 be a large enough value such that the ADTS can

5Google Maps assume an average walking speed of about
3 miles/hour for pedestrians. For example, if the Google

Maps show that movement time between locations [and I’
is 2 mins, then user ¢ with movement speed of 4 miles/hour
would have a movement time Aé’ll = 1.5 mins.

SPrototype systems, such as BreadCrumbs [12], can track
the movement speed of the device’s owner.

"Such information is often available for users in crowdsourc-
ing platforms.

8Note that an iteration only takes a fraction of a single time
slot.

Algorithm 2 Information Update Algorithm for the Service

Provider.

1: Initialization

2: Announce the task description, location l[k], time t[k], and
reward p[k| for all task k € K on the mobile app interface.

3: Allocate memory for qgk't), VieZ,(kt)eH.

4: Initialize clock timer 7 := 1 on the mobile app interface.

5: Information Update for Task Selection Game in Algorithm [

6

7

8

. repeat
if task selection update message g; is received from user ¢
Calculate the number of participants for all (k,t) € H:

q(k’t) = Ziel‘ QEk’t)y v (k,t) € H.
9: Update ¢(Ft), V (k,t) € H on the mobile app interface.
10: end if

11: Set 7:=7+ 1.
12: until 7 > 7max,

converge. Simulations suggest it is enough to set 7™ > 5
when I < 30 and K < 10.

In the data collection and sensing phase of Algorithm [T
each user moves around and completes her claimed sensing
tasks. The service provider would only pay a user, if the
user has claimed the task in the planning phase, and has
completed the task with an acceptable quality. As in Field
Agent [3], for quality control, the service provider can em-
ploy techniques such as GPS marking (for location verifica-
tion), time stamping (for time verification), and photo/video
confirmation. Except the user input (line 2) and sensing ex-
ecution (lines 16-19), all the other computation, communi-
cation, and information checking from maps can be done by
the mobile app on behalf of the users.

4. CENTRALIZED TASK ALLOCATION

In this section, we consider the benchmark centralized
task allocation (CTA) problem, where the service provider
seeks to maximize the social surplus in the TSG. We prove
that the CTA problem is NP-hard. Due to the high com-
plexity of finding the optimal solution, we propose a heuris-
tic greedy centralized algorithm, which turns out to have
close-to-optimal performance in our simulations.

41 Centralized Task Allocation Problem

In the CTA benchmark problem, the service provider allo-
cates tasks to the users in order to maximize the social sur-
plus (i.e., users’ total rewards minus total movement costs).
The social surplus represents the maximum total profit that
the service provider can generate, under the ideal case that
all the users are under its direct controfl.

For user ¢’s given strategy (task-time route choice) r; in
@), we use y¥(r;) = 1 to denote that user i works on task k
under strategy r;, and y¥(r;) = 0 otherwise. That is,

yE(ri) = {1’ i (k. tk) € (5)

0, otherwise.
Given the users’ strategy profile r, the social surplus is
surplus(r) = reward(r) — cost(r), (6)

where reward(r) is the total rewards received by all users,
and cost(r) is the total movement costs of all users. Since

In this case, each user will get a zero payoff, i.e., the pay-
ment from the service provider equals to the user’s move-
ment costs involved in finishing the tasks.

the reward p[k] is equally shared among all the users working
on task k, reward(r) equals the total reward of those tasks
that have at least one assigned user. So we have

reward(r) = 3 1 ez oK, (7)
ke

where 1} is the indicator function. Moreover, we have

n—1
X a+1
COSt(’I‘) _ j :COSti(Ti) _ 2 : § :Ci[kz]»l[kl]7 (8)
i€l i€Z a=1

n—1 MkILIKST
a=1 "1

where cost; (r;) =3
user i.

In practice, it is reasonable to assume that the total move-
ment cost of a user is non-decreasing in the number of loca-
tions she visited. That is,

is the movement cost of

A S B e I e L. (9)

7

With this assumption, we can show that there always ex-
ists an optimal task allocation where each task is allocated
to at most one user.

LEMMA 1. There always exists a social surplus maximiz-

ing (optimal) task assignment r* = argmax surplus(r)
PERIX...XRJ

such that >, yi(ri) <1, Vk € K.

The proof of Lemma [is given in Appendix With
this lemmalﬂ7 we can establish the NP-hardness of the CTA
benchmark.

THEOREM 3. The problem of finding the social surplus
mazimization solution of the TSG is NP-hard.

