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Abstract

The Graph Pricing problem is among the fundamental problehtse approximability is not well-
understood. While there is a simple combinato;}iaipproximation algorithm, the best hardness result
remains a% assuming the Unique Games Conjecture (UGC). We show ttsaliliPihard to approximate
within a factor betterthaé under the UGC, so that the simple combinatorial algorithmirbe the best
possible. We also prove that for any- 0, there exist$ > 0 such that the integrality gap af -rounds
of the Sherali-Adams hierarchy of linear programming foa@r Pricing is at mos} +e

This work is based on the effort to view the Graph Pricing pgobas a Constraint Satisfaction
Problem (CSP) simpler than the standard and complicatedulation. We propose the problem called
Generalized Max-Dicuf(), which has a domain siZé+1 for everyI’ > 1. Generalized Max-Dicut(1) is
well-known Max-Dicut. There is an approximation-presag/ireduction from Generalized Max-Dicut
on directed acyclic graphs (DAGSs) to Graph Pricing, and hmth results are achieved through this
reduction. Besides its connection to Graph Pricing, thdiess of Generalized Max-Dicut is interesting
in its own right since in most arity two CSPs studied in therliture, SDP-based algorithms perform
better than LP-based or combinatorial algorithms — for #ri¢y two CSP, a simple combinatorial
algorithm does the best.
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1 Introduction

Consider the following natural problem for a seller with affirmaximization objective. The seller has
types of itemdl, . . . , n, each with unlimited copies, and there arecustomerd., ..., m. Each customey
has her own budgéf; and a subset of items C {1,...,n} that she is interested in. Customers sirgle-
mindedin a sense that each custonyebuys all items ire; if the sum of the prices does not exceed her
budget (i.e.b; > Zi@j p(7), wherep(i) indicates the price of iter), in which the seller getgi@j p(7)
from the customer. Otherwise, the customer does not bushangyind the seller gets no profit from this
customer. The goal of the seller is to set a nonnegative poieach item to maximize her profit from
customers.

This problem was proposed by Guruswami etlall [15], and heawed much attention. Lét be the
maximum cardinality of any;. Approximability of this problem achieved by polynomiaiig algorithms
for large k andn is relatively well-understood now. There is a polynomiahei algorithm that guarantees
O(min(k, (nlogn)'/?)) fraction of the optimal solution, while we cannot hope foragaproximation ratio
better tharQ)(min(k'~¢, n'/2=¢)) for anye > 0 under the Exponential Time Hypothesis [6].

The special casé = 2 has also been studied in many works separately. The instzntée nicely
represented by a graph, with vertices as items and edgesi@smars, so this problem is called tBeaph
(Vertex) Pricingproblem. The fact that this case can be represented as agpaphly gives a theoretical
simplification, but also makes the problem flexible to modhko settings. For example, Lee et al.l[25], 26]
independently suggested the same problem from the netwgpdommunity, motivated by the study of
pricing traffic between different levels of internet see/mroviders under the presence of peering.

The best known approximation algorithm for a general instaof Graph Pricing, which guarantegs
of the optimal solution, is given by Balcan and Blun [4] anceleg al. [25] The algorithm is simple enough
to state here. First, assign 0 to each vertex with probabilif independently. For each remaining vertex
v, assign the price which maximizes the profit betweemd its neighbors already assigned 0. This simple
algorithm has been neither improved nor proved to be optiGahph Pricing is APX-hard [15], but the
only strong hardness of approximation result rules out gmmaimation algorithm with a guarantee better
than% [19] under the Unique Games Conjecture (UGC) (via redudtiom Maximum Acyclic Subgraph).

The %-approximation algorithm is surprisingly simple and does even rely on the power of a linear
programming (LP) or semidefinite programming (SDP) reliaxat The efforts to exploit the power of LP
relaxations to find a better approximation algorithm havedpced positive results for special classes of
graphs. Krauthgamer et al. [23] studied the case where dijdis are the same (but the graph might have
a self-loop), and proposed% ~ 1.15-approximation algorithm based on a LP relaxation. In galner

case, the standard LP is shown to have an integrality gap @[19]. Therefore, it is natural to consider
hierarchies of LP relaxations such as the Sherali-Adanmsitiey [33] (seel[11] for a general survey and
[14],/35] for recent algorithmic results using the Sheratiafns hierarchy). Especially, Chalermsook et al. [5]
recently showed that there iF& TAS when the graph has bounded treewidth, based on the Shetaiiré\
hierarchy. However, the power of the Sherali-Adams hidnasnd SDP, as well as the inherent hardness of
the problem, was not well-understood in general case.

1.1 Our Results

In this work, we show that any polynomial time algorithm tigatarantees a ratio better thénmust be
powerful enough to refute the Unique Games Conjecture.

Theorem 1.1. Under the Unique Games Conjecture, for any- 0, it is NP-hard to approximate Graph
Pricing within a factor of} + e.



By the results of Khot and Vishnoi [22] and Raghavendra amedi®t [31] that convert a hardness under
the UGC to a SDP gap instance, our result unconditionallyvshithat even a SDP-based algorithm will
not improve the performance of a simple algorithm. For ther&lrAdams hierarchy, we prove that even
polynomial rounds of the Sherali-Adams hierarchy has asgiratlity gap close té.

Theorem 1.2. Fix e > 0. There exist$ > 0 such that the integrality gap ef’ -rounds of the Sherali-Adams
hierarchy for Graph Pricing is at mos} + e

Our result is based on an interesting generalization of M, which we call Generalized Max-Dicut.
It is parameterized by a positive integér> 1. An instance consists of a directed graph= (V, A) and
alabel on each eddq : £ — {1,...,T}, where the goal is to assign to each vertex labelly (v) from
{0,...,T} to maximize the number of satisfied edges — each ddge) is satisfied ifly (u) = 0 and
ly(v) = la(u,v).

This problem shares many properties with Graph Pricinddiog a simple combinatori%l-approximation
algorithm. There is an approximation-preserving reducfiom Generalized Max-Dicul() on directed
acyclic graphs (DAGSs) to Graph Pricing for afiy We prove the following theorems that it is hard to
improve upon this simple algorithm for largé even on DAGs, which immediately imply Theorém]1.1
and1.2.

Theorem 1.3.Under the Unique Games Conjecture, itis NP-hard to appraxeGeneralized Max-Dicui)
on directed acyclic graphs within a factor gf+ O(=7).

Theorem 1.4.Fix T ande > 0. There exist$ > 0 such that the integrality gap ef-rounds of the Sherali-
Adams for Generalized Max-Dic(tf is at most. - (1 + ¢). Furthermore, the same result holds even when
the graph is acyclic.

It is also interesting to compare the above results to othigr ®vo Constraint Satisfaction Problems
(CSPs), since whether the domain is Boolean (e.g. Max-Catx-RBSAT [13]) or not (e.g. 2-CSP with
bounded domairi [18], Unique Games [8]), SDP-based algosthive a strictly better guarantee than LP-
based or combinatorial algorithms. As discussed aboveresuit unconditionally says that a SDP-based
algorithm cannot outperform a simple combinatorial algyoni for this arity two CSP (a8 increases@.

1.2 Related Work and Our Techniques

Formulation of Generalized Max-Dicut Our conceptual contribution is the introduction of Genesal
Max-Dicut as a CSP that captures the complexity of Graphyidt is inspired by the work of Khandekar
et al. [19], and our reduction is the almost same as theiratemtufrom Max-Acyclic Subgraph (MAS) to
Graph Pricing.

In the natural formulation of Graph Pricing as a CSP, eackexds assigned an (half-)integer price
from 0 to B for the maximum budgeB, and each customer becomes multiple constraints on twables
since the payoff linearly depends on the prices. It is shawfi8] that a half-integral optimal solution
always exists for integral budgets, so this is a (almosfylvalaxation. However, as each customer becomes
multiple constraints with different payoffs, it seems h&wdapply current techniques developed for well-
studied CSPs to this formulation.

! Formally, (approximation ratio of the SDP-based algoritthfapproximation ratio of the best known combinatorialaithm)
=1+ 0O(=1 ) for Generalized Max-Dicut. For Unique Games withabels, the SDP-based algorithm of Charikar e{al. [8], Whic

T1/4
satisfies roughlyr"= /(=< fraction of constraints in aql — e)-satisfiable instance, performs better than the randongrarssint
by any constant factor &8 increases.



Khandekar et al.'s main idea was to use two well-known CSPs ASNbr the hardness of approxi-
mation and Max-Dicut on directed acyclic graphs for thednidity gap of the standard LP. The former is
harder to approximate, and the latter has the lower optiEl(Baneralized Max-Dicut seems to combine in-
gredients of both problems needed for Graph Pricing. laddst inherits properties of Max-Dicut including
low integral optima, but is much harder to approximate thaxNdicut by Theorern 113.

