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Abstract

Until a few years ago, the fastest known matrix multiplication algorithm, due to Copper-
smith and Winograd (1990), ran in time O(n2.3755). Recently, a surge of activity by Stothers,
Vassilevska-Williams, and Le Gall has led to an improved algorithm running in time O(n2.3729).
These algorithms are obtained by analyzing higher and higher tensor powers of a certain identity
of Coppersmith and Winograd. We show that this exact approach cannot result in an algorithm
with running time O(n2.3725), and identify a wide class of variants of this approach which cannot
result in an algorithm with running time O(n2.3078); in particular, this approach cannot prove
the conjecture that for every ǫ > 0, two n× n matrices can be multiplied in time O(n2+ǫ).

We describe a new framework extending the original laser method, which is the method
underlying the previously mentioned algorithms. Our framework accommodates the algorithms
by Coppersmith and Winograd, Stothers, Vassilevska-Williams and Le Gall. We obtain our
main result by analyzing this framework. The framework is also the first to explain why taking
tensor powers of the Coppersmith–Winograd identity results in faster algorithms.
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1 Introduction

How fast can we multiply two n × n matrices? Ever since Strassen [13] improved on the O(n3)
high-school algorithm, this question has captured the imagination of computer scientists. A theory
of fast algorithms for matrix multiplication has been developed. Highlights include Schönhage’s
asymptotic sum inequality [11], Strassen’s laser method [15], and the Coppersmith–Winograd algo-
rithm [5]. The algorithm by Coppersmith and Winograd had been the world champion for 20 years,
until finally being improved by Stothers [12] in 2010. Independently, Vassilevska-Williams [16] ob-
tained a further improvement in 2012, and Le Gall [9] perfected their methods to obtain the current
world champion in 2014.

The Coppersmith–Winograd algorithm relies on a certain identity which we call the Coppersmith–
Winograd identity. Using a very clever combinatorial construction and the laser method, Copper-
smith and Winograd were able to extract a fast matrix multiplication algorithm whose running
time is O(n2.3872). Applying their technique recursively for the tensor square of their identity, they
obtained an even faster matrix multiplication algorithm with running time O(n2.3755). For a long
time, this latter algorithm had been the state of the art.

The calculations for higher tensor powers are complicated, and yield no improvement for the
tensor cube. With the advent of modern computers, however, it became possible to automate the
necessary calculations, allowing Stothers to analyze the fourth tensor power and obtain an algo-
rithm with running time O(n2.3730). Apart from implementing the necessary computer programs,
Stothers also had to generalize the original framework of Coppersmith and Winograd. Indepen-
dently, Vassilevska-Williams performed the necessary calculations for the fourth and eighth tensor
powers, obtaining an algorithm with running time O(n2.3728642) for the latter. Higher tensor powers
require more extensive calculations, involving the approximate solution of large optimization prob-
lems. Le Gall came up with a faster method for solving these large optimization problems (albeit
yielding slightly worse solutions), and this enabled him to perform the necessary calculations for the
sixteenth and thirty-second tensor powers, obtaining algorithms with running times O(n2.3728640)
and O(n2.3728639), respectively.

It is commonly conjectured that for every ǫ > 0, there exists a matrix multiplication algorithm
with running time O(n2+ǫ). Can taking higher and higher tensor powers of the Coppersmith–
Winograd identity yield these algorithms? In this paper we answer this question in the negative.
We show that taking the 2N th tensor power cannot yield an algorithm with running time O(n2.3725),
for any value of N . We obtain this lower bound by presenting a framework which subsumes the
techniques of Coppersmith and Winograd, Stothers, Vassilevska-Williams, and Le Gall, and is
amenable to analysis. At the same time, our framework is the first to explain what is gained by
taking tensor powers of the original Coppersmith–Winograd identity.

All prior work follows a very rigid framework in analyzing powers of the Coppersmith–Winograd
identities. However, Coppersmith and Winograd themselves already noted that there are many
degrees of freedom which are not explored by this rigid framework. One such degree of freedom
is analyzing powers of the identity other than powers of 2, and another one has to do with the
exact way that the tensor square of an identity is analyzed. Our new framework subsumes not
only the common rigid framework used by all prior work, but also accommodated these degrees of
freedom. We are able to prove that even accounting for these degrees of freedom, taking the Nth
tensor power of the Coppersmith–Winograd identity cannot yield an algorithm with running time
O(n2.3078), for any value of N . This limitation holds even for our new framework, which in some
sense corresponds to analyzing all powers at once.

1



Overview of our approach The Coppersmith–Winograd identity bounds the border rank (a
certain measure of complexity) of a certain tensor (three-dimensional analog of a matrix) T. The
tensor is a sum of six non-disjoint smaller tensors. Schönhage’s asymptotic sum inequality allows
us to obtain a matrix multiplication algorithm given a bound on the border rank of a sum of
disjoint tensors of a special kind, which includes the tensors appearing in T. The idea of the
laser method is to take a high tensor power of T and zero out some of the variables so that the
surviving smaller tensors are disjoint. Applying Schönhage’s asymptotic sum inequality then yields
a matrix multiplication algorithm. Following this route, an algorithm with running time O(n2.3872)
is obtained.

In order to improve on this, Coppersmith and Winograd take the tensor square of T, and rewrite
it as a sum of fifteen non-disjoint smaller tensors, which result from merging in a particular way
the thirty-six tensors obtained from the squaring (this “particular way” is one of the degrees of
freedom mentioned above). At this point the earlier construction is repeated (i.e., the laser method
is applied on T

⊗2). In total, the new construction is equivalent to the following procedure: start
with the original tensor T, take a high tensor power of it, zero out some of the variables, and merge
groups of remaining tensors so that the resulting merged tensors are disjoint and are of the kind
that allows application of the asymptotic sum inequality. The further constructions of Stothers (on
the 4th power of T), Vassilevska-Williams (on the 8th power of T), and Le Gall (on the 16th and
32nd powers of T) can all be put in this framework.

Numerical calculations show that the bound on ω obtained by considering T
⊗2ℓ improves as ℓ

increases, but the root cause of this phenomenon has never been completely explained (and never
quantitatively studied). Indeed, at first glance it seems that considering powers of T should not
help at all, since the analysis of T proceeds by analyzing powers T

⊗N for large N ; how do we
gain anything by analyzing instead large powers of, for instance, T⊗2? The improvement actually
results from the fact that when defining T

⊗2 it is possible to merge together several parts of the
tensor. Inspired by this observation, we introduce a method to analyze tensors that we call the laser
method with merging. The crucial property is that the methods used in prior works [5, 6, 9, 12, 16],
even accounting for the degrees of freedom mentioned above, can all be put in this framework, and
thus showing limitations of the laser method with merging immediately shows the limitations of all
these approaches.

The first main technical contribution of this paper is a general methodology to show, quan-
titatively, the limitations of the laser method with merging (we stress that these techniques are
currently only tailored to proving such limitations: we do not know how to systematically and effi-
ciently convert constructions discovered through the laser method with merging into algorithms for
matrix multiplication). A summary of our results appears in Table 1 on page 3. The Coppersmith–
Winograd identity is parameterized by an integer parameter q ≥ 1; our method applies for all these
values. For q, r ≥ 0, let ω ≤ ωm

q,r and ω ≤ ωpr
q,r be the bounds on ω obtained by applying the laser

method with merging and applying recursively the laser method as in prior works, respectively,
to the 2rth tensor power of T with the given value of q. For each q, r, the table gives ωpr

q,r and
a lower bound ωm∗

q,r on ωm
q,r. The bound O(n2.3078) already mentioned corresponds to the analysis

of T with the choice q = 5, which is the value used by Stothers, Vassilevska-Williams, and Le Gall
(Coppersmith and Winograd used the value q = 6, for which our lower bound is even better). The
bound O(n2.3725) corresponds to the analysis of T⊗16 with the choice q = 5.

The second main technical contribution of this paper is to show that the laser method with
merging applied on a tensor subsumes the laser method applied on any power of it. When applied
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Table 1: Upper bounds on ω obtained by analyzing T
⊗2r using the laser method (L.M.), i.e., the

value ωpr
q,r, and limits on the upper bounds on ω which can possibly be obtained by analyzing T

⊗2r

using the laser method with merging (L.M.M.), i.e., the value ωm∗
q,r , for several values of r and q.

Note that the recursive laser method improves as we take higher and higher powers, and so the
L.M. rows in the table are decreasing. In contrast, the laser method with merging deteriorates,
since the laser method with merging applied to some power of T subsumes the method applied to
higher powers of T, and so the L.M.M. rows are increasing.

Method r = 0 r = 1 r = 2 r = 3 r = 4

q = 1
L.M. 3 2.8084 2.6520 2.6324 2.6312

L.M.M. 2.2387 2.3075 2.4587 2.5772 2.6184

q = 2
L.M. 2.6986 2.4968 2.4707 2.4690 2.4689

L.M.M. 2.2540 2.3181 2.4187 2.4623 2.4673

q = 3
L.M. 2.4740 2.4116 2.4030 2.4027 2.4027

L.M.M. 2.2725 2.3203 2.3834 2.4015 2.4025

q = 4
L.M. 2.4142 2.3838 2.3796 2.3794 2.3794

L.M.M. 2.2907 2.3262 2.3690 2.3788 2.3791

q = 5
L.M. 2.3935 2.3756 2.3730 2.3729 2.3729

L.M.M. 2.3078 2.3349 2.3659 2.3723 2.3725

q = 6
L.M. 2.3872 2.3755 2.3737 2.3737 2.3737

L.M.M. 2.3234 2.3448 2.3682 2.3731 2.3733

q = 7
L.M. 2.3875 2.3793 2.3780 2.3779 2.3779

L.M.M. 2.3377 2.3550 2.3733 2.3775 2.3776

q = 8
L.M. 2.3909 2.3848 2.3838 2.3838 2.3838

L.M.M. 2.3508 2.3651 2.3798 2.3833 2.3834

to the tensor T, this result implies that ωm
q,r ≤ ωpr

q,s for all s ≥ r, and so ωpr
q,s ≥ ωm∗

q,r for all s ≥ r.
Combined with our results, this implies in particular that ωpr

q,s > 2.3725 for any s ≥ 4. Since
previous works [5, 12, 6, 16, 9] showed that ωpr

q,s > 2.3728 for 0 ≤ s ≤ 4, we conclude that analyzing
any power of T recursively as done in the prior works cannot result in an algorithm with running
time O(n2.3725).

Finally, we mention that our methodology to show the limitations of the laser method with
merging is related to a proof technique that appeared in a completely different approach to fast
matrix multiplication developed by Cohn, Kleinberg, Szegedy and Umans [2, 3, 4]. More precisely,
the combinatorial objects used in a simpler construction by Coppersmith and Winograd (given
in [5], and corresponding to an algorithm with complexity O(n2.404)) have been studied in [2] under
the name “uniquely solvable puzzles”, showing that this part of their construction is optimal. This
argument actually implies that, in the framework of the laser method, their whole construction is
optimal. We are able to give analogous bounds for the laser method with merging using similar
but significantly more complicated ideas.

Paper organization Section 2 contains a longer account of our results and techniques. The main
body of the paper begins with Section 3, which describes the theory of fast matrix multiplication up
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to and including the recent work of Stothers, Vassilevska-Williams, and Le Gall. The laser method
with merging is described in Section 4, in which we also explain how the algorithms of Coppersmith
and Winograd, Stothers, Vassilevska-Williams, and Le Gall fit in this framework. Our main result,
giving limitations of this method, appears in Section 5. The most general form of our framework
and lower bound is described in Section 6. We close the paper in Section 7 by discussing our results
and their implications.

Acknowledgements This material is based upon work supported by the National Science Foun-
dation under agreement No. DMS-1128155. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the authors, and do not necessarily reflect the views
of the National Science Foundation.

We thank Edinah Gnang and Avi Wigderson for helpful discussions.

2 Summary of results and techniques

Having briefly described our results in the introduction, we proceed to explain them in more detail.
We first describe in general lines the theory of fast matrix multiplication algorithms up to the
present, in Sections 2.1–2.3. We describe our new method, the laser method with merging, in
Section 2.4, and our results in Section 2.5.

The computation model we consider is the standard algebraic complexity model, in which a
program is a list of arithmetic instructions of arity 2. A program for multiplying two matrices
has variables initialized to the entries of the input matrices, and variables designated as outputs.
At the end of the program, the output variables should contain the entries of the product of the
two input matrices. The complexity of the program is the number of arithmetic instructions. The
matrix multiplication constant ω is the minimal number such that for any ǫ > 0, two n×n matrices
can be multiplied in complexity O(nω+ǫ). Although it is conjectured that ω = 2, it is not expected
that the complexity is O(n2) (see for example [10]), and this is the reason the ǫ is included.

2.1 Fast matrix multiplication

The first fast matrix multiplication algorithm was developed by Strassen [13], who showed how to
multiply two 2× 2 matrices using only 7 scalar multiplications, implying the bound ω ≤ log2 7. He
showed how to express his algorithm succinctly using the language of tensors, a three-dimensional
analog of matrices:

2
∑

i,j,k=1

xijyjkzki =(x11 + x22)(y11 + y22)(z11 + z22) + (x21 + x22)y11(z21 − z22)

+ x11(y12 − y22)(z12+z22) + x22(y21 − y11)(z11+z21) + (x11+x12)y22(−z11+z12)

+ (x21 − x11)(y11 + y12)z22 + (x12 − x22)(y21 + y22)z11.

We can think of this expression as a formal trilinear form in the formal variables xij , yjk, zki. On
the left we find the matrix multiplication tensor 〈2, 2, 2〉 =∑2

i,j,k=1 xijyjkzki which represents the
product of two 2×2 matrices (indeed, by replacing the x-variables by the entries of the first matrix
and the y-variables by the entries of the second matrix, the coefficient of zki in the above expression
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represents the entry in the ith row and the kth column of the matrix product of these two matrices).
More generally, the n×m× p matrix multiplication tensor 〈n,m, p〉 is defined as

〈n,m, p〉 =
n
∑

i=1

m
∑

j=1

p
∑

k=1

xijyjkzki.

On the right of Strassen’s identity we have seven rank one tensors, which are tensors of the form
(
∑

i′ αi′xi′)(
∑

j′ βj′yj′)(
∑

k′ βk′zk′); in our case i′, j′ and k′ each ranges over {1, 2} × {1, 2}. We
can express the existence of such a decomposition by saying that the rank of 〈2, 2, 2〉, denoted
R(〈2, 2, 2〉), is at most 7 (in fact, it is exactly 7). More generally, the rank of a tensor T is the
smallest r such that T can be written as a sum of r rank one tensors. Another important concept is
the border rank of a tensor T , denoted R(T ), which is the smallest r such that there is a sequence
of tensors of rank at most r converging to T . In the case of 〈2, 2, 2〉 the border rank and the rank
are equal, but there exist tensors whose border rank is strictly smaller than their rank.

The statement R(〈n, n, n〉) = nα is equivalent to the existence of a basis algorithm that mul-
tiplies n × n matrices with nα multiplications. Given such a basis algorithm, we can iterate it,
obtaining an algorithm for multiplying nk × nk matrices with nαk = (nk)α multiplications. Thus,
the matrix multiplication exponent must satisfy ω ≤ α. We can express this argument by the
inequality nω ≤ R(〈n, n, n〉). A vast generalization of this idea is Schönhage’s asymptotic sum
inequality [11]:

L
∑

i=1

Vol(〈ni,mi, pi〉)ω/3 ≤ R

(

L
⊕

i=1

〈ni,mi, pi〉
)

.

This formula uses two pieces of notation we have to explain. First, the volume of a matrix multi-
plication tensor 〈n,m, p〉 is Vol(〈n,m, p〉) = nmp. Second,

⊕L
i=1〈ni,mi, pi〉 is the direct sum of the

tensors 〈ni,mi, pi〉. This direct sum is obtained by writing the tensors 〈ni,mi, pi〉 using disjoint for-
mal variables, and taking the (regular) sum. For example, 〈1, 1, 1〉⊕〈1, 1, 1〉 = x1y1z1+x2y2z2. How
do we choose the formal variables? This does not really matter, and we identify two tensors that
differ only in the names of the formal variables (we only allow renaming the x-variables separately,
the y-variables separately, and the z-variables separately); we call two such tensors equivalent.