The proof of Theorem Blis given in Appendix[Dl Theorem
motivates us to consider a greedy heuristic algorithm to
solve the CTA problem.

4.2 Greedy Centralized Task Allocation Algo-
rithm

We propose a low complexity greedy centralized (GC) al-
gorithm (Algorithm [3]), which computes an approximate so-
lution to the social surplus maximization problem. The key
idea is that the service provider sorts the tasks in ascending
order of the execution time, and then allocates one user to
each task sequentially in a greedy manner. Specifically, in
line 6, the service provider first serves tasks with the earliest
execution time. In line 9, the service provider sorts users in
the order of an increasing movement costs (from the users’
current locations to the location of the current task k). Line
12 indicates that a user ¢ will be chosen if it is eligible to

perform the task (i : k € K;), can reach the task location on
time (t[k] — @i > Aii’l[k]), and has the incentive to perform
the task (p[k] > cii'l[k]) (line 12). Here ¢; is the first time
slot of user i after finishing any existing allocating task. It is
possible that some task k£ may not be allocated to any users

(e, y¥F =0,VieT).

ONote that there can be other optimal solutions that do not

satisfy Lemma/[Il However, these solutions can be obtained
readily from the optimal solution in Lemma [Il as we will
discuss in Appendix [C1l

Algorithm 3 Greedy Centralized (GC) Algorithm for Task

Allocation.

1: Initialization

2: Obtain movement costs, speeds, and initial locations from all
the users: cﬁ’l/, Vi,l' € Li €T, v; and I Vie T

3: Initialize the next available time and current location of the
users: ¢; ;=1 and [; := li-“it, Viel.

4: Initialize the optimization variables yf =0,VieZ kek.
5: Greedy Centralized Task Allocation
6: Sort the tasks in set K in the ascending order of the execution
time t[k].
7: for k=1to K
8: Set flag := 0.
9: Sort the users in set Z in the ascending order of cii’l[k].
10: Set ¢ := 1.
11: while ¢ < I and flag =0
12: if ke K; and t[k] — ¢; > AV and plk) > ¢litM
13: Update user ¢’s next available time ¢; := t[k] and
current location I; := l[k].
14: Indicate the task allocation yf := 1 and set flag := 1.
15: end if
16: Set i :=1+ 1.
17: end while
18: end for
19: fori €T
20: Inform user i the task allocation (y¥, Vk € K).
21: end for
22: Data Collection and Sensing Phase
23: for each user i €
24: Move and complete the sensing tasks based on the
task allocation (y¥, Vk € K).
25: end for
Table 1: Simulation Parameters
Parameters Values
Number of tasks K 10
Number of time slots T’ 15
Rewards for three levels of tasks | $10, $15, $20
Duration of a time slot § 1 minute
Movement speed v 0.1 km/min

LEMMA 2. Algorithm [3 has a computational complexity
of O(KIloglI).

The proof of Lemma 2 is given in Appendix [El

5. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of our pro-
posed ADTS scheme by comparing with the CTA bench-
mark, the GC scheme, and a greedy distributed (GD) scheme.
We study the impact of various system parameters on the
average user payoff, fairness, coverage, and average reward
per measurement on different schemes. We also present an
example using real movement time data from Google Maps.
Our simulations involve the following schemes:

e ADTS scheme: Algorithms [I] and

e CTA benchmark: Global optimal solution of the social
surplus maximization problem.

e GC scheme: Algorithm [3] that approximately solves
the social surplus maximization problem.

e GD scheme: Each user chooses to work on the earliest
feasible task without coordinating with other users.

GC
@@= ADTS
== GD

®

Average Payoff per User
=
® 5

~

15 20 25 30
Total Number of Users

Figure 3: The average user pay-
off versus the total number of
users [for K = 10 and ¢™°V° = 0.1.

Coverage (%)

5 10

15 20 25 30
Total Number of Users

Figure 6: The coverage versus
the total number of users [for
K =10 and ¢™°v® = 0.1.

CTA (Benchmark)
C

G
== ADTS
=il GD

Average Payoff per User

2 3

4 5 6 7 8
Total Number of Users

Figure 4: The average user pay-
off versus the total number of
users [for K =5 and ¢™°v® = 1.

30
25

20

15

10

Average Reward per Measurement ($)
o

5 10 20 25 30

15
Total Number of Users

Figure 7: The average reward
per measurement versus the to-
tal number of users [for K = 10

Jain’s Fairness Index

25 30

15 20
Total Number of Users

Figure 5: Jain’s fairness index
versus the total number of users
I for K =10 and ¢™°v® =0.1.

