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ABSTRACT
In cyber-physical systems such as automobiles, measurement
data from sensor nodes should be delivered to other con-
sumer nodes such as actuators in a regular fashion. But, in
practical systems over unreliable media such as wireless, it
is a significant challenge to guarantee small enough inter-
delivery times for different clients with heterogeneous chan-
nel conditions and inter-delivery requirements. In this pa-
per, we design scheduling policies aiming at satisfying the
inter-delivery requirements of such clients. We formulate the
problem as a risk-sensitive Markov Decision Process (MDP).
Although the resulting problem involves an infinite state
space, we first prove that there is an equivalent MDP in-
volving only a finite number of states. Then we prove the
existence of a stationary optimal policy and establish an al-
gorithm to compute it in a finite number of steps.

However, the bane of this and many similar problems is
the resulting complexity, and, in an attempt to make fun-
damental progress, we further propose a new high reliabil-
ity asymptotic approach. In essence, this approach consid-
ers the scenario when the channel failure probabilities for
different clients are of the same order, and asymptotically
approach zero. We thus proceed to determine the asymp-
totically optimal policy: in a two-client scenario, we show
that the asymptotically optimal policy is a “modified least
time-to-go” policy, which is intuitively appealing and easily
implementable; in the general multi-client scenario, we are
led to an SN policy, and we develop an algorithm of low
computational complexity to obtain it. Simulation results
show that the resulting policies perform well even in the
pre-asymptotic regime with moderate failure probabilities.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless Com-
munication
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Figure 1: An in-vehicular network with an access
point and several wirelessly connected sensors and
actuators.
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1. INTRODUCTION
Delay and throughput have long been regarded as im-

portant quality of service (QoS) metrics [9, 17, 25]. How-
ever, with the increasing deployment of real-time applica-
tions such as sensor networks, and surveillance applications
over unreliable media such as wireless, guaranteeing small
enough inter-delivery times between packets becomes impor-
tant [14,15,19,20,22]. As an example, consider an in-vehicle
wireless sensor network illustrated in Fig. 1. In-vehicle wire-
less sensor networks have been drawing increasing attention
recently since they can significantly reduce the costs, reduce
weight of the wiring harness and hence increase fuel effi-
ciency, and are extensible and scalable, as compared to the
wired in-vehicle networks [6,24]. Such a cyber-physical sys-
tem features several (about a hundred) wireless sensor nodes
monitoring processes such as temperature and pressure, and
continually transmitting their measurements to controllers
which then choose appropriate actuation signals. In these
systems, one is allowed to control the arrival process since
outdated packets containing old sensor measurements can be
replaced by newer packets. Since a large gap between up-
dates can lead to system instability, inter-delivery times of
these packets is an important QoS metric. Different clients
may have different channel conditions and inter-delivery re-
quirements, which further complicates the problem.

In this paper, our goal is to design scheduling policies that
decide which client’s packet to transmit in each time slot in
such systems, so as to guarantee small enough inter-delivery
times between packets.

To penalize severely the deviations in inter-delivery times
that are larger than a certain threshold, we consider the
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exponential cost function,

E

[
exp

(
θ ·

N∑
n=1

(D(n) − τn)+

)]
,

where θ > 0 is a risk-aversion parameter. Here, D(n) is the
inter-delivery time of client n, τn is a specified inter-delivery
threshold for client n, and (a)+ := max{0, a}.

We formulate the optimization problem as a risk-sensitive
Markov Decision Process (MDP) [4,5,7,11,12,16]. Though it
is over an infinite state space, we show that there is an equiv-
alent MDP that involves only a finite state space. For this
equivalent MDP, we then prove the existence of a stationary
optimal policy, and obtain an algorithm which determines
the optimal policy in a finite number of steps.

The significant challenge of this and other modeling efforts
is however the complexity of determining an optimal solution
to the MDP, which is excessively large even for systems with
a moderate number of states (e.g., a hundred nodes), as is of
interest in many applications. To address this critical chal-
lenge, we further propose a new approach to channel mod-
eling which we call the “high reliability asymptotic regime”.
In essence, this approach considers the scenario when the
channel failure probabilities for different clients are of the
same order, and asymptotically approach zero. We then pro-
ceed to determine the asymptotically optimal policy. Such
a policy is expected to provide near optimal performance
even when the channel failure probabilities are non-zero and
range from small to moderate values. Philosophically, this
approach can be regarded as similar to studying the high
SNR asymptotics in network information theory [2].

In the case where there are two clients, the asymptoti-
cally policy has a very appealing structure, lending support
to this approach. The asymptotically optimal policy is a
structurally clean “modified-least-time-to-go” policy, which
is both intuitively appealing and easily implementable.

Our interest, motivated by cyber-physical systems appli-
cations, is however in large systems with several sensors and
actuators. For this general multi-client scenario, the asymp-
totic approach leads to an SN policy, and an algorithm of
relatively low computational complexity to obtain it. The
success of such an asymptotic approach however depends on
its performance in the pre-asymptotic regime. We present
simulation results showing that this is indeed the case.

The rest of the paper is organized as follows. We review
the related works in Section 2. We present the system model
in Section 3. We formulate the problem as a risk-sensitive
MDP in Section 4, and reduce it to a finite state problem in
Section 5. We prove the existence of a stationary optimal
policy, and apply the classic risk-sensitive MDP approach in
Section 6. We propose the high reliability asymptotic ap-
proach in Section 7. In Section 8, we design asymptotically
optimal policies by analyzing the high reliability asymptote.
Simulation results are presented in Section 9, followed by
conclusions in Section 10.

