Adapting User Interface Design Methods to the Design of
Educational Activities

Clayton Lewis, Cathy Brand, Gina Cherry, and Cyndi Rader

Department of Computer Science
and Institute of Cognitive Science
University of Colorado, Boulder CO 80309
{clayton, brand, gina, crader}@cs.colorado.edu

ABSTRACT

We have adapted the programming walkthrough technique
to help design computer-supported educational activities in
elementary school science. We present examples from a
case study which illustrate ways in which design of an
educational activity is similar to and different from design
of a user interface. We have found that the walkthrough
approach is useful in this new setting, and that it sheds new
light on the general task-centered orientation to design.

KEYWORDS: analysis
techniques,  educational
programming, task analysis.

methods, children, design
applications, end  user

INTRODUCTION

The central challenge in traditional user interface design is
to create a computer system that supports some collection
of potential user tasks in such a way that user productivity
is enhanced. Productivity can be enhanced by permitting
faster correct performance, by reducing the incidence of
errors, or by some combination. The task-centered design
approach [9], addresses this challenge by using specific
example tasks to evaluate and compare design alternatives.
In the early stages of task-centered design, walkthrough
methods are used to generate and critique scenarios, which
are generated by spelling out how a given example task
would be performed given a particular system design.

In our work on educational software we have encountered a
somewhat different design challenge. Our problem is to
design not just a computer system, but also a collection of
activities with that system, such that learners engaging in
those activities will achieve given educational goals. Thus,
the design challenge for computer-supported educational
activities includes the design of tasks as well as of the
system, and the measure of success is not productivity,

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish requires a fee and/or specific permission.

© 1998 ACM

considered simply, but a more complex evaluation of the
effects of performing the tasks. For example, an educational
activity that learners complete quickly and accurately is of
no value if they learn nothing from it.

Despite these differences in design problems, we
hypothesized that the core logic of task-centered user
interface design, and of the associated walkthrough
methods, could be adapted to the design of educational
activities. We present the results of our exploration of this
possibility by describing a case study in which we adapted
the programming walkthrough technique [2, 9] to the
design of a suite of educational activities about plants for an
elementary school science unit.

THE CASE STUDY

The sTc project

Science Theater/Teatro de Ciencias (STc) is a research
project exploring the educational value of model creation
by elementary school science students [14]. Children
participating in sTc use software to create animated,
graphical models of processes and mechanisms they are
studying. Like other researchers in educational technology,
we quickly found that simply making software available
and encouraging its use did little to support learning. We
have found that our design and implementation efforts have
been more and more directed to the design of activities
supported by the software, rather than to the design of the
software itself.

The pedagogical objectives of these sTc activities fall into
four major categories:

Science  content. A primary goal is to deepen students'
understanding of their science topics by using models to
focus on "how" and "why" questions. This approach
contrasts with most existing elementary science curricula,
which tend to focus more on observation and the use of
experiments to show, but not explain, interesting
phenomena. We are also interested in addressing common
science misconceptions.

Science as inquiry. In accordance with current science
education reform, modeling activities are used within a

CHI'98 Proceedings



framework of scientific inquiry in which students are
encouraged to ask questions, speculate about possible
answers, and test and revise their ideas [22, 23]. This
inquiry cycle promotes a view of science as a process,
rather than as a body of facts, and encourages students to
bring their own experiences and conjectures into the
science classroom.

Model-based reasoning and epistemology of
models. A number of research efforts have focused on the
potential benefits of modeling [3, 7, 8, 13, 15]. Grosslight
et al. [7] have identified three levels of understanding about
models. At level 1, models are viewed as simple copies of
reality. At level 2, students understand that models often
highlight and/or simplify some aspects of the phenomenon
being modeled, rather than matching reality exactly. At
level 3, students display a more sophisticated understanding
of models, which includes three factors: the use of models
to develop and test ideas, rather than to copy reality; the
consideration of alternative models to explain the same
phenomenon; and the manipulation and testing of models in
order to inform and revise ideas. In sTc, our goal is to help
students gain a level 3 understanding of models, with
particular emphasis on the use of models to demonstrate
and test ideas, and on the importance of revising models
when initial ideas are found to be incorrect, or to
incorporate new information.