As an example, Schönhage showed that R(〈4, 1, 4〉 ⊕ 〈1, 9, 1〉) ≤ 17 (this is actually an example
where the rank is strictly larger than the border rank). Applying the asymptotic sum inequality, we
deduce that 16ω/3 + 9ω/3 ≤ 17. The left-hand side is an increasing function of ω, so this inequality
is equivalent to ω ≤ ρ for the unique solution of 16ρ/3 + 9ρ/3 = 17. Solving numerically for ρ, we
obtain the bound ω < 2.55.

2.2 Laser method

Strassen’s laser method [15] is a generalization of the asymptotic sum inequality for analyzing the
sum of non-disjoint tensors. It has been used by Coppersmith and Winograd [5] in a particularly
efficacious way. Specifically, for an integer parameter q, Coppersmith and Winograd consider the
following tensor:

T =

q
∑

i=1

(

x
[0]
0 y

[1]
i z

[1]
i + x

[1]
i y

[0]
0 z

[1]
i + x

[1]
i y

[1]
i z

[0]
0

)

+ x
[0]
0 y

[0]
0 z

[2]
q+1 + x

[0]
0 y

[2]
q+1z

[0]
0 + x

[2]
q+1y

[0]
0 z

[0]
0

= 〈1, 1, q〉[0,1,1] + 〈q, 1, 1〉[1,0,1] + 〈1, q, 1〉[1,1,0] + 〈1, 1, 1〉[0,0,2] + 〈1, 1, 1〉[0,2,0] + 〈1, 1, 1〉[2,0,0].
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The first expression is a tensor over the x-variables X = {x[0]0 , x
[1]
1 , . . . , x

[1]
q , x

[2]
q+1} and similar

y-variables and z-variables. The second expression is a succinct way of describing T, namely as a par-

titioned tensor. We partition the x-variables into three groups: X0 = {x[0]0 }, X1 = {x[1]1 , . . . , x
[1]
q },

X2 = {x[2]q+1}, and partition the y-variables and z variables similarly. Each of the six constituent
tensors appearing on the second line depends on a single group of x-variables, a single group of
y-variables, and a single group of z-variables, as described by their annotations appearing as su-
perscripts. The constituent tensors themselves are all equivalent to matrix multiplication tensors.
The notations 〈1, 1, q〉[0,1,1], 〈q, 1, 1〉[1,0,1] tell us that the two constituent tensors share z-variables
but have disjoint x-variables and y-variables.

Coppersmith and Winograd showed that R(T) ≤ q+2 by giving an explicit sequence of tensors
of rank at most q + 2 converging to T. This is known as the Coppersmith–Winograd identity.

The idea of the laser method is to take a high tensor power of T, zero some groups of variables
in order to obtain a sum of disjoint tensors, and then apply the asymptotic sum inequality. But
first, we need to explain the concept of tensor product, whose iteration gives the tensor power.
Suppose

T =
∑

i∈X

∑

j∈Y

∑

k∈Z

Ti,j,kxiyjzk and T ′ =
∑

i∈X′

∑

j∈Y ′

∑

k∈Z′

T ′
i,j,kxiyjzk

are two tensors. Their tensor product T ⊗T ′ is a tensor with x, y, z-variables X×X ′, Y ×Y ′, Z×Z ′

given by

T ⊗ T ′ =
∑

(i,i′)∈X×X′

∑

(j,j′)∈Y×Y ′

∑

(k,k′)∈Z×Z′

Ti,j,kT
′
i′,j′,k′xi,i′yj,j′zk,k′.

This operation corresponds to the Kronecker product of matrices. It is not hard to check that R(T⊗
T ′) ≤ R(T )R(T ′) and R(T ⊗ T ′) ≤ R(T )R(T ′). Also, the tensor product of matrix multiplication
tensors T, T ′ is another matrix multiplication tensor satisfying Vol(T ⊗T ′) = Vol(T )Vol(T ′); more
explicitly, 〈n,m, p〉 ⊗ 〈n′,m′, p′〉 = 〈nn′,mm′, pp′〉.

When we take a high tensor power T⊗N , we get a partitioned tensor over XN , Y N , ZN having 6N

constituent tensors. The x-variables XN are partitioned into 3N parts indexed by {0, 1, 2}N which
we call x-indices; similarly we have y-indices and z-indices. Each constituent tensor of T⊗N has an
associated index triple which consists of its x-index, y-index and z-index. The constituent tensor
with index triple (I, J,K) is denoted T⊗N

I,J,K. The support of T⊗N , denoted supp(T⊗N ), consists of

the 6N index triples.
Suppose we zero all x-variables except for those with x-indices in a set A ⊆ {0, 1, 2}N , all

y-variables except for those with y-indices in a set B ⊆ {0, 1, 2}N , and all z-variables except for
those with z-indices in a set C ⊆ {0, 1, 2}N . The resulting tensor is

∑

(I,J,K)∈supp(T⊗N )∩(A×B×C)

T⊗N
I,J,K .

Suppose that all the summands are over disjoint variables, that is for any two different summands
T⊗N
I1,J1,K1

, T⊗N
I2,J2,K2

we have I1 6= I2, J1 6= J2,K1 6= K2. In this case, since R(T⊗N ) ≤ (q + 2)N , we
can apply the asymptotic sum inequality to conclude that

∑

(I,J,K)∈supp(T⊗N )∩(A×B×C)

Vol(T⊗N
I,J,K)ω/3 ≤ (q + 2)N .
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In order to analyze the construction, Coppersmith and Winograd implicitly consider the quan-
tity V pr

ρ,N (T) which is the maximum of the expression
∑

(I,J,K)∈supp(T⊗N )∩(A×B×C) Vol(T
⊗N
I,J,K)ρ/3

over all A,B,C which result in disjoint summands. The asymptotic sum inequality then states
that V pr

ω,N (T) ≤ (q + 2)N . It is natural to define the limit V pr
ρ (T) = limN→∞ V pr

ρ,N (T)1/N (it turns

out that the limit exists), and then the asymptotic sum inequality states that V pr
ω (T) ≤ q + 2.

Coppersmith and Winograd were able to compute V pr
ρ (T) explicitly:

log2 V
pr
ρ (T) = max

0≤α≤1
H(2−α

3 , 2α3 , 1−α
3 ) + 1

3ρα log2 q, (1)

where H(·) is the entropy function. In fact, it is not hard to find the optimal α given q and ρ.
Choosing q = 6, Coppersmith and Winograd calculate the value of ρ which satisfies V pr

ρ (T) = q+2
and deduce that ω ≤ ρ, obtaining the bound ω < 2.3872.

Coppersmith and Winograd in fact only proved the lower bound on log2 V
pr
ρ (T). The easier

upper bound on log2 V
pr
ρ (T) appears implicitly in the work of Cohn et al. [2]. We sketch the proof of

the upper bound since it illustrates the ideas behind our main result; this proof sketch (comprising
the rest of this subsection) can be skipped on first reading.

The idea of the upper bound is simple. Given N , we will upper bound V pr
ρ,N (T) as follows.

Consider any A,B,C for which supp(T⊗N )∩ (A×B ×C) corresponds to disjoint tensors. For any
(I, J,K) ∈ supp(T⊗N )∩(A×B×C), its source distribution is the number of times each of the basic
six tensors was used to generate (I, J,K); this is a list of six non-negative integers summing to N .
A key observation is that there are only O(N5) distinct source distributions. We upper bound the
contribution of any given source distribution σ to the sum

∑

(I,J,K)∈supp(T⊗N )∩(A×B×C)

Vol(T⊗N
I,J,K)ρ/3

as follows. First, Vol(T⊗N
I,J,K)ρ/3 depends only on σ: log2Vol(T

⊗N
I,J,K)ρ/3 = (ρ/3)N Er∼ σ

N
log2 Vol(Tr),

where the Tr are the six constituent tensors of T. Second, since all x-indices appearing in the sum
are distinct, the number of summands is at most the number of distinct x-indices which appear in
index triples of type σ. There are at most 2NH(σ1/N) of these, where σ1 is the projection of σ on
the first index. Considering also y-indices and z-indices, we obtain the bound

log2





∑

(I,J,K)∈supp(T⊗N )∩(A×B×C)

Vol(T⊗N
I,J,K)ρ/3





≤ log2

(

∑

σ

2
N max(H(σ1/N),H(σ2/N),H(σ3/N))+ ρ

3
N Er∼ σ

N
log2 Vol(Tr)

)

≤ log2
(

O(N5)
)

+max
σ

[

N max(H(σ1/N),H(σ2/N),H(σ3/N)) +
ρ

3
N E

r∼σ/N
log2 Vol(Tr)

]

.

This is an upper bound on log2 V
pr
ρ,N (T). Taking the limit N →∞, we obtain

log2 V
pr
ρ (T) ≤ max

σ

[

max(H(σ1),H(σ2),H(σ3)) +
ρ

3
E

r∼σ
log2 Vol(Tr)

]

,

where this time σ ranges over all probability distributions over supp(T). This upper bound can be
massaged to obtain the right-hand side of Equation (1).
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2.3 Recursive laser method

Coppersmith and Winograd went on to prove an even better bound by considering the square of
their original identity, which shows that R(T⊗2) ≤ (q + 2)2. They consider T

⊗2 as a partitioned
tensor, but instead of using 32 parts for each type of variables, they collapse those into 5 different
parts: X2

i =
∑

i1+i2=iXi1 ⊗Xi2 for i ∈ {0, 1, 2, 3, 4} (where X0,X1,X2 is the original partition of
the x-variables), and similarly for the y-variables and z-variables. For example, X2

2 consists of the
union of X0 ⊗X2,X1 ⊗X1,X2 ⊗X0. According to the rules of partitioned tensors, we now have
to partition T

⊗2 into constituent tensors which only use one group each of x-variables, y-variables
and z-variables. When we do this we obtain 15 constituent tensors (rather than 62):

• The constituent tensor with index triple (0, 0, 4) is 〈1, 1, 1〉[0,0,2] ⊗ 〈1, 1, 1〉[0,0,2], which is a
matrix multiplication tensor 〈1, 1, 1〉. The index triples (0, 4, 0), (4, 0, 0) can be analyzed
similarly.

• The constituent tensor with index triple (0, 1, 3) is 〈1, 1, q〉[0,1,1]⊗〈1, 1, 1〉[0,0,2]+〈1, 1, 1〉[0,0,2]⊗
〈1, 1, q〉[0,1,1], which is equivalent to a single matrix multiplication tensor 〈1, 1, 2q〉 (essentially
since all four correspond to inner products whose “result” is in x

[0]
0 ). The index triples

(0, 3, 1), (1, 0, 3), (1, 3, 0), (3, 0, 1), (3, 1, 0) can be analyzed similarly.

• The constituent tensor with index triple (0, 2, 2) is 〈1, 1, 1〉[0,2,0]⊗〈1, 1, 1〉[0,0,2]+〈1, 1, 1〉[0,0,2]⊗
〈1, 1, 1〉[0,2,0] + 〈1, 1, q〉[0,1,1] ⊗ 〈1, 1, q〉[0,1,1], which is equivalent to the single matrix multipli-
cation tensor 〈1, 1, q2 + 2〉. The index triples (2, 0, 2), (2, 2, 0) can be analyzed similarly.

• The constituent tensor with index triple (1, 1, 2) is 〈1, q, 1〉[1,1,0]⊗〈1, 1, 1〉[0,0,2]+〈1, 1, 1〉[0,0,2]⊗
〈1, q, 1〉[1,1,0] + 〈q, 1, 1〉[1,0,1] ⊗ 〈1, 1, q〉[0,1,1] + 〈1, 1, q〉[0,1,1] ⊗ 〈q, 1, 1〉[1,0,1]. This tensor is not
equivalent to a matrix multiplication tensor. A similar problem occurs for the index triples
(1, 2, 1), (2, 1, 1).

The basic idea behind the analysis of T⊗2 is to apply the same sort of analysis we used for T.
The problem is that now we have three constituent tensors which are not matrix multiplication
tensors. Coppersmith and Winograd noticed that T⊗2

1,1,2 and the other problematic tensors can be

analyzed by applying the same sort of analysis once again. Define Valρ(T
⊗2
1,1,2) in the same way that

we defined V pr
ρ (T) before1. The value Valρ(T

⊗2
1,1,2) is a number V such that if we take the Nth tensor

power of T⊗2
1,1,2 and zero some variables appropriately, we get a sum of disjoint matrix multiplication

tensors
∑

s ts such that
∑

sVol(ts)
ρ/3 ≈ V N . It can therefore be used as a replacement for the

volume in an application of the asymptotic sum inequality for analyzing the tensor T⊗2 itself.
Coppersmith and Winograd diligently calculate Valρ(T

⊗2
1,1,2) = 41/3qρ(2 + q3ρ)1/3, and use this

value to calculate V pr
ρ (T⊗2); this time the explicit formula is too cumbersome to write concisely.

Choosing q = 6, they are able to prove the bound ω < 2.3755.
Stothers [12] and Vassilevska-Williams [16] were the first to explain how to generalize this anal-

ysis to higher powers of the original identity, Stothers analyzing the fourth power, and Vassilevska-
Williams the fourth and eighth powers. Le Gall [9] managed to analyze even higher powers: the
sixteenth and thirty-second. The bound obtained by analyzing the fourth power is ω < 2.3730.
The analysis of higher powers results in better bounds, as shown in Table 1, but those differ by less
than 10−3 from the bound 2.3730.

1Since T
⊗2
1,1,2 is not symmetric the actual definition is slightly different, and involves symmetrizing this tensor. For

the sake of exposition we ignore these details here.
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2.4 Laser method with merging

Why does analyzing T
⊗2 result in better bounds than analyzing T? The analysis of T proceeds by

taking the Nth tensor power, zeroing some variables, and comparing the total value of the resulting
expression to (q + 2)N . In contrast, the analysis of T⊗2 proceeds by taking the Nth tensor power
of T⊗2, which is also the 2Nth tensor power of T, zeroing some variables, and comparing the total
value of the resulting expression to (q + 2)2N . Where is the gain?

In this paper we point out the core reason why the analysis of T⊗2 gains over the analysis
of T, and evaluate it quantitatively: the gain lies in the fact that when describing the constituent
tensors of T⊗2, we merge several non-disjoint matrix multiplication tensors to larger matrix mul-
tiplication tensors. For example, T⊗2

0,1,3 results from merging the two matrix multiplication tensors

〈1, 1, q〉[0,1,1] ⊗ 〈1, 1, 1〉[0,0,2], 〈1, 1, 1〉[0,0,2] ⊗ 〈1, 1, q〉[0,1,1] to a bigger one of shape 〈1, 1, 2q〉.
Accordingly, we define a generalization of the laser method which allows such merging. A single

application of this method subsumes the analysis of all powers of the Coppersmith–Winograd
identity. Recall that we defined V pr

ρ,N (T) to be the maximum value of

∑

(I,J,K)∈supp(T⊗N )∩(A×B×C)

Vol(T⊗N
I,J,K)ρ/3

over all choices of A,B,C that result in disjoint tensors. The quantity V m
ρ,N (T) is defined in a similar

fashion. First, we choose A ⊆ XN , B ⊆ Y N , C ⊆ ZN and zero all variables not in A,B,C. The
result is a bunch of matrix multiplication tensors which we call the surviving tensors. There follows a
merging stage: if the sum of a set of surviving tensors is equivalent to a matrix multiplication tensor,
then we allow the set to be replaced by a single matrix multiplication tensor. The result of this
stage is a set {ts} of matrix multiplication tensors, each of which is a sum of surviving tensors. The
merging value V m

ρ,N (T) is defined as the maximum of
∑

sVol(ts)
ρ/3 over all choices of A,B,C and

all mergings which result in a set of tensors {ts} which have disjoint x-variables, y-variables, and z-
variables. Mimicking the earlier definition, we define V m

ρ (T) = limN→∞ V m
ρ,N (T)1/N , where again the

limit always exists. A generalization of the asymptotic sum inequality shows that V m
ω (T) ≤ R(T),

and so this method allows us to prove upper bounds on ω once we have lower bounds on V m
ω (T).

