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Abstract

The Graph Pricing problem is among the fundamental problemswhose approximability is not well-
understood. While there is a simple combinatorial1

4
-approximation algorithm, the best hardness result

remains at1
2

assuming the Unique Games Conjecture (UGC). We show that it is NP-hard to approximate
within a factor better than1

4
under the UGC, so that the simple combinatorial algorithm might be the best

possible. We also prove that for anyǫ > 0, there existsδ > 0 such that the integrality gap ofnδ-rounds
of the Sherali-Adams hierarchy of linear programming for Graph Pricing is at most1

4
+ ǫ.

This work is based on the effort to view the Graph Pricing problem as a Constraint Satisfaction
Problem (CSP) simpler than the standard and complicated formulation. We propose the problem called
Generalized Max-Dicut(T ), which has a domain sizeT+1 for everyT > 1. Generalized Max-Dicut(1) is
well-known Max-Dicut. There is an approximation-preserving reduction from Generalized Max-Dicut
on directed acyclic graphs (DAGs) to Graph Pricing, and bothour results are achieved through this
reduction. Besides its connection to Graph Pricing, the hardness of Generalized Max-Dicut is interesting
in its own right since in most arity two CSPs studied in the literature, SDP-based algorithms perform
better than LP-based or combinatorial algorithms — for thisarity two CSP, a simple combinatorial
algorithm does the best.
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1 Introduction

Consider the following natural problem for a seller with a profit-maximization objective. The seller hasn
types of items1, . . . , n, each with unlimited copies, and there arem customers1, . . . ,m. Each customerj
has her own budgetbj and a subset of itemsej ⊆ {1, . . . , n} that she is interested in. Customers aresingle-
mindedin a sense that each customerj buys all items inej if the sum of the prices does not exceed her
budget (i.e.bj >

∑

i∈ej p(i), wherep(i) indicates the price of itemi), in which the seller gets
∑

i∈ej p(i)
from the customer. Otherwise, the customer does not buy anything and the seller gets no profit from this
customer. The goal of the seller is to set a nonnegative priceto each item to maximize her profit fromm
customers.

This problem was proposed by Guruswami et al. [15], and has received much attention. Letk be the
maximum cardinality of anyei. Approximability of this problem achieved by polynomial time algorithms
for largek andn is relatively well-understood now. There is a polynomial time algorithm that guarantees
O(min(k, (n log n)1/2)) fraction of the optimal solution, while we cannot hope for anapproximation ratio
better thanΩ(min(k1−ǫ, n1/2−ǫ)) for anyǫ > 0 under the Exponential Time Hypothesis [6].

The special casek = 2 has also been studied in many works separately. The instancecan be nicely
represented by a graph, with vertices as items and edges as customers, so this problem is called theGraph
(Vertex) Pricingproblem. The fact that this case can be represented as a graphnot only gives a theoretical
simplification, but also makes the problem flexible to model other settings. For example, Lee et al. [25, 26]
independently suggested the same problem from the networking community, motivated by the study of
pricing traffic between different levels of internet service providers under the presence of peering.

The best known approximation algorithm for a general instance of Graph Pricing, which guarantees1
4

of the optimal solution, is given by Balcan and Blum [4] and Lee et al. [25] The algorithm is simple enough
to state here. First, assign 0 to each vertex with probability half independently. For each remaining vertex
v, assign the price which maximizes the profit betweenv and its neighbors already assigned 0. This simple
algorithm has been neither improved nor proved to be optimal. Graph Pricing is APX-hard [15], but the
only strong hardness of approximation result rules out an approximation algorithm with a guarantee better
than 1

2 [19] under the Unique Games Conjecture (UGC) (via reductionfrom Maximum Acyclic Subgraph).

The 1
4 -approximation algorithm is surprisingly simple and does not even rely on the power of a linear

programming (LP) or semidefinite programming (SDP) relaxation. The efforts to exploit the power of LP
relaxations to find a better approximation algorithm have produced positive results for special classes of
graphs. Krauthgamer et al. [23] studied the case where all budgets are the same (but the graph might have
a self-loop), and proposed a6+

√
2

5+
√
2
≈ 1.15-approximation algorithm based on a LP relaxation. In general

case, the standard LP is shown to have an integrality gap close to 1
4 [19]. Therefore, it is natural to consider

hierarchies of LP relaxations such as the Sherali-Adams hierarchy [33] (see [11] for a general survey and
[14, 35] for recent algorithmic results using the Sherali-Adams hierarchy). Especially, Chalermsook et al. [5]
recently showed that there is aFPTAS when the graph has bounded treewidth, based on the Sherali-Adams
hierarchy. However, the power of the Sherali-Adams hierarchy and SDP, as well as the inherent hardness of
the problem, was not well-understood in general case.

1.1 Our Results

In this work, we show that any polynomial time algorithm thatguarantees a ratio better than14 must be
powerful enough to refute the Unique Games Conjecture.

Theorem 1.1. Under the Unique Games Conjecture, for anyǫ > 0, it is NP-hard to approximate Graph
Pricing within a factor of14 + ǫ.
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By the results of Khot and Vishnoi [22] and Raghavendra and Steurer [31] that convert a hardness under
the UGC to a SDP gap instance, our result unconditionally shows that even a SDP-based algorithm will
not improve the performance of a simple algorithm. For the Sherali-Adams hierarchy, we prove that even
polynomial rounds of the Sherali-Adams hierarchy has an integrality gap close to14 .

Theorem 1.2. Fix ǫ > 0. There existsδ > 0 such that the integrality gap ofnδ-rounds of the Sherali-Adams
hierarchy for Graph Pricing is at most14 + ǫ.

Our result is based on an interesting generalization of Max-Dicut, which we call Generalized Max-Dicut.
It is parameterized by a positive integerT > 1. An instance consists of a directed graphD = (V,A) and
a label on each edgelA : E → {1, . . . , T}, where the goal is to assign to each vertexv a labellV (v) from
{0, . . . , T} to maximize the number of satisfied edges — each edge(u, v) is satisfied iflV (u) = 0 and
lV (v) = lA(u, v).

This problem shares many properties with Graph Pricing, including a simple combinatorial14 -approximation
algorithm. There is an approximation-preserving reduction from Generalized Max-Dicut(T ) on directed
acyclic graphs (DAGs) to Graph Pricing for anyT . We prove the following theorems that it is hard to
improve upon this simple algorithm for largeT even on DAGs, which immediately imply Theorem 1.1
and 1.2.

Theorem 1.3.Under the Unique Games Conjecture, it is NP-hard to approximate Generalized Max-Dicut(T )
on directed acyclic graphs within a factor of14 +O( 1

T 1/4 ).

Theorem 1.4. Fix T andǫ > 0. There existsδ > 0 such that the integrality gap ofnδ-rounds of the Sherali-
Adams for Generalized Max-Dicut(T ) is at mostT+1

4T (1+ ǫ). Furthermore, the same result holds even when
the graph is acyclic.

It is also interesting to compare the above results to other arity two Constraint Satisfaction Problems
(CSPs), since whether the domain is Boolean (e.g. Max-Cut, Max-2SAT [13]) or not (e.g. 2-CSP with
bounded domain [18], Unique Games [8]), SDP-based algorithms give a strictly better guarantee than LP-
based or combinatorial algorithms. As discussed above, ourresult unconditionally says that a SDP-based
algorithm cannot outperform a simple combinatorial algorithm for this arity two CSP (asT increases).1

1.2 Related Work and Our Techniques

Formulation of Generalized Max-Dicut Our conceptual contribution is the introduction of Generalized
Max-Dicut as a CSP that captures the complexity of Graph Pricing. It is inspired by the work of Khandekar
et al. [19], and our reduction is the almost same as their reduction from Max-Acyclic Subgraph (MAS) to
Graph Pricing.

In the natural formulation of Graph Pricing as a CSP, each vertex is assigned an (half-)integer price
from 0 to B for the maximum budgetB, and each customer becomes multiple constraints on two variables
since the payoff linearly depends on the prices. It is shown in [19] that a half-integral optimal solution
always exists for integral budgets, so this is a (almost) valid relaxation. However, as each customer becomes
multiple constraints with different payoffs, it seems hardto apply current techniques developed for well-
studied CSPs to this formulation.

1 Formally, (approximation ratio of the SDP-based algorithm) / (approximation ratio of the best known combinatorial algorithm)
= 1+O( 1

T1/4 ) for Generalized Max-Dicut. For Unique Games withT labels, the SDP-based algorithm of Charikar et al. [8], which

satisfies roughlyT−ǫ/(2−ǫ) fraction of constraints in an(1 − ǫ)-satisfiable instance, performs better than the random assignment
by any constant factor asT increases.
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Khandekar et al.’s main idea was to use two well-known CSPs — MAS for the hardness of approxi-
mation and Max-Dicut on directed acyclic graphs for the integrality gap of the standard LP. The former is
harder to approximate, and the latter has the lower optimum.2 Generalized Max-Dicut seems to combine in-
gredients of both problems needed for Graph Pricing. It certainly inherits properties of Max-Dicut including
low integral optima, but is much harder to approximate than Max-Dicut by Theorem 1.3.

Uniques Games-Hardness Proving hardness of Generalized Max-Dicut on general graphs is relatively
straightforward — proposing a dictatorship test with high completeness and low soundness, and plugging
it into the recipe of Khot et al. [21] to deduce the hardness result. The dictatorship test is an instance
of Generalized Max-Dicut with the set of vertices{0, ..., T}R (calledhypercube) for someR ∈ N. The
main question in constructing a dictatorship test is how to sample(x, y) ∈ {0, . . . , T}2, which induces a
distribution on{0, . . . , T}2. In Generalized Max-Dicut,0 is the only special label such that every directed
edge is satisfied only if its tail is assigned 0. The simple combinatorial algorithm samples0 heavily —
the marginal distribution satisfiesPr[x = 0] > 0.5, while the solution to the Sherali-Adams hierarchy
constructed in Theorem 1.4 treats 0 as other labels, havingPr[x = 0] = 1

T+1 . The latter distribution had a
disadvantage thatx andy are perfectly correlated — the value ofx determines the value ofy.