Software  mastery. A well-conceived activity will pave
the way for subsequent activities by enhancing the child's
knowledge of and skill in using the modeling software. By
the time the students complete an introductory series of
activities which includes the two in this case study, they
should understand and program well enough to create their
own models. In our case study, the modeling software is
Visual AgentTalk [16, 17, 18], a rule-based visual
programming system.

The Software

Models in Visual AgentTalk consist of a collection of
software agents whose behavior is specified by a set of
rules, and a worksheet in which the agents are arranged.
The visual appearance of an agent is a small picture called a
depiction. An agent's rules can cause it to move around on
the worksheet, to change its depiction (so that it looks
different), and to interact with other agents. For example,
one agent can cause a nearby agent to disappear, a behavior
which might represent something being eaten, or a reagent
being consumed in a chemical reaction.

Models can be built from scratch, with all rules and
depictions for the agents created by the user, or they can be
built using agents already provided. This flexibility makes
it possible to devise modeling activities that differ greatly
in the sophistication required of the learner, from models in
which all behavior must be specified by the learner, to ones
in which the learner has only to arrange a collection of
agents whose behavior is already provided.

© 1998 ACM

Sample Activities

In our case study, we used a walkthrough technique to
refine the design of two educational activities from a unit
on plant science for fourth and fifth graders. In the Extend-
Sugar-Production activity, the children would be given a
simple model in which water was transported from the
roots to the leaves. In the leaves, the water would trigger
the creation of sugars, which would then be transported
back to the roots. In this simple model, carbon dioxide and
light, both of which are necessary for sugar production,
would be present at the surface of the leaf, but the carbon
dioxide would not be consumed when sugar is produced.
Also, only sugar, and not oxygen, would be produced in the
simple model. The learner's task would be to elaborate this
model so that carbon dioxide would be consumed and
oxygen produced when sugar is created.

This activity has three pedagogical objectives. The science
content objective is for learners to see how plants create
their own food, a difficult concept for elementary-age
science students [19]. In Extend-Sugar-Production, students
deal with this concept explicitly by viewing and modifying
the rule in which the leaf creates food. The model
epistemology objective is to show how simple models can
be extended to show phenomena at deeper levels of detail.
The software mastery objective is to develop skill in
modifying rules, as a step towards being able to create one's
own rules.

The initial conception of the Build-A-Flower activity was
that children would build two model flowers using a set of
flower parts provided for them. If the parts of their flowers
were properly arranged, a model bee (also provided) would
carry pollen from one flower to the other, and seeds would
be produced.

Build-a-Flower has two pedagogical objectives. The
science content objective is for students to solidify their
understanding of flower anatomy, following up an activity
in which they dissect real flowers and make labeled
drawings of their parts. At the same time, Build-a-Flower
should help learners link flower anatomy to flower function
by demonstrating the phases of pollination and seed
production. The software mastery objective of this activity
is to help learners understand the relationship between the
behavior of an agent in a model and the rules that specify
its behavior.

The Walkthrough Method

The core logic of walkthrough methods is that a scenario is
developed to represent what will happen when some
complex system is deployed, and this scenario is then
critiqued. In code walkthroughs in software development,
the scenario is an imagined execution trace of a program,
and the trace is examined to detect such faults as
uninitialized data. In a cognitive walkthrough in user
interface design (10, 20, 21), the scenario represents the
actions a user must perform to carry out an example task
using a particular interface design. The scenario is critiqued

CHI'98 Proceedings



for poorly-motivated actions, actions inadequately cued by
the interface, and the like.