2. RELATED WORK
Li, Eryilmaz and Li [15] and Li, Li and Eryilmaz [14] are

apparently the first to consider inter-delivery time as a per-
formance metric. These works analyzed this metric in the
context of queueing systems, where the relevant trade-off is
between stabilizing the queues and minimizing the sum of
the inter-delivery times over all the clients. However, the

situation is very different in wireless sensor networks where
packets contain sensor measurements and one can simply
replace older packets by newer packets, and thus resulting
in no queues. Sadi and Ergen [21] have pointed out the
periodic nature of sensor nodes in intra-vehicular wireless
sensor networks. In another relevant work, Singh, Guo, and
Kumar [22] have addressed the issue of trading off higher
throughput for better performance with respect to variations
in the inter-delivery times. However, this work does not al-
low tunable and heterogeneous inter-delivery requirements,
and a buffer is maintained so as to mitigate the influence
of variations in inter-delivery times. Guo, Singh, Kumar,
and Niu [8] have further combined the inter-delivery time
requirement with the system energy-efficiency. Singh and
Stolyar [23] have shown that the service process under the
Max Weight scheduling is asymptotically smooth.

The study of risk-sensitive MDPs dates back to Howard
and Matheson [11]. There has been considerable work on
proving the existence of stationary optimal policy in differ-
ent conditions [4,7,16]. However, Chung and Sobel [5] have
pointed out that, in contrast to the risk-neutral MDPs, even
with a discounted cost, a stationary optimal policy need not
exist for a general risk-sensitive MDP. This introduces an ad-
ditional challenge to our study. In wireless communications,
Altman et al [1] have applied risk-sensitive MDP techniques
to design power control strategies aiming at minimizing the
delivery failure probability in delay tolerant networks.

Avestimehr et al [2] have proposed a deterministic chan-
nel model to study the high SNR asymptotics in the field of
network information theory, thus obtaining constant gap ap-
proximations to the capacity of wireless networks. This has
led to near-optimal and easy-to-implement communication
schemes for Gaussian relay networks. Kittipiyakul et al [13]
and Zhang et al [26] have also employed such an asymptotic
approach to analyze error performance in fading channels.

3. SYSTEM MODEL
Consider a system with N wireless sensors and one access

point (AP). Time is discretized into slots. The AP broad-
casts a control message at the beginning of each time-slot
to announce which sensor can transmit in the slot. The as-
signed sensor then transmits a packet. The size of a time
slot is the time required for the AP to send the control mes-
sage plus the time for a client to prepare and transmit a
packet. It is assumed that the wireless channel connecting
sensor n and the AP has a channel reliability of pn ∈ (0, 1),
which can be taken to be the probability that the control
message from the AP and the transmission from client n are
both successful. The system model can be generalized to
take into account more general fading models.

The QoS requirement for client n is modeled through a
specified value for the inter-delivery threshold τn. The cost
incurred by the system in T time-steps is modeled as,

E

[
exp

(
θ

N∑
n=1

M
(n)
T∑
i=1

(D
(n)
i −τn)++(T−t

D
(n)

M
(n)
T

− τn)+

)]
, (1)

where D
(n)
i is the time between the (i−1)-th and i-th packet

deliveries of client n, M
(n)
T is the number of packets deliv-

ered for the n-th client by time T , t
D

(n)
i

is the time slot in

which the i-th packet for client n is delivered, and (a)+ :=
max{a, 0}. The last term is included since, otherwise, the



policy of never making any transmission at all will result in
the least cost. The parameter θ > 0 leads to a risk-aversion
problem. The goal of the AP is to decide the client to trans-
mit in each time slot, in order to minimize the above cost.

4. PROBLEM FORMULATION
We first describe the notations used: Vectors will be in

bold font, e.g., τ := (τ1, . . . , τN ) and x := (x1, · · · , xN ). De-
fine an∧bn := min{an, bn}, and a∧b := (a1 ∧ b1, . . . , aN ∧ bN ).

The system state at time t is denoted as

X(t) := (X1(t), . . . , XN (t)) ,

where Xn(t) is the time elapsed since the most recent packet
delivered by client n. Thus, the state space is {0, 1, · · · }N ,
which is finite for the finite time horizon problem, but ex-
ponentially growing to infinity as the horizon increases. Let
control U(t) denote the client transmitting in time slot t.
The system state evolves as,

Xn(t+ 1) =

{
0 if a packet is delivered for client n in slot t,

Xn(t) + 1 otherwise .

As a consequence, the system forms a controlled Markov
Chain, with transition probabilities,

P
[
X(t+ 1) = y

∣∣X(t) = x, U(t) = u
]

=


pu if y = (x1+1,· · ·, xu−1+1, 0, xu+1+1,· · ·, xN+1),

1− pu if y = x + 1,

0 otherwise,

where 1 := (1, · · · , 1). The T -horizon optimal cost-to-go
from initial state x is given by,

VT (x) := min
π

Eπ

[
exp

(
θ

T−1∑
t=0

N∑
n=1

(Xn(t) + 1− τn)+

· 1{Xn(t+ 1) = 0}
)∣∣∣X(0) = x

]
, (2)

where 1{·} is the indicator function, and assuming X(T ) :=
0 so as to recover the last term in the cost (1). Here, the min-
imization is taken over all history-dependent scheduling poli-
cies π. Our goal is to design an optimal history-dependent
policy that achieves the optimal cost-to-go VT (x) for any
initial state x.

Later in Section 6, equation (11), we will consider the
infinite horizon cost J(π,x) when T →∞.

5. REDUCTION TO FINITE STATE PROB-
LEM

We denote the problem in Section 4 as MDP-1. We now
show that it is equivalent to another finite-state problem.

It directly follows from (2) that the DP recursive relation-
ship of the optimal cost-to-go functions in MDP-1 is:

VT (x) = min
n

{
pn exp

(
θ (xn + 1− τn)+)VT−1

(
Sn(x)

)
+ (1−pn)VT−1 (x + 1)

}
, (3)

where

Sn(x) := (x1+1,· · ·, xn−1+1, 0, xn+1+1,· · ·, xN+1), (4)

i.e., the state that succeeds the state x in the event of a
successful transmission for client n.