To show the hardness based on the UGC (roughly equivalent to constructing a solution thatfoolsSDP),
we found thatPr[x = 0] = 1

T 1/4 is enough. In this case, we can ensure that the probability that dictators
pass the test is large, whilex andy behave almost independently. Based on the low correlation,we use the
result of Mossel [28] to show low soundness.

The resulting dictatorship test is not a DAG. To fix this problem, the final dictatorship test has the vertex
setV × [T ]R for some DAGD = (V,A). For each edge(u, v) ∈ A, the above dictatorship test is performed
so that each edge of the dictatorship test goes from the hypercube associated withu to the one withv. This
idea of keeping the dictatorship test acyclic is used in Svensson [34], where he takes (the undirected version
of) D to be a complete graph. We take a nontrivial DAG found by Alon et al. [1] where any directed cut
has at most14 + o(1) fraction of edges. In the soundness case, if every hypercubeis pseudorandom, the
soundness analysis of an individual dictatorship test associated with each edge gives a rounding algorithm
that finds a large directed cut inD, which contradicts the choice ofD.

This style of argument, composing the dictatorship test with a certain instance and solving this instance
by the soundness analysis, resembles that of Raghavendra [30] for CSPs, Guruswami et al. [16] for ordering
CSPs, Kumar et al. [24] for strict CSPs, and Guruswami and Saket [17] fork-uniform k-partite Hypergraph
Vertex Cover. While they require the instance to have a good fractional solution (LP or SDP) but the low
integral optimum, we only need the low integral optimum (of even a simpler problem) and our individual
dictatorship test ensures completeness and part of soundness. We hope that this two-level technique —
constructing a simple dictatorship test for each edge and composing it with a certain instance with purely
combinatorial properties — makes it easier to bypass the barrier of finding a gap instance and prove hardness
for many other problems, especially those with structured instances.

Sherali-Adams Gap On the integrality gap of Generalized Max-Dicut on a DAG, ourwork generalizes
the work of Charikar et al. [9], which showed a similar resultfor Max-Cut, in several directions. The first
obstacle is to find a DAG with a low integral optimum which is amenable to construct a good solution to the
Sherali-Adams hierarchy. Previous works which obtained lower bounds for the Sherali-Adams hierarchy [2,
12, 9] usedG(n, p), but G(n, p) with an consistent orientation will not result in a low integral optimum.

2 Under the Unique Games Conjecture, the best inapproximability ratio is 0.5 for MAS [16] and 0.874 for Max-Dicut [3]. For
the lower bound on integral optima, the maximum acyclic subgraph always has at least half of edges, while there is a directed
acyclic graph where every directed cut cannot have more than1

4
+ ǫ fraction of edges for anyǫ > 0.
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Instead, we show that sparsifying the aforementioned graphconstructed in Alon et al. [1], which is already
a DAG with a low integral optimum, gives other desired properties as well.

Given a setS of k vertices, we define a local distribution on the events{lV (v) = i}v∈S,i∈T . One caveat
of the above approach is that local distributions obtained might be inconsistent, in a sense thatS andS′

might induce different marginal distributions onS ∩ S′. Charikar et al.’s main idea is to embed them intol2
and use hyperplane rounding to produce consistent ones. Themost technical part of our work is to extend
the hyperplane rounding to work for non-Boolean domains. Itis a complicated task in general, but we use
the fact that the embedding is explicitly constructed for two adjacent vertices and it exhibits some symmetry,
so that we can analyze the performance of our rounding. ForT = 1, our result matches that of [9].

1.3 Organization

Section 2 introduces problems and notations formally. Section 4 and Section 5 present Unique Games-
hardness and Sherali-Adams integrality gaps of Generalized Max-Dicut respectively, which can be com-
bined with the reduction in Section 3 to give the same resultsfor Graph Pricing.

2 Preliminaries

For any positive integern, let [n] := {0, 1, 2, . . . , n} and [n]+ := {1, 2, . . . , n}. Given a sequence of
numbersa1, ..., an, letmax2j[aj ] be the second largest number amongaj ’s.

Graph Pricing An instance of Graph Pricing consists of an undirected (possibly contain parallel edges)
graphG = (V,E) with budgetsb : E → R

+ and weightsw : E → R
+. Our goal is to find a pricing

p : V → R
+ ∪ {0} to maximize

Val(p) :=
∑

e=(u,v)∈E
w(e)(p(u) + p(v))I[p(u) + p(v) 6 b(e)]

whereI[·] is the indicator function. LetOpt(G, b,w) := maxp Val(p).

Remark 2.1. This definition of Graph Pricing above coincides with General Graph Pricing defined in
Khandekar et al. [19]. They presented an additional reduction from General Graph Pricing to Graph
Pricing with no parallel edge andw(e) = 1. Throughout this paper, we use the definition above and allow
weights and parallel edges for simplicity. In practice, weights can be naturally interpreted as the number of
customers interested in the same pair.

Remark 2.2. Another well-known pricing problem assumes that each customer will buy the cheapest item of
her interest if she can afford it (i.e.,Val(p) :=

∑

e=(u,v) w(e)min(p(u), p(v))I[min(p(u), p(v)) 6 b(e)]),
which is calledunit-demand pricing. Its approximability is similar to that of our single-minded pric-
ing, including algorithms / hardness results fork-Hypergraph Pricing for largek [6], and a simple 1

4 -
approximation algorithm for Graph Pricing(k = 2). Indeed, Generalized Max-Dicut is also reducible to
Unit-demand Graph Pricing and Theorem 1.1 and 1.2 hold for itas well. We focus on Single-minded Graph
Pricing here.

Generalized Max-Dicut Fix a positive integerT . An instance of Generalized Max-Dicut(T ) consists of
a digraphD = (V,A) with a labellA : A → [T ]+ and a weightw : A → R

+ on each edge. Assume that
the sum of weights is normalized to 1.(u, v) denotes the edge ofD from u to v. We allow parallel edges

4



from u to v if they have different labels (if parallel edges have the same label, simply merge them). Our
goal is to find a labelinglV : V → [T ] (note vertices can be assigned 0, while edges are not) to maximize
the weight ofsatisfiededges —(u, v) is satisfied whenlV (u) = 0 andlV (v) = lA(u, v). Note than when
T = 1, the problem becomes Max-Dicut. Given an instanceD = (V,A), lA, andw, let Opt(G, lA, w) be
the maximum weight of edges satisfied by any labeling of vertices. Given an assignmentlV : V → [T ] to
the vertices, letVal(lV ) be the weight of edges satisfied bylV . Note that unlike Graph Pricing, the value of
any assignment is normalized between 0 and 1. Thenormalized outdegree, denoted byndeg, is defined to
be [

∑

u(max(u,v)∈A w(u, v))]−1. In unweighted instances (i.e.w(e) = 1
|A| for all e), ndeg >

|A|
|V | .

Sherali-Adams Hierarchy In its most intuitive and redundant form, a feasible solution to ther-rounds of
the Sherali-Adams hierarchy for a CSP with the domain[q] consists of

∑r
i=1

(n
r

)

(q+1)r variables{xS(α)}
for each subset of variablesS with cardinality at mostr, andα ∈ [q]S . EachxS(α) can be interpreted as the
probability that the variables inS are assignedα. Therefore, it is required to satisfy the following natural
conditions: (1)xS(α) > 0 for all S, α. (2)

∑

α∈[q]S xS(α) = 1 for all S. (3)
∑

α∈[q]S′\S xS′(α◦β) = xS(β)

for all S ⊆ S′, β ∈ [q]S , whereα ◦ β ∈ [q]S
′∪S denote the joint assignment to the variables inS′.

Ther-rounds of the Sherali-Adams hierarchy for Graph Pricing and Generalized Max-Dicut(T ) can be
obtained by choosing an appropriate domain and an objectivefunction, while using the constraints given
above. For Graph Pricing, if we choose the domain to be[B] whereB is the maximum budget, the objective
function is the following.

∑

e=(u,v)

w(e)
∑

(i,j)∈[B]2,i+j6b(u,v)

(i+ j) · x(u,v)(i, j)

Sincep(v) can be real, it is not clear whether this is a relaxation, evenwhen the budgets are integers. [19]
shows that there is a half-integral optimal solution. The maximum budgetB can be exponentially big in the
size of an instance, and a standard trick is to consider only the powers of(1 + ǫ) as valid prices. It loses at
mostǫ fraction of the optimum. Our gap instance and proposed solution to the hierarchy have the marginal
on each vertex supported by a constant number of prices, so they are applicable to any choice of the domain.

For Generalized Max-Dicut(T ), the domain is[T ], and the objective function is

∑

(u,v)∈A
w(u, v)x(u,v)(0, lA(u, v)).

Given an instance and a relaxation, we define theintegrality gapto be the integral optimum divided by
the value of the best solution to the relaxation. Since both our problems are maximization problems, it is at
most 1 and a small number indicates a large gap.

3 Reduction from Generalized Max-Dicut to Graph Pricing

Theorem 3.1.For anyT > 0, there is a polynomial time reduction from an instance(D = (V,A), lA, wGMD)
of Generalized Max-Dicut(T ), whereD is acyclic andndeg > 1

ǫ , to an instance(G, b,wGP) of Graph Pric-
ing such thatOpt(D, lA, wGMD) 6 Opt(G, b,wGP) 6 Opt(D, lA, wGMD) + 3ǫ.

Proof. Fix an instance(D = (V,A), lA, wGMD) of Generalized Max-Dicut(T ) with n = |V | andm = |A|.
Let G be the underlying undirected graph ofD. Our reduction from Generalized Max-Dicut on directed
acyclic graphs to Graph Pricing is almost the same as the one in Khandekar et al. [19] with some simplifi-
cation. LetM be a large number which will be fixed later.
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The resulting instance of Graph Pricing is based on the same graphG. SinceD is acyclic, there is an
injective functions : V → [n]+ such that for each edge(u, v) ∈ A, s(u) > s(v). For each edge(u, v) ∈ A,
b(u, v) = MTs(v)+lA(u,v)−1 andwGP(u, v) =

wGMD(u,v)
b(u,v) .