While we defined above the merging value V m
ρ only for the Coppersmith–Winograd tensor T,

the same definition works for any other partitioned tensor whose constituent tensors are matrix
multiplication tensors. A more complicated definition exists for the more general case, in which
some constituent tensors are not matrix multiplication tensors, but instead are supplied with a value
(as in the recursive laser method). This definition only allows merging of matrix multiplication
tensors, and is actually crucial for our analyses.

2.5 Our results

We show that V m
ρ (T) ≥ V pr

ρ (T⊗N )1/N for any N , where the latter is calculated along the lines of
the work by Coppersmith and Winograd, Stothers, Vassilevska-Williams, and Le Gall, but allowing
more degrees of freedom than those used in current work. First, when going from T

⊗N to T
⊗2N ,

in current work the parts are always folded by putting XN
i ×XN

j in part X2N
i+j ; our upper bound

on V pr
ρ is oblivious to this choice, and thus allows arbitrary repartitioning (this is a degree of

freedom already mentioned in the original paper of Coppersmith and Winograd). Second, current
methods calculate successive values of T,T⊗2,T⊗4, . . ., each time squaring the preceding tensor.
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Our method also allows sequences such as T,T⊗2,T⊗3, where the latter is obtained by considering
the tensor product of the two former tensors. Third, our results apply by and large to tensors other
than the Coppersmith–Winograd tensor, though other (promising) such examples are not currently
known.

The bound V m
ρ (T) ≥ V pr

ρ (T⊗N )1/N implies a limit on what bounds on ω can be obtained by
the recursive laser method applied to all powers of T. Indeed, suppose that ρ is the solution to
V m
ρ (T) = q+2. Then the solution α to V pr

α (T⊗N ) = (q +2)N satisfies α ≥ ρ (because both V m
ρ (T)

and V pr
α (T⊗N ) are increasing functions of ρ and α, respectively), and so the corresponding bound

ω ≤ α is no better than ω ≤ ρ.
We moreover show that more generally V m

ρ (T⊗N1) ≥ V pr
ρ ((T⊗N1)⊗N2)1/N2 for any positive

integers N1 and N2. This implies a limit on what bounds on ω can be obtained by the recursive
laser method applied to T

⊗N1 . In particular, an upper bound on V m
ρ (T⊗2N ) implies a limit on what

bound on ω can be obtained by the recursive laser method applied to T
⊗2M for all M ≥ N .

One of the main contributions of the paper is to show general lower bounds on the merging
value. First, using ideas similar to the upper bound on V pr

ρ (T) mentioned in Section 2.2, but relying
on significantly more complicated arguments, we obtain an upper bound on V m

ρ (T):

log2 V
m
ρ (T) ≤ max

0≤α≤1
H(2−α

3 , 2α3 , 1−α
3 ) + 1

3ρα log2 q +
ρ−2
3 H(1−α

2 , α, 1−α
2 ),

gaining an extra term compared to the value of log2 V
pr
ρ (T) given in Equation (1). We do not have

a matching lower bound, and indeed we suspect that our upper bound is not tight. Using this
upper bound we find that for q = 5, the solution to V m

ρ (T) = q + 2 satisfies ρ > 2.3078. Therefore,
for q = 5, no analysis of any power of T, even accounting for the degrees of freedom mentioned
above, can yield a bound better than ω < 2.3078.

We then give a similar lower bounds on the merging value of a large class of tensors, including
those of the form T

⊗N1 . Using this upper bound, we find that the solution to V m
ρ (T⊗16) = (q+2)16

satisfies ρ > 2.3725, which implies that no analysis of any power T
⊗2N along previous lines can

yield a bound better than ω < 2.3725. In particular, the existing bound ω < 2.3729 cannot
be improved significantly by considering the 64th, 128th, 256th powers and higher powers of the
Coppersmith–Winograd identity.

Table 1 on page 3 summarizes our numerical results. For each q, r the table contains the
solution ωm∗

q,r , rounded down to four decimal digits, to V m∗
ωm∗
q,r

(T⊗2r) = (q+2)2
r
, where V m∗

ρ (T⊗2r) is

the upper bound on V m
ρ (T⊗2r) that we obtain. In particular, the best bound ω ≤ ωm

q,r obtainable

by applying the laser method with merging to T
⊗2r satisfies ωm

q,r ≥ ωm∗
q,r . Since V m

ρ (T⊗2r) ≥
V pr
ρ (T⊗2s)2

r−s
for all s ≥ r, we deduce that ωpr

q,s ≥ ωm
q,r ≥ ωm∗

q,r , and so the table indeed gives limits
on the upper bounds on ω which can be obtained using the recursive laser method applied to powers
of T.

As briefly mentioned above, our upper bound on V m
ρ (T ) applies to a wide class of tensors, with

one caveat. The tensor powers of T have a special structure which allows us to describe what kinds of
mergings are possible at the merging stage. It turns out that all such mergings satisfy the following
property, which we call coherence: if S ⊆ supp(T⊗N ) is a set of index triples of tensors whose sum is
equivalent to a matrix multiplication tensor, then for all t ∈ [N ], either It = 0 for all (I, J,K) ∈ S,
or Jt = 0 for all (I, J,K) ∈ S, or Kt = 0 for all (I, J,K) ∈ S. For example, T

⊗2
0,2,2 results

from merging tensors corresponding to the index triples {(00, 11, 11), (00, 02, 20), (00, 20, 02)}, and
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I1 = I2 = 0 in all of them. Our upper bound applies for all tensors for which all mergings are
coherent. We get the claimed general bound by modifying the definition of the merging value,
requiring that all mergings be coherent (which actually happens in all current approaches based on
the laser method).

3 Background

Notation We write [n] = {1, . . . , n} and use the notation exp2 x for 2x. All our logarithms are
to base 2. The entropy function H is given by

H(p1, . . . , pm) = −
m
∑

i=1

pi log pi,

where 0 log 0 = 0, for any probability distribution ~p = (p1, . . . , pm). It can be used to estimate
multinomial coefficients:

(

n

np1, . . . npm

)

≤ exp2 (H(p1, . . . , pm)n) .

The entropy function is concave: if ~q1, . . . , ~qr are probability distributions and c1, . . . , cr ≥ 0 sum
to 1 then

r
∑

i=1

ciH(~qi) ≤ H

(

r
∑

i=1

ci~qi

)

.

The rest of this section is organized as follows:

• Section 3.1 describes the computational model and includes basic definitions: tensors, tensor
rank, border rank, and so on. We also state Schönhage’s asymptotic sum inequality.

• Section 3.2 describes the general notion of value and the corresponding generalization of the
asymptotic sum inequality.

• Section 3.3 describes partitioned tensors, a concept which forms part of the traditional de-
scription of the laser method.

• Section 3.4 gives a general version of the original Coppersmith–Winograd bound on the first
power of their identity. This section includes non-standard definitions attempting to capture
their construction, as well as some non-standard results which abstract the Coppersmith–
Winograd method. Some of these results have not appeared before, and their proofs are
given in the appendix.

• Section 3.5 describes the recursive version of the laser method, used by Coppersmith and
Winograd [5], Stothers [12, 6], Vassilevska-Williams [16], and Le Gall [9] to obtain the best
known bounds on ω.

The goal of this section is to describe the recursive laser method in enough detail so that we
are able to show in Section 4 that our new variant of the method (which is not recursive) subsumes
all earlier work.
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3.1 Bilinear complexity

The material below can be found in Chapters 14–15 of the book Algebraic Complexity Theory [1].

The model In this paper is to study the complexity of matrix multiplication in the algebraic
complexity model. In this model, a program for computing the product C = AB of two n × n
matrices is allowed to use the following instructions:

• Reading the input: t← aij or t← bij .

• Arithmetic: t← t1 ◦ t2, where ◦ ∈ {+,−,×,÷}.

• Output: cij ← t.

Each of these instructions has unit cost. All computations are done over a field F, whose identity for
our purposes is not so important; the reader can assume that we always work over the real numbers.
A legal program is one which never divides by zero; Strassen [14] showed how to eliminate divisions
at the cost of a constant blowup in size. Denote by T (n) the size of the smallest program which
computes the product of two n× n matrices. The exponent of matrix multiplication is defined by

ω = lim
n→∞

T (n)1/n.

It can be shown that the limit indeed exists. For each ǫ > 0, we also have T (n) = Oǫ(n
ω+ǫ), and

ω can also be defined via this property.

Tensors and tensor rank Strassen [13] related ω to the tensor rank of matrix multiplication
tensors, a connection we proceed to explain. The tensors we are interested in are three-dimensional
equivalents of matrices. An n×m matrix A over a field F corresponds to the bilinear form

n
∑

i=1

m
∑

j=1

Aijxiyj,

where the xi’s and the yj’s are formal variables. Its rank is the smallest integer r such that the
bilinear form can be written as

t
∑

s=1

(

n
∑

i=1

αisxi

)





m
∑

j=1

βjsyi





for some elements αis and βjs in F.
Similarly, third order tensors correspond to trilinear forms. Let X = {x1, . . . , xn}, Y =

{y1, . . . , ym} and Z = {z1, . . . , zp} be three sets of formal variables. We call the variables in X
the x-variables, and define y-variables and z-variables similarly. A tensor over X,Y,Z is a trilinear
form

T =

n
∑

i=1

m
∑

j=1

p
∑

k=1

Tijkxiyjzk,
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where the Tijk are elements in F. The rank of T is the smallest integer r such that this trilinear
form can be written as

t
∑

s=1

(

n
∑

i=1

αisxi

)





m
∑

j=1

βjsyi





(

p
∑

k=1

γkszk

)

for some elements αis, βjs and γks in F. We denote the rank of a tensor T by R(T ). In contrast to
matrix rank, tensor rank is NP-hard to compute [7, 8].

The matrix multiplication tensor 〈n,m, p〉 is given by

T =

n
∑

i=1

m
∑

j=1

p
∑

k=1

xijyjkzki.

This is an nm×mp× pn tensor which corresponds to the trilinear product Tr(xyz), where x, y, z
are interpreted as n×m,m× p, p× n matrices, correspondingly. Strassen [13] proved that

ω = lim
n→∞

R(〈n, n, n〉)1/n.

Border rank and the asymptotic sum inequality Schönhage’s asymptotic sum inequality [11]
is a fundamental theorem which is the main vehicle used for proving upper bounds on ω. In order
to state it, we need two more definitions: direct sum and border rank.

For matrices A1, A2 of dimensions n1×m1, n2×m2, their direct sum A1⊕A2 is the (n1+n2)×
(m1 +m2) block-diagonal matrix having as blocks A1, A2. Similarly we can define the direct sum
of two tensors T1, T2.

If Ai is a sequence of matrices converging to a matrix A, then R(Ai)→ R(A). The same does
not necessarily hold for tensors: if Ti is a sequence of tensors converging to a tensor T , all we are
guaranteed is that limi R(Ti) ≤ R(T ). The border rank of a tensor T , denoted R(T ), is the smallest
rank of a sequence of tensors converging to T . Equivalently, the border rank of T is the smallest
rank over F[ǫ] of any tensor of the form ǫkT +

∑r
ℓ=k+1 ǫ

ℓTℓ (the equivalence is not immediate but
follows from a result of Strassen [15], see [1, §20.6]). We denote any tensor of the latter form by
ǫkT +O(ǫk+1).

We can now state the asymptotic sum inequality.

Theorem 3.1 (Asymptotic sum inequality). For every set ni,mi, pi (1 ≤ i ≤ K) of positive
integers,

K
∑

i=1

(nimipi)
ω/3 ≤ R

(

K
⊕

i=1

〈ni,mi, pi〉
)

.

If we define the volume of a matrix multiplication tensor 〈n,m, p〉 by Vol(〈n,m, p〉) = nmp, the
size of the support (set of non-zero entries) of 〈n,m, p〉, then we can restate the asymptotic sum
inequality as follows.

Theorem 3.2 (Asymptotic sum inequality (restated)). For every set T1, . . . , TK of matrix multi-
plication tensors,

K
∑

i=1

Vol(Ti)
ω/3 ≤ R

(

K
⊕

i=1

Ti

)

.
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The work of Coppersmith and Winograd, Stothers, Vassilevska-Williams, and Le Gall uses a
generalization of the asymptotic sum inequality in which volume is replaced by a more general
parameter which applies to arbitrary tensors rather than only to matrix multiplication ones. One
main difference is that this more general notion of value depends on ω. We describe this version in
Section 3.2.

Isomorphism, restriction, degeneration, and equivalence of tensors A tensor T over
X,Y,Z is a restriction of a tensor T ′ over X ′, Y ′, Z ′ if there are linear transformations A : F[X]→
F[X ′], B : F[Y ] → F[Y ′], C : F[Z] → F[Z ′] such that T (x, y, z) = T ′(Ax,By,Cz) as trilinear forms
over X,Y,Z (here x is the vector of formal x-variables, and y, z are defined similarly). It is not
hard to check that R(T ) ≤ R(T ′) and R(T ) ≤ R(T ′). If T and T ′ are each a restriction of the
other, then we say that T and T ′ are isomorphic2. Isomorphic tensors have the same rank and
border rank.

There is a weaker notion of restriction which implies R(T ) ≤ R(T ′). We say that T is a
degeneration of T ′ if for some k, ǫkT + O(ǫk+1) is a restriction of T ′ over the field F[ǫ]. As shown
by Strassen [15], if two tensors are each a degeneration of the other, then they are isomorphic.

Using the notions of restriction and degeneration, we can give an alternative definition of rank
and border rank. Let 〈n〉 =∑n

i=1 xiyizi be the triple product tensor. Then R(T ) ≤ r if and only if
T is a restriction of 〈r〉, and R(T ) ≤ r if and only if T is a degeneration of 〈r〉.

While isomorphism and degeneration are natural concepts from an algebraic viewpoint, in
practice many of the constructions appearing below are combinatorial, and so the corresponding
tensors satisfy stronger relations. A tensor T over X,Y,Z is equivalent to a tensor T ′ over X ′, Y ′, Z ′,
in symbols T ≈ T ′, if there exist bijections α : X → X ′, β : Y → Y ′, γ : Z → Z ′ such that
Tijk = T ′

α(i)β(j)γ(k), that is, if T and T ′ differ by a renaming of variables. We often consider tensors
only up to equivalence. If α, β, γ are only required to be injections, then T is a combinatorial
restriction of T ′. In that case, T is obtained from T ′ by zeroing some variables and renaming the
rest arbitrarily.

Useful operations on tensors Two useful operations on tensors are tensor product (corre-
sponding to the Kronecker product of matrices) and rotation (corresponding to transposition of
matrices).

The Kronecker or tensor product of matrices A1 ⊗A2 is an n1n2 ×m1m2 matrix whose entries
are (A1 ⊗A2)i1i2,j1j2 = (A1)i1,j1(A2)i2,j2 . The tensor product of two tensors is defined analogously.
It then follows immediately that 〈n1,m1, p1〉 ⊗ 〈n2,m2, p2〉 ≈ 〈n1n2,m1m2, p1p2〉. The nth tensor
power of a tensor T is denoted by T⊗n. Both rank and border rank are submultiplicative: R(T1 ⊗
T2) ≤ R(T1)R(T2) and R(T1 ⊗ T2) ≤ R(T1)R(T2).