Lemma 1. For MDP-1, the following results hold:

1) For all n ∈ {1, · · · , N}, and ∀x1, · · · , xN ≥ 0,

VT
(
x1, · · · , xn + τn, · · · , xN

)
= exp (θxn) · VT

(
x1, · · · , τn, · · · , xN

)
. (5)

Further, the optimal controls in the two states,
(x1, · · · , xn+τn, · · · , xN ) and (x1, · · · , τn, · · · , xN ), are
the same.

2) The optimal cost function starting with any system state
x such that xn ≤ τn,∀n satisfies:

VT (x) =exp
(
θ

N∑
n=1

1{xn = τn}
)

min
u

{
puVT−1 (Su(x)∧τ )

+ (1− pu)VT−1 ((x + 1) ∧ τ )
}
, (6)

where Su(x) is as in (4);

3) Y (t) := X(t) ∧ τ is a Markov Decision Process, i.e.,

P
[
Y (t+ 1)

∣∣Y (t), · · · , Y (0), U(t), · · · , U(0)
]

=P
[
Y (t+ 1)

∣∣Y (t), U(t)
]
.

Proof. The proof is omitted due to space constraints.

Now, we construct a new MDP-2, and show in Theorem 1
that it is equivalent to MDP-1 in an appropriate sense. By
slightly abusing notation, we still use the symbols Y (t) and
U(t) for state and client-to-transmit.

Let us associate a state variable Yn(t) with each client n,
with Yn(0) ∈ {0, 1, · · · , τn}, which evolves as,

Yn(t+ 1) =

{
0 if a packet delivered for client n in slot t,

(Yn(t) + 1) ∧ τn otherwise .

Then the system state space is Y :=
∏N
n=1 {0, 1, · · · , τn},

which is finite, even for the infinite time horizon problem.
The transition probabilities of the process
Y (t) := (Y1(t), · · · , YN (t)) depend on the control U(t) as,

P
[
Y (t+ 1) = y

∣∣Y (t) = x, U(t) = u
]

(7)

=

 pu if y = Su(x) ∧ τ ,
1− pu if y = (x + 1) ∧ τ ,
0 otherwise,

where Su(x) is as in (4).
We associate the following cost to the system with starting

state x ∈ Y, when policy π is applied:

V πT (x) = Eπ
[

exp
(
θ

T−1∑
t=0

N∑
n=1

1{Yn(t) = τn}
)∣∣∣Y(0) = x

]
. (8)

The optimal cost-to-go function is,

ṼT (x) := min
π
V πT (x), ∀x ∈ Y. (9)

Here, the superscript tilde is to distinguish it from the opti-
mal cost for the MDP-1 in (2).

Theorem 1. The MDP-2 is equivalent to MDP-1 in the
following senses:



1) The optimal cost-to-go functions of the two MDPs are
equal in each time slot t for any starting state x such
that xn ≤ τn, ∀n, i.e.,

VT (x) = ṼT (x), ∀x ∈ Y;

2) Any optimal control for MDP-1 in state x is also optimal
for MDP-2 in state x ∧ τ , and conversely.

Proof. The DP recursion for the optimal cost in MDP-2 is

ṼT(x)=exp
(
θ

N∑
n=1

1{xn=τn}
)

min
u

{∑
y

Pu(x,y)ṼT−1(y)
}
, (10)

where Pu(x,y) := P
[
Y (t + 1) = y

∣∣Y (t) = x, U(t) = u
]
.

Recalling (7), we note that the r.h.s. of (6) and the r.h.s. of
(10) evolve in exactly the same way. Thus, the optimal cost
for MDP-1, i.e., VT (x), and the optimal cost for MDP-2,

i.e., ṼT (x), have identical recursive relationships for x ∈ Y.
Consequently, statement 1) follows.

In addition, due to the identical recursive relationships,
the optimal controls at any state x ∈ Y for the two systems
are also identical. Combining this with the first statement
of Lemma 1, we obtain statement 2).

6. THE RISK-SENSITIVE APPROACH
The great advantage of the equivalent MDP-2 is that its

state space is finite. Following Theorem 1, we focus exclu-
sively on MDP-2 in the following.

To consider long-term operation, we define the (risk-sensitive
infinite horizon) average cost under policy π starting at state
x,

J(π,x) := lim sup
T→∞

1

θ
· 1

T
lnV πT (x), ∀x ∈ Y, (11)

where V πT (x) is as in (8).
A stationary policy is one that decides the current control

(which client to transmit) by the current system state. Thus,
it can be described by a map f from state space Y to control
set {1, · · · , N}, i.e., the control U(t) = f (Y (t)).

We now define the class of Non-Exclusionary (NE) policies
as those stationary policies which do not serve a client n
when the system state x is (τ1, · · · , τn−1, 0, τn+1, · · · , τN ). It
is shown in Appendix A that for any non-NE policy, either
there is an NE policy out-performing it, or it is trivial to
obtain the cost associated with it. Thus, we focus on NE
policies.

In the following, we use the standard notations of tran-
sient/ non-transient states and communicating classes [18].
For a stationary policy f , let Pf denote its transition prob-
ability matrix,

(Pf )x,y := P
[
Y (t+ 1) = y

∣∣Y (t) = x, U(t) = f(x)
]
.

Further, let Lf denote the dis-utility matrix of f , such that,

(Lf )x,y := exp
(
θ

N∑
n=1

1{xn = τn}
)
· (Pf )x,y, ∀x,y ∈ Y.

Let ρ(Lf ) be its spectral radius.

Lemma 2. Consider any NE policy f ,

1) There is exactly one non-transient communicating class,
which includes the state (τ1, . . . , τN ).

2) For any transient state y, we have, (Pf )y,y = 0.

3) Assuming that there is only one communicating class
(and thus non-transient) when f is applied, we have,

J(f,y) = ρ(Lf ), ∀y. (12)

Proof. Since pn < 1 for each client n, there is a positive
probability that there will be no packet deliveries for τmax :=
maxNn=1 τn time slots, and so system state (τ1, · · · , τN ) is
reachable from any state.