To avoid confusion, letOptGMD, ValGMD denoteOpt, Val for Generalized Max-Dicut instances, and
OptGP andValGP for Graph Pricing instances. Fix a labelinglV : V → [T ]. The correspondingcanonical
solutionp : V → R

+ ∪ {0} defined by

p(v) =

{

MTs(v)+lV (v)−1 if lV (v) 6= 0

0 otherwise

givesValGP(p) > ValGMD(lV ) — for each(u, v) ∈ A satisfied bylV , p getsp(v)wGP(u, v) = wGMD(u, v).
Therefore,OptGP(G, b,wGP) > OptGMD(D, lA, wGMD). The following lemma shows that the converse is
almost true. The proof is given in Appendix A.

Lemma 3.2([19]). For anyp, ValGP(p) 6 OptGMD(D, lA, wGMD) +
1
M + 2ǫ.

TakingM >
1
ǫ proves the theorem.

4 Approximability of Generalized Max-Dicut

Recall that Generalized Max-Dicut(1) is exactly the well-known Max-Dicut problem, which admits a 0.874-
approximation algorithm [27] as any Max-2CSP over the Boolean domain. AsT increases, however, the
best approximation ratio for Max-2CSP over the domain of size T + 1 can be at mostO( log T√

T
) [7], so

viewing it as a general Max-2CSP does not yield a constant-factor approximation algorithm.

There is a simple14 -approximation algorithm, similar to the one for Graph Pricing — assign 0 to each
vertex with probability half independently and assign nonzero values to the remaining vertices greedily. The
proof is based on the fact that we can easily find the optimal solution once the set of vertices assigned 0
is given. For smallT , we can do a little better based on a standard LP relaxation. The proof is given in
Appendix C.

Theorem 4.1. There is a polynomial time approximation algorithm for Generalized Max-Dicut(T ) that
guarantees14 +Ω( 1T ) of the optimal solution.

However, we prove that for largeT , it is Unique Games-hard to improve the approximation ratiofrom
1
4 to a better constant.

Theorem 4.2(Restatement of Theorem 1.3). Under the Unique Games Conjecture, it is NP-hard to approx-
imate Generalized Max-Dicut(T ) on directed acyclic graphs within a factor of14 +O( 1

T 1/4 ).

Together with the reduction shown in Theorem 3.1, it immediately implies Theorem 1.1 for Graph
Pricing. Besides working on DAGs, the reduction also requires thatndeg be large, but it can be easily
ensured by taking an Unique Games instance with large degree. See Appendix D.2 to see the full details.

The theorem is proved by proposing adictatorship testwith high completeness and low soundness,
combined with the standard technique to convert a dictatorship test to a hardness result based on the Unique
Games Conjecture [21]. Constructing the dictatorship testhas two components — a simple dictatorship
test based on correlation and Gaussian geometry, and composing it with a designated DAG. We present the
dictatorship test here and defer the full reduction from Unique Games to Appendix D.2.
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4.1 Dictatorship Test

We follow the notations in Mossel [28]. Consider the hypercube [T ]R where [T ] = {0, 1, . . . , T}. Let
Ω1 = Ω2 = [T ]. For t ∈ [T ]+, Pt is a probability measure onΩ1 × Ω2. Let P be the marginal onΩi in
Pt (which does not depend ont andi). We want to ensure thatP(0) = δ, P(j) = 1−δ

T for j ∈ [T ]+ where
δ = 1

T 1/4 . LetP′ be the distribution onΩ1 such thatP′(0) = ( 1
1− 1−δ

T

)(δ − 1−δ
T ), P′(j) = ( 1

1− 1−δ
T

)(1−δ
T )

(subtract 1−δ
T from P(0) and renormalize).Pt is defined by the following procedure to sample(x, y).

Sampley according toP. If y = t, setx = 0. Otherwise, samplex from P′ independently. It is easy to
see that the marginal of bothx andy is P. We show that(x, y) are almost independent asT increases. We
define the correlation between two correlated spaces and prove the following lemma in Appendix D.

Definition 4.3. Given a distributionQ onΩ1 × Ω2, we define the correlationρ(Ω1,Ω2;Q) by letting

ρ(Ω1,Ω2;Q) = sup {Cov[f, g] : f : Ω1 → R, g : Ω2 → R,Var[f ] = Var[g] = 1} .

Lemma 4.4. For anyt, ρ(Ω1,Ω2;P
t) 6

√

2
Tδ .

Another component of the dictatorship test is the directed acyclic graphD = (V,A) of Alon et al. [1],
where every directed cut has size at most(14 + o(1))|A|. Fix a graphD = (V,A) such that every dicut
cuts at most(14 + 1

T 1/4 )|A| edges. Note that the size of this graph depends only onT . We now describe the

dictatorship test. The prover is expected to provideFv : [T ]R → [T ] for eachv ∈ V .

1. Choose(u, v) ∈ A andt ∈ [T ]+ uniformly at random.

2. For eachi ∈ [R]+, pick (xi, yi) according toPt.

3. Accept ifFu(x) = 0 andFv(y) = t.

This dictatorship test can be naturally interpreted as an instance of Generalized Max-Dicut(T ) with the
vertex setV × [T ]R. The weight of edge((u, x), (v, y)) with label t is equal to the probability that it is
sampled, and a labelingl : V × [T ]R 7→ [T ] passes with probabilityVal(l) (by Fv(x) = l(v, x)).

4.2 Completeness and Soundness

The ith dictator function isDi : [T ]R → [T ] given byDi(x1, . . . , xR) = xi. The purpose of the above
dictatorship test is to allow dictatorship functions to be accepted with high probability while penalizing
functionsfar from any dictator. The following lemma for completeness is immediate from the test — for
any fixedt andi, Pr[xi = 0, yi = t] = Pr[yi = t] = 1−δ

T .

Lemma 4.5(Completeness). Suppose that for somei, Fv = Di for all v ∈ V . The above test accepts with
probability 1−δ

T .

For v ∈ V andt ∈ [T ], let Fv,t : [T ]
R → {0, 1} be defined such thatFv,t(x) = 1 iff Fv(x) = t, and

µv,t := Pr[Fv(x) = t] = E[Fv,t(x)] wherex ∼ P. For eachFv,t andi ∈ [R]+, we define theinfluenceof
theith coordinate to measure the extent a function depends on theith coordinate.

Infi[Fv,t] := E[Var[Fv,t(X1, . . . ,XR)|Xj , 1 6 j 6 R, j 6= i]].

We use a similarly definedlow-degree influenceInf6d
i for our soundness (see [28] for the definition).

Lemma 4.6(Soundness). For large enoughT , there existτ andd (depending onT ) such that ifInf6d
i (Fv,t) 6

τ for all i ∈ [R]+, t ∈ [T ], andv ∈ V , the probability of accepting is at most14T + 4
T 5/4 .
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Proof. We use the following theorem of Mossel [28].

Theorem 4.7(Theorem 6.3 of [28]). Let(Ω1×Ω2,P) be correlated spaces such that the minimum nonzero
probability of any atom inΩ1 × Ω2 is at leastα and such thatρ(Ω1,Ω2;P) 6 ρ. Then for every
ǫ > 0 there existτ, d depending onǫ and α such that iff : ΩR

1 → [0, 1], g : ΩR
2 → [0, 1] satisfy

max(Inf6d
i [f ], Inf6d

i [g]) 6 τ for all i, then

E
(x,y)∈P⊗R

[f(x)g(y)] 6 Γρ(E
x
[f ],E

y
[g]) + ǫ.

The probability of accepting is at most

E
(u,v)∈A

[ E
t∈[T ]+

[ E
(x,y)∼(Pt)⊗R

[Fu,0(x)Fv,t(y)]]] 6 E
(u,v)∈A

[ E
t∈[T ]+

[Γρ(µu,0, µv,t) +
1

T 5/4
]]

where the inequality follows from Theorem 4.7 (setǫ ← 1
T 5/4 andα = Θ( 1

T 2 )). The following lemma,
whose proof is given in Appendix E, shows that it is at most

E
(u,v)∈A

[Γρ(µu,0,
1− µv,0

T
)] +

1

T 5/4
.

Lemma 4.8. Fix ρ, a ∈ (0, 1). The functionf(b) := Γρ(a, b) is concave.

The following lemma, whose proof is again given in Appendix E, shows that it is at most

E
(u,v)∈A

[µu,0
(1− µv,0)

T
+

2

T 5/4
] +

1

T 5/4
=

1

T
E

(u,v)∈A
[µu,0(1− µv,0)] +

3

T 5/4
.

Lemma 4.9. For large enoughT and δ = 1
T 1/4 , the following holds. For anya ∈ [0, 1], b ∈ [0, 1

T ] and

ρ ∈ (0,
√

2
Tδ ), Γρ(a, b) 6 ab+ 2

T 5/4 .

Given{µv,0}v∈V , imagine the rounding algorithm which putsv ∈ S with probabilityµv,0 independently.
The expected fraction of edges fromS toV \S isE(u,v)∈A[µu,0(1−µv,0)], which is at most the fractional size
of maximum dicut ofD. Since we tookD to satisfy thatE(u,v)∈A[µu,0(1−µv,0)] 6

1
4+

1
T 1/4 , the probability

of accepting is at most14T + 4
T 5/4 as desired. Note that the probabilities of accepting in completeness and

soundness differ by a factor of
1
4T

+ 4

T5/4

1−δ
T

=
1
4
+ 4

T1/4

1− 1

T1/4

= 1
4 +O( 1

T 1/4 ).

5 Integrality Gaps for Generalized Max-Dicut

Fix a positive integerT and ǫ ∈ (0, 1
100 ). We present an instance of Generalized Max-Dicut(T ) (D =

(V,A), lA) (we only deal with unweighted instances in this section and omit w) such thatD is acyclic,
|V | 6 ǫ|A| (so thatndeg > 1

ǫ ), and a solution tonδ-rounds of the Sherali-Adams hierarchy such that the
integrality gap is at mostT+1

4T (1 + ǫ). This result almost matches a simple1
4 -approximation algorithm.