CTA (Benchmark))
GC

| e ADTS

w=il= GD

Average Payoff per User

0 2 4 6 8 10

Movement Cost Coefficient ¢™°"®

Figure 8: The average user pay-
off versus the movement cost co-
efficient ¢™°V® for I = 7 and K =

and c¢

Like the GC scheme, user i should be eligible for the
task (i.e., i : k € K;), can arrive on time to perform the
task (i.e., when t[k] — ¢; > A,lf’l[k] given that user ¢ is
at location [;), and has an incentive to perform sensing
assuming no other users share the reward of that task
(i.e., plk] > cﬁi’l[k]). If there is more than one feasible
task with the same execution time, then the user will
choose the task with the highest reward.

For each set of system parameter choices, we run the
simulations 1000 times with randomized initial user loca-
tions, and randomized locations and times for the tasks,
and show the average value. Unless specified otherwise, we
assume that the locations of the K tasks and I users are
randomly placed in a 1 km x 1 km region. Each user is
randomly allocated one of three reputation levels, and each
task is randomly assigned a threshold. A wuser is eligible
to perform a task when her reputation exceeds the thresh-
old of the task. Each user i moves at constant speed v;,
and the movement time from location [€ L to location
e Lis A = [%W where dist(l, /') is the travel-

ing distance on the road between locations [and I’, § is the
length of a time slot, and [-] is the ceiling function. We
assume that the movement cost of user i is linearly pro-
portional to the distance between two locations in the form
cﬁ’l/ = ¢*Vedist(l,1"). For simplicity, we assume that all the

move move

users have the same movement cost coefficient ¢} =c

move — (.1,

5.

and the same movement speed v; = v. Other simulation pa-
rameters are listed in Table [11

5.1 Average User Payoff and Fairness

Impact of user number on user payoff: In Fig. [3] we
plot the average user payoff against the number of users I,
with K = 10 tasks and movement cost coefficient ¢™°V® =
0.1. The average user payoff decreases with I under all three
schemes, due to the increased competition with the increas-
ing number of users. The ADTS scheme achieves a similar
average user payoff as the GC scheme.

Comparison with centralized optimal solution: In
Fig. @l we plot the average user payoff against I in a smaller
scale, with K = 5 and ¢™°"° = 1, so that we can evaluate the
CTA benchmark as well. Note that GC achieves a similar
payoff to the benchmark, especially when I is large.

Fairness: In Fig. Bl we study how the payoffs are dis-
tributed among the users by plotting Jain’s fairness index [§]
(defined as (37,7 Ui(r))z/(l Yier Ui(r)?)) against I, with
K =10 and ¢™°¥® = 0.1. The ADTS scheme has the highest
fairness index, as each user has an equal chance to update
her strategy profile in ADTS in Algorithm [l On the other
hand, the GC scheme has the lowest fairness index, as it
allocates K tasks to at most K users. As a result, when
I increases, the number of users not allocated any task in-
creases, so the fairness decreases.

5.2 Coverage and Reward Per Measurement

[Mobile User |

® Task
¥
i 42 St - Port Aulhomy,,‘
39 Bus Terminal
&
A
<
— S
IS & &
o & .
2 9y
5]
3
W
© g,
% Reward: $15
34'5t - Penn Stat| Time: 9:04am
‘ : i i ‘ ‘ ‘ ‘ ‘ ; i S Eenastatontl sfbiereld Square S
2 4 6 8 10 01 015 02 025 03 035 04 045 05 2% >
; (X) 345t - Herald SO (G001€ The Mo
< move < 87 ¢ gan =
Movement Cost Coefficient ¢ Movement Speed v (km/min) % 2 A Stesat Y Sbrarv & Museum S

Figure 9: The coverage ver-
sus the movement cost coef-

Figure 10: The coverage versus
the movement speed v for [= 10

Figure 11: An illustration on the
task selection and mobility plans

ficient ¢™°v® for I = 10 and
K = 10.

and K = 10.

Table 2: Movement Time Data from Google Maps

of the users on the map under
the ADTS scheme.

Table 3: Summary of Performance in the Real-world
Example

Drive/Walk (min) | Location 1 | Location 2 | Location 3
Location 1 0/0 3/ 11 4 /15
Location 2 3/ 11 0/0 2/6
Location 3 4 /15 2/6 0/0

We examine the coverage and average reward per mea-
surement under the three schemes, with K = 10 tasks and
¢™® = 0.1. The coverage is defined as the percentage of
tasks with at least one measurement received.