Uniques Games-Hardness Proving hardness of Generalized Max-Dicut on general graphelatively
straightforward — proposing a dictatorship test with higimpleteness and low soundness, and plugging
it into the recipe of Khot et al. [21] to deduce the hardness result. The dicthtp test is an instance
of Generalized Max-Dicut with the set of verticés, ..., T} (called hypercubg for someR € N. The
main question in constructing a dictatorship test is howatmle (z,y) € {0,...,7}?, which induces a
distribution on{0, ... ,T}Z. In Generalized Max-Dicuf) is the only special label such that every directed
edge is satisfied only if its tail is assigned 0. The simple looexorial algorithm sample8 heavily —
the marginal distribution satisfieBr[z = 0] > 0.5, while the solution to the Sherali-Adams hierarchy
constructed in Theorem 1.4 treats O as other labels, hauhg= 0] = TLH The latter distribution had a
disadvantage that andy are perfectly correlated — the valueofletermines the value gt

To show the hardness based on the UGC (roughly equivalewinisirticting a solution thdbols SDP),
we found thatPr[z = 0] = ﬁ is enough. In this case, we can ensure that the probabibitlydictators
pass the test is large, whileandy behave almost independently. Based on the low correlatienjse the
result of Mossel[[28] to show low soundness.

The resulting dictatorship test is not a DAG. To fix this peghl the final dictatorship test has the vertex
setV x [T for some DAGD = (V, A). For each edgéu, v) € A, the above dictatorship test is performed
so that each edge of the dictatorship test goes from the twyperassociated with to the one withw. This
idea of keeping the dictatorship test acyclic is used in Ssen|[34], where he takes (the undirected version
of) D to be a complete graph. We take a nontrivial DAG found by Albale[1] where any directed cut
has at most}I + o(1) fraction of edges. In the soundness case, if every hyperisupseudorandomthe
soundness analysis of an individual dictatorship testcatEm with each edge gives a rounding algorithm
that finds a large directed cut in, which contradicts the choice @.

This style of argument, composing the dictatorship tesh witertain instance and solving this instance
by the soundness analysis, resembles that of Raghaverjfa{€SPs, Guruswami et al. [16] for ordering
CSPs, Kumar et al._[24] for strict CSPs, and Guruswami an@iJak] for k-uniform k-partite Hypergraph
Vertex Cover. While they require the instance to have a goactibnal solution (LP or SDP) but the low
integral optimum, we only need the low integral optimum (eém a simpler problem) and our individual
dictatorship test ensures completeness and part of sossdiwe hope that this two-level technique —
constructing a simple dictatorship test for each edge antposing it with a certain instance with purely
combinatorial properties — makes it easier to bypass thégbarf finding a gap instance and prove hardness
for many other problems, especially those with structunsthinces.

Sherali-Adams Gap On the integrality gap of Generalized Max-Dicut on a DAG, wark generalizes
the work of Charikar et al[[9], which showed a similar regalt Max-Cut, in several directions. The first
obstacle is to find a DAG with a low integral optimum which isemable to construct a good solution to the
Sherali-Adams hierarchy. Previous works which obtainegeldbounds for the Sherali-Adams hierarchy [2,
12,19] usedG(n, p), but G(n, p) with an consistent orientation will not result in a low intaoptimum.

2 Under the Unique Games Conjecture, the best inapproxiitakitio is 0.5 for MAS [16] and 0.874 for Max-Dicuit[3]. For
the lower bound on integral optima, the maximum acyclic saplg always has at least half of edges, while there is a diect
acyclic graph where every directed cut cannot have more}ihart fraction of edges for any > 0.



Instead, we show that sparsifying the aforementioned gcapbtructed in Alon et al_[1], which is already
a DAG with a low integral optimum, gives other desired praipsras well.

Given a setS of k vertices, we define a local distribution on the evefiits(v) = i}, g ,c1- One caveat
of the above approach is that local distributions obtainéghtrbe inconsistent, in a sense ttagand S’
might induce different marginal distributions ¢t S’. Charikar et al.’s main idea is to embed them ihto
and use hyperplane rounding to produce consistent onesmdketechnical part of our work is to extend
the hyperplane rounding to work for non-Boolean domainss & complicated task in general, but we use
the fact that the embedding is explicitly constructed fap &wdjacent vertices and it exhibits some symmetry,
so that we can analyze the performance of our roundingZFerl, our result matches that of|[9].

1.3 Organization

Section[2 introduces problems and notations formally. i8eél and Sectionl5 present Unique Games-
hardness and Sherali-Adams integrality gaps of Genedalizax-Dicut respectively, which can be com-
bined with the reduction in Sectign 3 to give the same resoit&raph Pricing.

2 Preliminaries

For any positive integen, let [n] := {0,1,2,...,n} and[n]" := {1,2,...,n}. Given a sequence of
numbersuy, ..., a,, letmax2;[a;] be the second largest number amani.

Graph Pricing An instance of Graph Pricing consists of an undirected (ptssontain parallel edges)
graphG = (V, E) with budgetsh : E — RT and weightsw : £ — R™. Our goal is to find a pricing
p:V — Rt U{0} to maximize

Val(p) == > w(e)(p(u) + p(v)I[p(u) + p(v) < b(e)]
e=(u,v)€E

wherell[-] is the indicator function. LeDpt(G, b, w) := max, Val(p).

Remark 2.1. This definition of Graph Pricing above coincides with Gehegtaaph Pricing defined in
Khandekar et al.[[19]. They presented an additional reduttirom General Graph Pricing to Graph
Pricing with no parallel edge and)(e) = 1. Throughout this paper, we use the definition above and allow
weights and parallel edges for simplicity. In practice, glgs can be naturally interpreted as the number of
customers interested in the same pair.

Remark 2.2. Another well-known pricing problem assumes that each custavill buy the cheapest item of
her interest if she can afford it (i.eVal(p) := >_._, ) w(e) min(p(u), p(v))I[min(p(u), p(v)) < b(e)]),
which is calledunit-demand pricing Its approximability is similar to that of our single-mindieoric-
ing, including algorithms / hardness results fbfHypergraph Pricing for largek [6], and a simple%—
approximation algorithm for Graph Pricingk = 2). Indeed, Generalized Max-Dicut is also reducible to
Unit-demand Graph Pricing and Theorém11.1 1.2 hold fasitvell. We focus on Single-minded Graph
Pricing here.

Generalized Max-Dicut Fix a positive integefl’. An instance of Generalized Max-Dicfit( consists of
a digraphD = (V, A) with a labell4 : A — [T]*T and a weightv : A — R™ on each edge. Assume that
the sum of weights is normalized to {u,v) denotes the edge @ from « to v. We allow parallel edges



from w to v if they have different labels (if parallel edges have the asdabel, simply merge them). Our
goal is to find a labelingy : V' — [T] (note vertices can be assigned 0, while edges are not) tamizi
the weight ofsatisfiededges —(u, v) is satisfied whetdy, () = 0 andly (v) = l4(u, v). Note than when
T = 1, the problem becomes Max-Dicut. Given an instafte- (V, A), 14, andw, let Opt(G, 4, w) be
the maximum weight of edges satisfied by any labeling of eesti Given an assignmeht : V' — [T] to
the vertices, leVal(ly) be the weight of edges satisfied ly. Note that unlike Graph Pricing, the value of
any assignment is normalized between 0 and 1. Adrenalized outdegrealenoted byndeg, is defined to

be [}, (max(, e w(u,v))] . In unweighted instances (i.e(e) = ﬁ for all €), ndeg > %.

Sherali-Adams Hierarchy In its most intuitive and redundant form, a feasible sohtio ther-rounds of
the Sherali-Adams hierarchy for a CSP with the donigjiconsists ofs "7, (%) (¢ +1)" variables{z ()}

for each subset of variableswith cardinality at most, anda € [¢]°. Eachzs(a) can be interpreted as the
probability that the variables if are assigned.. Therefore, it is required to satisfy the following natural
conditions: (L)xg(«) > 0forall S, a. (2) Eae[q}s zs(a) = 1forall S. (3) Zae[q]S/\s xg(aof) = xg(B)
forall S C S, € [¢]°, wherea o 3 € [¢]%'“S denote the joint assignment to the variables'in

Ther-rounds of the Sherali-Adams hierarchy for Graph Pricind @eneralized Max-Dicui() can be
obtained by choosing an appropriate domain and an objefttivetion, while using the constraints given
above. For Graph Pricing, if we choose the domain toRjevhereB is the maximum budget, the objective
function is the following.