We now prove 2). From (7), we have, (Pf )y,y 6= 0 implies
either y = (τ1, · · · , τN ), or ∃n and y such that f(y) = n and
yn = 0, yl = τl, ∀l 6= n. However, the state (τ1, . . . , τN ) in
the former case is non-transient, while the latter condition
is ruled out because of the property of the NE policy.

Statement 3) is proved by matrix analysis techniques, and
the proof is omitted here due to space constraints.

In the following, we assume that for any NE policy, there
is only one self-communicating class. This assumption is
not restrictive considering the first statement in Lemma 2,
since we at least can simply restrict the state space to the
one non-transient communicating class. (In addition, by the
second statement of Lemma 2, it follows that there is no
one-state transient communicating class.) As a result, the
average cost of any NE policy can be obtained by (12).

Next, let pmax := maxNn=1 pn and τmax := maxNn=1 τn. We
further denote K :=

⌈
τmax(1− pmax)−τmax

⌉
.

Theorem 2. Let

θth :=
ln(K + 1)− ln(K)

2N (K + 1)
.

For the infinite-horizon MDP-2,

1) There exists a stationary optimal policy when θ < θth;

2) Further, this stationary optimal policy can be computed
in a finite number of steps.

Proof. Denote by TDb(x) the first passage time from state
x to (τ1, · · · , τN ), i.e.,

TDb(x) := min
{
t > 0

∣∣Y (t) = (τ1, · · · , τN ) , Y (0) = x
}
.

We first prove the simultaneous Doeblin condition [4], i.e.,
that for any stationary policy f ,

Ef [TDb(x)] ≤ K, ∀x. (13)

Note that for any initial state x, the state τ will be hit if
there are τmax successive transmission failures. The proba-
bility of this event is ≥ (1 − pmax)τmax . Consider the prob-
ability that the state τ is hit within jτmax time slots, then,

Ef [TDb(x)] ≤
+∞∑
j=1

jτmax
(1−pmax)τmax

[1−(1−pmax)τmax ]−(j−1)

=
τmax

(1− pmax)τmax
.

This proves (13). Consequently, statement 1) is proved by
combining (13) with the Theorem 3.1 in [4].

In addition, since we can obtain the average cost of any
stationary policy (the cost of NE policy by Lemma 2 and the
cost of a non-NE policy by Appendix A), and since there are
a finite number of possible stationary policies (resulting from
finite state space and control set), statement 2) follows.



7. THE HIGH RELIABILITY ASYMPTOTIC
APPROACH

The risk-sensitive approach faces significant challenges on
the issue of computational complexity: For MDP-2, denote
the cardinality of the state space Y by |Y|. Then, there
are in total |Y|N policies, each of which requires calculating

the spectral radius of a [0, 1]|Y| × [0, 1]|Y| matrix to obtain
the corresponding average cost (see Lemma 2). Further, the
classic policy iteration technique [18] does not apply to this
risk-sensitive problem, which has a non-irreducible struc-
ture, and has a communicating class changing for different
policies, and thus one needs to compare the cost over all
the policies in order to find the optimal policy. In addition,
since |Y| =

∏N
n=1 (τn + 1), the cardinality of the state-space

is exponential in the number of clients, N .
However when the channel reliabilities are close to 1, i.e.,

the system of interest is in a high-reliability asymptotic
regime, and we are able to show that a simple “modified-
least-time-to-go” (MLG) policy, which is both structurally
clean and easily implementable, is optimal. We note that
the high-channel-reliability asymptotic is similar to the high
SNR asymptotic in network information theory, see [2].

In this section, we derive some results useful for analyzing
the MLG policy in the high-reliability regime. Later, in
Section 8, we prove the optimality of the MLG policy in the
case of two clients and propose a low-complexity policy for
multi-clients which turns out to have good performance in
the high-reliability regime.

For ease of exposition, we begin with the simple case of
two clients sharing an AP.

7.1 Two-client Scenario and the MLG Policy
Consider two clients with channel reliabilities p1 = 1−b1ε,

p2 = 1− b2ε, where ε > 0 is a small quantity and b1, b2 > 0.
Suppose, without loss of generality, that τ1 = τ and τ2 =
τ + ∆, where ∆ ≥ 0.

Define the modified-least-time-to-go (MLG) policy by,

fMLG(x) =

{
2 if x = (0,∆− 1),
maxNn=1

{
arg minNn=1 (τn − xn)

}
otherwise.

In words, the policy schedules the client with least τn − xn,
i.e., “least time to go”, in most of the states, and breaks
the ties by selecting the client with larger threshold. There
is only one exception: When x = (0,∆ − 1), client 2 is
scheduled, although τ2 − x2 = τ1 + 1 > τ1 − x1 = τ1.

We will show in Section 8 that this MLG policy is indeed
optimal when ε→ 0. We first explore its properties.

7.2 Regeneration Cycle
In the following, by the cost incurred in time slots t1, t1 +

1, . . . , t2, we mean the quantity,

t2∏
t=t1

exp

(
θ

N∑
n=1

1 {Yn(t) = τn}

)
. (14)

The regeneration point of interest to us is defined as the
time epoch when the system hits the state (1, 0), i.e., Y (t) =
(1, 0).