Impact of user number on coverage: In Fig. [6 we
plot the coverage against I. When I increases, we see the
coverage under all the schemes increases, as there are more
users to work on the tasks. The ADTS scheme has a slightly
higher coverage than the GC scheme, as users try to avoid
too much overlapping with each other in ADTS. The large
difference between the coverage of the ADTS and GD schemes
is due to the lack of coordination in the GD scheme.

Average reward per measurement: Fig. [l shows the
average reward per measurement against I. We can see that
the ADTS and GD schemes have the same smaller aver-
age reward per measurement than the centralized scheme
GC. From a service provider’s point of view, with the same
amount of total reward, lower average reward per measure-
ment means that more sensing data can be collected, which
is beneficial for the service provider.

5.3 Impact of Moving Cost and Speed

Impact of movement cost on user payoff: In Fig. 8]
we plot the average user payoff against ¢™°V® with I = 7
and K = 5. As ™ increases, the payoffs for collecting
measurements under both ADTS and GC decrease. More-
over, since users under both ADTS and GC are aware of
the actual reward that they can receive (after sharing with
other users), the users would not receive a negative pay-
off for collecting data. However, for the GD scheme without
any user coordination, a user makes decisions with the belief
that she will gain the full reward p[k] for task k, rather than
the actual reward she can achieve (after sharing with other
users). When ¢™°¥® < 4, users become overly aggressive in
GD, and it becomes common that multiple users work on

ADTS | GC and CTA GD
benchmark
Average user payoff | $10.33 $11 $7
Jain’s fairness index 0.93 0.64 0.93
Coverage 100% 100% 66.67%

the same task. As a result, the actual reward per user is
much less than the full reward of the task, which results in
the decrease of the average payoff (even to a negative value)
in GD. However, when ¢™°"® increases beyond 4, users are
less likely to work on the same task in GD, so the evaluation
of the reward is more accurate, and the average user payoff
in GD gradually converges to a non-negative value, similar
to those under the ADTS and GC schemes.

Impact of movement cost on coverage: In Fig. [0
we plot the coverage against the movement cost coefficient
¢V with I = 10 and K = 10. As ¢™°"° increases, the cov-
erage decreases in general, because the users are less willing
to perform sensing. The slight increase in coverage in GD
for ¢™°V® < 2 is due to the inaccurate reward estimation
mentioned in the previous paragraph.

Impact of movement speed on coverage: In Fig. [I0]
we plot the coverage against the movement speed v for I =
10 and K = 10. As v increases, the coverages under all three
schemes increases. The ADTS scheme has a slightly larger
coverage than the GC scheme.

54 A Real-World ExampleUsing Google M aps

To better illustrate the schemes, we next introduce a more
concrete example based on the neighborhood map in New
York City with real data from Google Maps. We consider

= 3 users and K = 3 tasks. The locations of the users,
tasks, the execution times, and rewards are shown in Fig. [Tl
We assume that user 1 prefers driving, while users 2 and 3
prefer walking. We compute the movement time of driv-
ing and walking between different locations through Google
Maps, as shown in Table For the movement cost, we as-
sume that driving between any two different locations costs
$2 and walking is free.

Fig. [l shows the task selection plans of three users (i.e.,
the blue, red, and purple broken lines with arrows) under
the ADTS scheme. As we can see, user 1 takes the task
selection plan of task 3 — task 2, while users 2 and 3 take
the task selection plan of task 1 — task 2. The intuition
is that as users 2 and 3 are pedestrians, who do not have
enough time to go to the far away location 3 from their initial
locations. As a result, user 1, who is driving, prefers to take
task 3 with the minimum competition, and enjoys a higher
reward. After finishing their first chosen task, all three users
have enough time to work on task 2, and share the reward
of $10. In contrast, under both the GC scheme and CTA
benchmark (not shown in the figure), user 1 works on task 3,
user 2 works on both tasks 1 and 2, and user 3 does not have
any task to work on. For the GD scheme (not shown in the
figure), since the initial locations of all the users are nearby,
their task selection plans are identical: task 1 — task 2,
as everyone chooses to pursue the earliest task without any
coordination. The performance of the three schemes are
summarized in Table[Bl We can see that the ADTS scheme
achieves a high level of fairness, coverage, and user payoff.