Through the reduction given in Theorem 3.1, we also prove Theorem 1.2 — a bad integral solution is
guaranteed by the reduction, a good solution to the Sherali-Adams hierarchy is obtained by the mapping
lV (u) = i to p(u) = MTs(u)+i−1 (if i 6= 0) or 0 (otherwise). The budget in the resulting instance is
an integer exponential in the size of instances, and our gap works even for a strong linear programming
hierarchy where there is a variable for each vertexv and an integer pricei.

The rest of this section is devoted to the proof of Theorem 1.4.
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5.1 Obtaining a Good Instance

Our graphD is obtained by randomly sparsifying the graphD∗ = (V,A∗) constructed in Alon et al. [1],
followed by an appropriate postprocessing.D∗ is a directed acyclic graph withn vertices andm∗ = Θ(n

5
3 )

edges. Its underlying undirected graphG∗ = (V,E∗) is a simple graph with the same number of vertices
and edges, with the maximum degree∆∗ = Θ(n

2
3 ). Actually,V = [n]+ and(u, v) ∈ E only if |u− v| 6 r

wherer := Θ(n
2
3 ). It has the property that any directed cut has size at mostm∗

4 + o(m∗) edges.

The first version ofD = (V,A) is constructed as the following.V := V∗ = [n]+, and for each edge
(u, v) ∈ A∗, put (u, v) ∈ A with probabilityp := ∆

∆∗
for some∆ to be fixed later. LetG = (V,E) be the

underlying undirected graph ofD. lA is obtained by assigning eachl(u, v) a random number from[T ]+.

Like previous integrality gap constructions for Max-Cut and Min-Vertex Cover (e.g. [2, 12, 32, 9]) ,D
must be postprocessed to be amenable to have a Sherali-Adamssolution with a large value. Intuitively, we
need to have the underlying undirected graphG locally sparse— if we look at a neighborhood of a certain
vertex, the graph almost looks like a tree. We use the notion of [9] to measure how locally sparse the graph
is.

Definition 5.1. We say thatG′ is l-path decomposable if every 2-connected subgraphH of G′ contains a
path of lengthl such that every vertex of the path has degree 2 inH.

The first version of the instance already hasOpt(D, lA) ≈ 1
4T with high probability. In order to make

the instance locally sparse, we additionally need to removesome of the edges, but the fraction of removed
edges is so small that it does not affectOpt(D, lA) too much. As a result, we get the following theorem.
The proof is given in Appendix B.

Theorem 5.2. GivenT andǫ, µ > 0, there exist constants∆, δ and l = Θ(log n) (all constants depending
on T and ǫ, µ) such that there is an instance of Generalized Max-Dicut(T ) (D, lA) with the underlying
undirected graphG with the following properties.

• Acyclicity: D is a DAG.

• Low integral optimum:Opt(D, lA) 6
1+ǫ
4T .

• Almost regularity: Maximum degree ofG is at most2∆, andG has at leastΩ(∆n) edges.

• Local sparsity: Fork 6 nδ, every induced subgraph ofG on (2∆)lk vertices isl-path decomposable.

• Large noise: Fork 6 nδ, (1− µ)l/10 6 µ
5k .

The last condition, large noise, is needed to ensure that in aLP solution, even though adjacent vertices
are very correlated to give a large value, far away vertices behave almost independently. The meaning of
each condition will be elaborated in later sections.

5.2 Constructing (Inconsistent) Local Distributions

Let D = (V,A), lA, andG = (V,E) be the instance of Generalized Max-Dicut(T ) and its underlying
undirected graph constructed as above. In this subsection,given a set ofk 6 nδ verticesS = {v1, . . . , vk}
we give a distribution on events

{lV (v1) = x1, . . . , lV (vk) = xk}x1,...,xk∈[T ] .

The local distributions we construct in this subsection arenot consistent; for different setsS andS′, the
marginal distribution onS ∩S′ from the distribution onS can be different from the same marginal from the
distribution onS′ (albeit they are close). This problem is fixed in the next subsection.
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Let d(u, v) be the shortest distance betweenu andv in G andV ′ ⊆ V be the set of vertices whose
shortest distance toS is at mostl. LetG′ andD′ be the subgraph ofG andD induced onV ′, respectively.
Since|V ′| 6 (2∆)lk, G′ is l-path decomposable by Theorem 5.2. Note that ifd(u, v) < l, d(u, v) is also
the shortest distance betweenu andv in G′. By the definition, al-path decomposable graph does not have a
cycle of lengthl, so if d(u, v) < l

2 , the shortest path betweenu andv must be unique.

We begin by establishing a fact that whenG′ is path-decomposable (intuitively looks similar to a tree),
there is a distribution on the partitions ofV (i.e. multicuts) such that close vertices are unlikely to be
separated but far vertices are likely to be separated. IfG′ is a tree, it is obtained by deleting each edge
independently with probabilityµ. The noise parameterµ will be fixed later depending only onT andǫ, so
is asymptotically greater than1l = O( 1

logn).

Theorem 5.3([10]). SupposeG′ = (V,E) is an l-path decomposable graph. LetL = ⌊l/9⌋;µ ∈ [1/L, 1].
Then there exists a probabilistic distribution of multicuts ofG′ (or in other words random partition ofG′ in
pieces) such that the following properties hold. For every two verticesu andv,

1. If d(u, v) 6 L, then the probability thatu and v are separated by the multicut (i.e. lie in different
parts) equals1− (1−µ)d(u,v); moreover, ifu andv lie in the same part, then the unique shortest path
betweenu andv also lies in that part.

2. If d(u, v) > L, then the probability thatu andv are separated by the multicut is at least1− (1−µ)L.

3. Every piece of the multicut partition is a tree.

Based on this random partitioning, we define the distribution on the vertices inS (actually inV ′). For
each piece which is a tree, pick an arbitrary vertexv in the tree, chooselV (v) uniformly at random, and
propagate this label toweakly satisfyevery edge in the tree — an undirected edge(u′, v′) ∈ E (swapu′ and
v′ if necessary to assume(u′, v′) ∈ A) is weakly satisfied whenlV (v′) − lV (u

′) = lA(u
′, v′) overZT+1.

Note that this definition is necessary for the original definition of satisfaction, but not sufficient.

It is clear that the choice of root in each tree does not matter, and the marginal distribution of eachlV (v)
is uniform on[T ]. For verticesu andv with d(u, v) 6 L, we say that labeli for u andi′ for v matchif
lV (u) = i, lV (v) = i′ can be extended to weakly satisfy every edge on the unique shortest path betweenu
andv (there areT + 1 such pairs). Ifu andv are close,lV (u) andlV (v) will be correlated in a sense that if
i andi′ match,lV (u) = i almost implieslV (v) = i′, while it is not the case whenu andv are far apart. The
following corollary formalizes this intuition. The proof is in Appendix B.2.

Corollary 5.4. SupposeG′ = (V ′, E′) is an l-path decomposable graph. LetL = ⌊l/9⌋; µ ∈ [1/L, 1].
Then there exists a random mappingr : V ′ → [T ] such that

1. If d := d(u, v) 6 L then

Pr[r(u) = i, r(v) = i′] =







(1−µ)d

(T+1) + 1−(1−µ)d

(T+1)2
if i andi′ match

1−(1−µ)d

(T+1)2
otherwise

2. If d > L then 1−(1−µ)L

(T+1)2
6 Pr[r(u) = i, r(v) = i′] 6 1−(1−µ)L

(T+1)2
+ (1−µ)L

T+1 for anyi, i′ ∈ [T ].

Definition 5.5. For any verticesu 6= v and i, i′ ∈ [T ], let ρ(u(i), v(i′)) := Pr[r(u) = i, r(v) = i′] if
d(u, v) 6 L, or 1

(T+1)2 otherwise. ρ(v(i), v(i)) := 1
T+1 and ρ(v(i), v(i′)) := 0 for i 6= i′. Since the

shortest path betweenu andv is unique whend(u, v) 6 L, ρ is uniquely defined givenG, D, lA and does
not depend onS, V ′, G′, D′ which induce a local distribution.

Definition 5.6. Fix a set ofk verticesS = {v1, . . . , vk}. For any vertexu, v ∈ S and i, j ∈ [T ], let
νS(u(i), v(i

′)) := Pr[x(u) = i, x(v) = i′] in the local distribution onS defined byr in Corollary 5.4.
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5.3 Geometric Embedding and Rounding

In this subsection, we still fix a set ofk verticesS = {v1, . . . , vk} and produce a distribution on the events
{lV (v1) = x1, . . . , lV (vk) = xk}x1,...,xk∈[T ]. The difference from the last subsection is that the resulting
distributions become consistent — the marginal distribution onS ∩ S′ does not depend on the choice of its
superset (S or S′) that is used to obtain a larger local distribution.

5.3.1 Embedding

Considerρ andνS defined in the last subsection.ρ andνS both capture the pairwise distribution between the
events{lV (v) = x}v∈S,x∈[T ], but each of them has its own defects.νS depends on the choice ofS, so does
not yield consistent local distributions.ρ does not depend onS, but for far vertices, Corollary 5.4 does not
guarantee any local distribution consistent with it. However, they are close in a sense — they are identical

whend(u, v) 6 L and differ by at most(1−µ)L

T+1 otherwise.

The main idea of Charikar et al. [9] is to interpretρ andνS as pairwise distances between events and
embedρ to l2 with small error. It is based on the fact thatρ andνS are close for anyS andνS is readily
embeddable tol2. Since the embedding intol2 is uniquely defined by the pairwise distances andρ does
not depend on the choice ofS, geometric rounding schemes based on the embedding yield consistent local
distributions. Letv(i) be the vector corresponding to the eventlV (v) = i. Our goal is to constructk(T +1)
vectors{v(i)}v∈S,i∈[T ] such thatu(i) · v(i′) ≈ ρ(u(i), v(i′)). Following the above intuition, the following
lemma says that this embedding is possible with error depending onµ. The proof is given in Appendix B.3.

Lemma 5.7. There existk(T + 1) vectors{v(i)}v∈S,i∈[T ] such that‖v(i)‖22 = µ + 1
T+1 andu(i) · v(i′) =

µ
2 + ρ(u(i), v(i′)).