A regeneration cycle is the time interval between two suc-
cessive regeneration points. For any stationary policy f ,
let vcycle be the cost incurred in a regeneration cycle (recall
(14)), and let lcycle be the length of the regeneration cycle.
Since f is a stationary policy, vcycle and lcycle are random

Figure 2: The SS-points and SS-periods are illus-
trated in a two-client scenario. (We arbitrarily allo-
cate the time slots here just to give an example.)

variables which are i.i.d. in different regeneration cycles.
Thus, as in renewal theory, we have,

J (f,x) = lim
T→∞

1

θ
· 1

T
lnV fT (1, 0)

= lim
T→∞

1

θ

1

T
ln E

M
(cycle)
T∏
j=1

v
(j)
cycle


= lim
T→∞

1

θ

M
(cycle)
T

T
ln E [vcycle]

=
1

θ

ln E [vcycle]

E [lcycle]
, ∀x ∈ Y. (15)

where, the first equality follows from (11); since v
(j)
cycle de-

notes the cost incurred during the j-th regeneration cycle,
the second equality follows from the definition of V πT (x) in

(8) with M
(cycle)
T denoting the total number of regeneration

cycles during T time slots, and the third equality holds since

v
(j)
cycle, ∀j are i.i.d..
Result (15) reduces the analysis of the long-term average

cost to the analysis of the expected cost and expected length
of a regeneration cycle. Thus, it facilitates the following
discussions.

7.3 SS-Point and SS-Period
Define the SS-points as the time slots such that the packet-

transmissions in the two successive time slots preceding this
time-slot are both successful. See the examples in Fig. 2.
More formally,

τssj : =


min{t : t > 0 and slots t− 1, t− 2 have

successful transmissions} for j = 1

min{t : t > τssj−1 and slots t− 1, t− 2 have

successful transmissions} for j = 2, 3, . . .

(16)

Thus, τssj is the j-th SS-point.
Define the time interval between two successive SS-points

as an SS-period, and let vss(x) be the cost (14) incurred
during an SS-period when the system state at the beginning
of the SS-period is x. Under the application of a stationary
policy the random variable vss(x) is i.i.d. across different
SS-periods for each fixed x.

It directly follows that, under an arbitrary NE policy (re-
call Appendix A),

P (vss(x) > 1) = O(ε), (17)



which is obtained by noting that:

i) vss(x) > 1 only if for some client n, we have Yn(t) = τn
for some time-slot t in this SS-period.

ii) However, Yn(t) = τn for some time-slot t in this SS-
period is possible only if the length of this SS-period is
> 1 (which happens with probability O(ε)).

The statement i) follows the definition of vss(x), while the
statement ii) holds because NE policies do not serve client
2 when the system state is (τ1, 0), and do not serve client
1 when the state is (0, τ2), and thus any possible starting
state x of an SS-period satisfies xn < τn, n = 1, 2.

Further, if P
(ss)
x is the probability that in a regeneration

cycle (i.e., time between two successive hits of the state
(1, 0), recall Section 7.2), there is at least one SS-period
in which the starting state is x, then,

E [vcycle] = 1 +
∑
x

P (ss)
x (E [vss (x)]− 1) + o(εk), (18)

where k ≥ 1 is an integer such that d1ε
k ≤ E [vcycle] − 1 ≤

d2ε
k for some d1, d2 > 0 when ε is sufficient small. This is

obtained by noting that,

1) A regeneration cycle consists only of SS-periods.

2) For any regeneration cycle, vcycle > 1 only if at least
one of the SS-periods included in this cycle has vss(·) >
1.

3) The probability that two or more SS-periods incur a
cost vss(·) > 1 is much less than the probability that
only one of these SS-periods incurs a cost vss(·) > 1,
when ε is small enough. The probability of this event
being small follows (17).

In the above, the proof of statements 1) and 2) is direct and
omitted. It should be noted that the technique of ignoring
events having relatively small probabilities, as employed in
the proofs of statement 3) and (18), is frequently used in
the remaining of this paper. These results facilitate our
following analyses.

Now, we consider a regeneration cycle consisting of only
successful transmissions. Denote Xss as the set of all the
system states hit during such a regeneration cycle.

Lemma 3. The following result holds:

1) For an arbitrary NE policy,

E [vcycle] ≥ 1 +
∑

x∈Xss

(E [vss (x)]− 1) + o(εk), (19)

where k is an integer such that d1ε
k ≤ E [vcycle]−1 ≤ d2ε

k

for some d1, d2 > 0 when ε is sufficient small.

2) When the MLG policy is applied,

E [vcycle] = 1 +
∑

x∈Xss

(E [vss (x)]− 1) + o(εk), (20)

where k is similarly defined as for (19).

3) Further, when the MLG policy is applied, and if ∆ ≥ 2,

Xss = {(1, 0), (0, x2), ∀x2 = 0, · · · ,∆−1} (21)

E[lcycle] = ∆ +O(ε); (22)

E[vss(1, 0)] = 1 + bτ−1
1 ετ−1 (exp(θ)− 1) +O(ετ ), (23)

E[vss(0, x2)] = 1 +O(ετ ),∀x2 = 0, · · · ,∆− 1. (24)

Similar results can be obtained for ∆ = 0, 1.

Proof. These results follow from (17), (18), and the defini-
tion of Xss. The proof is straightforward, and the details are
omitted.

8. ASYMPTOTICALLY OPTIMAL POLICIES

8.1 The Two-Client Scenario
Consider the case where there are two-clients sharing an

AP, with channel reliabilities p1 = 1− b1ε, p2 = 1− b2ε, and
thresholds τ1 = τ , τ2 = τ + ∆. Without loss of generality
assume ∆ ≥ 0. Recall the definition of the MLG policy
in Section 7.1, and note that b1, b2, ε > 0. The following
theorem establishes the optimality of the MLG policy.

Theorem 3. The following results hold:

1) The risk-sensitive cost under MLG policy is, ∀x,

J(fMLG,x) =


A0ε

τ−1 +O(ετ ) if ∆ = 0
eθ−1
2θ
ετ−1∑τ−1

j=0 b
j
1b
τ−1−j
2 +O(ετ) if ∆ = 1

eθ−1
θ∆

bτ−1
1 ετ−1 +O(ετ ) if ∆ ≥ 2

where

A0 =
eθ − 1

θ

τ−2∑
j=1

bj1b
τ−1−j
2 +

bτ−1
1 + bτ−1

2

2θ

(
e2 − 1

)
.