The programming walkthrough [1, 2, 9] is a somewhat
more complex technique in which a scenario consists of a
series of steps, including hypothetical mental steps, through
which the programmer would progress to accomplish some
goal using a given programming environment. Key points
in the critique include identifying choices not supported by
adequate knowledge, and choices which require difficult
problem solving.

The programming walkthrough includes the specification of
guiding knowledge - knowledge which is needed by the
user to make programming decisions, and which might be
provided as part of the documentation or training for the
programming environment. The inclusion of guiding
knowledge makes it possible to apply this technique to
situations in which specific background knowledge not
cued by the system under evaluation is needed, while the
cognitive walkthrough is more appropriate for highly-cued
situations, such as arise in typical end-user applications.

We used the programming walkthrough as the starting
point for our work because our tasks require programming-
like operations that are not directly cued. For example,
modifying a rule is done by dragging new elements from a
palette into a rule, not by (say) choosing "modify rule"
from a menu and interacting with a dialog box.

We held a series of walkthrough sessions for each of the
two educational activities in the case study. We began by
sketching our original conception of the activity, including
the instructions to the learner and the initial software
configuration. We then outlined the main steps learners
would need to take to carry out the activity. We used
“progressive deepening” in each series of sessions; that is,
in each series of sessions we started with a high-level list of
steps, which we progressively broke down into more and
more detailed substeps in later sessions.

For example, an early step list for Extend-Sugar-Production
was as follows:

1. Find the leaf rule [the rule that makes sugar is attached
to the leaf agent]

2. Understand the leaf rule [that is, understand how the
rule specifies what is produced and what is consumed]

3. Find the action(s) to be added to the rule [to consume
carbon dioxide and/or produce oxygen]

4. Drag the action(s) into the rule box [this is how
components are added to rules]

5. Edit the action as needed for this particular situation [a
generic “consume” or “produce” actionhas to be
adjusted to consume or produce a specific thing]

In a later session we expanded some of these steps; for

example, we identified substeps of “Understand the leaf
rule” and “Edit the action”. We also debated whether

© 1998 ACM

“Understand the leaf rule” was necessary to accomplish the
task.

All but one of the walkthrough sessions were done at a
whiteboard without looking at the actual computer
implementation. In the final session for the Extend-Sugar-
Production activity, we did examine the actual computer
implementation, in part to see whether this would suggest
issues that we missed in our less detailed analyses earlier.

In each session, we critiqued the step lists, looking for steps
that required knowledge learners would lack, or that would
otherwise be difficult to carry out. We also examined each
step list as a whole to judge whether it was likely to support
the pedagogical objectives for the activity. When
difficulties were found, we considered how to modify the
task or the supporting system to deal with those difficulties,
as illustrated below.

These discussions were time consuming. We spent about
four hours analyzing Make-Sugar-Better and about eight
hours analyzing Build-A-Flower.

We found that the basic mechanics of the programming
walkthrough could be applied without change to
educational activity design. For example, the development
of the scenarios was no different. But significant
differences did emerge in the specifics of the process. We
describe and illustrate these differences in the following
section, and at the same time illustrate the value of the
process for our design problem.

CHI'98 Proceedings



RESULTS OF ADAPTING THE PROGRAMMING
WALKTHROUGH TO EDUCATIONAL ACTIVITY
DESIGN

Shape the task, not the system. When evaluating a
programming environment or an end user application, the
user tasks are givens. One cannot respond to a potential
problem in an interface by changing what the user is trying
to accomplish; rather, the system has to be adapted to
support whatever the users' goals are thought to be.

In educational activity design, by contrast, one has the
freedom to redefine the learner's task if that enhances the
educational value of the activity. For example, for reasons
described below, we changed the Build-a-Flower task from
its original form, in which the learner's objective was
simply to make pollination happen, to one in which learners
also had to explain why one pollinator pollinated their
flowers and another did not. Such changes are sensible in
educational activity design, and not in interface or
environment design, because the tasks are part of the design
space and not simply benchmarks.