6. CONCLUSION

Motivated by commercial mobile crowdsensing applica-
tions, such as Gigwalk and Field Agent, we studied the
distributed time-sensitive and location-dependent task se-
lection problem in this paper. We examined the problem
from the perspectives of both noncooperative game and cen-
tralized optimization. We proposed an asynchronous and
distributed task selection (ADTS) algorithm to help users
determine their task selection and mobility plans in a dis-
tributed fashion, based on limited information on users’ ag-
gregate task choices. We proved that finding the social sur-
plus maximization solution is NP-hard. Simulation results
showed that the ADTS scheme achieves the highest Jain’s
fairness index and coverage as compared with two heuristic
schemes. In this paper, we focus on the distributed task se-
lections of a fixed set of users. In the future work, we will
consider the case a changing user population, where users
can dynamically join and leave the system.

7. ACKNOWLEDGMENT

This work is supported by University of Macau Grant
MYRG2014-00140-FST. This work is also supported by the
General Research Funds (Project Number CUHK 412713
and 14202814) established under the University Grant Com-
mittee of the Hong Kong Special Administrative Region,
China.

APPENDI X

A. PROOF OF THEOREM [1
The key idea is to show that the mapping

- Z Z gi(e)

i€Z ecE(r;)

m(k t) (r)

> ooy ok

(k,t)EKXT g=1

is a potential function [11] of the TSG (where E(r;) is defined
in Definition [6). This means that for each strategy profile
r=(ri,...,77) € R1 X ... X Ry, each user i € Z, and each
strategy 7, € R; available to user i, we have ® (r],r_;) —
S (r) =U; (ri,r—;) — U; (r). In [I1], the authors prove that

D (r) =

every finite game with a potential function has the FIP. Since
the T'SG is a finite game, we prove the statement in Theorem
o

To show that @ (r) is a potential function, we shall sepa-
rate our sums into two parts.

(k)EKXT g=1

and

=3 3 g (11)

i€Z e€E(r;)

Adding equations (I0) and () gives
o (r) =2 (r)+®" (r). (12)

Also, for a subset S C I x T of task-time points, let us
define

(k,t)yes q=1
Clearly ®Y, + (r) = ®V (7). Let us define
\4 _ p* [k7t]
Ui (T) - Z m(k”t) (,’,) (14)
(k,t)EV(ri)

and

UEm = 3 —ale). (15)

e€E(r;)
By comparing this with equation (] one can see that
=> UF(r). (16)
=
Adding equations (I4) and (5] gives
Ui (r) =UY (r)+UF (r). (17)

Suppose that our game is in strategy profile r» = (r1,..,rr)
and then user j € 7 changes their strategy to r; € R;, and
so we have a new strategy profile v’ = (rg-, 'r,j) . In order to
show that ® is an exact potential function we will show

@ (rj,r—j) =@ (r)=Uj (rj,r—;) = U; (r). (18)

To begin, note that we can expand out the left hand side
of equation ([I8)) using equation (I2]) to obtain:

@ (rjr) —®(r)
— [@V (r}m,j) — oY (7‘)] + [@E (r;-m,j) —oF (7‘)} .
(19)
Equation (I6]) implies that

i) =@ () =S [UF (5rg) = UF ()]
i€z (20)

_UE (Tp *J) UE()

(PE (T] T

Using equation ([I3), we can obtain that

¥ (rj,r—y) — ¥ (r)

= [‘I’;cxp(v(rj)uv(r;)) (57 3) = @ (v)ov()) (r)]
e R G R N O]
@V vy (57=) = U)oy ()]

+ [‘I’Q//(rj)fv(rc) (5, r—s) = ‘I’x‘;(rj),v(r/_) (r)] -

J

(21)

Now since m (¥+t) (r) = m (k1) (r}, r
(k,t) e Cx T —

we have that

;) holds true for every
(V(r;)uV (1)) or (k,t) € V(r;) NV (r})

(O r— (o)1) 55 7=2) = B (oY) (1)

Using equation ([I3]), together with the fact that m(k? (r;-, r

m®Y (p) 41, Y(k,t) € V (%) — V (r;) gives us that

P3(e5)v(ry) (5:773) = () () ()
m(k,t>(T§ ;) .)(r))

k,t k.t
= Z P [q] Z [q]
(k,t)ev(r;)=v(r;) q=1 q=1

[k,
- Y amemaT

(k)ev(ry)=V(r;)
(23)

Similarly, using equation ([I3)), together with the fact that
m®D (rhr_;) =m0 (r) — 1, V(k,t) € V(r;) — V(r})
gives us that

\% ! v
®y(ag)—v(ry) (75 7=3) = L) u(y) (1)
m0 (rr_) mE ()
S AL p AL
) — q =1 q
(k,)eV(ry)=V(r}) ! !