EZ(H,U) (i,j)E[B]QJ—i—jéb(u,v)

Sincep(v) can be real, it is not clear whether this is a relaxation, eviean the budgets are integers. [[19]
shows that there is a half-integral optimal solution. Theimam budgetB can be exponentially big in the
size of an instance, and a standard trick is to consider delypbwers of1 + ¢) as valid prices. It loses at
moste fraction of the optimum. Our gap instance and proposedisolub the hierarchy have the marginal
on each vertex supported by a constant number of pricesega@tk applicable to any choice of the domain.

For Generalized Max-Dicul(), the domain i§7], and the objective function is

Z WU, V)2 (4,0 (0,14 (1, v)).

(u,w)EA

Given an instance and a relaxation, we defineitibegrality gapto be the integral optimum divided by
the value of the best solution to the relaxation. Since battpooblems are maximization problems, it is at
most 1 and a small number indicates a large gap.

3 Reduction from Generalized Max-Dicut to Graph Pricing

Theorem 3.1.ForanyT > 0, there is a polynomial time reduction from an instafiée= (V, A), 4, wemp)
of Generalized Max-Dicul(), whereD is acyclic andndeg > % to an instancéG, b, wgp) of Graph Pric-
ing such thaOpt(D, l4, wemp) < Opt(G, b, wep) < Opt(D,la, wemp) + 3e.

Proof. Fix an instancéD = (V, A), 4, wgmp) of Generalized Max-Dicuf() with n = |V| andm = |A].
Let G be the underlying undirected graph Bf Our reduction from Generalized Max-Dicut on directed
acyclic graphs to Graph Pricing is almost the same as therok@andekar et all [19] with some simplifi-
cation. Let)M be a large number which will be fixed later.
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The resulting instance of Graph Pricing is based on the saamhd-. SinceD is acyclic, there is an
injective functions : V' — [n]* such that for each edde, v) € A, s(u) > s(v). For each edgéu,v) € A,
b(u,v) = MTs@Hawr) =1 andwgp (u, v) = wa“?fZ,(f)’v)-

To avoid confusion, 1eODptemp, Valgmp denoteOpt, Val for Generalized Max-Dicut instances, and
Optgp andValgp for Graph Pricing instances. Fix a labelihg : V' — [T']. The correspondinganonical

solutionp : V' — R* U {0} defined by

MTs@)+lv(v)-1  jf ly(v) #0
p(v) = :
0 otherwise

givesValgp(p) > Valgmp(ly) — for each(u, v) € A satisfied byly, p getsp(v)wgp (u, v) = wemp (u, v).
Therefore Optgp (G, b, wgp) = Optemp(D, L4, wemp)- The following lemma shows that the converse is
almost true. The proof is given in AppendiX A.

Lemma 3.2([19]). For anyp, Valep(p) < Optemp (D, L4, wemp) + 7 + 2e.

Taking M > 1 proves the theorem. O

4 Approximability of Generalized Max-Dicut

Recall that Generalized Max-Dicut(1) is exactly the weiblvn Max-Dicut problem, which admits a 0.874-
approximation algorithm_[27] as any Max-2CSP over the Baoldomain. AsI" increases, however, the
best approximation ratio for Max-2CSP over the domain oé §iz+ 1 can be at mosO(logT) [7], so

VT
viewing it as a general Max-2CSP does not yield a constatifapproximation algorithm.

There is a simplé4—approximation algorithm, similar to the one for Graph Rric— assign 0 to each
vertex with probability half independently and assign remezvalues to the remaining vertices greedily. The
proof is based on the fact that we can easily find the optimlatisa once the set of vertices assigned 0
is given. For smalll’, we can do a little better based on a standard LP relaxatitrve proof is given in
Appendix(C.

Theorem 4.1. There is a polynomial time approximation algorithm for Gealieed Max-Dicut{") that
guarantees; + () of the optimal solution.

However, we prove that for largg, it is Unique Games-hard to improve the approximation rixtm
1 to a better constant.

Theorem 4.2(Restatement of Theordm 1.3)nder the Unique Games Conjecture, itis NP-hard to approx-
imate Generalized Max-Dicu) on directed acyclic graphs within a factor gf+ O ().

Together with the reduction shown in Theorém] 3.1, it immidyaimplies Theorend_1]1 for Graph
Pricing. Besides working on DAGSs, the reduction also rezpiithatndeg be large, but it can be easily
ensured by taking an Uniqgue Games instance with large de§eseAppendik DJ2 to see the full details.

The theorem is proved by proposingdactatorship testwith high completeness and low soundness,
combined with the standard technique to convert a dictaifptest to a hardness result based on the Unique
Games Conjecture [21]. Constructing the dictatorship hasttwo components — a simple dictatorship
test based on correlation and Gaussian geometry, and corgpowith a designated DAG. We present the
dictatorship test here and defer the full reduction fromduiei Games to Appendix D.2.



4.1 Dictatorship Test

We follow the notations in Mossel [28]. Consider the hypeee(i'| where[T] = {0,1,...,T}. Let
0y = Qo = [T]. Fort € [T]*, P! is a probability measure afl; x Q. Let P be the marginal ofi2; in
P’ (which does not depend drandi). We want to ensure th®(0) = §, P(j) = 1 for j € [T]* where
§ = ;. Let P’ be the distribution 02, such thatP’(0) = (—=)(0 — 172), P'(j) = (—=) ()

T -2 -4
(subtractl%‘s from P(0) and renormalize).P! is defined by the following procedure to sample y).
Sampley according taP. If y = ¢, setz = 0. Otherwise, sample from P’ independently. It is easy to
see that the marginal of bothandy is P. We show thatx, y) are almost independent @sincreases. We

define the correlation between two correlated spaces ane e following lemma in AppendixID.

Definition 4.3. Given a distributionQ on Q; x Q,, we define the correlatiop(£21, Q22; Q) by letting

p(Q1,902; Q) = sup{Cov[f, g : f: U — R, g: Q9 — R, Var[f] = Var[g] = 1}.
Lemma 4.4. For anyt, p(€21, Q2; P*) < /2.

Another component of the dictatorship test is the direcwalec graphD = (V, A) of Alon et al. [1],
where every directed cut has size at mgstt+ o(1))|A|. Fix a graphD = (V, A) such that every dicut
cuts at mos(i + ﬁ)m\ edges. Note that the size of this graph depends only.d0fWe now describe the

dictatorship test. The prover is expected to provige [T]% — [T for eachw € V.

1. Choos€u,v) € A andt € [T]* uniformly at random.

2. For each € [R]™*, pick (z;,y;) according taP?.

3. AcceptifFy,(z) = 0andF,(y) = t.

This dictatorship test can be naturally interpreted as staite of Generalized Max-Diciit] with the

vertex setl’ x [T]%. The weight of edgé(u, z), (v,y)) with labelt is equal to the probability that it is
sampled, and a labeling V' x [T]® ~ [T passes with probabilityal(l) (by F,(z) = I(v, z)).

4.2 Completeness and Soundness

The ith dictator function isD; : [T|® — [T] given by D;(x1,...,7rr) = z;. The purpose of the above
dictatorship test is to allow dictatorship functions to lweepted with high probability while penalizing
functionsfar from any dictator. The following lemma for completeness is immatdfrom the test — for

any fixedt andi, Pr[z; = 0,y; = t] = Prly; = t] = 2.

Lemma 4.5(Completeness)Suppose that for someF,, = D, for all v € V. The above test accepts with
probability 1.

Forv € V andt € [T, letF,, : [T1® — {0,1} be defined such that, ;(z) = 1 iff F,(z) = ¢, and
i := Pr[F,(z) = t] = E[F,(x)] wherez ~ P. For eachF,; andi € [R]", we define thenfluenceof
theith coordinate to measure the extent a function depends athtiseordinate.

Inf;[Fy] := E[Var[F, (X1,..., XRr)|X;,1 <j <R, j#1]].
We use a similarly defineldw-degree influencmffd for our soundness (sele [28] for the definition).

Lemma 4.6(Soundness)For large enoughl’, there exist- andd (depending ofl") such that iﬂnffd(Fv,t) <
rforalli € [R]*,t € [T], andv € V, the probability of accepting is at mogt + 7.
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Proof. We use the following theorem of Moss2l [28].

Theorem 4.7(Theorem 6.3 of [28]) Let (©2; x Q», P) be correlated spaces such that the minimum nonzero
probability of any atom inQ2; x Qs is at leasta and such thatp(Q4,Q9;P) < p. Then for every

e > 0 there existr,d depending ore and « such that iff : QFf — [0,1],¢9 : QF — [0,1] satisfy
max(InfS4[f], InfS%g]) < 7 for all 4, then

(z,y)ePER v

The probability of accepting is at most

1
E E E F, F, < E E [T,(twu0, tho —
WELEL EFo@Fu@ < B LE (0 ) + 7]
where the inequality follows from Theorem %.7 (set- Td/4 anda = (Ti)) The following lemma,
whose proof is given in AppendiX E, shows that it is at most
1 - Ha,0 1
<U,EEA[PP(”“’°’ T Nt

Lemma 4.8. Fix p,a € (0,1). The functionf(b) := I',(a, b) is concave.