The fact that tasks change during the design processes does
alter the character of the walkthrough process somewhat.
Each time a change to a task is contemplated, at least some
part of the walkthrough must be redone. This is not
different in principle from what happens in a programming
walkthrough or a cognitive walkthrough when a change in
the system design is contemplated.

The progressive deepening approach we used for the
walkthroughs seemed to work well. Many of the
modifications we made to the activities were made on the
basis of only a high-level look at the steps of the activities,
so that we did not find ourselves revisiting the details of the
activity over and over again as the activity changed.

Incorporate guiding knowledge into the task
specification, not just into background
information. As mentioned earlier, guiding knowledge in
a programming walkthrough is normally general orienting
information that is made available to users in the form of
training or documentation. For example, the canons of
object-oriented design form part of the guiding knowledge
needed to effectively use an object-oriented programming
language like C++ or Java. In our walkthroughs, we
exposed some of this kind of general guiding knowledge -
for example, the knowledge needed to discriminate the
roles of conditions and actions in rules.

However, we also frequently encountered the need for
guiding knowledge that was specific to a particular task,
and not general to the modeling environment. For example,
in Build-a-Flower, our walkthrough suggested that learners
would not be sure in what order to assemble their flower
parts, and that an unfortunate choice of order of assembly
would make the task quite difficult. Our response was to
identify guiding knowledge that we could incorporate into
the description of the Build-a-Flower task that learners

© 1998 ACM

would be given: "It's a good idea to build your flowers by
building up from the stem."

In common interface or environment design the analogous
move is hardly possible. At best one can provide special
support for common classes of tasks, as is done using
"wizard" facilities. Thus one can provide advice about how
to create charts, but not how to create some specific chart,
since one does not know what specific chart the user wants
to create. In designing an educational activity one often
does know what the specific task will be, and one has the
freedom to attach very specific guiding knowledge to it.

Design in failure. In user interface design, the aim is to
maximize the likelihood that users will find an efficient
way to perform the task. In pedagogical task design, it may
be necessary to minimize this likelihood, so that learners
will be forced to learn how to solve some kind of problem,
which they would not encounter if the task were too easy.

One of the pedagogical goals of Build-a-Flower was for
learners to examine the rules of the model, and to relate the
content of the rules to the behavior of the model. One
possible occasion for this experience was the need to
determine what color flower petals would attract a
pollinator. To create this occasion, it would be necessary to
design the overall task in such a way that learners would be
highly likely to choose the wrong petal color for their
flowers: if they chose the correct color for their task, the
pollinator would behave as desired, and there would be no
need to examine the rules. The walkthrough suggested that
our initial version of the task would yield a failure
likelihood of only about 50%, too low to be effective.

As a remedy, we first considered modifying the task by
providing a wide variety of petals that would not attract the
pollinator, and only one that would. Further analysis
showed that this approach had the serious difficulty that
learners would have to change their incorrect petals to
complete the task, an operation likely to be quite tedious
and without any pedagogical value. This observation led to
a further modification of the task, in which learners would
be given two different pollinators and only one color petal.
Only one of the pollinators would visit the flowers, since
the only petals available would attract only one of the
pollinators. The learner would be asked to observe that only
one of the pollinators would visit their flowers, and to
explain why this was. Looking at the pollinators’ rules
would help learners figure out the correct explanation.

For this version of the task, the likelihood of failure has
been raised to 100%, in the sense that one of the pollinators
will necessarily fail to function. On the other hand, there is
no need for the learner to modify their flowers in order to
observe successful pollination, since one of the two
pollinators will function properly.