~
=
&
m
<
—~
3
o
_/
<
—~
3
[N
~

(24)

Substituting equations ([23) and (24) into equation (22))
gives us that

oV (rjr—i) =

_ T M - M
m&t (r m&t (r
(k,t)GV(r;)fv(rj) (r)+1 (k,t)GV(rj)fv(r;.) ()

= UJV (7';7"'*1‘) - UJV (r).

e (r)

(25)

Substituting equations (20) and (28] into equation (I9),
gives us that

@ (rj,r_;) —®(r)
= [0 (@rs) 0)] + [UF (7, m5) — UF ()]
(26)

Now equation ([I7) can be used to simplify the right hand
side of equation (26), and this yields the right hand side of
equation (8], as required. [|

B. PROOF OF THEOREM

The key proof idea is to show that the problem of a generic
user j finding a best response strategy in a strategy profile
r can be reformulated as the problem of finding a longest
path in a weighted directed acyclic graph G*, which can be
solved in polynomial time.

To construct such a graph G*, we construct a weighted
directed graph G = (V,). Recall that V is defined in Defi-
nition @ and E is defined in Definition[6l The vertex set V =
UseRj V (s) corresponds to the set of task-time points (k, t),
which lie on routes which are feasible for user j. The directed
edge set € = UseR E (s) corresponds to the set of all pairs

[(k,t), (Kt € E() such that user j can move between.
Each directed edge e = [(k,t), (k',t")] of the graph G is as-

sociated with an edge weight w (e¢) = —g;(e) = —c;[k]’l[kl].
Each vertex (k,t) is associated with a value
* [kt
(k1)) = A (27)

{ieZ: z#],(k t)yeV(r)}H+1’

where [{i € T :i # j,(k,t) € V(r;)}| equals the number of
users other than j which have selected task-time routes that
pass through (k,t) in the strategy profile r. Notice that
0 ((k,t)) equals the reward that user j would get for visiting
task-time point (k,t).

A path in a directed graph is a sequence of vertices, where
each vertex is linked to its successor in the sequence. A best
response for user j corresponds to a path in the graph G,
which starts at the task-time point (k:;-“it7 1), and maximizes
the sum of the weights of the edges, and the values of the
vertices along the path.

Starting from graph G defined above, we form a new graph
G* = (V*,&"), by replacing each vertex (k,t) in G with
a pair of new vertices (k,¢,0) and (k,t,1). These two new
vertices are linked by a new directed edge [(k,¢,0), (k,t,1)],
which has an edge weight w* ([(k,t,0), (k,t,1)]) = 0((k,t))
as in (21), equal to the value of the original vertex (k,t).

As a result, graph G* has a vertex set

V*={(k,t,y): (k,t) € V,y € {0,1}},

and an edge set £* = &7 UE5. Here set
& = {[(k,t,1), (K", ¢, 0)] : [(k,t), (K',t)] € €},
and each edge [(k,t,1), (K',t',0)] € & has a weight
w” ([(k,t,1), (K, ¢,0)]) = w ([(k,1), (K',1)]) ,
with the right hand side being the weight of the edge origi-

nally in graph G. Alsoset &5 = {[(k,t,0), (k,t,1)] : (k,t) € V},

and each edge [(k,t,0), (k,t,1)] € £ has a weight

w” ([(k,8,1), (K, ¢,0)]) = 0 ((k,1)),

where the right hand side follows (27)).

By considering the weights of all edges in G* as lengths,
one can see that a best response for user j in strategy pro-
file » corresponds to a longest path in G* that starts at the
vertex (k;”it7t70). Such a longest path can be computed in
O([V*| x [E*]) = O (K®T?) time using the algorithm de-
scribed in [I3], because G* is a directed acyclic graph. Since
G* itself can be constructed in O (K2T2) time based on the
previous discussions, the entire process for a user to compute
the best response has a complexity of O (K3T3) .]