2) The optimal cost J?(x) := minfJ(f,x) has a lower bound,

J?(x) ≥


A0ε

τ−1 + o(ετ−1) if ∆ = 0
eθ−1

2θ
A1ε

τ−1 + o(ετ−1) if ∆ = 1
eθ−1
θ
A2ε

τ−1 + o(ετ−1) if ∆ ≥ 2

where

A0 is as in the statement above

bmin := min{b1, b2}
A1 := bτ−1

1 + (τ − 1) bτ−1
min

A2 := min

{
bτ−1
1

∆
,
bτ−1
1 + (τ1 − 1)bτ−1

min

∆ + 1
,

bτ−1
1 + (τ1−1)bτ−1

min +
∑τ−1
j=1 b

j
2b
τ−1−j
1

∆ + 2

}
.

3) Thus, it follows from 1) and 2) above that the MLG
policy is optimal in the high reliability asymptotic regime
(i.e., small ε) if any of the following conditions is satisfied:

(i) ∆ = 0; (ii) ∆ = 1, and b1 ≤ b2;

(iii) ∆ ≥ 2, and bτ−1
1 ≤ ∆(τ − 1)bτ−1

2 .

Proof. We will only consider the case when ∆ ≥ 2, since
the analyses for the cases when ∆ = 1 or 0 follows similar
arguments.

By Lemma 3, under the application of the MLG policy,
we have,

E[vcycle] = 1 + bτ−1
1 ετ−1( exp(θ)− 1

)
+O(ετ ). (25)

Thus, statement 1) follows by combining (15), (22) and (25).
To prove statement 2), we begin by deriving the lower

bound of E[vss(x)] for any system state x of the form (·, 0) or
(0, ·). Note that, any possible starting state of an SS-period



is of this form. In the following, we focus on the analysis of
E[vss(1, 0)], since the analysis of the cost for the SS-period
starting with any other state follows similar arguments.

Consider the evolution of system over an SS-period start-
ing with state (1, 0) under the application of an arbitrary
stationary policy. Then we have the following two possibili-
ties,

(a) The policy serves client 2 before the earlier of these two
events: i) a successful packet delivery for client 1, ii) the
system hits the value (τ, τ − 1). Under such a policy, it
can be shown that a cost vss(1, 0) > 1 is incurred with
a probability > dετ−2 for some d > 0.

(b) The policy does not serve client 2 before the earlier of the
following two events: i) a successful packet delivery for
client 1, ii) the system hits the value (τ, τ − 1). Then,
if failures occur in all of the first τ − 1 time slots for
the SS-period, the state (τ, τ − 1) will be hit. Thus,
a cost vss(1, 0) ≥ exp(θ) is incurred with a probability
≥ bτ−1

1 ετ−1.

Consequently it follows from a) and b) above,

E[vss(1, 0)] ≥ 1 + bτ−1
1 ετ−1 + o(ετ−1).

Similar arguments lead us to conclude the following lower
bounds on E[vss(x)] under the application of an arbitrary
stationary policy, (recall that x should be of the form (0, ·)
or (·, 0) since it is a possible starting state of an SS-period)

i. ∀x ∈ {(0, x2)|x2 ≤ ∆− 1}, E[vss(x)] ≥ 1.

ii. ∀x ∈ {(0, x2)|x2 ≥ ∆ + 2}
⋃
{(x1, 0)|x1 ≥ 2}, E[vss(x)] ≥

1 + dετ−2 + o(ετ−2), with some d > 0.

iii. E[vss(1, 0)] ≥ 1 + bτ−1
1 ετ−1 (exp(θ)− 1) + o(ετ−1).

iv. E[vss(0,∆ + 1)] ≥ 1 +
∑τ−1
j=1 b

j
2b
τ−1−j
1 ετ−1 + o(ετ−1).

v. E[vss(0,∆)] ≥ 1 + (τ − 1)bτ−1
min ε

τ−1 + o(ετ−1).

By combining these results with the inequality (19) and us-
ing equation (15), we obtain the second statement.

The third statement is a simple consequence of the first
two statements.

In Theorem 3, the first statement characterizes the risk-
sensitive cost of the MLG policy, while the second provides
a lower bound on the cost for any stationary policy. The
third statement provides three sufficient conditions under
which the MLG policy is asymptotically optimal. These
conditions are related to the difference between the inter-
delivery thresholds for different clients, and the difference in
their relative failure probabilities.

8.2 The General Case: N Clients in the High-
Reliability Regime

Now, we consider the general case where there are N
clients sharing an AP, with the channel reliability of the
n-th client being pn = 1− bnε, where ε > 0 is a small quan-
tity and bn > 0. The inter-delivery threshold of client n is
τn. It is assumed that N ≤ τ1 ≤ τ2 ≤ · · · ≤ τN , with out
loss of generality.

Since Theorem 2 implies that there exists a stationary
policy that is optimal for the MDP-2, we focus exclusively

on stationary policies. Now, we obtain characterization of
the optimal policy.

We define a regeneration point as the time epoch when
the system hits the state (0, 1, · · · , N − 1), i.e., time t is a
regeneration point iff. Y (t) = (0, 1, · · · , N−1). (Recall that
for the case of 2 clients as discussed in Section 7.2, the re-
generation point is the epoch when the state (1, 0) is hit.)
The regeneration cycle is the time interval between two suc-
cessive regeneration points. Now, consider a regeneration
cycle consisting of only successful transmissions, and denote
by XsN the sequence of system states hit during such a re-
generation cycle. Note that XsN is a deterministic sequence
with a given stationary policy. Let |XsN| be the length of
this sequence, and XsN(j) be the j-th state in this sequence.

We also define an SN-point as the time slot when the
packet transmissions in the N successive time slots preced-
ing this time-slot are all successful. (This is similar to the
definition of SS-point, in (16).) The SN-period is the time
interval between two successive SN-points, and let vsN(x)
denote the cost (14) incurred during an SN-period when the
system state at the beginning of the SN-period is x, similar
to the two-client case.