Matrices can be transposed. The corresponding operation for tensors is rotation. For an n×m×p
tensor T =

∑

ijk Tijkxiyjzk, its rotation is the m× p × n tensor TC =
∑

jki Tijkyjzkxi. Repeating

the operation again, we obtain a p×n×m tensor TC2
. All rotations of a tensor have the same rank

and the same border rank. There are several corresponding notions of symmetry, among which we
choose the one most convenient for us: a tensor T is symmetric if TC ≈ T .

2The reader might wonder what is the relation between T and T ′ if there are regular A,B,C such that T (x, y, z) =
T ′(Ax,By,Cz). This definition is less general than isomorphism, since for example all zero tensors are isomorphic,
but bijections A,B,C exist only if |X| = |X ′|, |Y | = |Y ′|, |Z| = |Z′|. The exact relation between the two definitions
appears in [1, §14.6].
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3.2 The value of a tensor

The asymptotic sum inequality can be generalized to tensors which are not matrix multiplication
tensors. The idea is to define a notion of value generalizing that of volume.

Definition 3.1. For a tensor T , any ρ ∈ [2, 3], and any integer N ≥ 1, let Vρ,3N (T ) be the maximum

of
∑L

i=1(nimipi)
ρ/3 over all degenerations of (T ⊗TC⊗TC2

)⊗N isomorphic to
⊕L

i=1〈ni,mi, pi〉. The
value of T is the function

Vρ(T ) = lim
N→∞

Vρ,3N (T )1/3N .

When T is symmetric, like the Coppersmith–Winograd tensor described below, we can do away
with T ⊗ TC ⊗ TC2

, considering instead T⊗N . The more general definition is needed only for
non-symmetric tensors, which do, however, come up in the analysis.

Stothers [12, 6] showed that the limit in the definition of Vρ(T ) always exists. Furthermore, he
showed that the definition of Vρ,N (T ) is unchanged if we require all dimension triples (ni,mi, pi) to
be the same. He also proved the following properties of the value.

Lemma 3.3 ([6]). For any ρ ∈ [2, 3] the following hold:

1. If T = 〈n,m, p〉 then Vρ(T ) = Vol(T )ρ/3.

2. For any T1, T2 we have Vρ(T1 ⊕ T2) ≥ Vρ(T1) + Vρ(T2) and Vρ(T1 ⊗ T2) ≥ Vρ(T1)Vρ(T2).

3. For any T we have Vω(T ) ≤ R(T ).

The last item implies the asymptotic sum inequality since taking T =
⊕K

i=1〈ni,mi, pi〉, the first
two items show that

Vω

(

K
⊕

i=1

〈ni,mi, pi〉
)

≥
K
∑

i=1

(nimipi)
ω/3,

and so the last item shows that
∑K

i=1(nimipi)
ω/3 ≤ R(

⊕K
i=1〈ni,mi, pi〉).

3.3 Partitioned tensors and the Coppersmith–Winograd identity

Coppersmith and Winograd [5] exhibit the following identity, for any q ≥ 0:

ǫ3

[

q
∑

i=1

(

x
[0]
0 y

[1]
i z

[1]
i + x

[1]
i y

[0]
0 z

[1]
i + x

[1]
i y

[1]
i z

[0]
0

)

+ x
[0]
0 y

[0]
0 z

[2]
q+1 + x

[0]
0 y

[2]
q+1z

[0]
0 + x

[2]
q+1y

[0]
0 z

[0]
0

]

+O(ǫ4) =

ǫ

q
∑

i=1

(x
[0]
0 + ǫx

[1]
i )(y

[0]
0 + ǫy

[1]
i )(z

[0]
0 + ǫz

[1]
i )−

(

x
[0]
0 + ǫ2

q
∑

i=1

x
[1]
i

)(

y
[0]
0 + ǫ2

q
∑

i=1

y
[1]
i

)(

z
[0]
0 + ǫ2

q
∑

i=1

z
[1]
i

)

+

(1− qǫ)(x
[0]
0 + ǫ3x

[2]
q+1)(y

[0]
0 + ǫ3y

[2]
q+1)(z

[0]
0 + ǫ3z

[2]
q+1).

This identity shows that R(T(q)) ≤ q + 2, where

T(q) =

q
∑

i=1

(

x
[0]
0 y

[1]
i z

[1]
i + x

[1]
i y

[0]
0 z

[1]
i + x

[1]
i y

[1]
i z

[0]
0

)

+ x
[0]
0 y

[0]
0 z

[2]
q+1 + x

[0]
0 y

[2]
q+1z

[0]
0 + x

[2]
q+1y

[0]
0 z

[0]
0 .
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For simplicity, when q is understood we use T for T(q). We call T the Coppersmith–Winograd
tensor.

The Coppersmith–Winograd tensor is an example of a partitioned tensor.

Definition 3.2. Let X,Y,Z be finite sets of variables, and assume that these sets are partitioned
into smaller sets:

X =
⋃

i∈I

Xi, Y =
⋃

j∈J

Yj , Z =
⋃

k∈K

Zk,

where I, J,K are three finite sets, and the unions are disjoint. Each Xi is called an x-group, each
Yj is called a y-group, and each Zk is called a z-group. Each of them is a group.

A partitioned tensor over X,Y,Z is a tensor T of the form T =
∑

s Ts, where each Ts is a
nonzero tensor over Xis , Yjs , Zks for some (is, js, ks) ∈ I×J ×K. We call (is, js, ks) the annotation
of Ts. The annotations of different Ts must be distinct. We call Ts the constituent tensors, and
T =

∑

s Ts is the decomposition of T . The support of T is the set supp(T ) ⊆ I × J × K of all
annotations of constituent tensors Ts. For convenience, we will often label the constituent tensors
by elements of the support (i.e., identify s and (is, js, ks)) and write T =

∑

s∈supp(T ) Ts.
A partitioned tensor T is tight if I, J,K are sets of integers and for some D ∈ Z, all annotations

(i, j, k) in the support of T satisfy i+ j + k = D.

Tightness is necessary in current techniques, based on the laser method, proving lower bounds
on the value of partitioned tensors (in particular, in Theorem 3.5).

As an example, we explain how to view the Coppersmith–Winograd tensor as a partitioned

tensor. The x-variables are X = X0 ∪ X1 ∪ X2, where X0 = {x[0]0 }, X1 = {x[1]1 , . . . , x
[1]
q }, X2 =

{x[2]q+1}. The sets Y,Z are defined similarly. We have

T = T0,1,1 + T1,0,1 + T1,1,0 + T2,0,0 + T0,2,0 + T0,0,2,

where T0,1,1 ≈ 〈1, 1, q〉, T1,0,1 ≈ 〈q, 1, 1〉, T1,1,0 ≈ 〈1, q, 1〉 and T2,0,0, T0,2,0, T0,0,2 ≈ 〈1, 1, 1〉. The
partitioned tensor is tight since all annotations in its support sum to 2.

Partitioned tensors can be multiplied. Suppose that T =
∑

s Ts is a partitioned tensor over
X,Y,Z, where X =

⋃

i∈I Xi, Y =
⋃

j∈J Yj, Z =
⋃

k∈K Zk, and that T ′ =
∑

s′ T
′
s′ is a partitioned

tensor over X ′, Y ′, Z ′, where X ′ =
⋃

i′∈I′ X
′
i′ , Y

′ =
⋃

j′∈J ′ Y ′
j′, Z

′ =
⋃

k′∈K ′ Z ′
k′ . Then T ⊗ T ′ =

∑

s,s′ Ts⊗T ′
s′ is a partitioned tensor over X×X ′, Y ×Y ′, Z×Z ′, whereX×X ′ =

⋃

(i,i′)∈I×I′ Xi×X ′
i′ ,

and Y × Y ′, Z × Z ′ are defined similarly. If T and T ′ are both tight then so is T ⊗ T ′.
Of particular interest to us is the tensor power of a partitioned tensor. Suppose that T =

∑

s Ts

is a partitioned tensor over X,Y,Z, where X =
⋃

i∈I Xi, Y =
⋃

j∈J Yj, Z =
⋃

k∈K Zk. For N ≥ 1,

the tensor power T⊗N is a partitioned tensor over XN , Y N , ZN . We can index the parts in XN by
sequences in IN which we call x-indices, and we define y-indices and z-indices analogously. Each
constituent tensor of T⊗N is indexed by an index triple (i, j, k) consisting of an x-index, a y-index,
and a z-index. A set of index triples is strongly disjoint if no two triples share an x-index, a y-index
or a z-index.

Partitioned tensors can also be rotated: if T is a partitioned tensor over X,Y,Z, then TC is
a partitioned tensor over Y,Z,X (partitioned in the same way) with a rotated support. Rotation
preserves tightness. A partitioned tensor T with parameters X,Y,Z, I, J,K is symmetric if I =
J = K and T(i,j,k) is equivalent to T(j,k,i) for each (i, j, k) ∈ supp(T ). For example, T is symmetric.

The definition of value given in Section 3.2 is in terms of degeneration. However, all construc-
tions below use a very specific form of degeneration, partitioned restriction.
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Definition 3.3. Let T be a partitioned tensor over X =
⋃

i∈I Xi, Y =
⋃

j∈J Yj , Z =
⋃

k∈K Zk. A
partitioned restriction of T is a tensor T ′ over X ′ =

⋃

i∈I′ Xi, Y =
⋃

j∈J ′ Yj, Z =
⋃

k∈K ′ Zk (with
the induced partitions), for some I ′ ⊆ I, J ′ ⊆ J , K ′ ⊆ K, obtained from T by zeroing all variables
in X \X ′, Y \ Y ′, Z \ Z ′.

In other words, a tensor T ′ is a partitioned restriction of a partitioned tensor T if it is obtained
from T by zeroing groups of variables.

3.4 The laser method

The asymptotic sum inequality, or more precisely its generalization given in Section 3.2, can be used
to derive an upper bound on ω for partitioned tensors in which the set of index triples corresponding
to the constituent tensors is strongly disjoint. The laser method, invented by Strassen [15], is a
general method to analyze partitioned tensors when this condition does not hold. The method
has been further developed by Coppersmith and Winograd [5], and received its definitive form by
Stothers [6], in the case of tight partitioned tensors. In this subsection we describe this method.

Several of the results appearing here have not appeared explicitly in prior literature, and their
proofs are given in the appendix. These include Theorem 3.4, the second half of Theorem 3.5, and
Theorem 3.6.

The key idea of the laser method is to obtain a lower bound on Vρ,N (T ) by considering parti-
tioned restrictions of T⊗N . It is useful to abstract this idea by defining a restricted notion of value.
First we define the notion of a partitioned tensor with lower bounds on the value of its constituent
tensors.

Definition 3.4. An estimated partitioned tensor is a partitioned tensor T =
∑

s Ts along with
a function Valρ(Ts) for any s ∈ supp(T ) (the estimated value) mapping [2, 3] to the non-negative
reals. If Ts is a matrix multiplication tensor, then we insist that Valρ(Ts) = Vol(Ts)

ρ/3.

If T is an estimated partitioned tensor then its rotation TC can be viewed as an estimated
partitioned tensor by using the same values. If T, T ′ are estimated partitioned tensors then we
can view their product T ⊗ T ′ as an estimated partitioned tensor by defining Valρ(Ts ⊗ T ′

s′) =
Valρ(Ts)Valρ(T

′
s′). We can now define the partition-restricted value.

Definition 3.5. Let T be an estimated partitioned tensor. Given ρ ∈ [2, 3] and N ≥ 1, let V pr
ρ,3N (T )

be the maximum of
∑

s∈supp(T ′)Valρ(T
′
s) over all partitioned restrictions T ′ of (T ⊗ TC ⊗ TC2

)⊗N

whose support is strongly disjoint. The partition-restricted value of T is the function

V pr
ρ (T ) = lim

N→∞
V pr
ρ,3N (T )1/3N .

In other words, in order to compute V pr
ρ,3N (T ) we consider all possible ways of zeroing blocks of

variables in (T ⊗TC⊗TC2
)⊗N such that all surviving constituent tensors have distinct x-indices, y-

indices and z-indices, and maximize over the value of
∑

s∈S Valρ(T
′
s), where S is the set of surviving

index triples.
The idea is to choose for Valρ(Ts) some lower bound on V (Ts). For example, if Ts is a matrix

multiplication tensor then we can choose Valρ(Ts) = Vol(Ts)
ρ/3. A somewhat subtle application of

the generalized asymptotic sum inequality then implies the following.
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Theorem 3.4. Let T be an estimated partitioned tensor and ρ ∈ [2, 3]. If Valρ(Ts) ≤ Vρ(Ts) for
all s ∈ supp(S) then V pr

ρ (T ) ≤ Vρ(T ), and in particular V pr
ω (T ) ≤ R(T ).

Le Gall gave a lower bound on the partition-restricted value of tight estimated partioned tensors,
which is tight in many cases. First we need to define a penalty term.

Definition 3.6 ([9]). Let T be a partitioned tensor over X,Y,Z, where X =
⋃

i∈I Xi, Y =
⋃

j∈J Yj ,
Z =

⋃

k∈K Zk. The set D(T ) consists of all probability distributions over supp(T ). If T is symmetric
then the set Dsym(T ) consists of all symmetric probability distributions over supp(T ), that is, ones
satisfying P (i, j, k) = P (j, k, i) for all (i, j, k) ∈ supp(T ).

For a distribution P ∈ D(T ), its marginals to I, J,K are denoted P1, P2, P3. Two distributions
P,Q ∈ D(T ) are compatible if their marginals to I, J,K are identical. The compatibility penalty of
P ∈ D(T ) is the quantity

ΓT (P ) = max
Q

H(Q)−H(P ),

where the maximum is over all the distributions Q ∈ D(T ) that are compatible with P .

Note that ΓT (P ) ≥ 0 always. In simple cases, two distributions P,Q ∈ D(T ) are compatible
if and only if they are equal. This is the case for the Coppersmith–Winograd tensor, for example.
For such partitioned tensors, ΓT (P ) = 0 for all P ∈ D(T ). Now we can give the full theorem.

Theorem 3.5 ([9]). Let T be a tight estimated partitioned tensor. For any ρ ∈ [2, 3] we have

log V pr
ρ (T ) ≥ max

P∈D(T )

3
∑

ℓ=1

H(Pℓ)

3
+ E

s∼P
[log Valρ(Ts)]− ΓT (P ),

log V pr
ρ (T ) ≤ max

P∈D(T )

3
∑

ℓ=1

H(Pℓ)

3
+ E

s∼P
[log Valρ(Ts)].

When T is symmetric, we can replace D(T ) with Dsym(T ), and the first summand with H(P1).

Le Gall actually proved only the upper bound. The lower bound was proved by Cohn, Kleinberg,
Szegedy and Umans [2] in a special case, but their method easily extends to the general case, as
shown in the appendix.

For instance, applying Theorem 3.5 for the partitioned tensor T(6) and Valρ(Ts) = Vol(Ts)
ρ/3

for all s ∈ supp(T(6)), Coppersmith and Winograd [5] obtained the bound ω < 2.3872. Since
ΓT(6) ≡ 0, this bound is the optimal bound which can be obtained using the partition-restricted
value. Theorem 3.5 is proved by analyzing an ancillary quantity, the partition-restricted value with
respect to a distribution.

Definition 3.7. Let T be an estimated partitioned tensor, and let P ∈ D(T ). For each N , let
N ⊙ P ∈ Z

supp(T ) be some vector of non-negative integers summing to N obtained by canonically
rounding the real vector N · P so that it sums to N . For a partitioned restriction T ′ of (T ⊗ TC ⊗
TC

2
)⊗N , let suppP (T

′) consist of all vectors in supp(T ′) in which for each s ∈ supp(T ), the factors
Ts, T

C
s , T

C
2

s (constituent tensors of T, TC, TC
2
, respectively) appear exactly (N ⊙ P )(s) times each.

Given ρ ∈ [2, 3] and N ≥ 1, let V pr
ρ,P,3N(T ) be the maximum of

∑

s∈suppP (T ′)Valρ(T
′
s) over all

partitioned restrictions T ′ of (T ⊗ TC ⊗ TC2
)⊗N whose support is strongly disjoint. The partition-

restricted value of T with respect to P is the function

V pr
ρ,P (T ) = lim

N→∞
V pr
ρ,P,3N (T )1/3N .
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We show in the appendix that the limit always exists, and prove the following crucial property
of this quantity as well.