The following lemma, whose proof is again given in Apperidj>sBows that it is at most

(-mo) . 2. 1 1
E : =— E
U)GA[M 0 T + T5/4] + T5/4 T (uw)ed

3
[1,0(1 — piv,0)] + T/

(ui

Lemma 4.9. For large enoughl’ and 6 = the following holds. For any. € [0,1],b € [0, %] and

pe (0. 2) Tpla.h) <ab+ 2.

Given{ ., 0 }vev, imagine the rounding algorithm which putss S with probability 11, o independently.
The expected fraction of edges fras1to V\ SIS E(,, 4)e altu,0(1—f10,0)], which is at most the fractional size
of maximum dicut ofD. Since we tookD to satisfy thatf,, ,)c [#u,0(1—pv,0)] < 1 T1/4 , the probability
of accepting is at mong + as desired. Note that the probabilities of acceptlng in detapess and

T1/4'

To/4

L. O

,+L
soundness differ by a factor & i T““ =1L =1+ 0(Hn

T 1= T1/4

5 Integrality Gaps for Generalized Max-Dicut

Fix a positive integefl" ande € (0, ﬁ). We present an instance of Generalized Max-DiEut(D =
(V,A),l4) (we only deal with unweighted instances in this section amit @) such thatD is acyclic,
[V| < €|A] (so thatndeg > 1), and a solution te’-rounds of the Sherali-Adams hierarchy such that the

integrality gap is at mo%(l + ¢€). This result almost matches a simélapproximation algorithm.

Through the reduction given in Theorém13.1, we also proveofidra[1.2 — a bad integral solution is
guaranteed by the reduction, a good solution to the Sh&daims hierarchy is obtained by the mapping
ly(u) = itop(u) = MTsW+H=1 (if ; % 0) or 0 (otherwise). The budget in the resulting instance is
an integer exponential in the size of instances, and our gagsiaeven for a strong linear programming
hierarchy where there is a variable for each veftexd an integer pricé

The rest of this section is devoted to the proof of Thedrer 1.4
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5.1 Obtaining a Good Instance

Our graphD is obtained by randomly sparsifying the graph = (V, A,) constructed in Alon et all[1],
followed by an appropriate postprocessiig, is a directed acyclic graph with vertices andn, = @(n%)
edges. Its underlying undirected graph = (V, E.) is a simple graph with the same number of vertices
and edges, with the maximum degrée = @(ng). Actually, V = [n]* and(u,v) € Eonly if |u —v| <7
wherer := @(ng). It has the property that any directed cut has size at #jest o(m..) edges.

The first version ofD = (V, A) is constructed as the following/ := V., = [n]™, and for each edge
(u,v) € Ay, put(u,v) € A with probability p := AA* for someA to be fixed later. LeGG = (V, E) be the
underlying undirected graph @. /4 is obtained by assigning eaétu, v) a random number frof7’|*.

Like previous integrality gap constructions for Max-Cutlavlin-Vertex Cover (e.gl ]2, 12, 32] 9))I)
must be postprocessed to be amenable to have a Sherali-Addution with a large value. Intuitively, we
need to have the underlying undirected gréplocally sparse— if we look at a neighborhood of a certain
vertex, the graph almost looks like a tree. We use the noti¢®] o measure how locally sparse the graph
is.

Definition 5.1. We say that? is [-path decomposable if every 2-connected subgrEpbf G’ contains a
path of lengthl such that every vertex of the path has degree 2in

The first version of the instance already l@st(D,l4) ~ % with high probability. In order to make
the instance locally sparse, we additionally need to rensowee of the edges, but the fraction of removed
edges is so small that it does not affénit(D,4) too much. As a result, we get the following theorem.
The proof is given in AppendixIB.

Theorem 5.2. GivenT ande, i > 0, there exist constantd, § and! = ©(log n) (all constants depending
on T and e, ) such that there is an instance of Generalized Max-DiEY(D,[4) with the underlying
undirected graphG with the following properties.

e Acyclicity: D is a DAG.

e Low integral optimum©Opt(D, l4) < 1<

e Almost regularity: Maximum degree 6fis at mosA, andG has at least2(An) edges.

e Local sparsity: Fork < n°, every induced subgraph 6fon (2A)'k vertices ig-path decomposable.

e Large noise: Fork < n?, (1 — p)!/10 < £

The last condition, large noise, is needed to ensure that I solution, even though adjacent vertices
are very correlated to give a large value, far away vertiedsabe almost independently. The meaning of
each condition will be elaborated in later sections.

5.2 Constructing (Inconsistent) Local Distributions

Let D = (V, A), l4, andG = (V, E) be the instance of Generalized Max-Didlif(and its underlying
undirected graph constructed as above. In this subsediicen a set ok < n’ verticesS = {v1,..., v}
we give a distribution on events

{ZV(Ul) =T1,... 7lV(Uk) = xk}xl,...,ka[T} .

The local distributions we construct in this subsectionrareconsistent; for different sesand.S’, the
marginal distribution ors' N S’ from the distribution or can be different from the same marginal from the
distribution onS’ (albeit they are close). This problem is fixed in the next satien.
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Let d(u,v) be the shortest distance betweemndv in G andV’ C V be the set of vertices whose
shortest distance t6 is at most.. Let G’ and D’ be the subgraph af and D induced onl”’, respectively.
Since|V’| < (2A)'k, G” is I-path decomposable by Theorém]5.2. Note thatif, v) < [, d(u,v) is also
the shortest distance betweeandv in G’. By the definition, d-path decomposable graph does not have a
cycle of length/, so if d(u,v) < % the shortest path betweamandv must be unique.

We begin by establishing a fact that whéhis path-decomposable (intuitively looks similar to a tree)
there is a distribution on the partitions &f (i.e. multicuts) such that close vertices are unlikely to be
separated but far vertices are likely to be separated:’ s a tree, it is obtained by deleting each edge
independently with probability:.. The noise parameter will be fixed later depending only of ande, so
is asymptotically greater thab O(

logn)

Theorem 5.3([10]). Supposé&s’ = (V, E) is anl-path decomposable graph. Let= [1/9|;u € [1/L,1].
Then there exists a probabilistic distribution of multiswf G’ (or in other words random partition o’ in
pieces) such that the following properties hold. For every verticesu andw,

1. If d(u,v) < L, then the probability that: and v are separated by the multicut (i.e. lie in different
parts) equalsl — (1 — x)%*?); moreover, ifu andv lie in the same part, then the unique shortest path
between, andv also lies in that part.

2. Ifd(u,v) > L, then the probability that, andv are separated by the multicut is at ledst (1 — u)*.
3. Every piece of the multicut partition is a tree.

Based on this random partitioning, we define the distrilbutia the vertices it (actually inV”). For
each piece which is a tree, pick an arbitrary venteix the tree, choosé, (v) uniformly at random, and
propagate this label tweakly satisfyevery edge in the tree — an undirected edgev’) € F (swapu’ and
v’ if necessary to assunie’,v’) € A) is weakly satisfied wheh, (v') — Iy (u') = la(u/,v") overZpy;.
Note that this definition is necessary for the original débni of satisfaction, but not sufficient.

It is clear that the choice of root in each tree does not mattef the marginal distribution of eaéh(v)
is uniform on|[T]. For verticesu andv with d(u,v) < L, we say that label for « and#’ for v matchif
ly(u) = 1i,ly(v) = ¢ can be extended to weakly satisfy every edge on the uniquéeshpath between
andv (there arel’ 4 1 such pairs). Ifu andv are close/y (u) andly (v) will be correlated in a sense that if
i andi’ match,ly (u) = ¢ almost impliedy (v) = 4/, while it is not the case whemandwv are far apart. The
following corollary formalizes this intuition. The proas in Appendi{B.2.

Corollary 5.4. Suppose>’ = (V’, E') is anl-path decomposable graph. L&t= |I/9]; u € [1/L,1].
Then there exists a random mapping V'’ — [T'] such that

1. Ifd :=d(u,v) < L then

A-w?  1-0-p? i 7
+1 if ¢ and<’ match
Prlr(u) = i, r(v) = '] = { (e NN GRS

% otherwise

2. 1fd > L then 14" < Prlr(u) = i,r(v) = #] < ‘54 + U= foranyi, # € [T].

Definition 5.5. For any verticesu # v andi,i’ € [T ] let p(u(i),v(?)) = Prlr(u) = i,7(v) = ] if
d(u,v) < L, or (T+1)2 otherwise. p(v(i),v(i)) = T+1 and p(v(i),v(i')) := 0 fori # . Since the

shortest path betweenandwv is unique wheni(u,v) < L, p is uniquely defined give¥, D, 4 and does
not depend or$, V/, G’, D’ which induce a local distribution.