5.3.2 Rounding and Analyzing adjacent vertices

Givenk(T +1) vectors{v(i)}v∈S,i∈[T ], our rounding scheme is one of the most natural ways to chooseone
out of (T + 1) vectors — take a random Gaussian vectorg and for each vertexv, setlV (v) = i such that
v(i) · g is the maximum over alli. Since the inner products of these vectors depend only onρ (which does
not depend on the choice ofS), it gives a consistent local distribution.

Fix adjacent verticesv andu (without loss of generality assume(u, v) ∈ A). It only remains to show
thatPr[lV (u) = 0, lV (v) = lA(u, v)] ≈ 1

T+1 . For any pair of adjacent vertices, we can write2(T + 1)
vectors explicitly. They are just two sets ofT + 1 orthonormal vectors, very closely correlated — there are
T + 1 pairs(u(i), v(i′)), i′ − i = lA(u, v) in ZT+1, such thatu(i) ≈ v(i′). With this symmetric structure
and a suitable choice of the noise parameterµ, we can analyze the performance of our rounding. The proof
is given in Appendix B.4.

Lemma 5.8. There existsµ depending onT andǫ such that, in the above rounding scheme, the probability
that lV (u) = 0 and lV (v) = lA(u, v) is at most1−12ǫ

T+1 .

This finishes the construction of a solution to thenδ-rounds of the Sherali-Adams hierarchy with value
1−12ǫ
T+1 . SinceOpt(V, lA) 6 1+ǫ

4T by Theorem 5.2, it proves Theorem 1.4 and Theorem 1.2.

Acknowledgements. The author would like to thank Venkat Guruswami and Seung WooShin for helpful
discussions.
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A Proof of Lemma in the Reduction

Lemma A.1 ([19], Restatement of 3.2). For anyp, ValGP(p) 6 OptGMD(D, lA, wGMD) +
1
M + 2ǫ.

Proof. Givenp, we define theprincipal part of ValGP(p) as

∑

(u,v)∈A
wGP(u, v)p(v)I[p(u) + p(v) 6 b(u, v)].

Note that for each directed edge, only the price of its head contributes.

We first bound the principal part ofValGP(p). For a vertexv, the only edges wherewGP(u, v)p(v) >
wGMD(u,v)

M satisfyMTs(v)+lA(u,v)−2 < p(v) 6 MTs(v)+lA(u,v)−1. If there is such an edge, letl′V (v) =

lA(u, v). Otherwise, letl′V (v) = 0. Fix an edge(u, v) wherewGP(u, v)p(v) >
wGMD(u,v)

M . l′V (v) = lA(u, v)

by above. Ifl′V (u) 6= 0, it meansp(u) > MTs(u)−1 > MTs(v)+T−1 > b(u, v), so(u, v) contributes 0 to the
principal part ofValGP(p). Therefore, for each edge(u, v) that contributes more than1M to the principal part
ofValGP(p), l′V satisfies(u, v). Therefore, the principal part ofValGP(p) is at mostOptGMD(D, lA, wGMD)+
1
M .

For the non-principal part ofValGP(p), for each vertexu, and we bound

∑

(u,v)∈A
wGP(u, v)p(u)I[p(u) + p(v) 6 b(u, v)] 6

∑

(u,v)∈A,p(u)6b(u,v)

wGMD(u, v)
p(u)

b(u, v)
.
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Note that all edges(u, v) have differentb(u, v), and any two differ by at least a factor ofM . Let wu :=
max(u,v)∈A wGMD(u, v). Therefore, the right hand side can be bounded bywu(1+

1
M + 1

M2 + . . . ) 6 2wu,
where

∑

u

wu =
1

ndeg
6 ǫ.

This shows that the non-principal part ofValGP(p) is at most2ǫ, proving the lemma.

B Details of the Integrality Gap

B.1 Obtaining a Good Instance

In this subsection, we prove the following theorem.

Theorem B.1 (Restatement of Theorem 5.2). GivenT and ǫ, µ > 0, there exist constants∆, δ and l =
Θ(log n) (all constants depending onT andǫ, µ) such that there is an instance of Generalized Max-Dicut(T )
(D, lA) with the underlying undirected graphG with the following properties.

• Acyclicity: D is a DAG.

• Low Integral Optimum:Opt(D, lA) 6
1+ǫ
4T .

• Almost regularity: Maximum degree ofG is at most2∆, andG has at leastΩ(∆n) edges.

• Local Sparsity: Fork 6 nδ, every induced subgraph ofG on (2∆)lk vertices isl-path decomposable.

• Large noise: Fork 6 nδ, (1− µ)l/10 6 µ
5k .

Proof. As mentioned in Section 5.1, our graphD is obtained by randomly sparsifying the graphD∗ =
(V,A∗) constructed in Alon et al. [1] after an appropriate postprocessing.D∗ is a directed acyclic graph
with n vertices andm∗ = Θ(n

5
3 ) edges. Its underlying undirected graphG∗ = (V,E∗) is a simple graph

with the same number of vertices and edges, with the maximum degree∆∗ = Θ(n
2
3 ). Actually, V = [n]+

and(u, v) ∈ E only if |u − v| 6 r wherer := Θ(n
2
3 ). It has the property that any directed cut has size at

mostm∗
4 + o(m∗) edges.

The first version ofD = (V,A) is constructed as the following.V := V∗ = [n]+, and for each edge
(u, v) ∈ A∗, put (u, v) ∈ A with probability p := ∆

∆∗
for some∆ to be fixed later. LetG = (V,E) be

the underlying undirected graph ofV . lA is obtained by assigning eachl(u, v) a random number uniformly
sampled from[T ]+.

Integral Solution The following lemma shows that if∆ is big enough,Opt(D, lA) is close to 1
4T .

Lemma B.2. If G satisfies the above four properties and∆ = Ω(T log T
ǫ2

), thenD and lA obtained by the
above process satisfiesOpt(D, lA) 6

1+4ǫ
4T with high probability.

Proof. Fix one assignmentlV : V → [T ]. For any edge(u, v) ∈ A∗ call it a candidatewhen lV (u) =
0, lV (v) 6= 0. Note that the number of candidate edges is at most the cardinality of the maximum directed
cut ofD∗, which is at most1+o(1)

4 m∗.

For each candidate edge(u, v), the probability that(u, v) ∈ A with lA(u, v) = lV (v) is 1
T . Therefore,

the expected number of satisfied edges is at most(1+o(1))∆m∗

4∆∗T
. By Chernoff bound, the probability that it

is bigger than(1+ǫ)pm∗

4T is bounded byexp(−Ω( ǫ2pm∗

T )) = exp(−Ω( ǫ2∆n
T )). By taking union bound over
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(T + 1)n different lV ’s, the probability that there exists an assignment with more than (1+ǫ)pm∗

4T satisfied
edges is at most

exp(−Ω(ǫ
2∆n

T
)) ∗ exp(n log(T + 1)) 6 n−1

for ∆ := Ω(T log T
ǫ2 ). Similarly, we can conclude that|A| > (1 − ǫ)m∗p with high probability. Therefore,

Opt(D, lA) is at most (1+ǫ)
4T (1−ǫ) 6

1+4ǫ
4T with high probability.

The above lemma is the only place where it is desirable to havelarge |A| = |E|. For the rest of this
subsection, we are going to delete some edges ofD (andG) to satisfy desired properties. Note that in any
case, the number of edges deleted is much less thanǫpm∗ so that each deletion does not hurt the above
lemma.

Maximum Degree Control Since the maximum degree inG∗ is∆∗, expected degree of each vertexv ∈ V
in G is at mostp∆∗ = ∆. Call a vertexv ∈ V bad if it has degree more than2∆ in G, and call an edge
(u, v) ∈ E bad if eitheru or v is bad. Fix an edge(u, v). The probability that(u, v) becomes bad given
(u, v) ∈ E is at most2 exp(−∆

4 ). The expected number of bad edges is at most2 exp(−∆
4 )pm∗, and by

Markov’s inequality, with probability at least half, the number of bad edges is at most4 exp(−∆
3 )pm∗.

Deleting all bad edges guarantees that the maximum degree ofG is at most2∆, and with probability at
least half, we delete only4 exp(−∆

3 )pm∗ edges, which is much smaller thanǫpm∗ since∆ = Ω( 1
ǫ2
).

Girth Control The expected number of cycles of lengthi is bounded by

n(2r)i−1pi = n(2r)i−1(
∆

∆∗ )
i
6

n(C∆)i

∆∗

for some absolute constantC. Wheni = O( logn
log∆) the above quantity becomes less thann0.5. Assume

l = O( logn
log∆) (it will be fixed even smaller than that later). Summing overi = 4, . . . , l ensures that

the expected number of cycles of length up tol is at mostO(n0.6), and it is less thanO(n0.7) with high
probability. Removing one edge for each cycle of length up tol ensures thatG has girth at leastl.

Local Sparsity Control Let η = 1
3l for somel fixed later. We want to show that there existsγ > 0 such

that every subgraphG′ of G induced ont 6 nγ vertices have only(1 + η)t edges.

For4 6 t 6 1/η, we count the number of connected subgraphs ofG∗ with t vertices andt+ 1 edges.

Lemma B.3. The number of connected subgraphs ofG∗ with t vertices andt + 1 edges is bounded by
2nt2∆t−1

∗ .

Proof. The only possible degree sequences for such subgraphs are(4, 2, 2, 2, . . . ) or (3, 3, 2, 2, . . . ). As-
sume that it is(4, 2, 2, 2, . . . ). Let v be the vertex with degree 4. There is a sequence oft + 2 vertices
(v, . . . , v, . . . , v) representing an Eulerian tour (not necessarily unique). The number of such sequences is
bounded bynt∆t−1

∗ (n for guessingv, t for guessing wherev occurs in the middle of the sequence,∆t−1
∗

for the other vertices).