Theorem 3.6. Let T be an estimated partitioned tensor. For all ρ ∈ [2, 3] we have

V pr
ρ (T ) = max

P∈D(T )
V pr
ρ,P (T ).

Theorem 3.5 is obtained by giving lower and upper bounds for V pr
ρ,P,3N (T ).

3.5 Recursive Coppersmith–Winograd construction

Coppersmith and Winograd [5] obtained a better bound by considering a repartitioning T
′ of the

partitioned tensor T⊗2, and applying the laser method to T
′. Their basic idea is to use the following

partition for X ′ = X2, and matching partitions for Y 2 and Z2: X ′ = X ′
0 ∪ X ′

1 ∪ X ′
2 ∪ X ′

3 ∪ X ′
4,

where

X ′
0 = X0 ×X0, X ′

1 = (X0 ×X1) ∪ (X1 ×X0),

X ′
2 = (X0 ×X2) ∪ (X1 ×X1) ∪ (X2 ×X0),

X ′
3 = (X1 ×X2) ∪ (X2 ×X1), X ′

4 = X2 ×X2.

The corresponding constituent tensors come in four types:

1. T
′
0,0,4 = T0,0,2 ⊗ T0,0,2 ≈ 〈1, 1, 1〉.

2. T
′
0,1,3 = T0,1,1 ⊗ T0,0,2 + T0,0,2 ⊗ T0,1,1 ≈ 〈1, 1, 2q〉.

3. T
′
0,2,2 = T0,1,1 ⊗ T0,1,1 + T0,2,0 ⊗ T0,0,2 + T0,0,2 ⊗ T0,2,0 ≈ 〈1, 1, q2 + 2〉.

4. T
′
1,1,2 = T1,1,0 ⊗ T0,0,2 + T1,0,1 ⊗ T0,1,1 + T0,1,1 ⊗ T1,0,1 + T0,0,2 ⊗ T1,1,0.

The last tensor T′
1,1,2 is not equivalent to a matrix multiplication tensor, but it can be viewed as

a tight partitioned tensor over X̄0∪X̄1, Ȳ0∪ Ȳ1, Z̄0∪ Z̄1∪ Z̄2, where X̄i = Xi×X1−i, Ȳj = Yj×Y1−j ,
and Z̄k = Zk × Z2−k, with the constituent tensors corresponding to the four summands in the
formula for T′

1,1,2. The idea of Coppersmith and Winograd was to analyze T
′ using Theorem 3.5,

using another application of Theorem 3.5 to get a lower bound on the value of T′
1,1,2.

More explicitly, Coppersmith and Winograd used Theorem 3.5 to calculate V pr
ρ (T′

1,1,2) =

41/3qρ(2 + q3ρ)1/3. They then viewed T
′ itself as a partitioned tensor, with estimated values

Valρ(T
′
1,1,2) = Valρ(T

′
1,2,1) = Valρ(T

′
2,1,1) = 41/3qρ(2 + q3ρ)1/3; all other constituent tensors T

′
i,j,k

are matrix multiplication tensors, and so by definition their estimated value is Valρ(T
′
i,j,k) =

Vol(T′
i,j,k)

ρ/3. They then applied Theorem 3.5 to obtain some expression for V pr
ρ (T′). Theo-

rem 3.4 shows that Vρ(T
′
1,1,2) ≥ Valρ(T

′
1,1,2), and another application of the theorem shows that

V pr
ω (T′) ≤ R(T′) = (q + 2)2. Taking q = 5 and solving V pr

α (T′) = (q + 2)2, Coppersmith and
Winograd obtained the bound ω ≤ α, where α ≈ 2.3755.

Stothers [12] and Vassilevska-Williams [16] took this approach one step further, by considering
a repartitioning T

′′ of T′⊗2, along the lines of the repartitioning of T⊗2 producing T
′ itself. The

partition they use for X ′′ = X ′2 is X ′′
0 , . . . ,X

′′
8 , where X ′′

i =
⋃

i1+i2=iX
′
i1
× X ′

i2
, the sum being
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over 0 ≤ i1, i2 ≤ 4. Similar partitions are used for Y ′′ and Z ′′. This time we have ten types of
constituent tensors (see for example [16, §5]):

T
′′
0,0,8 ≈ 〈1, 1, 1〉, T

′′
0,1,7 ≈ 〈1, 1, 4q〉, T

′′
0,2,6 ≈ 〈1, 1, 4 + 6q2〉,

T
′′
0,3,5 ≈ 〈1, 1, 12q + 4q3〉, T

′′
0,4,4 ≈ 〈1, 1, 6 + 12q2 + q4〉,

T
′′
1,1,6,T

′′
1,2,5,T

′′
1,3,4,T

′′
2,2,4,T

′′
2,3,3.

The first five tensors, those that contain a 0 in their annotation, are equivalent to matrix multipli-
cation tensors. The other five are not, and have to be analyzed like T

′
1,1,2 before. We illustrate the

analysis using the example of T′′
1,1,6:

T
′′
1,1,6 = T

′
0,1,3 ⊗ T

′
1,0,3 + T

′
1,0,3 ⊗ T

′
0,1,3 + T

′
0,0,4 ⊗ T

′
1,1,2 + T

′
1,1,2 ⊗ T

′
0,0,4.

As before, we treat this as an estimated tight partitioned tensor over X̄0∪ X̄1, Ȳ0∪ Ȳ1, Z̄2∪ Z̄3∪ Z̄4,
along similar lines as before. Under this partition, T′′

1,1,6 has four constituent tensors. The first two,
T
′
0,1,3⊗T′

1,0,3 ≈ T
′
1,0,3⊗T′

0,1,3 ≈ 〈2q, 1, 2q〉, are equivalent to matrix multiplication tensors, and we set

their estimated values accordingly to (4q2)ρ/3. The other two, T′
0,0,4⊗T′

1,1,2 ≈ T
′
1,1,2⊗T′

0,0,4, are more
complicated, and we assign them estimated value Valρ(T

′
0,0,4 ⊗ T

′
1,1,2) = Valρ(T

′
0,0,4)Valρ(T

′
1,1,2) =

41/3qρ(2 + q3ρ)1/3, where the estimated values on the right-hand side are those of T′. Since the
value is super-multiplicative, we know that Vρ(T

′
0,0,4⊗T

′
1,1,2) ≥ Valρ(T

′
0,0,4)Valρ(T

′
1,1,2), and so this

setting of the estimated value will allow us to apply Theorem 3.4 later on.
The other four complicated tensors are interpreted as estimated tight partitioned tensors in a

similar fashion. For each of these, we then apply Theorem 3.5 to compute their partition-restricted
value.3 Applying Theorem 3.5 and Theorem 3.4 to T

′′ itself allows us to obtain an improved bound
on ω, namely ω < 2.37293.

Vassilevska-Williams iterated this procedure once more to obtain the bound ω < 2.37287, and
Le Gall [9] iterated it twice more to get slightly better bounds (the improvement is only in the
seventh digit after the decimal point!). We call this approach the canonical recursive Coppersmith–
Winograd method. We call the tensor obtained by iterating the construction d times the canonical
T
⊗2d . More details on this construction appear in [9, §5], and the upper bounds on ω obtained by

this method are presented in Table 2.
There are two main degrees of freedom in this method. The first, mentioned already by Copper-

smith and Winograd, is the method used to repartition the tensor after squaring. When squaring
a tensor T with partition X0, . . . ,XD, the new partition of X ′ = X2 is into X ′

0, . . . ,X
′
2D, where

Xi ×Xj is put into X ′
i+j . Coppersmith and Winograd suggest trying out other merging schemes.

While in order to apply Theorem 3.5 we need the resulting repartitioning to be tight, on both T⊗2

and its constituent tensors, one can conceive other repartitionings which could be analyzed differ-
ently (but still using the partition-restricted value). The second degree of freedom, which is also
mentioned by Coppersmith and Winograd, suggests a different choice of which tensors to multiply
each time. The canonical method starts with T, computes T′ = T ⊗ T, then T

′′ = T
′ ⊗ T

′, and so
on. However, instead of choosing T

′′ = T
′ ⊗ T

′, we could have chosen T
′′ = T

′ ⊗ T, a choice which

3 Note that we cannot use Theorem 3.5 to calculate exactly the partition-restricted value, for two reasons: first,
the lower bound in Theorem 3.5 is not necessarily tight; and second, the numerical optimization involved is difficult to
solve optimally. Whatever quantities we get are lower bounds on the corresponding values according to Theorem 3.4,
and we use them as the estimated values of these tensors.
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Table 2: Upper bounds on ω obtained by analyzing T
⊗2r with the canonical recursive Coppersmith–

Winograd method, for several values of r and q.

r = 0 r = 1 r = 2 r = 3 r = 4

q = 1 3 2.8084 2.6520 2.6324 2.6312
q = 2 2.6986 2.4968 2.4707 2.4690 2.4689
q = 3 2.4740 2.4116 2.4030 2.4027 2.4027
q = 4 2.4142 2.3838 2.3796 2.3794 2.3794
q = 5 2.3935 2.3756 2.3730 2.3729 2.3729
q = 6 2.3872 2.3755 2.3737 2.3737 2.3737
q = 7 2.3875 2.3793 2.3780 2.3779 2.3779
q = 8 2.3909 2.3848 2.3838 2.3838 2.3838

would correspond to an analysis of T⊗3. Calculation reveals that analyzing T
⊗3 does not result in

improved bounds, but it is possible that other multiplication schemes would be advantageous.
The method we describe in Section 4 will subsume all such multiplication schemes on T. This

method actually works on a larger class of multiplication schemes which we now describe formally.
Since the description of this class of schemes is not specific to T, the presentation below is given
for arbitrary estimated partitioned tensors T and T ′ (in our applications, both T and T ′ will be
powers of T).

We start with the concept of repartitioning of a partitioned tensor.

Definition 3.8. Let T be a symmetric estimated partitioned tensor over X,Y,Z partitioned as

X =
⋃

i∈I

Xi, Y =
⋃

j∈J

Yj , Z =
⋃

k∈K

Zk,

and let T ′ be a symmetric estimated partitioned tensor over X ′, Y ′, Z ′ partitioned as

X =
⋃

i′∈I′

Xi′ , Y ′ =
⋃

j′∈J ′

Yj′, Z ′ =
⋃

k′∈K ′

Zk′ .

We also assume that the value estimates of T and T ′ are symmetric, that is, for each constituent
tensor Ts of T , Valρ(Ts) = Valρ(T

C
s ), and similarly for T ′.

A repartitioning T̃ of T ⊗ T ′ is a partitioned tensor over X̃ = X ×X ′, Ỹ = Y × Y ′, Z̃ = Z ×Z ′

satisfying the following properties:

• the partition of X̃ is a coarsening of the partition
⋃

(i,i′)∈I×I′ Xi ×X ′
i′ ,

• the partition of Ỹ is a coarsening of the partition
⋃

(j,j′)∈J×J ′ Yj × Y ′
j′ ,

• the partition of Z̃ is a coarsening of the partition
⋃

(k,k′)∈K×K ′ Zk × Z ′
k′ .

Note that this definition, applied to the case where both T and T ′ are powers of T, captures
the two degrees of freedom discussed above.
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Let T̃ be a repartitioning of T ⊗ T ′. Let us use the notations of Definition 3.8, and write the
corresponding coarser partitions of X̃, Ỹ and Z̃ as

X̃ =
⋃

ı̃∈Ĩ

X̃ı̃, Ỹ =
⋃

̃∈J̃

Ỹ̃, Z̃ =
⋃

k̃∈K̃

Z̃k̃.

For each ı̃ ∈ Ĩ, we denote by x(̃ı) the subset of I × I ′ such that X̃ı̃ =
⋃

(i,i′)∈x(̃ı)Xi ×X ′
i′ . We use

similar notations for the partitions of Ỹ and Z̃. The idea to derive an upper bound on ω is, again,
to consider T̃ as an estimated partitioned tensor. To do this, we need to define Valρ(T̃ı̃,̃,k̃) for each

(̃ı, ̃, k̃) ∈ supp(T̃ ). Remember that, since T and T ′ are estimated partitioned tensors, Valρ(Ts)
and Valρ(T

′
s′) are given for the constituent tensors of T and T ′. We use these quantities to define

Valρ(T̃ı̃,̃,k̃), as follows. If T̃ı̃,̃,k̃ is equivalent to a matrix product, we set

Valρ(T̃ı̃,̃,k̃) = Vol(T̃ı̃,̃,k̃)
ρ/3. (2)

Otherwise, we consider T̃ı̃,̃,k̃ itself as an estimated partitioned tensor, with support

{

((i, i′), (j, j′), (k, k′)) ∈ x(̃ı)× y(̃)× z(k̃)
∣

∣ (i, j, k) ∈ supp(T ) and (i′, j′, k′) ∈ supp(T ′)
}

and constituent tensors Ti,j,k ⊗ T ′
i′,j′,k′ and estimated value Valρ(Ti,j,k ⊗ T ′

i′,j′,k′) = Valρ(Ti,j,k) ×
Valρ(T

′
i′,j′,k′) for each constituent tensor, and set

Valρ(T̃ı̃,̃,k̃) = V pr
ρ (T̃ı̃,̃,k̃). (3)

The resulting tensor T̃ is a symmetric estimated partitioned tensor with symmetric value estimates.
The process we have just described is exactly what is done in the canonical Coppersmith–

Winograd method (where both T and T ′ are powers of T and the repartitioning sums the two
indices of the variables). As was done there, we can apply Theorem 3.5 to compute this partition-
restricted value, or a lower bound on it.

We can naturally iterate recursively the above construction, which leads to the following defi-
nition.

Definition 3.9. Let T be an estimated partitioned tensor. An estimated partitioned tensor T ′ is a
recursive repartitioning of T if there exists a sequence T1, . . . , Tℓ such that (i) T1 = T , (ii) Tℓ = T ′,
(iii) for each i > 1, there exist j, k < i such that Ti is a repartitioning of Tj ⊗ Tk.

In particular, the canonical T⊗2N is a recursive repartitioning of the canonical T⊗2M for all
M ≤ N . One of the main technical contribution of this paper is defining a notion of value V m

ρ , in the

next section, that satisfies V m
ρ (T⊗D) ≥ V pr

ρ (T⊗dD)1/d whenever T⊗dD is a recursive repartitioning

of T⊗D.

4 Merging

Theorem 3.4 allows us to obtain upper bounds on ω by analyzing powers of the Coppersmith–
Winograd tensor. Experimentally, fixing q we find out that the bound on ω obtained by considering
the canonical T

⊗2ℓ improves as ℓ increases, but the root cause of this phenomenon has never
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been completely explained. Indeed, as mentioned in the introduction, at first glance it seems that
considering powers of T should not help at all, since our analysis proceeds by analyzing powers T⊗N

for large N ; how do we gain anything by analyzing instead large powers of T⊗2? The improvement
results from the fact that when defining T

⊗2
s for annotations s containing a zero, we merge together

several matrix multiplication tensors into one large matrix multiplication tensors. Inspired by this
observation, we define a notion of value which allows merging of matrix multiplication tensors, and
show that the method it corresponds to subsumes the analysis of all powers of T.

The definition is somewhat complicated to allow analysis of powers of T, and becomes much
simpler when analyzing T itself, or any other tensor whose constituent tensors are all matrix
multiplication tensors. For this reason, we start with a simplified version of the definition which
only applies to tensors of the latter form, and only then present the general definition.

Definition 4.1. Let T be a symmetric partitioned tensor, each of whose constituent tensors is a
matrix multiplication tensor. For N ≥ 1, we say that T ′ is a consistent restriction of T⊗N if for
some partitioned restriction R of T⊗N , the following hold:

1. Each constituent tensor of T ′ is a sum of constituent tensors of R, each constituent tensor of
R appearing exactly once as a summand in some constituent tensor of T ′.