C. PROOFOFLEMMAI

We prove the lemma by contradiction. Assume that for
any optimal solution r*, we can always find a task ¢ € K
such that Y, yi(r;) > 1. Let us focus on a particular user
j € T that is assigned to work on task ¢ (i.e., y;-z(rf) =1).
We can define another strategy profile r, which is the same
as r* for the task allocation of all users, except that task ¢
is not allocated to user j. That is,

i) = {0’

if Kk =q and i = j,
yi (r;), otherwise.
Since the coverage of the tasks under r is the same as r*,
where 37, y¥(r;) > 1 and Dier y¥(r;) > 1 for each task
k € K, we have from () that

reward(r) = reward(r"). (29)

Since user j works on one task less in r; than in r}, from
@), we have

costy(r;) < cost;(r}). (30)

However, the movement costs of other users remain the same
such that

costi(r;) = costi(r;), Vi € T\{j}. (31)
Overall, substituting (29]), (30)), and BI)) into (6), we have
surplus(r”) < surplus(r), (32)

which means that strategy profile 7 is also an optimal so-
lution. This leads to a contradiction, and hence proves the
theorem. |

C.1 Discussion of multiple solutions of the so-
cial surplus maximization problem

We note that there can be other optimal solutions that
do not satisfy Lemma 1. However, these solutions can be
obtained from the optimal solution in Lemma 1, when there
are no extra movement costs for users to work on some tasks,
so that there can be more than one user working on a par-
ticular task in the optimal solution.

As an example, consider the case with two users (i.e., I =
2) and three tasks (i.e., K = 3). For the execution time of
the tasks, we assume that ¢[1] = 2, t[2] = 3, and ¢[3] = 4.
For the locations of tasks, we assume that the three tasks
are located on a straight line, where the movement cost of
user 1 satisfy the condition

a? e =t (33)

That is, the location [[2] of task 2 is between the locations
I[1] and [[3] of tasks 1 and 3.
Assuming that the strategy profile with

r = ((kilnitv 1)7 (17 2)7 (37 4))
and

r2 = ((kénitv 1)7 (27 2)7 (27 3)7 (27 4))

is an optimal solution of the social surplus maximization
problem, which satisfies the condition in Lemma 1. From
this strategy profile, we can define another strategy profile

mo= ((R7 1), (1,2),(2,3), (3,4))
and
2 = ((k37°,1),(2,2),(2,3), (2,4)),

where both users work on task 2 at time 3. Notice that the
social surplus achieved under this strategy profile 7 is the
same as the strategy profile r, since user 1 does not need to
incur any extra movement cost in completing task 2.

D. PROOF OF THEOREM

We prove the NP-hardness by restriction [5]: We show
that finding the social surplus maximization solution in a
special case of a TSG can be transformed into a 3-dimensional
matching decision problem, which is NP-complete [5,[9].

DEFINITION 10. (3-dimensional matching) Let X',), and
Z be three finite disjoint sets. Let R C X x Y x Z be a set
of ordered triples, i.e., R = {(z,y,2) :x € X,y € Y,z € Z}.
R’ C R is a 3-dimensional matching if for any two different
triples (z1,91,21) € R' and (z2,y2,22) € R, we have x1 #
T2, Y1 # Y2, and 21 # zo.

DEFINITION 11. (3-dimensional matching decision prob-
lem) Suppose |X| = |Y| = |Z] = M. Given an input R
with |R| > M, decide whether there exists a 3-dimensional
matching R' C R with the maximum size |R'| = M.

Consider a restricted TSG, which is a special case of a
TSG, which we place the following restrictions:

(a) Tasks and time slots: There are T' = 3 time slots,
and there are M tasks in each time slot (hence a total of
3M tasks in 3 time slots). Sets X, Y, and Z represent
the sets of available tasks in the three time slots, where
X| = V] = |2] = M.

(b) Task-time route: Set R represents the set of available
task-time routes of all the users. Assume that each user ¢ can
only choose one particular available task-time route r; € R.
We assume that the number of users [is large enough, such
that the task-time routes of all the users cover all the tasks
in YUYUZ,s0 |R|=1>M. R CR in Definition [IT]
represents a feasible task allocation. We assume that a user,
whose route is not chosen in R’, will not work on any real
task.

> Time

Figure 12: An example of 3-dimensional matching.
Here, the set R consists of the four grey areas, which
represent the routes of users 1 to 4. The solution of
the 3-dimensional matching problem is the set R’
that consists of the routes of users 1, 2, and 4. It is
also the solution of the social surplus maximization
problem.

(c) Large reward: The reward of a task is larger than the

1R g

movement cost to work on the task, i.e., p[k] > ¢,
each user i € Z and all tasks k, k' € K.

(d) User-independent movement cost: The movement cost
only depends on its destination location and is independent
of its initial location, such that ci’l/ =c[l'l forall i € T
and 1,!' € £, where c[l'] is the movement cost of destination
I'eL.