Definition 5.6. Fix a set ofk verticesS = {v1,...,vx}. For any vertexu,v € S andi,j € [T], let
vs(u(i),v(i")) := Pr[z(u) = ¢,2(v) = '] in the local distribution onS defined by- in Corollary[5.4.
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5.3 Geometric Embedding and Rounding

In this subsection, we still fix a set éfverticesS = {v1, ..., v} and produce a distribution on the events
{lv(v1) =21, lv(vk) = i}y, 4em- The difference from the last subsection is that the rewylti
distributions become consistent — the marginal distrdoutin,S N .S’ does not depend on the choice of its
superset§ or S’) that is used to obtain a larger local distribution.

5.3.1 Embedding

Considerp andvg defined in the last subsectionandvg both capture the pairwise distribution between the
events{ly (v) = x},cg ey, PUt each of them has its own defects. depends on the choice 6f so does
not yield consistent local distributiong.does not depend afl, but for far vertices, Corollary 5.4 does not
guarantee any local distribution consistent with it. Hoarethey are close in a sense — they are identical

whend(u,v) < L and differ by at mosflT_T“iL otherwise.

The main idea of Charikar et al.l[9] is to interpyeandvg as pairwise distances between events and
embedp to [, with small error. It is based on the fact thaendvg are close for anys andvg is readily
embeddable t@&,. Since the embedding inte is uniquely defined by the pairwise distances andbes
not depend on the choice 6f geometric rounding schemes based on the embedding yiesistent local
distributions. Let (i) be the vector corresponding to the evBgntv) = i. Our goal is to construdt(7 + 1)
vectors{v(i)},eg ;e SUCh thatu(i) - v(i') & p(u(i), v(i')). Following the above intuition, the following
lemma says that this embedding is possible with error depgrah .. The proof is given in Appendix Bl.3.

Lemma 5.7. There exisk(T + 1) vectors{v(i)} ¢ g ;i Such that|v(i)[|5 = p + 727 andu(é) - v(i’) =
&+ p(u(i), v(@)).

5.3.2 Rounding and Analyzing adjacent vertices

Givenk(T +1) vectors{v(i)}ves,iem, our rounding scheme is one of the most natural ways to choese
out of (T + 1) vectors — take a random Gaussian vegt@nd for each vertex, setly (v) = i such that
v(7) - g is the maximum over all. Since the inner products of these vectors depend onjy @rhich does
not depend on the choice 8, it gives a consistent local distribution.

Fix adjacent vertices andw (without loss of generality assunte,v) € A). It only remains to show
that Pr[ly (u) = 0,1y (v) = la(u,v)] = TLH For any pair of adjacent vertices, we can we{d" + 1)
vectors explicitly. They are just two sets’Bf+ 1 orthonormal vectors, very closely correlated — there are
T + 1 pairs(u(i),v(i)), 9" —i = la(u,v) in Zp4y, such that(i) ~ v(i’). With this symmetric structure
and a suitable choice of the noise parameatexre can analyze the performance of our rounding. The proof
is given in Appendix B.4.

Lemma 5.8. There existg: depending 0" ande such that, in the above rounding scheme, the probability

thatly (u) = 0 andly (v) = La(u,v) is at most=4<.

This finishes the construction of a solution to tiferounds of the Sherali-Adams hierarchy with value
1<, SinceOpt(V, 14) < 4 by TheoreniBR, it proves Theorém]1.4 and Thedremh 1.2.

Acknowledgements. The author would like to thank Venkat Guruswami and Seung Btuia for helpful
discussions.
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A Proof of Lemma in the Reduction

Lemma A.1([19], Restatement ¢f 3.2)or anyp, Valgp(p) < Optemp(D, 14, wemp) + ﬁ + 2e.

Proof. Givenp, we define therincipal part of Valgp(p) as

> wep(u, v)p()I[p(u) +p(v) < bu,v)].

(u,w)eA

Note that for each directed edge, only the price of its heatribnites.

We first bound the principal part &falgp(p). For a vertexv, the only edges wherecp (u, v)p(v) >
weup(v) gatigfy MTs@)HAM=2 < p(y) < MTs@)Halwr)=1 |f there is such an edge, 16} (v) =
la(u,v). Otherwise, letj, (v) = 0. Fix an edg€u, v) wherewgp (u, v)p(v) > “’G%[(“”) Iy (v) =la(u,v)
by above. Ifif, (u) # 0, it meangp(u) > MW=t > pTsW)+T=1 > p(y, v), so(u, v) contributes O to the
principal part oValgp(p). Therefore, for each edde, v) that contributes more thaﬁ to the principal part
of Valgp(p), Iy, satisfiegu, v). Therefore, the principal part dalcp(p) is at mosOptemp (D, 14, wemp)+
1

7
For the non-principal part dfalgp(p), for each vertex:, and we bound

S wep(w, 0p()lp(@) + p(0) b o) < S womp(uv) 2

(u,v)€A (u,v)€A,p(u)<b(u,v)

14



Note that all edges$u,v) have differenth(u,v), and any two differ by at least a factor 8f. Letw, :=
max(,, e 4 Wemp (U, v). Therefore, the right hand side can be bounded bt + 7 + 57z +- .. ) < 2wy,

where .
Zwu - ndeg SE€

u

This shows that the non-principal part\délcp(p) is at moste, proving the lemma. O

B Details of the Integrality Gap

B.1 Obtaining a Good Instance
In this subsection, we prove the following theorem.

Theorem B.1(Restatement of Theorem b.2BivenT ande, . > 0, there exist constantd, § and/ =
©(log n) (all constants depending dhande, 1) such that there is an instance of Generalized Max-DIiEut(
(D, l4) with the underlying undirected grapgh with the following properties.

e Acyclicity: D is a DAG.
Low Integral Optimum©Opt(D, 14) < <.

Almost regularity: Maximum degree 6fis at mosA, andG has at least2(An) edges.

Local Sparsity: Fork < n%, every induced subgraph 6fon (2A)'k vertices ig-path decomposable.
Large noise: Fork < nd, (1 — p)t/10 < A

Proof. As mentioned in Section 5.1, our gragh is obtained by randomly sparsifying the graph =
(V, A,) constructed in Alon et al [1] after an appropriate postpssing. D, is a directed acyclic graph
with n vertices andn, = @(n%) edges. Its underlying undirected gragh = (V, E.) is a simple graph
with the same number of vertices and edges, with the maximegreeA, = @(n%). Actually, V = [n]*
and(u,v) € Eonly if |u — v| < r wherer := @(n%). It has the property that any directed cut has size at
most7= + o(m,) edges.

The first version ofD = (V, A) is constructed as the following/ := V, = [n]™, and for each edge
(u,v) € A, put(u,v) € A with probability p := AA* for someA to be fixed later. LeG = (V, E) be
the underlying undirected graph ©f. /4 is obtained by assigning eattu, v) a random number uniformly
sampled fronT]*.

Integral Solution The following lemma shows that ik is big enoughQpt(D,4) is close to&.

Lemma B.2. If G satisfies the above four properties and= Q(%L), thenD andi4 obtained by the

above process satisfi@pt(D, 14) < L2 with high probability.

Proof. Fix one assignmenlt, : V' — [T]. For any edgdu,v) € A, call it acandidatewhenly (u) =
0,1y (v) # 0. Note that the number of candidate edges is at most the @ditgdinf the maximum directed

cut of D, which is at most2Wy,.
For each candidate edge, v), the probability thatu,v) € A with 14(u,v) = Iy (v) is 4. Therefore,
the expected number of satisfied edges is at rﬁ]ﬁ%iﬂ(Tﬂ. By Chernoff bound, the probability that it

is bigger than% is bounded b)exp(—Q(gp%)) = exp(—Q(eQ#)). By taking union bound over
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(T + 1)" differently’s, the probability that there exists an assignment Withemhan% satisfied

edges is at most

2
exp(—Q(6 An)) xexp(nlog(T+ 1)) <n~!
for A := Q(T%T). Similarly, we can conclude thatl| > (1 — €)m.p with high probability. Therefore,
Opt(D, 14) is at mosty<s < 1< with high probability. 0

The above lemma is the only place where it is desirable to lege |A| = |E|. For the rest of this
subsection, we are going to delete some edgd3 (dnd () to satisfy desired properties. Note that in any
case, the number of edges deleted is much lessdhan so that each deletion does not hurt the above
lemma.