We further consider a time interval comprising of no less
than N time-slots, which starts when the system state as-
sumes the value x and ends when the nearest SN-point (such
that the length of the period ≥ N) is hit. Denote by ṽsN(x)
the cost (14) incurred during such a period. (Note that this
is different from vsN(x) because vsN(x) is the cost incurred
during an SN-period, and that an SN-period may have a
length strictly less than N . An example of SN-period with
length 1 is shown in Fig. 2 for the two-client scenario.)

Lemma 4. The optimal policy is a member of the set,

{f : J(f,x) = O(ε), ∀x ∈ Y}.

Further, for any policy f in this set, the following results
hold:

1) The risk-sensitive cost is,

J(f,x) =
1

|XsN|

|XsN|∑
j=1

(
E
[
vsN

(
XsN(j)

)]
−1
)

+ o(εk),

(26)

for any system state x, where k ≥ 1 is an integer such
that d1ε

k ≤ J(f,x) ≤ d2ε
k for some d1, d2 > 0 when ε is

sufficient small.

2) For any possible starting state x of an SN-period, we
have,

E[ṽsN(x)] = 1 +

N−1∑
j=0

(
E
[
vsN(Sj(x))

]
− 1
)

+ o(εk),

(27)

where S1(x) is the state that succeeds state x in the event
of a successful transmission when policy f is applied, i.e.,

S1(x) :=(x1+1,· · ·, xf(x)−1+1, 0, xf(x)+1+1,· · ·, xN+1)∧τ ;

also Sj+1(x) := S
(
Sj(x)

)
, j = 1, 2, · · · ;S0(x) := x,

and k is an integer such that d1ε
k ≤ E [ṽsN(x)]−1 ≤ d2ε

k

for some d1, d2 > 0 when ε is sufficient small.



Proof. The results are obtained using arguments similar to
the case of two-clients in the high reliability regime (See
Section 7.2, 7.3, equations (15) (17) (18) (19) ).

One may note that the r.h.s. of (27) is closely related to
the r.h.s. of (26), by noting that Sj

(
XsN(1)

)
= XsN(j +

1),∀j = 1, · · · , |XsN|−1, and that |XsN| ≥ N holds whatever
policy is applied. Thus, the following assumption is not
restrictive.

Assumption 1. A stationary policy that minimizes E[ṽsN(x)]
for each system state x ∈ Y, also minimizes J(f,x).

Algorithm 1: SN Policy Algorithm

input : N , θ, τ1, · · · , τN , b1, · · · , bN .
output: Policy g(x),∀x ∈ Y.

1 Y0 = {x : ∃A > 0,minπ (E[ṽsN(x)]) = 1 +A+ o(1)};
2 foreach x ∈ Y0 do
3 A(x) is as in Step 1;

4 g(x)← arg minNn=1 A(S̃n(x)) ;

5 Z← ∅; Yremain ← ∅
6 foreach k = 1 to (minNn=1 τn) do
7 Z← Z ∪ Yk−1;
8 Yk ← {x : x + 1 ∈ Yk−1 and x /∈ Z};
9 repeat Yk ← Yk ∪ {x : S̃n(x) ∈

Z ∪ Yk, ∀n and x /∈ Z ∪ Yk} until Yk not extend;

10 foreach k = 1 to (minNn=1 τn) do
11 Y′k ← Yk;
12 repeat
13 Y′′k ← Y′k; Y′k ← ∅;
14 foreach x ∈ Y′′k do

15 m← max{j : ∃n, S̃n(x) ∈ Yj};
16 Uset ← {n : S̃n(x) ∈ Ym};
17 if m>k then
18 [A(x),g(x)]←minn∈UsetbnA((x+1)∧τ );

19 else if ∃n∈Uset, A(S̃n(X)) not yet then
20 Y′k ← Y′k ∪ x;

21 else

22 [A(x), g(x)]← minn∈Uset A(S̃n(x)) +
bnA((x + 1) ∧ τ )1{(x + 1)∧τ ∈Yk−1};

23 until Y′k = ∅ or Y′k = Y′′k ;
24 if Y′k 6= ∅ then
25 Yremain ← Yremain ∪ Y′k; B(x)← 0,∀x ∈ Yk;
26 foreach n = 1 to N − 1 do
27 foreach x ∈ Yk do
28 U ′set ← g(x) or Uset;

29 B(x)← minn∈U′
set
B(S̃n(x)) +

bnA((x + 1)∧τ )1{(x + 1)∧τ ∈ Yk−1}

30 foreach x ∈ Y′k do

31 [A(x), g(x)]← minn∈U′
set
B(S̃n(x)) +

bnA((x + 1) ∧ τ )1{(x + 1)∧τ ∈Yk−1}

Consequently, we design Algorithm 1 above to obtain a
stationary policy, denoted SN policy, which tends to mini-
mizes E[ṽsN(x)] for any system state x ∈ Y. Here,

S̃n(x) := (x1+1, · · · , xn−1+1, 0, xn+1+1, · · ·, xN+1) ∧ τ ,

i.e., the state that succeeds the state x in the event of a
successful transmission for client n in the MDP-2. This al-
gorithm divides the state space into sets,
Y0,Y1, · · · ,YminNn=1{τn}

, with,

Yk :={x : ∃A > 0,min
π

(E[ṽsN(x)])=1+Aεk+o(εk)}, (28)

for k = 0, 1, · · · ,minNn=1{τn}. Then it obtains or approxi-
mates the A in (28) for each system state x (denoted A(x)),
and decides the optimal control based on A(x).

Theorem 4. When Assumption 1 holds, and Yremain in
Algorithm 1 is empty, then the SN policy is optimal in the
high reliability asymptotic regime.

Theorem 4 directly follows from Assumption 1 and the
design of Algorithm 1.1 The example in Fig. 5 illustrates the
simulation for a multi-client system when these asymptotic
conditions are satisfied.