The fact that designing in failure sometimes makes sense in
educational activity design, and not in ordinary systems
design, is just one outcropping of a more general difference
that we pointed to earlier. The critique applied to the

CHI'98 Proceedings



scenario in activity design is different from that used in the
programming or cognitive walkthroughs, in that
considerations other than productivity must be included.
The whole range of pedagogical objectives must be
reflected in the critique, resulting in a considerably more
complex evaluation.

Design for creative scope. In user interface design,
while one may aim to support a wide variety of tasks, one
usually tries to limit the options available to users in
performing any one task. The idea is to reduce the need for
costly and error-prone decision processes [11, 12]. In
pedagogical task design one may wish to expand the
options, at the cost of more decisions, as a way of engaging
the creative efforts of the learner.

In our analysis of the flower-building task, it became clear
that it is possible to build flowers with a small fixed
number of parts; however, if this were enforced by the
system, learners could create only a narrow range of
flowers. By including parts that could be used multiple
times, the range of possible flowers can be expanded. For
example, if learners are allowed to insert one or more
filament parts to support the anthers, learners can create
flowers whose anthers are at different heights. Similarly, if
petals can be built up from varying numbers of petal parts,
many different petal sizes, shapes, and arrangements are
possible.

Note that these variations do not increase the range of tasks
learners can perform: they are still limited to building
flowers that will or will not be pollinated successfully by
the model pollinators provided, and the allowed variations
have no influence on this. The only effect of the variations
is to change the appearance of the flowers, while leaving
their function unchanged. The variations permit the learners
to approach the same task in different ways, corresponding
to their differing conceptions of what a flower should look
like. If we did not provide these variations, it is likely that
the children would be less interested in the activity, and it
would be more difficult for the children to connect their
ideas of flowers with the models they create. These
pedagogical benefits outweigh the cost of the decisions
learners must make in creating flowers with a less
constrained collection of flower parts.

This departure from normal interface design practice is just
another reflection of the richer set of evaluation criteria
appropriate to designing an educational activity. As with
designing in failure, it arises from the replacement of
simple productivity criteria by pedagogical criteria in the
critiquing phase of the walkthrough.

Draw support from other activities. We noted
earlier that one of the problems identified in the
walkthrough for Build-a-Flower was the likelihood of
problems in assembling a flower with its parts in the correct
relative positions. We dealt with some of this problem by
adding the suggestion to build the flower from the stem up.
However, we still anticipated that students could place parts

© 1998 ACM

in the wrong arrangement - for example, placing an anther (
a male part) directly on top of the ovary (a female part),
blocking the pollen’s access to the ovary.

We considered various ways in which the behavior of an
incorrectly constructed flower might call attention to the
problem. Our initial idea was that an incorrectly
constructed flower would not get pollinated, and that this
would indicate that the learner should revise the flower.
This idea was discarded because it did not give the learner
enough information about where the problem was. We then
considered having the flower parts fall to the ground if
incorrectly placed. This approach would let the learner
know that something was wrong with a particular part, but
would not help the learner figure out how to correct the
problem.

To help the student correct the problem, we decided to link
the Build-a-Flower activity explicitly to an earlier class
activity: flower dissection. In order to support the computer
activity, we decided to recommend to the teacher that the
children create labeled drawings of flower parts as part of
this activity. We then revised the instructions for Build-a-
Flower to ask the children to refer to these drawings. These
drawings should help resolve some of the possible
positional uncertainties within the Build-a-Flower activity.
There is, of course, the chance that some children will not
be able to relate the parts in their flower drawings with the
corresponding parts as represented in the software for
Build-a-Flower but we think working on these connections
has pedagogical value in itself.

Here again, we have a kind of design initiative that is not
often possible in user interface design. We can do it here
because we can rely on a set sequence of learner activities
which we created with the teacher. Not only did we draw
support from related hands-on activities but to some degree
we changed the nature of these activities.