Maximum Degree Control Since the maximum degreedn. is A, expected degree of each veriex
in G is at mostpA, = A. Call a vertexv € V badif it has degree more tha2A in G, and call an edge
(u,v) € E bad if eitheru or v is bad. Fix an edgéu,v). The probability tha(u,v) becomes bad given
(u,v) € E is at mostexp(—45). The expected number of bad edges is at estp(— 4 )pm., and by
Markov’s inequality, with probability at least half, thember of bad edges is at moSéxp(—%)pm*.

Deleting all bad edges guarantees that the maximum degi@asohit mos2A, and with probability at
least half, we delete onlzyexp(—%)pmk edges, which is much smaller thapm, sinceA = Q(E%).

Girth Control  The expected number of cycles of lengtis bounded by

1 1, A n(CA)
9 =10 _ 9 i—1/ = \i <
n(2r) ' = n(2r) ) < L
for some absolute consta6t. Wheni = O( fgggZ) the above quantity becomes less thé?. Assume
I = O(fgggZ) (it will be fixed even smaller than that later). Summing oves 4,...,1 ensures that

the expected number of cycles of length ug is at mostO(n%%), and it is less tha®(n’ ") with high
probability. Removing one edge for each cycle of length updosures thadr has girth at least

Local Sparsity Control Letn = % for somel fixed later. We want to show that there exists- 0 such
that every subgrap’ of G induced ont < n” vertices have only1 + 7))t edges.

For4 <t < 1/n, we count the number of connected subgraph& ofvith ¢ vertices and + 1 edges.

Lemma B.3. The number of connected subgraphsGhf with ¢ vertices andt 4+ 1 edges is bounded by
2nt? AL,

Proof. The only possible degree sequences for such subgraphd,are,2,...) or (3,3,2,2,...). As-
sume that it is(4,2,2,2,...). Letv be the vertex with degree 4. There is a sequence-o® vertices
(v,...,v,...,v) representing an Eulerian tour (not necessarily uniqueg Mimber of such sequences is
bounded byntAL~! (n for guessingy, t for guessing where occurs in the middle of the sequencs, !

for the other vertices).

Assume that the degree sequencé3is3,2,2,...), andu,v be the vertices of degree 3. Take a se-
quence oft + 2 vertices representing an Eulerian path franto v (either (u,...,u,...,v,...,v) or
(u,...,v,...,u,...,v)). The number of such sequences is boundedBy\.~* (n for guessingu, ¢ for
guessing positions af andv in the middle of the sequencA’~"! for the other vertices including). O
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Therefore, the probability that there exists a subgrapf¥ @ifith ¢ vertices and + 1 edges fort < ¢t <
1/n=3lis

3l 3l

_ 2nt2 At n _
§ :2nt2Ai 1pt+1 — A2 < A2 (91)2A3l+1 <n 0.1
t=4 t=4 * *

forl = O(logn/log A), sincez; = O(n_%).
Fort > 1/n = 31, we count the number of subgraphsaf with ¢ vertices and1+n)t edges. Itis upper
bounded by (the number of connected subtrees\antices) * (the number of possibilities to choose other
nt + 1 edges out 0(5) pairs). The number of unlabeled rooted trees wertices isC'a! for some constants
C anda [29], so the number of connected subtrees oartices is bounded bgna‘AL~!. Therefore, the
total number of such subgraphs is
t(t+1)

2
CnalAL? 2 < CnatA? !
nt+1 2nt

The probability that such a graph exists(ris at most
A

et

2nt
2n )7

) < Cnal ALY

et

n Pt
2n ’

)2nt(A_)(1+n)t < A (C’lAz)t(CzA—)

LetA = C,A? andB = Cg%. The above quantity is at most

CnalALY(

AlAtBt/Sl _ (AﬁASIB)(ABl/Sl)t—?)l'

* *

Assumet < n? for somey € (0,0.1) andl = O(llgggg) be such thai- A% B = %W <n Ot

which also impliesAB'/3" < 1. Summing ovet = 3[,...,n", the probability that such a graph exists is
bounded by (1).

Putting Them Together In Sectiori5.11, we mentioned that the resulting graph shioeilemenable to have
a Sherali-Adams solution with a large value, and introdubedhotion of path-decomposability to measure
it. The following lemma of Arora et al[ [2] shows that our ctmstion satisfies that every subgraph(®f
induced on at most< n” vertices id-path decomposable.

Lemma B.4([2]). Let! > 1 be an integer and < n < ﬁ and let H be a 2-connected graph with
vertices and at mogtl + 1)t edges. The#/ contains a path of length at least- 1 whose internal vertices
have degree 2 iit.

Finally, § and! are fixed based on the other parameters to satisfy the regenmts of the theorem.

Lemma B.5. There exist$ > 0 and!/ (depending o', €, A, u, ) such that for any: < nd, the following
holds.

1. (1- ,u)% < %
2. Every induced subgraph 6f on (2A)!k vertices isl-path decomposable.

Proof. The first condition is implied by > Cdlogn for some constant’ depending onu. The second
condition is implied by(2A)'k < nY < 1 < C'(y — 6)logn for another constant” depending om\.
When we control girth and local sparsitys required to b@(fgggZ). Therefore, by taking a small enough

constant depending dh, e, A, 1, and~ (all of which depend ofT’, €), we can ensure that suélexists. [

Therefore, there exist constamds 6 and! = ©(logn) (all constants depending dh ¢, 1) that satisfy all
the requirements given in the theorem. O
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B.2 Distribution

Corollary B.6 (Restatement df 5.4)Supposez’ = (V', E') is anl-path decomposable graph. L&t=
|1/9]; u € [1/L,1]. Then there exists a random mappingV’ — [T such that

1. Ifd :=d(u,v) < Lthen

Pr[r(u) =i,r(v) =i (T+1) T+1)2

(—TUH*)Q otherwise

: {Uﬂ) + ((1 W it i and#’ match
Z pr—

2. Ifd > L then? (TUH*;) < Prfr(u) = i,7(v) =] < 1;}1;13‘3 + U2 for anyi, i € [T).
Proof. r is defined by the following process: sample a distributiomafticuts as Theorein 5.3. Each piece
is a tree, so we can pick an arbitrary vertexand give a valuéy (w) uniformly from [T'] and propagate
along the tree to weakly satisfy every edge. Note that theiloision does not depend on the choice of the
initial vertex.

Supposel(u,v) < L, which ensures that it andv are in the same piece, the only path connecting
andv in the piece is the shortest pathdh If : and:’ are match labels,

Pr[r(u) = i,r(v) = i'] = Pr[u, v in the same piede + Pr[u, v separateg

1 1
T+1 (T+1)%

If 4 ands’ are nonmatching labels,

Pr[r(u) = i,r(v) = i'] = Pr[u,v in the same piede 0 + Pr[u, v separate ﬁ

Prlu andv are separat@d

If d(u,v) > L, Pr[r(u) = i,r(v) = 4] is lower bounded by and upper

(T+1)2
bounded by™*“ andvTartla)feparated Pr{u andv ar%a ?Ot separated . separation guarantee in Theo-
¥ +
rem[5.3 proves the lemma. O
B.3 Embedding
Lemma B.7(Restatement of Lemnia .7y here exisk(7'+ 1) vectors{v(i)},c g ;e (7] SUCh that|v(i) I3 =

p+ T+r1 andu(i) - v(i') = & + p(u(i),v(i’)).

Proof. For eachu(i), we construct two vectors(i); andu(i), and finally merge them by (i) := u(i); @
u(i)2. u(i)2 is the indicator random variable for the evép{(u) = ¢, where the distribution follows’s.
Sincevg is based on an actual distribution on the events, the ve¢tdig; } .7y are embeddable into
Iy with [[v(i)2|3 = Pr[ly(v) = i] = T+1 andu(i)s - v(i')2 = vg(u(i),v(i")). The first group of vectors
{v(0)1}yev,icqr) convertthese inner products fromy to p with small error.

The following lemma says that a metric space can be isora#ifriembeddable inté, if all pairwise
distances are similar.

Lemma B.8([10]). Consider a metric spacgY, «) ont points. If for every two distinct points and v:
la(u,v) — 8] < % for somegs > 0, then(Y, «) is isometrically embeddable intp.

We add a vecto® (so that we havé (T + 1) + 1 vectors) and set the following distance requirements.
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1. [v(@)1 — Oll2 = / for all u;.

2. Jlu(i)r = v(@nllz = Vi = 20(u(i), v(¥)) + 2vs(u(d), v(i’)) for all u(i), v(i’).

Note that|p(u(i), v(i')) — vs(u(i), v(i"))] < “;ff < 5(Ti1)k' where the last inequality follows from
Theoreni 5.R. This implies

1 1
w(@i)r = v(@nllz — vl < VAl - \/1—m)<\/ﬁ'2(@+1)k+1)'

By LemmdB.8, there are vectofs(i);,v(i): }; andO that meet the above distance requirements. Without
loss of generality, assume thatis the origin. Defining.(i) := u(i); ® u(i)2 satisfies

L lu(@)3 = p+ 72

2. uli) (i) = (i)@' +uli)e o)y = LAZOE (), 0(i')) = & +pl(u(i), o(i).