Assume that the degree sequence is(3, 3, 2, 2, . . . ), andu, v be the vertices of degree 3. Take a se-
quence oft + 2 vertices representing an Eulerian path fromu to v (either (u, . . . , u, . . . , v, . . . , v) or
(u, . . . , v, . . . , u, . . . , v)). The number of such sequences is bounded bynt2∆t−1

∗ (n for guessingu, t2 for
guessing positions ofu andv in the middle of the sequence,∆t−1

∗ for the other vertices includingv).
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Therefore, the probability that there exists a subgraph ofG with t vertices andt+ 1 edges for4 6 t 6
1/η = 3l is

3l
∑

t=4

2nt2∆t−1
∗ pt+1 =

3l
∑

t=4

2nt2∆t+1

∆2∗
6

n

∆2∗
(9l)2∆3l+1

6 n−0.1

for l = O(log n/ log∆), since n
∆2

∗
= O(n− 1

3 ).

Fort > 1/η = 3l, we count the number of subgraphs ofG∗ with t vertices and(1+η)t edges. It is upper
bounded by (the number of connected subtrees ont vertices) * (the number of possibilities to choose other
ηt+1 edges out of

(t
2

)

pairs). The number of unlabeled rooted trees ont vertices isCαt for some constants
C andα [29], so the number of connected subtrees ont vertices is bounded byCnαt∆t−1

∗ . Therefore, the
total number of such subgraphs is

Cnαt∆t−1
∗

( t(t+1)
2

ηt+ 1

)

6 Cnαt∆t−1
∗

(

t2

2ηt

)

6 Cnαt∆t−1
∗ (

et

2η
)2ηt.

The probability that such a graph exists inG is at most

Cnαt∆t−1
∗ (

et

2η
)2ηt(

∆

∆∗
)(1+η)t

6
n

∆∗
(C1∆

2)t(C2
l2t2

∆∗
)t/3l.

LetA = C1∆
2 andB = C2

l2t2

∆∗
. The above quantity is at most

n

∆∗
AtBt/3l = (

n

∆∗
A3lB)(AB1/3l)t−3l.

Assumet 6 nγ for someγ ∈ (0, 0.1) andl = O( logn
log∆) be such thatn∆∗

A3lB = C2l2t2n(C1∆2)3l

∆2
∗

6 n−0.1,

which also impliesAB1/3l 6 1. Summing overt = 3l, . . . , nγ , the probability that such a graph exists is
bounded byo(1).

Putting Them Together In Section 5.1, we mentioned that the resulting graph shouldbe amenable to have
a Sherali-Adams solution with a large value, and introducedthe notion of path-decomposability to measure
it. The following lemma of Arora et al. [2] shows that our construction satisfies that every subgraph ofG
induced on at mostt 6 nγ vertices isl-path decomposable.

Lemma B.4 ([2]). Let l > 1 be an integer and0 < η < 1
3l−1 , and letH be a 2-connected graph witht

vertices and at most(1 + η)t edges. ThenH contains a path of length at leastl+ 1 whose internal vertices
have degree 2 inH.

Finally, δ andl are fixed based on the other parameters to satisfy the requirements of the theorem.

Lemma B.5. There existsδ > 0 and l (depending onT , ǫ, ∆, µ, γ) such that for anyk 6 nδ, the following
holds.

1. (1− µ)
l
10 6

µ
5k .

2. Every induced subgraph ofG on (2∆)lk vertices isl-path decomposable.

Proof. The first condition is implied byl > Cδ log n for some constantC depending onµ. The second
condition is implied by(2∆)lk 6 nγ ⇔ l 6 C ′(γ − δ) log n for another constantC ′ depending on∆.
When we control girth and local sparsity,l is required to beO( logn

log∆). Therefore, by takingδ a small enough
constant depending onT, ǫ,∆, µ, andγ (all of which depend onT, ǫ), we can ensure that suchl exists.

Therefore, there exist constants∆, δ and l = Θ(log n) (all constants depending onT, ǫ, µ) that satisfy all
the requirements given in the theorem.
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B.2 Distribution

Corollary B.6 (Restatement of 5.4). SupposeG′ = (V ′, E′) is an l-path decomposable graph. LetL =
⌊l/9⌋; µ ∈ [1/L, 1]. Then there exists a random mappingr : V ′ → [T ] such that

1. If d := d(u, v) 6 L then

Pr[r(u) = i, r(v) = i′] =







(1−µ)d

(T+1) + 1−(1−µ)d

(T+1)2
if i andi′ match

1−(1−µ)d

(T+1)2
otherwise

2. If d > L then 1−(1−µ)L

(T+1)2
6 Pr[r(u) = i, r(v) = i′] 6 1−(1−µ)L

(T+1)2
+ (1−µ)L

T+1 for anyi, i′ ∈ [T ].

Proof. r is defined by the following process: sample a distribution ofmulticuts as Theorem 5.3. Each piece
is a tree, so we can pick an arbitrary vertexw and give a valuelV (w) uniformly from [T ] and propagate
along the tree to weakly satisfy every edge. Note that the distribution does not depend on the choice of the
initial vertex.

Supposed(u, v) 6 L, which ensures that ifu andv are in the same piece, the only path connectingu
andv in the piece is the shortest path inG. If i andi′ are match labels,

Pr[r(u) = i, r(v) = i′] = Pr[u, v in the same piece] · 1

T + 1
+ Pr[u, v separated] · 1

(T + 1)2
.

If i andi′ are nonmatching labels,

Pr[r(u) = i, r(v) = i′] = Pr[u, v in the same piece] · 0 + Pr[u, v separated] · 1

(T + 1)2
.

If d(u, v) > L, Pr[r(u) = i, r(v) = i′] is lower bounded byPr[u andv are separated]
(T+1)2

, and upper

bounded byPr[u andv are separated]
(T+1)2 +

Pr[u andv are not separated]
T+1 . The separation guarantee in Theo-

rem 5.3 proves the lemma.

B.3 Embedding

Lemma B.7(Restatement of Lemma 5.7). There existk(T +1) vectors{v(i)}v∈S,i∈[T ] such that‖v(i)‖22 =

µ+ 1
T+1 andu(i) · v(i′) = µ

2 + ρ(u(i), v(i′)).

Proof. For eachu(i), we construct two vectorsu(i)1 andu(i)2 and finally merge them byu(i) := u(i)1 ⊕
u(i)2. u(i)2 is the indicator random variable for the eventlV (u) = i, where the distribution followsνS.
SinceνS is based on an actual distribution on the events, the vectors{v(i)2}v∈V,i∈[T ] are embeddable into

l2 with ‖v(i)2‖22 = Pr[lV (v) = i] = 1
T+1 andu(i)2 · v(i′)2 = νS(u(i), v(i

′)). The first group of vectors
{v(i)1}v∈V,i∈[T ] convertthese inner products fromνS to ρ with small error.

The following lemma says that a metric space can be isometrically embeddable intol2 if all pairwise
distances are similar.

Lemma B.8 ([10]). Consider a metric space(Y, α) on t points. If for every two distinct pointsu and v:
|α(u, v) − β| 6 β

2t for someβ > 0, then(Y, α) is isometrically embeddable intol2.

We add a vectorO (so that we havek(T + 1) + 1 vectors) and set the following distance requirements.
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1. ‖v(i)1 −O‖2 =
√
µ for all ui.

2. ‖u(i)1 − v(i′)1‖2 =
√

µ− 2ρ(u(i), v(i′)) + 2νS(u(i), v(i′)) for all u(i), v(i′).

Note that|ρ(u(i), v(i′))− νS(u(i), v(i
′))| 6 (1−µ)L

T+1 6
µ

5(T+1)k , where the last inequality follows from
Theorem 5.2. This implies

|‖u(i)1 − v(i′)1‖2 −
√
µ| 6 √µ(1−

√

1− 1

2.5(T + 1)k
) 6
√
µ · 1

2((T + 1)k + 1)
.

By Lemma B.8, there are vectors{u(i)1, v(i)1}i andO that meet the above distance requirements. Without
loss of generality, assume thatO is the origin. Definingu(i) := u(i)1 ⊕ u(i)2 satisfies

1. ‖u(i)‖22 = µ+ 1
T+1 .

2. u(i) ·v(i′) = u(i)1 ·v(i′)1+u(i)2 ·v(i′)2 = 2µ−‖u(i)1−v(i′)1‖22
2 +νS(u(i), v(i

′)) = µ
2 +ρ(u(i), v(i′)).

B.4 Rounding

Lemma B.9 (Restatement of Lemma 5.8). There existsµ depending onT and ǫ such that, in the above
rounding scheme, the probability thatlV (u) = 0 and lV (v) = lA(u, v) is at most1−12ǫ

T+1 .

Proof. For notational simplicity, assumelA(u, v) = 0 — which is not allowed in actual instances. Then
u(i) andv(i) becomematchingvectors —ρ(u(i), v(i)) = 1−µ

T+1 + µ
(T+1)2

andρ(u(i), v(j)) = µ
(T+1)2

for

i 6= j. The following is the list of all possible inner products between2(T + 1) vectors.

1. ‖u(i)‖22 = µ+ 1
T+1 .

2. u(i) · u(j) = µ
2 for i 6= j.

3. u(i) · v(i) = µ
2 + 1−µ

T+1 +
µ

(T+1)2
.

4. u(i) · v(j) = µ
2 + µ

(T+1)2
for i 6= j.

Even though we used Lemma B.8 as a black-box to obtain the current embedding, we can explicitly
representu(i), v(i)’s in the Euclidean space. They can be represented as a linearcombination of(T + 1) +
(T+1)2+2(T+1)+1 orthogonal vectors (with different lengths), which can be classified into the following
four categories:

• a(i) for i ∈ [T ]: Length
√

1−µ
T+1 . Denotes the event that(u, v) is not deleted andlV (u) = lV (v) = i.

• b(i, j) for i, j ∈ [T ]: Length
√

µ
(T+1)2 . Denotes the event that(u, v) is deleted andlV (u) = i,

lV (v) = j.

• c(i), c′(i) for i ∈ [T ]: Length
√

µ
2 . One of them is assigned for each of2(T + 1) vectors.
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• d: Length
√

µ
2 . Common for all vectors.

Let

u(i) := a(i) +
∑

j

b(i, j) + c(i) + d

v(i) := a(i) +
∑

j

b(j, i) + c′(i) + d.