Motivate software mastery by links to content
domain. One of the pedagogical objectives of Extend-
Sugar-Production is to help learners understand how to
modify rules. In our initial thinking about the activity, we
had not identified consuming carbon dioxide and producing
oxygen as the specific modifications for learners to make;
rather, we had a general idea that the initial, unelaborated
sugar model would be a good base for learners to work
from. The specific activity involving carbon dioxide and
water arose from the walkthrough analysis as we tried to
envision what activity goals would induce learners to
examine and modify one or more rules in the base model.

Our choice of activity was influenced by our desire not to
give learners explicit instructions to examine and modify
rules. Rather, we wanted to present an activity that was
well-defined and well-motivated by its science content, in
this case creating a more accurate model, and that would
require learners to deal with the software features we
wanted them to learn about. This preference derives from
our previous experience with more traditional ways of

CHI'98 Proceedings



introducing software concepts which did not interest many
of the children and consequently were not effective in
teaching them enough programming skills to create
conceptually rich models.

Analogous considerations could be brought into ordinary
interface design, but seldom are, except implicitly.
Implicitly, it is content concerns that presumably drive
most learning of applications, at least by discretionary
users. But might not interfaces be explicitly designed to
“show off” the content possibilities that their features
support? The idea of a catalog of application examples as
part of an interface [6] is one approach to this issue.

Design to avoid generating misconceptions.
Some of the design choices which arose from our
walkthroughs were influenced by the need to avoid
presenting  misleading models to the learners.
Unfortunately, using simple modeling tools and methods
that are accessible to children, many important physical
processes cannot be represented faithfully.

The treatment of light in Extend-Sugar-Production
illustrates this point. We considered asking the children to
elaborate the base sugar model so as to show photons being
consumed when sugar is produced, rather than just showing
that light must be present. Unfortunately, making photons
move on a two dimensional surface that is also populated
by (for example) carbon dioxide molecules, is complex.
Simple approaches result in photons being stopped by air
molecules. Other approaches would result in complex rules
which would be difficult for learners to understand or
revise. The walkthrough allowed us to anticipate this
problem and redesign the activity to avoid it.

Familiar walkthrough results

In this presentation, we have stressed ways in which the use
of walkthroughs in activity design differs from their use in
environment or interface design. But in fact, some of our
results are just as would be expected from an ordinary
interface critique. For example, when we examined the
details of Extend-Sugar-Production we found that
identifying the portion of a rule that consumes something is
potentially quite tricky. The relevant part of the rule does
not actually describe the thing being consumed but refers to
it by its location relative to the agent to which the rule is
attached. To find out what is going to be consumed one has
to look at the condition of the rule to see what kind of thing
will be in the position where the consumption will take
place.

There is a further difficulty here. In the condition of a rule,
the agents that must be present are represented only by their
depictions - small diagrammatic pictures. This means that
the learner must be able to identify these depictions,
without the aid of (for example) names. This consideration
led to one suggestion for the design of the Visual
AgentTalk software itself which came out of our

© 1998 ACM

walkthroughs: that conditions be redesigned to contain both
an agent’s name and its depiction.

Incidentally, these detailed criticisms only emerged when
we examined the actual software. We had not anticipated
them in our whiteboard discussions.

DISCUSSION

We found the walkthrough process to be of great value in
developing the activities in the case study. The examples
we have presented are illustrative of a large number of
changes we were led to make in the activities, some of them
quite profound. These results have been very important for
a project that needs to have educational activities developed
on a tight schedule that is coordinated with children’s
ongoing science curriculum.

Given our schedule, it may not be practical for us to
analyze every activity we plan in such detail. We did find
that we learned enough from the case study that we can
make some changes to other related activities without
performing walkthroughs on them at the same level of
detail as we did in the case study.

One of the factors that made our walkthrough process time
consuming was that we were simultaneously redesigning
the software and the task; thus, a large number of options
were available to us at every decision point. This would not
be the case if the walkthrough technique were applied to
educational activities using commercially available
software.