2. Each constituent tensor in T ′ is equivalent to a matrix multiplication tensor.

3. Distinct constituent tensors of T ′ have disjoint sets of x-variables, y-variables and z-variables.

Given ρ ∈ [2, 3] and N ≥ 1, we define V m
ρ,N (T ) to be the maximum of

∑

s∈supp(T ′)Vol(T
′
s)

ρ/3 over

all consistent restrictions T ′ of T⊗N . The merging value of T is the function

V m
ρ (T ) = lim

N→∞
V m
ρ,N (T )1/N .

(We show below that the limit exists.)

In the general case, the definition of consistent restriction is somewhat more complicated, since
we want to put some restriction on the sets of constituent tensors in R that we allow to merge: we
want the non-matrix multiplication tensors to be opaque. This prompts the following definition.

Definition 4.2. Let T be a symmetric estimated partitioned tensor, and fix N ≥ 1. Let supp0(T )
consist of all s ∈ supp(T ) such that Ts is a matrix multiplication tensor, and let supp∗(T ) =
supp(T ) \ supp0(T ). A pattern is a mapping π : [N ]→ supp∗(T ) ∪ {0}. A constituent tensor Ts =
⊗n

i=1 Tsi conforms to the pattern π if Tsi = Tπ(i) if π(i) ∈ supp∗(T ), and Tsi ∈ supp0(T ) if π(i) = 0.
If Ts conforms to some pattern π then we define T 0

s =
⊗

i : π(i)=0 Tsi and T ∗
s =

⊗

i : π(i)6=0 Tsi .

A sum S =
∑

s T
⊗N
s of constituent tensors of T⊗N is consistent if (i) for some pattern π, all

tensors conform to π, and (ii)
∑

s T
0
s is equivalent to a matrix multiplication tensor, denoted S0.

If S is consistent with respect to π then we define, for all ρ ∈ [2, 3],

Valρ(S) = Vol(S0)ρ/3 Valρ(S
∗),

where Valρ(S
∗) =

∏

i : π(i)6=0 Valρ(Tπ(i)).

We can now present the general definition.
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Definition 4.3. Let T be an estimated partitioned tensor. For N ≥ 1, we say that T ′ is a consistent
restriction of T⊗N if for some partitioned restriction R of T⊗N , the following hold:

1. Each constituent tensor of T ′ is a consistent sum of constituent tensors of R, each constituent
tensor of R appearing exactly once as a summand in some constituent tensor of T ′.

2. Distinct constituent tensors of T ′ have disjoint sets of x-variables, y-variables and z-variables.

Given ρ ∈ [2, 3] and N ≥ 1, we define V m
ρ,N (T ) to be the maximum of

∑

s∈supp(T ′)Valρ(T
′
s) over all

consistent restrictions T ′ of T⊗N . The merging value of T is the function

V m
ρ (T ) = lim

N→∞
V m
ρ,N (T )1/N .

(We show below that the limit exists.)

Note that we have only defined the merging value for symmetric tensors, since the tensors T⊗N

are all symmetric. Previously, values of asymmetric versions came up only because we calculated
the partition-restricted value recursively. In contrast, the merging value is calculated by a single
application of the definition.

We now prove several simple properties of the merging value, starting with the proof that V m
ρ (T )

is well-defined.

Lemma 4.1. Let T be a symmetric estimated partitioned tensor, let ρ ∈ [2, 3], and let N ≥ 1. The
limit limN→∞ V m

ρ,N (T )1/N exists.

Proof. By Fekete’s lemma, it is enough to show that V m
ρ,N1+N2

(T ) ≥ V m
ρ,N1

(T )V m
ρ,N2

(T ). Indeed,

given a consistent restriction T ′
1 of T⊗N1 and a consistent restriction T ′

2 of T⊗N2 , it is not hard to
construct a consistent restriction T ′

1 ⊗ T ′
2 of T⊗(N1+N2) satisfying

∑

(s1,s2)∈supp(T ′
1⊗T ′

2)

Valρ(T
′
1;s1 ⊗ T ′

2;s2) =
∑

s1∈supp(T ′
1)

Valρ(T
′
1;s1)×

∑

s2∈supp(T ′
2)

Valρ(T
′
2;s2),

showing that V m
ρ,N1+N2

(T ) ≥ V m
ρ,N1

(T )V m
ρ,N2

(T ).

Next, the merging value is super-multiplicative and super-additive. Our proof follows a similar
proof for the value due to Stothers [12, 6].

Lemma 4.2. For any two symmetric estimated partitioned tensors T1, T2 we have V m
ρ (T1 ⊗ T2) ≥

V m
ρ (T1)V

m
ρ (T2) and V m

ρ (T1 ⊕ T2) ≥ V m
ρ (T1) + V m

ρ (T2).

Proof. The first part follows by the observation that V m
ρ,N (T1 ⊗ T2) ≥ V m

ρ,N (T1)V
m
ρ,N (T2).

For the second part, notice that the tensor (T1 ⊕ T2)
⊗N decomposes as

(T1 ⊕ T2)
⊗N =

⊕

N1+N2=N

(

N

N1

)

⊙ T⊗N1
1 T⊗N2

2 ,

where M ⊙ T denotes the direct sum of M tensors equivalent to T . In particular,

V m
ρ,N (T1 ⊕ T2) ≥

∑

N1+N2=N

(

N

N1

)

V m
ρ,N1

(T1)V
m
ρ,N2

(T2).
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Let α1 =
V m
ρ (T1)

V m
ρ (T1)+V m

ρ (T2)
and α2 =

V m
ρ (T2)

V m
ρ (T1)+V m

ρ (T2)
. Considering N1 ≈ α1N and N2 ≈ α2N , we get

V m
ρ,N (T1 ⊕ T2) ' 2H(α1,α2)NV m

ρ (T1)
α1NV m

ρ (T2)
α2N ≈ (V m

ρ (T1) + V m
ρ (T2))

N ,

where the approximations are true up to polynomial factors and in the limit N →∞. This shows
that V m

ρ (T1 ⊕ T2) ≥ V m
ρ (T1) + V m

ρ (T2).

Finally, we show that the merging value is indeed a lower bound on the value.

Theorem 4.3. Let T be an estimated partitioned tensor and ρ ∈ [2, 3]. If Valρ(Ts) ≤ Vρ(Ts) for
all s ∈ supp(S) then V m

ρ (T ) ≤ Vρ(T ), and in particular V m
ω (T ) ≤ R(T ).

Proof. When all constituent tensors are matrix multiplication tensors (or even arbitrary symmetric
tensors), the proof is a straightforward application of the generalized asymptotic sum inequality,
Lemma 3.3. The proof in the general case follows the ideas of the proof of Theorem 3.4, and involves
generalizing Definition 3.7.

4.1 Merging subsumes recursive repartitioning

As explained in the beginning of this section, the gainings resulting from considering powers of the
Coppersmith–Winograd tensor originate in the merging of matrix multiplication tensors during the
repartitioning steps. The merging value is a more general way of doing such mergings, as we show
in this subsection.

The key result is the following theorem, which shows that the square of the merging value of T is
an upper bound on the partitioned-value of any repartitioning of T⊗T (as defined in Section 3.5).

Theorem 4.4. Fix a value for q and write T = T(q). If T⊗2 is a repartitioning of T⊗ T then for
all ρ ∈ [2, 3] we have V m

ρ (T) ≥ V pr
ρ (T⊗2)1/2.

Before proving the theorem, let us note that this theorem shows that an upper bound on V m(T)
implies a limit on the bound on ω achievable by analyzing any repartitioning of T ⊗ T. Indeed, a
bound on ω obtained using such a repartioning has the form ω ≤ ρ where V pr

ρ (T ⊗ T) = (q + 2)2.
If V m

ρ (T) ≤ Bρ then Bρ ≥ V m
ρ (T) ≥ V pr

ρ (T⊗ T)1/2 = (q + 2), and so ρ ≥ α where α is the solution
to Bα = (q + 2).

The idea behind the proof is simple: we give a lower bound on V m
ρ,N (T⊗2) by recursively applying

Theorem 3.6. The first application is to T
⊗2 itself: Theorem 3.6 gives us a partitioned restriction

of (T⊗2)⊗3N . However, not all constituent tensors of T⊗2 are mergings of constituent tensors of T,
and in order to analyze those we need another application of Theorem 3.6.

Proof of Theorem 4.4. In order to avoid confusion, we will use Val for the estimated value of con-
stituent tensors of T and its powers, and Val′ for the estimated value of constituent tensors of T⊗2

and its powers. The estimated values of constituent tensors of T1,1,2⊗T1,2,1⊗T2,1,1 and its powers
are also given by Val, by definition.

Observe that, for every n ≥ 0, from Definition 3.5 we know that there exists a partitioned
restriction T3n of (T1,1,2⊗T1,2,1⊗T2,1,1)

⊗n having strongly disjoint support such that the equality
∑

s∈supp(T3n)
Valρ(T3n,s) = V pr

ρ,3n(T1,1,2) holds. Note that

∑

s∈supp(T3n)

Valρ(T3n,s) = V pr
ρ,3n(T1,1,2) ≈ V pr

ρ (T1,1,2)
3n = Val′ρ((T1,1,2 ⊗ T1,2,1 ⊗ T2,1,1)

⊗n),
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where the second (approximate) equality comes from the fact that the quantity V pr
ρ,3n(T1,1,2) con-

verges to V pr
ρ (T1,1,2)

3n when n goes to infinity, and the third equality comes from the definition of
Val′ρ (see Equation (3)), using the fact that Val′ρ is symmetric.

Let P ∈ D(T⊗2) be the distribution satisfying V pr
ρ (T⊗2) = V pr

ρ,P (T
⊗2) given by Theorem 3.6.

For every N , there exists a partitioned restriction U3N of (T⊗2)⊗3N having strongly disjoint sup-
port such that

∑

s∈suppP (U3N )Val
′
ρ(U3N,s) = V pr

ρ,P,3N(T⊗2). Each constituent tensor of U3N whose

annotation belongs to suppP (U3N ) is a tensor power of 3N constituent tensors of T⊗2, which after
rearrangement will have the form

T 0 ⊗ (T1,1,2 ⊗ T1,2,1 ⊗ T2,1,1)
⊗n

for some integer n, where T 0 is a product of matrix multiplication constituent tensors of T
⊗2

(both n and T 0 are the same, up to equivalence, for all constituent tensors of U3N ). The reason
T1,1,2,T1,2,1,T2,1,1 all have the same power is that suppP (U3N ) counts only constituent tensors in

which T1,1,2,T
C
1,1,2,T

C2

1,1,2 all appear the same number of times.
The idea is to replace the factor (T1,1,2 ⊗ T1,2,1 ⊗ T2,1,1)

⊗n with a copy of T3n, which can be
done by zeroing groups of variables in T

⊗6N . We repeat this process with each constituent tensor
in U3N . A crucial observation is that the zeroing operations we do on one constituent tensor have no
impact on the other constituent tensors, since the constituent tensors in U3N have strongly disjoint
supports. This construction thus gives a partitioned restriction W6N of T

⊗6N having strongly
disjoint support. We have

∑

s∈supp(W6N )

Valρ(W6N,s) = | supp(U3N )|Vol(T0)
ρ/3 ×

∑

s∈supp(T3n)

Valρ(T3n,s)

= | supp(U3N )|Vol(T0)
ρ/3 Val′ρ((T1,1,2 ⊗ T1,2,1 ⊗ T2,1,1)

⊗n)

= V pr
ρ,P,3N(T⊗2).

We conclude that V m
ρ,6N (T) ≥ V pr

ρ,P,3N (T⊗2), and thus V m
ρ (T) ≥ V pr

ρ,P (T
⊗2)1/2 = V pr

ρ (T⊗2)1/2.

Theorem 4.4 can be easily generalized to estimated partitioned tensors other than T, and also
to recursive partitioning (the main difference when analyzing recursive partitioning is the higher
number of levels of recursion). In particular, we obtain the following result.

Theorem 4.5. Fix a value for q and write T = T(q). If T⊗dD is a recursive repartitioning of T⊗D

then for all ρ ∈ [2, 3] we have V m
ρ (T⊗D) ≥ V pr

ρ (T⊗dD)1/d.

Similarly to the observation done above, but more generally, Theorem 4.5 shows that an upper
bound on V m(T⊗D) implies a limit on the bound on ω achievable by analyzing recursive repartition-
ings of T⊗D. The reason is that a bound on ω obtained using recursive repartitioning has the form
ω ≤ ρ where V pr

ρ (T⊗dD) = (q + 2)dD. If V m
ρ (T⊗D) ≤ Bρ then Bρ ≥ V m

ρ (T⊗D) ≥ V pr
ρ (T⊗dD)1/d =

(q + 2)D, and so ρ ≥ α where α is the solution to Bα = (q + 2)D. Moreover, Theorem 4.3 shows
that every bound which can be obtained by analyzing a recursive repartitioning of T can also be
obtained using the inequality V m

ω (T) ≤ q+2. In this sense, the laser method with merging subsumes
the recursive laser method.
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5 Upper bound on the value with merging

Theorem 4.5 prompts us to obtain upper bounds on the merging value of recursive repartitionings
of T. Our approach will only use some properties of recursive repartitionings of T, described in the
following definition.

Definition 5.1. A partitioned tensor T over X,Y,Z is Coppersmith–Winograd-like if

1. X is partitioned into parts X0, . . . ,XD, where |X0| = |XD| = 1 and |Xi| > 1 for 0 < i < D.
Similarly for Y,Z.

2. Tensors annotated (α, β, γ) for α, β, γ 6= 0 are not equivalent to matrix multiplication tensors.

3. If (α, β, 0) ∈ supp(T ) then |Xα| = |Yβ | , m and Tα,β,0 =
∑m

i=1 xiyiz whereXα = {x1, . . . , xm},
Yβ = {y1, . . . , ym} and Z0 = {z}4. Similarly for tensors annotated (α, 0, β) and (0, α, β).

4. The only annotations in supp(T ) involving only 0 and D are (D, 0, 0), (0,D, 0), (0, 0,D).

When q > 1, it is not hard to check that all recursive repartitionings of T are Coppersmith–
Winograd-like.

The rest of this section is organized as follows. In Section 5.1 we prove a combinatorial lemma
describing when constituent tensors of T⊗N can combine to a matrix multiplication tensors, for
any Coppersmith–Winograd-like tensor T . Using this lemma, we prove an upper bound on V m

ρ (T)
in Section 5.2, and show how to extend it to general Coppersmith–Winograd-like tensors T in
Section 5.3. We apply the upper bound to T(q)⊗2r for various values of q and r in Section 5.4.

5.1 Structure of consistent sums

The following combinatorial lemma (Lemma 5.1) identifies the structure of consistent sums in the
case of Coppersmith–Winograd-like tensors.

Definition 5.2. For a partitioned tensor T , a zero-sequence of length N is a constituent tensor in
T⊗N whose index triple is in supp0(T )N , that is, its index triple (A,B,C) satisfies the property
that for i ∈ [N ], one of Ai, Bi, Ci is zero.

A sum of distinct zero-sequences is consistent if it is equivalent to a matrix multiplication tensor.
It is coherent if there is a partition [N ] = X ∪ Y ∪ Z such that each index triple (A,B,C) of a
tensor in the sum satisfies Ai = 0 for all i ∈ X, Bj = 0 for all j ∈ Y , and Ck = 0 for all k ∈ Z.

Lemma 5.1. Let T be a Coppersmith–Winograd-like symmetric partitioned tensor. If the sum of
distinct zero-sequences of length N of constituent tensors of T is consistent, then it is coherent.