It is straightforward to check that the following representation ofu(i) andv(i) satisfy all the inner product
requirements.

For each vectoru(i), we denote the random variable equal to the inner product ofu(i) and g by
U(i). Similarly, defineV (i), A(i), B(i, j), C(i), C ′(i),D(i) for v(i), a(i), b(i, j), c(i), c′ (i), d(i) respec-
tively. Each random variable follows the Gaussian distribution with mean 0 and standard deviation same
with the length of the corresponding vector. Furthermore, the inner products of two vectors is the same with
the covariance of corresponding random variables. The following lemma shows that our consistent local
distributions actually satisfy each edge with probabilityclose to 1

T+1 , proving Theorem 1.4.

Lemma B.10. Fix i ∈ [T ] and0 < ǫ < 1/24. If µ 6
ǫ2

256(T+1) log2(T+1
ǫ

)
,

Pr[lV (u) = i, lV (v) = i] >
1− 12ǫ

T + 1
.

Proof. We compute the probability thatu andv are assigned the same labeli.

Pr[lV (u) = i, lV (v) = i]

> Pr[A(i) = max
j

[A(j)]] ∗ Pr[max
j

[
∑

k

B(j, k)],max
j

[
∑

k

B(k, j)],max
j

[C(j)],max
j

[C ′(j)]

6
A(i)−maxj 6=i[A(j)]

4
|A(i) = max

j
[A(j)]]

>
1

T + 1
Pr[max

j
[
∑

k

B(j, k)],max
j

[
∑

k

B(k, j)],max
j

[C(j)],max
j

[C ′(j)] 6
maxj[A(j)] −max2j [A(j)]

4
]

We argue that the above quantity is close to1T+1 by showing that each of 4 quantities

max
j

[
∑

k

B(j, k)],max
j

[
∑

k

B(k, j)],max
j

[C(j)],max
j

[C ′(j)]

is greater thanmaxj [A(j)]−max2j [A(j)]
4 with small probability. Note that

∑

k B(j, k) follows the Gaussian
distribution with mean 0 and varianceµT+1 , which is much less than that ofC(j). SinceC(j) andC ′(j)

follow the same distribution, it is enough to show thatmaxj[C(j)] >
maxj [A(j)]−max2j [A(j)]

4 with small
probability. The following claim proves the lemma.

Claim B.11. Let0 < ǫ < 1/4. If µ 6
ǫ2

256(T+1) log2(T+1
ǫ

)
,

Pr[max
j

[C(j)] >
maxj [A(j)] −max2j[A(j)]

4
] < 3ǫ.
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Proof. The above probability can be rewritten as

Pr[

√

µ

2
max

j
[gj ] >

√

1− µ

T + 1

maxj[g
′
j ]−max2j[g

′
j ]

4
]

whereg0, . . . , gT , g′0, . . . , g
′
T are independent standard Gaussian random variables.

Let x >

√

µ log T+1
ǫ . By Lemma B.12,

Pr[

√

µ

2
max

j
[gj ] > x] < ǫ.

Let x 6
ǫ

8
√

log T+1
ǫ

√

1−µ
T+1 . By Lemma B.13,

Pr[

√

1− µ

T + 1

maxj [g
′
j ]−max2j[g

′
j ]

4
< x] < 2ǫ.

The fact thatµ 6
ǫ2

256(T+1) log2(T+1
ǫ

)
ensures that there isx that satisfies the both Lemma B.12 and B.13.

Taking union bound proves the lemma.

It remains to prove the following two lemmas about Gaussians. We prove them in Appendix E using
some basic properties of Gaussians.

Lemma B.12. Letg1, . . . , gn (n > 2) be independent standard Gaussian random variables and0 < ǫ < 1.
If x >

√

2 log n
ǫ ,

Pr[max
j

[gj ] 6 x] > 1− ǫ.

Lemma B.13. Let g1, . . . , gn (n > 2) be independent standard Gaussian random variables and0 < ǫ <
1/4. If x 6 ǫ

2
√

log n
ǫ

,

Pr[max
j

[gj ]−max2
j

[gj ] > x] > (1− 2ǫ).

C (14 + Ω( 1T ))-Approximation Algorithm for Generalized Max-Dicut

In this section, we propose an approximation algorithm for Generalized Max-Dicut(T ) that guarantees(14 +
1

16T ) fraction of the optimal solution, proving Theorem 4.1. It isbased on the 2-rounds of the Sherali-Adams
hierarchy (also known as the standard LP), defined as the following:

maximize
∑

(u,v)∈A x(u,v)(0, lA(u, v))

subject to
∑

α∈[T ]S xS(α) = 1 for all S ⊆ V, |S| 6 2
∑

j∈[T ] x(u,v)(i, j) = xu(i) for all u 6= v, i ∈ [T ]

The algorithm is almost identical to the simple14 -approximation algorithm. For each vertexv, indepen-

dently setlV (v) = 0 with probability 1+xv(0)
2 , andlV (v) = i (i 6= 0) with probability xv(i)

2 . Equivalently,
we assign each vertex 0 with probability half and follow its marginalxv with probability half.
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For each edge(u, v) ∈ A, let c = c(u, v) := x(u,v)(0, lA(u, v)) so that the value the solution{xS(α)}
to the LP isE(u,v)[c(u, v)] > Opt. The probability that(u, v) is satisfied is

(
1 + xu(0)

2
)(
xv(lA(u, v))

2
) >

c

4
+

c2

4

sincexu(0), xv(lA(u, v)) > c. Therefore, the expected fraction of satisfied edges is at least

E
(u,v)∈A

[
c(u, v)

4
+

c(u, v)2

4
] >

Opt

4
+

Opt2

4
>

Opt

4
+

Opt

16T

sinceOpt > 1
4T (focusing on the label with the most edges and finding the maximum dicut with respect to

the edges with this label guarantees to satisfy1
4T fraction of edges).

D Details in the Unique Games-Hardness

D.1 Lemmas about the Dictatorship Test

Lemma D.1(Restatement of Lemma 4.4). For anyt, ρ(Ω1,Ω2;P
t) 6

√

2
Tδ .

Proof. Let f : Ω1 → R be the function satisfyingE[f ] = 0, E[f2] = 1. Let L be the Markov operator
defined in Section 2.1 of Mossel [28] such that

(Lf)(y) = E[f(X)|Y = y]

for y ∈ Ω2 and(X,Y ) ∈ Ω1 × Ω2 is distributed according toPt. By Lemma 2.8 of [28],

ρ(Ω1,Ω2) = sup
f

√

E[(Lf)2].

Let f(i) = ai, (Lf)(i) = bi for i ∈ [T ]. bt = a0 and all the otherbi’s are equal toEP
′
1
[f ], which is equal to

( 1
1− 1−δ

T

)(EP1 [f ]− 1−δ
T a0) = ( 1

1− 1−δ
T

)(−1−δ
T a0).

E[(Lf)2] = (
1− δ

T
)a20 + (1− 1− δ

T
)[(

1

1 − 1−δ
T

)(−1− δ

T
a0)]

2

= (
1− δ

T
)a20 + (

1

1− 1−δ
T

)(
1− δ

T
a0)

2

= (
1− δ

T
)a20[1 + (

1

1− 1−δ
T

)(
1 − δ

T
)]

6
2

T
a20

6
2

Tδ

Sinceδa20 6 E[f2] 6 1.
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D.2 Reduction From Unique Games

In this subsection, we introduce the reduction from the Unique Games to Generalized Max-Dicut(T ), using
the dictatorship test constructed. We first introduce the Unique Games Conjecture [20], which is stated
below.

Definition D.2 (Unique Games). An instanceL(G(U ∪W,E), [R]+, {π(u,w)}(u,w)∈E) of Unique Games
consists of a regular bipartite graphG(U ∪W,E) and a set[R]+ of labels. For each edge(u,w) ∈ E there
is a constraint specified by a permutationπ(u,w) : [R]+ → [R]+. Given a labelingl : U ∪W → [R]+,
let ValUG(l) be the fraction of labels satisfied byl, where an edgee = (u,w) is said to be satisfied if
l(u) = π(u,w)(l(w)). LetOptUG(L) = maxl(ValUG(l)).

Conjecture D.3 (Unique Games Conjecture [20]). For any constantα > 0, there isR = R(α) such that,
for a Unique Games instanceL with label set[R]+, it is NP-hard to distinguish between

• OptUG(L) > 1− α.

• OptUG(L) 6 α.

Theorem D.4 (Restatement of Theorem 1.3). Under the Unique Games Conjecture, it is NP-hard to ap-
proximate Generalized Max-Dicut(T ) on directed acyclic graphs within a factor of14 +O( 1

T 1/4 ).

Proof. Given an instance ofL(G(U ∪W,E), [R]+, {π(v,w)}(v,w)∈E) of Unique Games, we construct an

instanceD(V,A), lA of Generalized Max-Dicut(T ). Forx ∈ [T ]R and a permutationπ : [R]+ → [R]+,
let x ◦ π ∈ [T ]R be defined by(x ◦ π)i = (x)π−1(i). Let D = (V,A) be the fixed-size graph where the
maximum dicut has at most(14 + 1

T 1/4 ) fraction of edges.

• V = U × V × [T ]R.

• Samplew ∈ W uniformly at random and its neighborsu1, u2 uniformly and independently. Sample
t ∈ [T ]+, (v1, v2) ∈ A, andx, y ∈ [T ]R from the dictatorship test. Add an edge((u1, v1, x ◦
πu1,w), (u2, v2, y ◦ πu2,w)) toA with label t. The weight is equal to the probability that this edge is
sampled.

Completeness Suppose thatValUG(l) > 1− α for some labelingl : U ∪W → [R]+.

SetlV(u, v, (x1, . . . , xR)) = xl(u). Forw, u1, u2 sampled as above, with probability1−2α, π(u1, w)−1(l(u1)) =
π(u2, w)

−1(l(u2)). In that case, by Lemma 4.5,

Pr
v1,v2,t,x,y

[lV(u1, v1, x ◦ πu1,w) = 0, lV(u2, v2, y ◦ πu2,w) = t]

= Pr
v1,v2,t,x,y

[(x ◦ πu1,w)l(u1) = 0, (y ◦ πu2,w)l(u2) = t]

= Pr
v1,v2,t,x,y

[(x)π(u1,w)−1(l(u1)) = 0, (y)π(u2,w)−1(l(u2)) = t]

>
1− δ

T
.