The balance of costs and benefits for the method is hard to
assess very accurately. It is easy to argue that the method is
cheap at the rate of a few hours per activity designed, if one
imagines large numbers of children and teachers working
with the resulting activities. We suspect that we, and many
other designers, are guilty of under-budgeting for analysis
and evaluation in our development work, and that that
contributes to a feeling that the method is expensive.

Besides the time required, another reservation we have
about the method is that it would not work as well for less
well defined activities. The sTc project includes more open
opportunities for children to create models of processes or
phenomena of their own choosing, and it is clear that it
would be much harder to anticipate the difficulties they
might face in doing this, and to come up with ways to get
around these difficulties, than it was for the better-defined
activities we worked on in the case study.

Stepping back, we also found our exploration to be of
considerable methodological interest. The central notion of
task-centered design is revealed to be more subtle, and
more flexible, than we thought. The simple notion of a task
as being defined simply by a user’s goals and a context,
which suffices for common interface work, can be extended
to include not only the user’s goals but also those of other
parties to the design - in our case, our various pedagogical
goals.

CHI'98 Proceedings



An earlier effort to pushing task-centered design into a new
domain (an unpublished student project [4] for the first
author) anticipated some of our findings in another domain.
They worked with an artist on the design of a robotic
drawing facility, and found that there as the simple notion
of task needs to be broadened. Their artist collaborator
found it very uncomfortable to imagine an artistic “task”
separate from the tools that support it, so in that study as in
this one the tasks used in the design process were in flux
well into the process.

Returning to standard interface design, it appears that some
of the considerations that we have had to deal with in our
pedagogical setting might usefully be imported. We can
look beyond simple speed and accuracy goals to create
interfaces that promote learning and creativity.

An example of the possibilities could be developed from
DiGiano’s work on self-disclosing systems [5]. These
systems display information about how to make more
sophisticated use of their facilities while the user is at work;
for example, when a user performs an operation by direct
manipulation the system shows how commands in a script
could accomplish the same result. One can argue that a
rational designer would accept some short-run usability
penalty for such a facility that would be repaid in the long
run by more effective advanced usage. Thus, as in our
work, the design evaluation should consider not only
usability characteristics of the user’s tasks but also their
pedagogical implications.

ACKNOWLEDGMENTS

This work was supported by a grant from the Applications
of Advanced Technologies program of the National Science
Foundation. We thank the other members of the sTc group,
Erika Arias, Cory Buxton, Heidi Carlone, Carlos Garcia,
Teresa Garcia, Linda Hagen, Page Pulver, Steve Guberman
and Mary Lou Salazar, the students at University Hill
Elementary School in Boulder, and Alex Repenning, the
creator of Visual AgentTalk, for their assistance and
contributions.

REFERENCES

1. Bell, B, Citrin, W., Lewis, C., Rieman, J., Weaver, R.,
Wilde, N. and Zorn, B. Using the programming
walkthrough to aid in programming language design.
Software Practice and Experience 24, 1 (1994), pp. 1-
25.

2. Bell, B, Rieman, J, and Lewis, C. Usability testing of a
graphical programming system: Things we missed in a
programming  walkthrough. In  Proc. CHI'91
Conference on Human Factors in Computing Systems
(New Orleans, April 28-May 2, 1991), ACM New
York, pp. 7-12.

3. Bliss, J. From Mental Models to Modeling, in H.
Mellar, J. Bliss, R. Boohan, J. Ogborn and C.
Tompsett, Eds., Learning with Artificial Worlds:

© 1998 ACM

10.

11.

12.

13.

14.

15.

16.

17.

Computer Based Modeling in the Curriculum, The
Falmer Press, Washington, DC, 1994.

Clark, C., Justus, S. and Santiago, C. Mapping the
LEGO Brick to Fine Arts Applications. Course project
report, Department of Computer Science, University of
Colorado, 1995.