In the restricted TSG, first, restrictions (c¢) and (d) im-
ply that we can maximize the social surplus by covering
all the tasks with any available users. Second, Lemma [I]
(and the discussion in Appendix [CJ)) implies that we can
focus on an optimal solution, where each task should be al-
located to at most one user. So the optimal task allocation
should not contain any overlapping components (i.e., multi-
ple users working on the same task) as defined in Definition
10l Putting the above discussions together, we know that
in the social surplus maximization solution, every element
of X x Y x Z (i.e., every task) should be contained in ez-
actly one of the triples (i.e., the task-time routes) in R'.
In other words, R’ C R is the optimal task allocation. So
the surplus maximization problem can be transformed to
a 3-dimensional matching decision problem, which is NP-
complete [B1[9]. By restriction, we establish that the prob-
lem of finding the social surplus maximization solution of
the TSG is NP-hard. |

E. PROOF OF LEMMA[2

The sorting of execution time in line 6 takes O(K log K)
time [9]. For each task, besides some simple computations,
most of the time is consumed for sorting the movement
costs of the users in line 9, and it takes a running time of
O(IlogI). Since we generally have more users than tasks,
ie., Ilogl > log K, the total run time with K tasks is
O(KIloglI). [

F. REFERENCES

Amazon Mechanical Turk.
https://www.mturk.com/mturk/.

L. Duan, T. Kubo, K. Sugiyama, J. Huang,

T. Hasegawa, and J. Walrand. Motivating smartphone
collaboration in data acquisition and distributed
computing. IEEE Trans. on Mobile Computing,
13(10):2320-2333, Oct. 2014.

Field Agent. http://www.fieldagent.net/.

R. K. Ganti, F. Ye, and H. Lei. Mobile crowdsensing:
Current state and future challenges. IEEE
Communications Magazine, 49(11):32-39, Nov. 2011.
M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco, CA, first
edition, 1979.

Gigwalk. http://gigwalk.com/.

S. He, D. Shin, J. Zhang, and J. Chen. Towards
optimal allocation of location dependent tasks in
crowdsensing. In Proc. of IEEE INFOCOM, Toronto,
Canada, Apr. 2014.

R. K. Jain, D. Chiu, and W. R. Hawe. A quantitative
measure of fairness and discrimination for resource
allocation in shared computer systems. Tech. Report
DEC-TR-301, Eastern Research Lab, Sept. 1984.

J. Kleinberg and E. Tardos. Algorithm Design.
Addison-Wesley, Boston, MA, first edition, 2005.

N. D. Lane, E. Miluzzo, H. Lu, D. Peebles,

T. Choudhury, and A. T. Campbell. A survey of
mobile phone sensing. IEEE Communications
Magazine, 48(9):140-150, Sept. 2010.

D. Monderer and L. S. Shapley. Potential games.
Games and Economic Behavior, 14(1):124-143, May
1996.

A. J. Nicholson and B. D. Noble. BreadCrumbs:
Forecasting mobile connectivity. In Proc. of ACM
MobiCom, San Francisco, CA, Sept. 2008.

R. Sedgewick and K. Wayne. Algorithms. Pearson
Education, 2011.

X. Sheng, J. Tang, and W. Zhang. Energy-efficient
collaborative sensing with mobile phones. In Proc. of
IEEE INFOCOM, Orlando, FL, Mar. 2012.

Q. Zhao, Y. Zhu, H. Zhu, J. Cao, G. Xue, and B. Li.
Fair energy-efficient sensing task allocation in
participatory sensing with smartphones. In Proc. of
IEEE INFOCOM, Toronto, Canada, Apr. 2014.

	1 Introduction
	2 System Model
	3 Distributed Task Selection Games
	3.1 Task-Time Routing
	3.2 Task Selection Game
	3.3 Equilibrium Existence and Convergence Analysis
	3.4 Asynchronous and Distributed Task Selection Algorithm

	4 Centralized Task Allocation
	4.1 Centralized Task Allocation Problem
	4.2 Greedy Centralized Task Allocation Algorithm

	5 Performance Evaluations
	5.1 Average User Payoff and Fairness
	5.2 Coverage and Reward Per Measurement
	5.3 Impact of Moving Cost and Speed
	5.4 A Real-World Example Using Google Maps

	6 Conclusion
	7 Acknowledgment
	A Proof of Theorem ??
	B Proof of Theorem ??
	C Proof of Lemma ??
	C.1 Discussion of multiple solutions of the social surplus maximization problem

	D Proof of Theorem ??
	E Proof of Lemma ??
	F References