Proof. We can identify a zero-sequence of length N with a vector in supp0(T )N , and so the set
of distinct zero-sequences with a subset S ⊆ supp0(T )N . We will also think of supp0(T )N as a
subset of ({0, . . . ,D}N )3, the latter being the set of all index triples. We can write the sum itself as
∑

s∈S Ts, where Ts is the unique constituent tensor of T⊗N which corresponds to the index triple
s. Our goal is to show that each i ∈ [N ] is either x-constant (all (A,B,C) ∈ S satisfy Ai = 0),
y-constant (same for Bi = 0), or z-constant (same for Ci = 0).

4The enumerations of Xα, Yβ can potentially depend on the annotation (α, β, 0), though this does not happen in
our applications.
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Suppose that this sum is equivalent to the matrix multiplication tensor 〈n,m, p〉. Recall that

〈n,m, p〉 =
n
∑

i=1

m
∑

j=1

p
∑

k=1

xijyjkzki.

Since
∑

s∈S Ts ≈ 〈n,m, p〉, there is a bijection between the x-variables appearing in
∑

s∈S Ts and the
nm variables xij, and similar bijections for the y-variables and z-variables, such that applying these
bijections to

∑

s∈S Ts, we obtain exactly 〈n,m, p〉. Fix such bijections, which we call denotations.

Let ℓ(w) = |Xw| = |Yw| = |Zw|, and denote the variables in Xw by x̂
[w]
1 , . . . , x̂

[w]
ℓ(w). Each x-

variable appearing in T⊗N belongs to some group A, and the x-variables of group A can be indexed
by vectors v of length N such that vs ∈ [ℓ(As)] for all s ∈ [N ]. Call two x-variables belonging to
the same group s-siblings if they differ only in vs.

Consider some variable x̂Au and some t ∈ [N ] such that 0 < At < D, and suppose that x̂Au
appears in some (A,B,C) ∈ S satisfying Ct = 0, say as part of the product x̂Au ŷ

B
v ẑ

C
w . Denote

the t-siblings of x̂Au and ŷBv by X̂r, Ŷr in such a way that T(A,B,C) includes the sum
∑

r X̂rŶrẑ
C
w ,

where r ranges over [ℓ(At)] = [ℓ(Bt)]; this is possible since the tth factor in T(A,B,C) has the form
∑

r x̂
[At]
r ŷ

[Bt]
σ(r)ẑ

[0]
1 for some permutation σ. If the denotation of ẑCw is zki then the denotations of X̂r

are all in row i, and the denotations of Ŷr are all in column k. In particular, the denotations of the
t-siblings of x̂Au are in the same row. In contrast, had we assumed that Bt = 0 instead of Ct = 0,
we would have concluded that the denotations of the t-siblings of x̂Au are in the same column rather
than row.

Call a z-variable zki t-good if it appears in the tensor corresponding to some index triple
(A,B,C) ∈ S satisfying Ct = 0 and 0 < At, Bt < D, say as part of the product xijyjkzki. The
foregoing shows that the t-siblings of xij are all in the same row. Now pick an arbitrary K ∈ [p].
The product xijyjKzKi must appear in the tensor corresponding to some (A,B′, C ′) ∈ S (note that
the first index is the same). Since At 6= 0, either Bt = 0 or Ct = 0. In the former case, the foregoing
would imply that the t-siblings of xij are all in the same column, leading to a contradiction (since
ℓ(At) > 1), and we conclude that Ct = 0 and so zKi is also t-good. We can similarly change i to
any I ∈ [n], showing that all z-variables are t-good.

Consider now an arbitrary t ∈ [N ]. If S contains some index triple (A,B,C) such that
(At, Bt, Ct) /∈ {(D, 0, 0), (0,D, 0), (0, 0,D)}, then the above argument shows that it is constant
(i.e., either x-constant, y-constant, or z-constant). It remains to consider the case in which all in-
dex triples (A,B,C) appearing in S satisfy (At, Bt, Ct) ∈ {(D, 0, 0), (0,D, 0), (0, 0, D)}. If at most
two of these actually appear then again t is constant, so it remains to rule out the case in which
all these possibilities occur.

Say that an x-variable xij has t-type τ ∈ {0,D} if the x-index A in which its denotation
appears satisfies At = τ . By assumption, there are some variables xij , ypq, zrs of t-type D. The
product xipypqzqi corresponds to some index triple (A,B,C) ∈ S satisfying Bt = D. We conclude
that (At, Bt, Ct) = (0,D, 0) and so xip has t-type 0. Similarly, the product xspyprzrs shows that
ypr has t-type 0, and the product xijyjrzri shows that zri has t-type 0. But then the product
xipyprzri corresponds to some index triple (A,B,C) ∈ S satisfying (At, Bt, Ct) = (0, 0, 0), which is
impossible. This contradiction completes the proof.
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5.2 Upper bound for the Coppersmith–Winograd tensor

Armed with Lemma 5.1, we can prove the upper bound on the merging value. In order to simplify
the notations involved, we first prove the upper bound in the special case in which the tensor being
analyzed is the Coppersmith–Winograd tensor T. In the following subsection we generalize the
argument to arbitrary Coppersmith–Winograd-like tensors.

Theorem 5.2. For every q ≥ 2 and any ρ ∈ [2, 3],

log V m
ρ (T(q)) ≤ max

α∈[0,1]
H(2−α

3 , 2α3 , 1−α
3 ) + αρ

3 log q + ρ−2
3 H(1−α

2 , α, 1−α
2 ).

Proof. As usual we write T for T(q). Given an integer N , we will upper bound V m
ρ,N (T). Let S

be a consistent restriction of T⊗N and let S =
∑

i Si be its decomposition into disjoint coherent
sums such that Si ≈ 〈ni,mi, pi〉 and V m

ρ,N (T) =
∑

i(nimipi)
ρ/3. We call each Si a line. Lemma 5.1

shows that for each line Si, each t ∈ [N ] is either x-constant, y-constant or z-constant. If there
are γxN, γyN, γzN of each then we say that Si has line type τℓ = (γx, γy, γz). Since γx, γy, γz are
necessarily multiples of 1/N , and γx + γy + γz = 1, there are O(N2) different line types.

Each Si results from merging several constituent tensors of T⊗N . We will sometimes think of Si

as the set of these constituent tensors. A constituent tensor T of T⊗N which results from multiply-
ing αxN,αyN,αzN,βxN,βyN,βzN each of the constituent tensors T0,1,1,T1,0,1,T1,1,0,T2,0,0,T0,2,0,
T0,0,2 of T (respectively) is said to have type (αx, αy, αz, βx, βy, βz). Since these numbers are multi-
ples of 1/N with sum 1, there are O(N5) possible types. We let Volτ (Si) be the sum of the volumes
of all T ∈ Si of type τ . Since the volume is the number of basic products xyz, it follows that
Vol(Si) =

∑

τ Volτ (Si).
Consider a specific line type τℓ = (γx, γy, γz) and a specific type τ = (αx, αy, αz , βx, βy , βz). We

will upper bound

Uρ,N (τℓ, τ) =
∑

i : Si has line type τℓ

Volτ (Si)
ρ/3.

This implies an upper bound on V m
ρ,N (T) as follows. First, ρ ≤ 3 implies that (α+β)ρ/3 ≤ αρ/3+βρ/3

(this follows from Minkowski’s inequality, for example), and so

∑

i : Si has line type τℓ

Vol(Si)
ρ/3 =

∑

i : Si has line type τℓ

(

∑

τ

Volτ (Si)

)ρ/3

≤
∑

i : Si has line type τℓ

∑

τ

Volτ (Si)
ρ/3

=
∑

τ

Uρ,N (τℓ, τ)

≤ O(N5)max
τ

Uρ,N (τℓ, τ).

Summing over all τℓ,
V m
ρ,N (T) ≤ O(N7)max

τℓ,τ
Uρ,N (τℓ, τ).

When taking the Nth root and letting N →∞, the factor O(N7) disappears. Therefore

V m(T) ≤ max
τℓ,τ

lim
N→∞

Uρ,N (τℓ, τ)
1/N . (4)
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Let α = αx + αy + αz and β = βx + βy + βz , and define

Px = exp2 H(αx + βy + βz, αy + αz, βx)N,

Py = exp2 H(βx + αy + βz, αx + αz, βy)N,

Pz = exp2 H(βx + βy + αz, αx + αy, βz)N,

Qx = exp2 H
(αx+βy+βz−γx

1−γx
,
αy+αz

1−γx
, βx

1−γx

)

(1− γx)N,

Qy = exp2 H
(βx+αy+βz−γy

1−γy
, αx+αz

1−γy
,

βy

1−γy

)

(1− γy)N,

Qz = exp2 H
(βx+βy+αz−γz

1−γz
,
αx+αy

1−γz
, βz

1−γz

)

(1− γz)N.

Here Px, Py, Pz are upper bounds on the number of different x, y, z-indices, respectively. The
quantities Qx, Qy, Qz are upper bounds on the number of different x, y, z–indices, respectively, that
can appear in any given line. The reason that Qx bounds the number of x-indices is that a γx-
fraction of the indices are fixed at 0, and these have to be deducted from the αx + βy + βz-fraction
which is 0 among the entire N coordinates. The resulting distribution then applies only to the
remaining (1 − γx)N coordinates.

From now on, we consider only lines of line type τℓ. Let It, Jt,Kt be the number of x, y, z-indices,
respectively, in tensors of type τ in line St. Note that

∑

t It ≤ Px,
∑

t Jt ≤ Py,
∑

tKt ≤ Pz.
As noted above, It ≤ Qx, Jt ≤ Qy, Kt ≤ Qz. In order to upper bound Volτ (St), notice that
if a matrix multiplication tensor involves X,Y,Z each of x, y, z-variables, respectively, then its
volume is

√
XY Z: indeed, for 〈n,m, p〉 we have X = nm, Y = mp, Z = pn and the volume is

Vol(〈n,m, p〉) = nmp =
√
XY Z. Each x-index contains exactly (αy +αz)N coordinates equal to 1,

and so it corresponds to q(αy+αz)N variables. Therefore

Volτ (St) =

√

q(αy+αz)NItq(αx+αz)NJtq(αx+αy)NKt = qαN
√

ItJtKt.

In total, we obtain the upper bound

Uρ,N (τℓ, τ) ≤ q(αρ/3)N
∑

t

(ItJtKt)
ρ/6.

Let us focus now on the quantity

σ =
∑

t

(ItJtKt)
ρ/6.

We want to obtain an upper bound on σ. We can assume that
∑

t It = Px,
∑

t Jt = Py,
∑

tKt = Pz.

Lagrange multipliers show that this quantity is optimized when I
ρ/6−1
t (JtKt)

ρ/6, J
ρ/6−1
t (ItKt)

ρ/6,

K
ρ/6−1
t (ItJt)

ρ/6 are all constant. Multiplying all these constraints together, we get that ItJtKt

is constant (assuming ρ 6= 2) and so It, Jt,Kt are constant. In order to find the constants, let π
be the number of different summands. Then It = Px/π, Jt = Py/π, Kt = Pz/π. On the other
hand, It ≤ Qx, Jt ≤ Qy, Kt ≤ Qz, and so π ≥ max(Px/Qx, Py/Qy, Pz/Qz) ≥ 3

√

PxPyPz/QxQyQz.
Therefore

σ ≤ max
π≥ 3
√

PxPyPz/QxQyQz

π1−ρ/2(PxPyPz)
ρ/6.

Since 1− ρ/2 ≤ 0, we would like π to be as small as possible, and so

σ ≤ (PxPyPz/QxQyQz)
1/3−ρ/6(PxPyPz)

ρ/6 = (PxPyPz)
1/3(QxQyQz)

(ρ−2)/6.
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Altogether, we obtain the upper bound

Uρ,N (τℓ, τ) ≤ q(αρ/3)N (PxPyPz)
1/3(QxQyQz)

(ρ−2)/6.

The concavity of the entropy function shows that

1

N
log(PxPyPz)

1/3

=
H(αx+βy+βz, αy+αz, βx) +H(βx+αy+ vβz, αx+αz, βy) +H(βx+βy+αz, αx+αy, βz)

3

≤H(α+2β
3 , 2α3 , β3 ) = H(2−α

3 , 2α3 , 1−α
3 ).

Similarly,

1

N
log(QxQyQz)

1/2 =1−γx
2 H(

αx+βy+βz−γx
1−γx

,
αy+αz

1−γx
, βx

1−γx
) +

1−γy
2 H(

βx+αy+βz−γy
1−γy

, αx+αz

1−γy
,

βy

1−γy
)+

1−γz
2 H(

βx+βy+αz−γz
1−γz

,
αx+αy

1−γz
, βz

1−γz
)

≤H(α+2β−1
2 , α, β2 ) = H(1−α

2 , α, 1−α
2 ).

Therefore

Uρ,N (τℓ, τ)
1/N ≤ qαρ/3 exp2 H(2−α

3 , 2α3 , 1−α
3 ) exp2[H(1−α

2 , α, 1−α
2 )ρ−2

3 ].

The theorem now follows from (4).

5.3 Upper bound for Coppersmith–Winograd-like tensors

Extending the proof of Theorem 5.2 to general Coppersmith–Winograd-like tensors involves mainly
notational difficulties. Before stating the theorem, we need to describe the general form of the
penalty term, that is, the last summand in the theorem.

Let T be a symmetric partitioned tensor. The proof will include an upper bound on all distri-
butions in D(T ), which correspond to the types appearing in the proof of Theorem 5.2. The proof
of the theorem shows that the worst bound is obtained on symmetric distributions, and accordingly
we concentrate on these. For any P ∈ Dsym(T ), define

P0 =
∑

s∈supp0(T )

P (s),

and define the function P ∗ : supp(T )→ [0, 1] as follows:

P ∗(s) =

{

P (s) if s ∈ supp∗(T ),
0 otherwise.

Let Pm : Z→ [0, 1] denote the marginal function of P : for any i ∈ Z,

Pm(i) =
∑

(i,j,k)∈supp(T )

P (i, j, k).
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Note that Pm is a probability distribution. Similarly, let P ∗
m : Z → [0, 1] denote the marginal

function of P ∗. Define the probability distribution P̃ : Z→ [0, 1] as follows:

P̃ (i) =

{

3
2P0

(Pm(0)− P0
3 ) if i = 0,

3
2P0

(Pm(i)− P ∗
m(i)) otherwise.

Note that this is indeed a probability distribution, since

∑

i∈Z

P̃ (i) =
3

2P0

(

1− P0

3
− (1− P0)

)

= 1.

We can now state the general upper bound.

Theorem 5.3. Let T be a Coppersmith–Winograd-like estimated symmetric partitioned tensor. For
any ρ ∈ [2, 3], the merging value V m

ρ (T ) is upper bounded by

log V m
ρ (T ) ≤ max

P∈Dsym(T )
H(Pm) +

∑

s∈supp(T )

P (s) log(Valρ(Ts)) +
ρ− 2

3
× P0 ×H(P̃ ).

Proof. Given an integer N , we will upper bound V m
ρ,N (T ). Let S be a consistent restriction of

T⊗N , and let S =
∑

i Si be its decomposition into disjoint coherent sums, so that V m
ρ,N (T ) =

∑

iValρ(Si). We call each Si a line. Lemma 5.1 shows that for each line Si, each t ∈ [N ] is
either x-constant, y-constant, z-constant, or the tth coordinate of all summands in Si is some fixed
s ∈ supp∗(T ). As in the proof of Theorem 5.2, it is enough to bound

∑

i VolP (S
0
i )

ρ/3 Valρ(S
∗
i ) for

all distributions P ∈ D(T ). Calculation shows that the worst distribution is symmetric, so fix some
P ∈ Dsym(T ). Further calculation shows that the largest contribution to

∑

iValρ(Si) comes from
lines in which a P0/3 fraction of the coordinates are x-constant, y-constant, and z-constant each,
and a 1− P0 fraction of the coordinates are fixed. We call such a line a typical line. So our goal is
to bound

V =
∑

i : Si is typical

VolP (S
0
i )

ρ/3 Valρ(S
∗
i ).