DiGiano, Chris, and Michael Eisenberg. Supporting the
end-user programmer as a lifelong learner
Department of Computer Science Technical Report
CU-CS-761-95, University of Colorado at Boulder,
1991.

Fischer, G). Domain-Oriented Design Environments,
in L. Johnson and A. Finkelstein, Eds., Automated
Software Engineering, Kluwer, 1994.

Grosslight, L., Unger, C., Jay, E., and Smith, C.
Understanding Models and their Use in Science:
Conceptions of Middle and High School Students and
Experts. Journal of Research in Science Teaching 28,
9 (1991), 799-822.

Jackson, S. The ScienceWare Modeler: A Learner-
Centered Tool for Students Building Models. Human
Factors in Computing Systems: CHI’95 Conference
Proceedings, ACM, New York, 1995, pp. 7-8.

Lewis, C, Rieman, J, and Bell, B. Problem-centered
design for expressiveness and facility in a graphical
programming system. Human-Computer Interaction 6,
1991, pp. 319-355.

Lewis, C. and Wharton, C. (in press) Cognitive
walkthroughs. In Helander, M., Landauer, T., and
Prabhu, P. (Eds.) Handbook of Human-Computer
Interaction, 2d Edition. Amsterdam:Elsevier Science.
Olson, J.R., and Nilsen, E. Analysis of the cognition
involved in spreadsheet software interaction. Human-
Computer Interaction 3, 1988, 309-350.

Olson, J.R. and Olson, G.M. The Growth of Cognitive
Modeling in Human-Computer Interaction Since
GOMS. Human-Computer Interaction 5, 1990,
Lawrence Erlbaum Associates, Inc.

Penner, D. E., Giles, N. D., Lehrer, R. and Schauble, L.
(1997). Building Functional Models: Designing an
Elbow. Journal of Research in Science Teaching 34, 2,
125-143.

Rader, C., Brand, C. and Lewis, C. Degrees of
Comprehension: Children’s Mental Models of a Visual
Programming Environment, Human Factors in
Computing Systems: CHI’97 Conference Proceedings,
ACM, New York, 1997.

Raghavan, K. and Glaser, R. Model-Based Analysis
and Reasoning in Science: The MARS Curriculum,
Science Education 79, 1 (1995), 37-61.

Repenning, A. and Ambach, J. Tactile Programming:
A Unified Manipulation Paradigm Supporting Program
Comprehension, Composition and Sharing.
Proceedings of the Visual Languages Conference,
Boulder, CO, 1996.

Repenning, A. and loannidou, A. Behavior Processors:
Layers between End-Users and Java Virtual Machines.
Proceedings of the Visual Languages Conference,
Capri, Italy, 1997.

CHI'98 Proceedings



18.

19.

20.

Repenning, A. and Smith, J.T. Il, Perrone, C.
Agentsheets Common Ground: Shared Visual
AgenTalk. Proceedings of COOP, Juan-les-Pins,

France, June 1996.

Smith, E.L. and Anderson, C.W. Plants as Producers:
A Case Study of Elementary Science Teaching.
Journal of Research in Science Teaching 21, 1984, pp.
685-698.

Wharton, C., Rieman, J., Lewis, C. and Polson, P. The
cognitive walkthrough method: A practitioner's guide.
In J. Nielsen and R. Mack (Eds.), Usability Inspection
Methods. Wiley, New York, NY, 1994,

© 1998 ACM

21.

22.

23.

Wharton, C. and Lewis, C. The role of psychological
theory in usability inspection methods. In J. Nielsen
and R. Mack (Eds.) Usability Inspection Methods.
Wiley, New York, NY, 1994.

White, B. and Frederiksen, J. (1994), Using
Assessment to Foster A Classroom Research
Community, Educator 1994, 19-26.

Wong, E.D. Students' Scientific Explanations and the
Contexts in Which They Occur. The Elementary
School Journal 96, 5(1996), 495-509.

CHI'98 Proceedings