B.4 Rounding

Lemma B.9 (Restatement of Lemma 5.8Yhere existg: depending ori” and € such that, in the above

rounding scheme, the probability thiat(u) = 0 andiy (v) = La(u,v) is at most=<.

Proof. For notational simplicity, assuml (u,v) = 0 — Which IS not allowed in actual instances. Then
u(7) andwv (i) becomematchingvectors —p(u(i), v(i)) = T+1 + (T+1)2 andp(u(i),v(y)) = ﬁ for
i # j. The following is the list of all possible inner productsween2(T + 1) vectors.

3 u(z) 'U(Z) = % + T+1 + (T+1)2
4. u(i)-v(j) =5+ (TJ’:I)Q fori # j

Even though we used Lemrha B.8 as a black-box to obtain themuembedding, we can explicitly
represeniu(i), v(4)’s in the Euclidean space. They can be represented as adioednination of 7 + 1) +
(T+1)%2+2(T+1)+1 orthogonal vectors (with different lengths), which can lassified into the following
four categories:

a(i) fori € [T]: Length T+1 Denotes the event thét, v) is not deleted anél, (u) = Iy (v) = 7.

e b(i,j) fori,j € [T]: Length ﬁg Denotes the event thét, v) is deleted andy (u) = i,
ly(v) =J.

e ¢(i),d (i) fori € [T]: Length \/g One of them is assigned for eachXf” + 1) vectors.
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o d. Length\/g. Common for all vectors.

Let

= a(i) + Zb(z‘,j) +c(i) +d
= ali) + Z b(j, 1) + ¢ (i) + d.

It is straightforward to check that the following represgiun of u(i) andv (i) satisfy all the inner product
requirements.

For each vecton(i), we denote the random variable equal to the inner produet(df and g by
U(i). Similarly, defineV (i), A(i), B(4, j), C (i), C’ (i), D(i) for v(i),a(i),b(s, ), c(i), c (i), d(i) respec-
tively. Each random variable follows the Gaussian distidsuwith mean 0 and standard deviation same
with the length of the corresponding vector. Furthermdre,itner products of two vectors is the same with
the covariance of corresponding random variables. Thevitig lemma shows that our consistent local
distributions actually satisfy each edge with probabitityse toﬁv proving Theorern 114.

Lemma B.10. Fix i € [T] and0 < e < 1/24. If u <

2
€
256(T+1) log? (L)’

1—12¢
T+1°

Prly (u) =i,ly(v) =] >

Proof. We compute the probability thatandv are assigned the same label

Prily(u) =i,ly(v) =1

> PrlAG) = max ()] Prlmax( Y B b)) max(3 Bk, ), max(C () max(C'(7)]
k k
< A=A AN 7 G) = masa ()
Z Pr max Z B(j,k mjax[z B(kaj)]amJaX[C(j)],mjax[C’(j)] < max;[A(j)] —leaXZj[A(j)]]
k

We argue that the above quantity is clos%éﬁ by showing that each of 4 quantities

max(}" B, b)), max[y Bk, 1)) max[C())], max(C'(7)]
k k

J J

is greater than~= [A(j)};maxzj AU with small probability. Note thay”, B(j, k) follows the Gaussian

distribution with mean 0 and variancgy, which is much less than that 6f(j). SinceC(j) andC’(j)

follow the same distribution, it is enough to show thatx;[C/(j)] > 224D AD] it small

probability. The following claim proves the lemma. O
. E2

Claim B.11. Let0 < e < 1/4. If o < 50T o (T

Prmax[C(j)] > 2 AG)] — max2;[AG)]

: 1 ] < 3e.
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Proof. The above probability can be rewritten as

1 —  max,|g-| — max2;[q"
Pr[\/g maxlgy) > /L4 2] i
j

T+1 4

wherego, ..., g7, 90, - - - , g are independent standard Gaussian random variables.

Letz > \/pulog T By LemmdB.IP,
1
Pr[\/;max[gj] > z] <e.
J

Letx < . By LemmdB.18,

€ [1—p
84/log —le T+1

1 — p max;[g;] — max2;[g}]

P 2e.

r| Tl 1 <zl < 2

The fact thaty < 256(T+1)€120g2(ﬁ) ensures that there isthat satisfies the both Lemrha Bl12 4nd B.13.
Taking union bound proves the lemma. O

It remains to prove the following two lemmas about Gaussiale prove them in Appendix]E using
some basic properties of Gaussians.

LemmaB.12. Letgy, ..., g, (n > 2) be independent standard Gaussian random variablestaad < 1.

Ifz > ./210g%,

Primax[g;] < z] > 1 —e.
J

Lemma B.13. Letgy,..., g, (n > 2) be independent standard Gaussian random variables(arde <
€
1/4 If x < Z\/TT%’
Prlmax[g;] — max2[g;] > 2] > (1 - 2).
J J

C (1 + Q(#))-Approximation Algorithm for Generalized Max-Dicut

In this section, we propose an approximation algorithm fen&alized Max-Dicuf’) that guaranteeS}I +
ﬁ) fraction of the optimal solution, proving Theoréml4.1. Ib&sed on the 2-rounds of the Sherali-Adams
hierarchy (also known as the standard LP), defined as thmfiolg:

maximize Z(M)GA T (y,0) (0,14 (u,v))
subject to Yacrs Ts(a) =1 forall S CV,|S| <2

> el Tluw) (i, J) = 2u(i)  forallu#v,i € [T]

The algorithm is almost identical to the siméileapproximation algorithm. For each vertexindepen-

dently setly (v) = 0 with probability ”:”T”(O) andiy (v) =i (i # 0) with probability IT(Z) Equivalently,

we assign each vertex 0 with probability half and follow itanginalz,, with probability half.
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For each edgéu,v) € A, letc = c(u,v) := 7(,,)(0,1a(u,v)) so that the value the solutigixs(a)}
to the LP isE(, . [c(u, v)] = Opt. The probability thatu, v) is satisfied is

1 +xu(0))(acv(l,4(u,v))) S ¢ c?

(2 2 T

“ 44
sincex,(0), z,(I14(u,v)) > c. Therefore, the expected fraction of satisfied edges isaat le

, ,v)2._ Opt  Opt? _ Opt Opt
c(uv)+c(uv)]>_p+ pt” _ Opt  Opt
(u,v)€A 4 4 4 4 4 16T

sinceOpt > ﬁ (focusing on the label with the most edges and finding the mam dicut with respect to
the edges with this label guarantees to sat%f;traction of edges).

D Details in the Unique Games-Hardness
D.1 Lemmas about the Dictatorship Test

Lemma D.1(Restatement of Lemnia4.4for anyt, p(Q1, Qa; P?) < %

Proof. Let f : 2; — R be the function satisfyin@[f] = 0, E[f?] = 1. Let L be the Markov operator
defined in Section 2.1 of Mossél [28] such that

(L) =E[f(X)]Y =y]
fory € Qs and(X,Y) € Oy x Q» is distributed according t®'. By Lemma 2.8 of([28],

p(Q1, Q) = sup E[(Lf)?].

Letf(‘) =a;, (Lf)(i ) bi fori € [T]. by = ag and all the otheb;’s are equal t&Ep, [f], which is equal to
(=) (Be, [f] — 7200) = (5h=)(~ 70a0).

EILSY) = (Fr0)ad+ (1= (g ) (o)
T
1-9 1 1-9
= (e () )’
1-— 1 1-6
= (% )ao[1+(1_1T;5)(T)]
< %ag
2
< I
1K)
Sinceda? < E[f?] < 1. m
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D.2 Reduction From Unique Games

In this subsection, we introduce the reduction from the UaiGames to Generalized Max-Diclij( using
the dictatorship test constructed. We first introduce thégqua Games Conjecturé [20], which is stated
below.

Definition D.2 (Unique Games)An instancel (G(U U W, E), [R]", {r(u, W)}y, wyep) OF Unique Games
consists of a regular bipartite grap¥(U U W, E) and a sefR| ™ of labels. For each edge:, w) € E there
is a constraint specified by a permutatieftu, w) : [R]" — [R]T. Given a labeling : U UW — [R]T,
let Valyg(l) be the fraction of labels satisfied By where an edge = (u,w) is said to be satisfied if
l(’LL) = ﬂ(u,w)(l(w)). LetOthG(E) = maxl(Valug(l)).

Conjecture D.3 (Unique Games Conjecture [20]For any constanty > 0, there iSR = R(«) such that,
for a Unique Games instana@with label sef R]*, it is NP-hard to distinguish between

e Optyg(£) 21— a.
e Optyg(£) < a.