9. SIMULATIONS
We now present the results of a simulation study com-

paring several wireless scheduling policies with respect to
their risk-sensitive average costs. We present the results for
the scenarios with clients requiring different inter-delivery
thresholds and under heterogeneous channel reliabilities.

The wireless scheduling policies implemented include the
optimal policy (OP) obtained from Theorem 2, the modified-
least-time-to-go (MLG) policy (for two-client scenario) pro-
posed in Section 8.1, and the SN policy proposed in Sec-
tion 8.2. Also, two other heuristic policies are compared:
the packet-level round-robin policy (PRR), and the largest-
weighted-delivery-debt (WDD) policy, which serves the client
with the largest weighted delivery debt, where:

Delivery Debtn =
t

pnτn
− M

(n)
t

pn
.

(Recall M
(n)
t is the number of packets delivered for the n-th

client by time t, as in (1).) The WDD policy has been known
to be “timely-throughput” optimal (see [10] for discussion).

Fig. 3 shows the costs incurred by these four wireless
scheduling policies for different risk-sensitive parameters. It
can be seen that the optimal policy always outperforms all
the other policies.

Fig. 4 compares the scheduling policies under different
channel reliabilities in the two-client scenario. It can be
seen that even when the channel reliability probabilities are
only moderate, e.g., p1 = 0.6 and p2 = 0.8, the MLG policy
still achieves almost the optimal cost, and outperforms all
other greedy policies.

Fig. 5 compares the scheduling policies in a multi-client
scenario. It can be seen that even when the channel reli-
ability probabilities are only moderate, e.g. 0.8, SN pol-
icy still approximates the optimal cost, and outperforms all
other greedy policies. Here, we also employ the periodic
scheduling (PS) policy [3], which is optimal when the fail-
ure probabilities are exactly zero. It can be seen that the
PS policy performs extremely poorly even when the failure
probability is very small, e.g., 0.01, since it gives rise to

1Note that the Algorithm 1 can be further improved by using
S̃(S̃(x)) in Step 19-22.
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Figure 3: The risk-sensitive average cost vs. the
risk-sensitive parameter θ for different wireless
scheduling policies is shown. (The parameters are
N = 2, p1 = 0.4, p2 = 0.1, τ1 = 20, τ2 = 40).
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Figure 4: In two-client scenario, the normalized risk-
sensitive average cost (normalized by the cost of the
optimal policy) vs. the failure transmission param-
eter ε. (p1 = 1− 2ε, p2 = 1− ε, τ1 = 3, τ2 = 5, θ = 0.01.)

open-loop policies. In contrast, the high-reliability asymp-
totic approach proposed for the scenario with sufficiently-
small failure probability provides a well performing closed-
loop scheduling policy. This confirms the value of the high-
reliability asymptotic approach.

10. CONCLUSIONS
In this paper we have addressed the issue of designing

scheduling policies in order to support inter-delivery require-
ments of wireless clients in cyber-physical systems. A novel
risk-sensitive approach has been employed to penalize the
“exceedance” over the allowable thresholds of inter-delivery
times.

The resulting MDP that involves infinitely many states
can be reduced to an equivalent MDP which involves only
a finite number of states, thus showing that a stationary
optimal policy exists when the risk-sensitive parameter θ is
sufficient small. Based on this, we have designed a finite
time algorithm to obtain the optimal policy.

To address the curse of dimensionality from MDP ap-
proach, we proposed a high-reliability asymptotic approach,
and derived optimal policy for two-client scenario in the
high-reliability regime. Further, we have designed an SN
policy for a general number of clients based on our analy-
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(a) Performance of the PRR, WDD, and SN policies
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(b) Performance of Periodic Scheduling

Figure 5: In a multi-client scenario, the normalized
risk-sensitive average cost (normalized by the cost
of the optimal policy) vs. the failure transmission
parameter ε is shown. (The parameters are N = 3,
p1 = p2 = p3 = 1− ε, τ1 = 4, τ2 = 6, τ3 = 8, θ = 0.05.)

sis result. The simulation results show that the proposed
policies provide near-optimal performance even for moder-
ately large values of the failure probabilities, justifying the
approach.
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APPENDIX
A. NON-EXCLUSIONARY POLICIES ARE

NOT RESTRICTIVE
We recall that Non-Exclusionary (NE) policies are those

stationary policies which do not serve a client n when the
system state x is (τ1, · · · , τn−1, 0, τn+1, · · · , τN ). We next
show that for a non-NE, either there is an NE policy out-
performing it, or it is trivial to derive its cost function.

For a client n, denote x(na) as the system state
(τ1, · · · , τn−1, a, τn+1, · · · , τN ) for integer a ∈ [0, τn]. Simi-

larly, for n 6= l, denote x(na1,la2) as the state x such that
xn = a1, xl = a2, and xj = τj , ∀j 6= n, l. In a T -horizon
MDP-2 problem, denote by π the policy which transmits
client n in the first time slot, and then follows the optimal
policy. Similarly, π̃ as the policy which transmits client l
in the first time slot and then follows the optimal policy.
Then V πT (x), V π̃T (x) are the costs associated with these two
policies with any initial state x, respectively.

Lemma A.1. If there exists a client l such that pl > pn,
then for each time slot T , we have V π̃T (x(n0)) ≤ V πT (x(n0)).

That is, if serving client n in state x(n0) is optimal, serving
client l is also optimal.

Lemma A.2. When pn = minl pl, if the optimal action
in state x(n0) with T time slots to go is to serve client n,
then the optimal action in state x(na),∀a ∈ {1, · · · , τn} with
T time slots to go is also to serve client n.

The proofs for Lemma A.1 and Lemma A.2 are omitted
due to space constraints.

Combining Lemma A.1 and Lemma A.2, for a non-NE
stationary policy f which serves client n in state x(n0), ei-
ther there exists an NE policy which out-performs f (as in
Lemma A.1), or f keeps serving client n (after hitting the
state τ ) following Lemma A.2 and therefore has a trivially
computable cost.
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