Therefore,ValGMD(lV) >
(1−2α)(1−δ)

T .
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Soundness For eachu ∈ U, v ∈ V andt ∈ [T ], letFu,v,t : [T ]
R → {0, 1} be defined by

Fu,v,t(x) = 1 if and only if lV(u, v, x) = t.

Similarly, for eachw ∈W,v ∈ V andt ∈ [T ], letHw,v,t : [T ]
R → [0, 1] be the function defined by

Hw,v,t(x) = E
(u,w)∈E

[Fu,v,t(u, x ◦ π(u,w))] = Pr
(u,w)∈E

[lV(u, v, x ◦ π(u,w)) = t].

Suppose that there existslV such thatValGMD(lV ) >
1
4T + 5

T 5/4 . For at least 1
T 5/4 fraction ofw, an edge

of A sampled by first choosingw is satisfied with probability more than14T + 4
T 5/4 . By Lemma 4.6, there

exist τ andD, such that, for each suchw, we haveInf6d
i [Hw,v,t] > τ for somei, v andt. SetlV(w) = i.

For otherw’s, chooselV (w) arbitrarily.

From the representation of influences in terms of Fourier coefficients (see Khot et al. [21]),

τ < Inf6d
i [Hw,v,t] 6 E

(u,w)∈E
[Inf6d

πu,w(i)[Fu,v,t]]

and we conclude thatτ/2 fraction of neighborsu of w haveInf6d
πu,w(i)(Fu,v,t) > τ/2. We chooselV(u)

uniformly from
{

i : Inf6d
i [Fu,v,t] > τ/2 for somet, v

}

.

Since
∑

i Inf
6D
i [Fu,t] 6 d, there are at most2(T+1)d|V |

τ of candidatei’s for eachu. If u have no candi-
date, chooselV (u) arbitrarily. The above strategy satisfies( 1

T 5/4 )(
τ
2 )(

τ
2(T+1)D|V |) fraction of constraints in

expectation. Takingα small enough completes the proof of the theorem.

Now, we present the full proof of our main theorem.

Theorem D.5 (Restatement of Theorem 1.1). Under the Unique Games Conjecture, for anyǫ > 0, it is
NP-hard to approximate Graph Pricing within a factor of1

4 + ǫ.

Proof. Givenǫ > 0, let T large enough so that1
T 1/4 < ǫ

2 . Theorem 1.3 tells that it is hard to distinguish

• Completeness:OptGMD >
1
T − 2

T 4/5 = 1−O(ǫ)
T .

• Soundness:OptGMD 6 1
4T + 5

T 4/5 = 1+O(ǫ)
4T .

Let t = T
ǫ . We can assume that each vertex in the Unique Games instance is of degree at leastt, since dupli-

cating each vertexv into t copiesv1, ..., vt and duplicating each constraint(u, v) into t2 copies(ui, vj)16i,j6t

preserves the optimum. Therefore, the instance of Generalized Max-Dicut obtained from the above Unique
Games instance will havendeg > t. Theorem 3.1 shows that it is NP-hard to distinguish

• Completeness:OptGP > OptGMD = 1−O(ǫ)
T .

• Soundness:OptGP 6 OptGMD + 1
t = 1+O(ǫ)

4T + ǫ
T = 1+O(ǫ)

4T .
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E Proofs of Lemmas about Gaussians

Letφ(x) andΦ(x) be the probability density function (PDF) and the cumulative distribution function (CDF)
of the standard Gaussian, respectively. LetΦ̃(x) = 1−Φ(x). We begin with the following simple fact about
the tail ofΦ.

Lemma E.1([8]). For anyt > 0, t√
2π(t2+1)

e−
t2

2 < Φ̃(t) < 1√
2πt

e−
t2

2 .

Lemma E.2 (Restatement of Lemma B.12). Let g1, . . . , gn (n > 2) be independent standard Gaussian
random variables and0 < ǫ < 1. If x >

√

2 log n
ǫ ,

Pr[max
j

[gj ] 6 x] > 1− ǫ.

Proof. Note thatx >
√
2 log 2, so 1√

2πx
6 1.

x >

√

2 log
n

ǫ

⇒ 1√
2πx

exp(−x2

2
) 6

ǫ

n

⇒ 1− Φ(x) 6
ǫ

n
,

where the last inequality follows from Lemma E.1. We can conclude that

Pr[max
j

[C(j)] 6 x] = Φ(x)n > (1− ǫ

n
)n > 1− ǫ.

Lemma E.3 (Restatement of Lemma B.13). Let g1, . . . , gn (n > 2) be independent standard Gaussian
random variables and0 < ǫ < 1/4. If x 6

ǫ
2
√

log n
ǫ

,

Pr[max
j

[gj ]−max2
j

[gj ] > x] > (1− 2ǫ).

Proof.

Pr[max
j

[gj ]−max2
j

[gj ] > x] > n

∫ ∞

−∞
Φ[y − x]n−1φ(y)dy

> n

∫ b

−∞
Φ[y − x]n−1φ(y)dy for someb fixed later

= n

∫ b

−∞
Φ[y − x]n−1φ(y − x)

φ(y)

φ(y − x)
dy

> ( inf
y∈[−∞,b]

φ(y)

φ(y − x)
)

∫ b

−∞
nΦ[y − x]n−1φ(y − x)dy

= ( inf
y∈[−∞,b]

φ(y)

φ(y − x)
)

∫ b

−∞
(Φ[y − x]n)′dy

= ( inf
y∈[−∞,b]

φ(y)

φ(y − x)
)Φ[b− x]n
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Let b = x+
√

2 log n
ǫ . By the same argument with Lemma B.12, we have

1−Φ[b− x] 6
ǫ

n

⇒ Φ[b− x] > 1− ǫ

n

⇒ Φ[b− x] > (1− ǫ)1/n

Now we bound

inf
y∈[−∞,b]

φ(y)

φ(y − x)
= inf

y∈[−∞,b]
exp(−y2

2
+

(y − x)2

2
) = inf

y∈[−∞,b]
exp(

−2xy + x2

2
) = exp(

−2bx+ x2

2
)

where the last inequality holds since it is monotonically decreasing iny. x 6
ǫ

2
√

log n
ǫ

implies

x(x+

√

2 log
n

ǫ
) 6 ǫ

⇒ bx 6 ǫ

⇒ −2bx+ x2

2
> −ǫ

⇒ exp(
−2bx+ x2

2
) > exp(−ǫ) > 1− ǫ

Since bothinfy∈[−∞,b]
φ(y)

φ(y−x) andΦ[b− x]n are at least1− ǫ, the lemma follows.

Lemma E.4(Restatement of Lemma 4.8). Fix ρ, α ∈ (0, 1). The functionf(x) := Γρ(α, x) is concave.

Proof. Let Y,Z be independent Gaussians andX := ρY +
√

1− ρ2Z. Fix 0 6 a 6 b. We will show
that f(a) + f(b) > f(a + b). Let x = Φ̃−1(a + b), y = Φ̃−1(b), z = Φ̃−1(a), w = Φ̃−1(α). Note that
x 6 y 6 z.

f(a) + f(b)− f(a+ b)

=Pr[Y > y andX > w] + Pr[Y > z andX > w]− Pr[Y > x andX > w]

=Pr[Y > z andX > w]− Pr[x 6 Y 6 y andX > w]

>Pr[Y > z andZ >
w − ρz
√

1− ρ2
]− Pr[x 6 Y 6 y andZ >

w − ρy
√

1− ρ2
]

=a(Pr[Z >
w − ρz
√

1− ρ2
]− Pr[Z >

w − ρy
√

1− ρ2
])

>0

Lemma E.5 (Restatement of Lemma 4.9). For large enoughT andδ = 1
T 1/4 , the following holds. For any

a ∈ [0, 1], b ∈ [0, 1
T ] andρ ∈ (0,

√

2
Tδ ), Γρ(a, b) 6 ab+ 2

T 5/4 .

Proof. Let Y,Z be independent Gaussians andX := ρY +
√

1− ρ2Z. Let x = Φ̃−1(a) andy = Φ̃−1(b).
By takingT > 2, we can assumeb < 1

2 andy > 0, while we do not put any assumption ona andx.
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Γρ(a, b) = Pr[X > x andY > y]

6 Pr[Z >
x− 2ρy
√

1− ρ2
andy 6 Y 6 2y] + Pr[Y > 2y]

6 Pr[Z >
x− 2ρy
√

1− ρ2
andY > y] + Pr[Y > 2y]

6 b · Φ̃( x− 2ρy
√

1− ρ2
) + Φ̃(2y). (1)

By Lemma E.1,̃Φ(2y) < 1
2
√
2πy

exp(−2y2) < b3 < 1
T 5/4 .

• a > 1− 1
T 1/4 : (1) is bounded byb+ 1

T 5/4 6 (a+ 1
T 1/4 )b+

1
T 5/4 6 ab+ 2

T 5/4 .

• b 6 1
T 5/4 : (1) is bounded byb+ 1

T 5/4 6
2

T 5/4 .

• a 6 1− 1
T 1/4 andb > 1

T 5/4 : Note thatx > −10
√
log T andy 6 10

√
log T . Sinceρ 6

√

2
Tδ =

√
2

T 3/8 ,

(x− 2ρy)−
√

1− ρ2(x− 1

T 1/4
) >

{

−2ρy + 1
2T 1/4 > 0 if x > 0

ρ2x− 2ρy + 1
2T 1/4 > 0 if − 10

√
log T 6 x 6 0,

which shows thatx−2ρy√
1−ρ2

> x− 1
T 1/4 . Therefore,

(1) 6 b · Φ̃(x− 1

T 1/4
) +

1

T 5/4
6 b(a+

1

T 1/4
) +

1

T 5/4
6 ab+

2

T 5/4
,

where the second inequality follows fromφ(x) 6 1 for all x ∈ R.
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