Theorem D.4 (Restatement of Theoreim 1.3Ynder the Unique Games Conjecture, it is NP-hard to ap-

proximate Generalized Max-Dicdff on directed acyclic graphs within a factor gf+ O(=7).

Proof. Given an instance of (G(U UW, E), [R]", {m(v,w)}(, wyep) Of Unique Games, we construct an
instanceD(V, A), 4 of Generalized Max-Dicuf(). Forx € [T]® and a permutation : [R]T — [R]*,
letz o 7w € [T)" be defined byz o 7); = (z)r—1(»)- Let D = (V, A) be the fixed-size graph where the
maximum dicut has at mos§ + ;) fraction of edges.

o« V=UxVx[T"

e Samplew € W uniformly at random and its neighbots, u, uniformly and independently. Sample
t € [T, (vi,v2) € A, andz,y € [T]® from the dictatorship test. Add an edg@u, v,z o
Turw), (U2, V2, Y © Ty, 1)) 10 A with labelt. The weight is equal to the probability that this edge is
sampled.

Completeness Suppose tha¥alyg(l) > 1 — « for some labelind : U UW — [R]T.
Setly(u,v, (x1,...,2R)) = (- FOrw, u1, us sampled as above, with probability-2a, 7 (u1, w) ™ (I(u1)) =
7(ug, w) 1 (I(uz)). In that case, by Lemnia 4.5,

Pr [ly(ur, v,z 0my, ) =0,y (ug, v2,y 0 Tyy ) = t]
’Ul,UQ,t,IE,y

- v1,v§,£7m7y[($ ° W“hw)l(ul) =0, (y © 7T“27w)l(u2) = t]

:vl’v§’£m7y[($)7r(u1,w)*l(l(ul)) = 0, () r(ug,w) 1 (1(us)) = 1]
1-96
>—.
T

Therefore Valgmp (ly) > %
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Soundness For eachu € U,v € V andt € [T, let F, ,; : [T]® — {0, 1} be defined by
Fuvt(x)=1ifand only if iy (u,v,z) = t.
Similarly, for eachw € W,v € V andt € [T}, let Hy, ..+ : [T]¥ — [0, 1] be the function defined by

Hy, o = E Fy v s s = P l » Uy s =t
@)= B[ rontuw) = Pr lv(we.ronuw) =1

Suppose that there exists such thaValemp (Iv) > 77 + 727 For at least=; fraction ofw, an edge
of A sampled by first choosing is satisfied with probability more thaﬁf + ﬁ. By Lemmd 4.6, there

existT and D, such that, for each suah, we havelnf?[H,, ;] > 7 for somei, v andt. Setly(w) = i.
For otherw’s, choosdy (w) arbitrarily.

From the representation of influences in terms of Fourieffictents (see Khot et al [21]),

T< Inffd[meJ] < (WIEZ)GE[Inffjw(i) [Fuvt]]

and we conclude that/2 fraction of neighbors: of w havelnffjw(i) (Fuvt) = 7/2. We choosdy (u)
uniformly from ’
{z' L InfSUF, 4] > /2 for somet,v} .

Since>, Inf=P[F, 4] < d, there are at most™ 14| of candidatei's for eachu. If u have no candi-

date, choosé, (u) arbitrarily. The above strategy satisfi@fs}ﬁ)(g)(m) fraction of constraints in

expectation. Takinge small enough completes the proof of the theorem. O

Now, we present the full proof of our main theorem.

Theorem D.5 (Restatement of Theorem 1.1)nder the Unique Games Conjecture, for any- 0, it is
NP-hard to approximate Graph Pricing within a factor ﬁ)f—k €.

Proof. Givene > 0, let T large enough so thaftﬁ < 5. Theoreni 1B tells that it is hard to distinguish

e CompletenesOptgmp > % - Tf/s) = —1_2(6)-
e SoundnessOptgup < ﬁ + Tf/s = 1+4(%(E)

Lett = % We can assume that each vertex in the Uniqgue Games instaotddgree at leasf since dupli-
cating each vertexinto ¢ copiesvy, ..., v and duplicating each constraift, v) into t* copies(u;, v;)1<i j<t
preserves the optimum. Therefore, the instance of GeredaMax-Dicut obtained from the above Unigque
Games instance will havedeg > t. Theoreni 3.1 shows that it is NP-hard to distinguish

e CompletenessOptgp > Optgmp = 1_2(5)-

e SoundnessOptcp < Optemp + % = 1+4OT(6) +5= 1+4—OT(6).
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E Proofs of Lemmas about Gaussians

Let ¢(z) and®(x) be the probability density function (PDF) and the cumukathistribution function (CDF)
of the standard Gaussian, respectively. iet) = 1—®(z). We begin with the following simple fact about
the tail of ®.

2 - +2

Lemma E.1([8]). For any¢ > 0, me_? <®(t) < \/;—ﬂe_?

Lemma E.2 (Restatement of Lemnia Bll2)et g;,...,g, (n > 2) be independent standard Gaussian
random variables and < e < 1. If z > | /2log Z,

Primax[g;] < z] > 1 —e.
J

Proof. Note thatr > +/2log 2, S0—— < 1.

Varx
T = w/2logE
€

1 ( 3:2) <
exp(——) <
2mx P 2

= 1-d(z) <

=

S

Y

S|

where the last inequality follows from Lemrha E.1. We can bade that
Primax[C(j)] <] = ®(2)" > (1- -)" > 1 —e.
J
]

Lemma E.3 (Restatement of Lemnia Bl13)et g;,...,g, (n > 2) be independent standard Gaussian
random variables anf < e < 1/4. If x < > €

,/log%’

Prlmax|g;] — max2[g;] > «] = (1 — 2¢).
J J
Proof.

Primaxly;] - max2lg] > ] > n /w Bly — " o(y)dy

J —00

b
> n/ ®ly — z]" to(y)dy for someb fixed later

b
= [ aly—a ol - w>%dy

- oy) |\ [ -
g (ye[lgfo,b] m) /_OO n®ly — "y — z)dy

_ : ¢(y) b —x n\/
= iy ) | ey
~ (ot 2O

Lo vl L
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Letb = x + /2log 2. By the same argument with Lemia Bl.12, we have

—®b—x] <

= Ob—z]>1-

SIa3la

>
= Bb—a]=>(1-el"

Now we bound

o) . o (y—a)? . —2xy + 22 —2bx + 22
——= — = inf exp(—=+ = inf exp(—=——) =exp(——
yel-oobl (Y — ) ye[—oo bl 5 > ) ye[—o0,b] 5 ) =)
where the last inequality holds since it is monotonicallgréasing iny. = < 2 /loa T implies
x(z + \/ZIOgE) <e
€
= br<e
—2b 2
,, “etat
2
—2b 2
S exp(— ) S exp(—) 21—
Since bothinf, [ 3 ¢(y( )w) and®[b — z]™ are at least — ¢, the lemma follows. O

Lemma E.4 (Restatement of Lemnia 4.8Fix p, « € (0,1). The functionf (z) := I',(«, x) is concave.

Proof. Let Y, Z be independent Gaussians akid:= pY + \/1 —p?Z. Fix0 < a < b. We will show
that f(a) + f(b) > f(a+b). Letz = d(a+b),y = @ 1(b),z = d'(a),w = d~'(a). Note that
<Y<z

> zandX > w] — Pr[Y >z andX > w]
<Y <yandX > w]
_ﬂlﬁq_mmgygymmz>§%i%

—p

O

Lemma E.5 (Restatement of Lemnha 4.9or large enoughl” andé = T1/4, the following holds. For any
a€[0,1],b € [0, %] andp € (0,4/ ), Tpla,b) < ab+ =25,

Proof. LetY, Z be independent Gaussians akid= pY + /1 — p2Z. Letz = ®~'(a) andy = &~ (b).
By takingT > 2, we can assume < % andy > 0, while we do not put any assumption arandz.
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Fp(av

By LemmdELD(2y) <

WV

e aqg>1-—

T1/4
e b < T5/4 : () is bounded by + T5/4 2.
ea<1— T1/4 andb > T5/4 : Note thatr > —10+/log T andy < 10/log T'. Sincep <
1 —2py+ =22 >0 ifz>0
(x —2py) — V1—p?*(z — m) > {p2$p—2p2yTi42T+/4 >0 if —10y/TogT <
which shows tha\/tm‘l—iij’2 2T — 7 /4 Therefore,
~ 1 1 1 2
@)gb-@(x—m)+méb(a+m)+m gab+m,

: (@) is bounded by +

1
2\ 21y

b)

= Pr[X >z andY > y]

exp(—2y?) < b3 < ﬁ

1 1 2
7 < (a+ m)b"i' 51 S ab + T4

where the second inequality follows fromiz) < 1 for all z € R.
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