The total number R of x-indices in typical lines is easily seen to satisfy logR ≈ NH(Pm). Now
let Si be a typical line. The number Q of x-indices of summands in Si satisfies logQ ≈ 2P0

3 NH(P̃ ).

Indeed, only the y-constant and z-constant coordinates are not fixed, and there are 2P0
3 N of them.

Among the fixed coordinates, the x-constant contain P0
3 N zeroes, and the others contain P ∗

m(i)N
coordinates whose value is i. It is not hard to check that the distribution of the y-constant and
z-constant coordinates is indeed given by P̃ .

As the proof of Theorem 5.2 shows, we can upper bound V by assuming that each typical line
contains the maximal number of x-indices, y-indices, and z-indices, namely Q. The number of
typical lines is thus R/Q.

We proceed to calculate Vol(S0
i ). Recall that S0

i ≈
∑

t∈Si
t0, and for each t ∈ Si, the volume

U = Vol(t0) is U =
∏

s∈supp0(T ) Vol(Ts)
NP (s). If t0 ≈ 〈n,m, p〉 then each x-index corresponds to

nm x-variables, each y-index to mp y-variables, and each z-index to pn z-variables. The tensor
S0
i has X = Qnm x-variables, Y = Qmp y-variables, and Z = Qpn z-variables, so its volume is

Vol(S0
i ) =

√
XY Z = Q3/2nmp = Q3/2U . Therefore

V ≤ R

Q
Vol(S0

i )
ρ/3 Valρ(S

∗
i ) = RQρ/2−1Uρ/3

∏

s∈supp∗(T )

Valρ(Ts)
NP (s).
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Taking the logarithm, we deduce

log V . NH(Pm) +
ρ− 2

3
×NP0 ×H(P̃ ) +

ρ

3

∑

s∈supp0(T )

NP (s)Vol(Ts) +
∑

s∈supp∗(T )

NP (s)Valρ(Ts)

= NH(Pm) +
ρ− 2

3
×NP0 ×H(P̃ ) +

∑

s∈supp(T )

NP (s)Valρ(Ts).

This shows that log V 1/N = (log V )/N is upper bounded in the limit by the expression given by
the theorem.

5.4 Numerical calculations

We now analyze the canonical recursive Coppersmith–Winograd approach by applying Theorem 5.3
to the canonical T⊗2r for several values r ≥ 0. Since, as described in footnote 3 on page 20,
Theorem 3.5 generally does not give an exact formula for computing the partition-restricted value
of each constituent tensor, we use the upper bound appearing in Theorem 3.5 for estimating these
values in our calculations (instead of the lower bound of Theorem 3.5, as was done in Section 3.5);
this can only deteriorate the results we obtain.

The numerical results of this analysis5 are given in Table 3, and can be interpreted as follows:
for given r and q, the corresponding value presented in the table is the solution α of V m∗

α (T⊗2r) =
(q+2)2

r
, where V m∗

α (T⊗2r) is the upper bound on V m
α (T⊗2r) given by Theorem 5.3, and is the best

value that can be possibly obtained from the canonical T⊗2r and its powers. In particular, this
shows that analyzing the 64th, 128th, 256th powers and higher powers of the tensor T for q = 5
using the the canonical recursive Coppersmith–Winograd approach cannot give an upper bound
on ω smaller than 2.3725.

Table 3: The solution α of the equation V m∗
α (T⊗2r) = (q + 2)2

r
, rounded down to five decimal

digits, for several values of r and q.

r = 0 r = 1 r = 2 r = 3 r = 4

q = 1 2.2387 2.3075 2.4587 2.5772 2.6184
q = 2 2.2540 2.3181 2.4187 2.4623 2.4673
q = 3 2.2725 2.3203 2.3834 2.4015 2.4025
q = 4 2.2907 2.3262 2.3690 2.3788 2.3791
q = 5 2.3078 2.3349 2.3659 2.3723 2.3725
q = 6 2.3234 2.3448 2.3682 2.3731 2.3733
q = 7 2.3377 2.3550 2.3733 2.3775 2.3776
q = 8 2.3508 2.3651 2.3798 2.3833 2.3834

5All the programs used to perform the numerical calculations described in this subsection are available as
http://www.francoislegall.com/MatrixMultiplication/programsLB.zip.
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6 Generalizations

In this section we show how our results can be extended to analyze the limitations of current
implementations of the laser method applied to a large class of partitioned tensors, much larger
than the class of Coppersmith–Winograd-like tensors.

We start by giving another definition of merging, which we call coherent merging.

Definition 6.1. Let T be a symmetric estimated partitioned tensor. Given ρ ∈ [2, 3] and N ≥ 1,
we define V cm

ρ,N (T ) to be the maximum of
∑

s∈supp(T ′)Valρ(T
′
s) over all consistent restrictions T

′ of

T⊗N in which each T ′
s
0 is a coherent sum. The coherent merging value of T is the function

V cm
ρ (T ) = lim

N→∞
V cm
ρ,N (T )1/N .

The only difference with Definition 4.3 is that we now require that all consistent sums be
coherent. Naturally, for any symmetric estimated partitioned tensor T and any ρ ∈ [2, 3], we have

V m
ρ (T ) ≥ V cm

ρ (T ) ≥ V pr
ρ (T ).

Note that Lemma 5.1 implies that V m
ρ (T ) = V cm

ρ (T ) for any Coppersmith–Winograd-like tensor T .
The reason for introducing this new version of merging is that Lemma 5.1 may not hold for arbitrary
tensors: there exist (symmetric) partitioned tensors for which consistent but not coherent sums of
zero-sequences of constituent tensors exist. Since all known implementations of the laser method
nevertheless construct coherent restrictions of T⊗N , and in particular no general technique is known
for constructing restrictions with consistent but not coherent sums of zero-sequences, coherent
merging represents what can be done by current implementations of the laser method.

The class of tensors to which the techniques developed in this paper can be applied is defined
as follows.

Definition 6.2. A symmetric partitioned tensor T with support supp(T ) ⊆ Z× Z× Z belongs to
the class C if

supp0(T ) = supp(T ) ∩
(

({0} × Z× Z) ∪ (Z× {0} × Z) ∪ (Z× Z× {0})
)

,

where supp0(T ) ⊆ supp(T ) is the set defined in Definition 4.2.

Note that, while the class C includes all Coppersmith–Winograd-like tensors, it is much larger.
It includes in particular tensors that are not tight.

We can now state our most general result.

Theorem 6.1. Let T be an estimated tensor in C. For any ρ ∈ [2, 3], the coherent merging value
V cm
ρ (T ) is upper bounded by

log V cm
ρ (T ) ≤ max

P∈Dsym(T )
H(Pm) +

∑

s∈supp(T )

P (s) log(Valρ(Ts)) +
ρ− 2

3
× P0 ×H(P̃ ).

The proof of Theorem 6.1 is exactly the same as the proof of Theorem 5.3, since the only
properties of the estimated symmetric partitioned tensor T actually used in the proof of Theorem 5.3
were that T ∈ C and the fact that only coherent sums need be considered due to Lemma 5.1. Indeed,
in our case the latter property trivially holds from the definition of the coherent merging value.
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7 Discussion

Our main result shows that the conjecture ω = 2 cannot be proved using the laser method with
merging applied to the tensor T. On the other hand, we believe that the technique can be used to
improve known bounds on ω. We believe that it is possible that

V m
ρ (T) > lim sup

r→∞
V pr
ρ (T⊗2r).

The reason is that V pr
ρ,N/2r (T

⊗2r) corresponds to a lower bound on V m
ρ,N (T) in which merging is done

in groups of 2r coordinates at a time, for fixed r; if the merging width 2r is allowed to vary with N ,
then a better lower bound on V m

ρ,N (T) can potentially be obtained.

Our main result gives a limit on the possible upper bounds on ω obtainable for given q ≥ 1
which deteriorates as q gets smaller. In contrast, for known constructions the best q is q = 5 (or
q = 6 for the construction without merging), a behavior which is also apparent in the upper bounds
we get for T⊗4 and higher powers. This leads us to suspect that our upper bound on the merging
value is not tight. We leave it as an open question to determine the correct value of V m

ρ (T).

A similar issue concerns the partition-restricted value V pr
ρ (T⊗2r). Theorem 3.5 can be used to

calculate the value for r = 0 and r = 1, but already for r = 2 there is a gap between the lower and
upper bounds. We conjecture that the lower bound is tight, but have so far been unable to prove
this. One concrete reason for this conjecture is that in certain cases, if we assume that the upper
bound is tight then we can obtain a bound ω ≤ ρ for some ρ < 2. A deeper reason is that the upper
bound does not rely on the fact that the tensor T ′ in the definition of V pr

ρ,N (T ) is obtained from T⊗N

by a partitioned restriction. Rather, it only depends on the fact that the constituent tensors of T ′

are on disjoint variables. Indeed, if we do not insist that T ′ be obtained by a partitioned restriction,
then the upper bound is tight. The main difficulty in proving the lower bound is to construct T ′

using a partitioned restriction; without this stipulation, a simple randomized construction matches
the upper bound.

Our upper bound on V m
ρ (T) also ignores the fact that T ′ is a partitioned restriction, and is also

tight if do not insist that T ′ be obtained by a partitioned restriction. This is another reason to
believe that the upper bound on V m

ρ (T) is not tight.

Research in matrix multiplication has proceeded in the past by finding new techniques and new
identities (corresponding to upper bounds on ranks or border ranks of tensors). Notwithstanding
recent developments, and ignoring the group-theoretic method which so far has not produced new
upper bounds on ω, this process seems to have stagnated. While the new technique we propose in
this paper could potentially lead to improved bounds on ω, we nevertheless find the most promising
research direction (besides the group-theoretic method [3, 2] and the s-rank [4]) to be finding new
identities6. Perhaps a systematic search for new identities could be automated and would lead
to significantly improved upper bounds on ω. The lower bound techniques we developed may
be instrumental for such a search, since they make possible to immediately rule out unpromising
identities, i.e., to show that a given identity, and any of its powers, even accounting for any possible
repartitioning scheme, cannot lead to ω = 2.

6A tantalizing source for new identities is the “basic” Coppersmith–Winograd identity itself and its powers,
obtained by setting x

[2]
q+1 = y

[2]
q+1 = z

[2]
q+1 = 0. As discussed in [5], it is possible that the Nth tensor power of this

tensor has border rank significantly lower than the known upper bound (q + 2)N , though so far no new bounds are
known for any N .
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A Proofs of results from Section 3.2

We start by showing that the limit in the definition of V pr
ρ,P (T ) exists. If (N1 +N2)⊙ P =

N1 ⊙ P + N2 ⊙ P then it is not hard to check that V pr
ρ,P,N1+N2

(T ) ≥ V pr
ρ,P,N1

(T )V pr
ρ,P,N2

(T ). While
this inequality is not true in general due to rounding, it is true approximately. A careful application
of Fekete’s lemma then shows that the limit exists.

We proceed to prove Theorem 3.6.

Proof of Theorem 3.6. It is not hard to check that V pr
ρ (T ) ≥ V pr

ρ,P (T ) for every P ∈ D(T ), and we
proceed to prove the other direction.

For P ∈ D(T ), P ′ ∈ D(TC), P ′′ ∈ D(TC2
), define V pr

ρ,P,P ′,P ′′,N (T ) by naturally extending the

definition of V pr
ρ,P,N(T ) to allow different distributions for factors coming from T, TC, TC2

.

Given N , notice that each s ∈ supp((T ⊗ TC ⊗ TC2
)⊗N ) corresponds to some distributions

Ps ∈ D(T ), P ′
s ∈ D(TC), P ′′

s ∈ D(TC2
) (obtained by dividing the actual quantities by N), and there

are NO(1) many such triples of distributions, forming a set DN . It is not hard to check that

V pr
ρ,N (T ) ≤

∑

(P,P ′,P ′′)∈DN

V pr
ρ,P,P ′,P ′′,N (T ) ≤ NO(1) max

(P,P ′,P ′′)∈DN

V pr
ρ,P,P ′,P ′′,N (T ).

For each N , let (PN , P ′
N , P ′′

N ) ∈ DN be the distribution maximizing V pr
ρ,P,P ′,P ′′,N(T ). The triples

PN , P ′
N , P ′′

N have an accumulation point P,P ′, P ′′ which satisfies lim infN→∞ V pr
ρ,N (T )1/3N ≤V pr

ρ,P,P ′,P ′′

(since (NO(1))1/3N → 1), showing that

V pr
ρ (T ) ≤ max

(P,P ′,P ′′)∈D(T )×D(TC)×D(TC2 )
V pr
ρ,P,P ′,P ′′(T ).

In order to complete the proof, we need to show that the maximum is obtained when P ′ = PC

and P ′′ = PC
2
. For P ∈ D(T ), P ′ ∈ D(TC), P ′′ ∈ D(TC

2
), define Q = (P + P ′C2

+ P ′′C)/3.
Consider the partitioned degeneration T ′ of (T ⊗ TC⊗ TC

2
)⊗N witnessing V pr

ρ,P,P ′,P ′′,N (T ). We can

view T ′ ⊗ T ′C ⊗ T ′C2
as a partitioned degeneration of (T ⊗ TC ⊗ TC2

)⊗3N witnessing V pr
ρ,Q,3N (T ) ≥

V pr
ρ,P,P ′,P ′′,N (T )3, and so V pr

ρ,Q(T ) ≥ V pr

ρ,P,P C,P C2
(T ).

Theorem 3.4 is a simple corollary.

Proof of Theorem 3.4. Let ρ ∈ [2, 3], and suppose that Valρ(Ts) ≤ Vρ(Ts) for all s ∈ supp(S). Let
P ∈ D(T ) be a distribution such that V pr

ρ (T ) = V pr
ρ,P (T ), which exists by Theorem 3.6. Fix a value

of N , and let T ′ be a partitioned degeneration of (T ⊗ TC⊗ TC
2
)⊗N with strongly disjoint support

such that V pr
ρ,P,N(T ) =

∑

s∈suppP (T ′)Valρ(T
′
s). Lemma 3.3 implies that Vρ((T ⊗ TC ⊗ TC

2
)⊗N ) ≥

V pr
ρ,P,3N (T ), and so Vρ(T ) ≥ V pr

ρ,P,3N (T )1/3N . Taking the limit N → ∞, we conclude that Vρ(T ) ≥
V pr
ρ,P (T ) = V pr

ρ (T ).

Finally, we prove the upper bound part of Theorem 3.5.

Proof of upper bound part of Theorem 3.5. Consider first general (not necessarily symmetric) ten-
sors T . In view of Theorem 3.6, it is enough to prove that for each P ∈ D(T ),

log V pr
ρ,P (T ) ≤

3
∑

ℓ=1

H(Pℓ)

3
+ E

s∼P
[log Valρ(Ts)].
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For any N ≥ 1, V pr
ρ,P,3N =

∑

s∈suppP (T ′)Valρ(T
′
s) for some partitioned restriction T ′ of (T ⊗

TC ⊗ TC2
)⊗N with strongly disjoint support. For every s ∈ suppP (T

′) we have log Valρ(T
⊗N
s ) =

3N Eσ∼P [log Valρ(Tσ)] ± O(1). Since all x-indices in suppP (T
′) are disjoint, log | suppP (T ′)| ≤

NH(P1) + NH(P2) + NH(P3), using the upper bound on the corresponding multinomial coeffi-
cient. We conclude that

log V pr
ρ,P,N(T ) ≤ 3N

3
∑

ℓ=1

H(Pℓ)

3
+ 3N E

s∼P
[log Valρ(Ts)] +O(1).

The desired inequality follows by taking the limit N →∞.

Suppose now that T is symmetric, and consider any P ∈ D(T ). Let Q = P+P C+P C
2

3 ∈ Dsym(T ).
It is not hard to check that Es∼Q[log Valρ(Ts)] = Es∼P [log Valρ(Ts)], and concavity of the entropy

function shows that H(P1)+H(P2)+H(P3)
3 ≤ H(Q1) =

H(Q1)+H(Q2)+H(Q3)
3 . This shows that there is a

symmetric distribution maximizing the upper bound.
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