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Abstract

The celebrated Cheeger’s Inequality [AM85, Alo86] establishes a bound on the expansion of a graph
via its spectrum. This inequality is central to a rich spectral theory of graphs, based on studying the
eigenvalues and eigenvectors of the adjacency matrix (and other related matrices) of graphs. It has
remained open to define a suitable spectral model for hypergraphs whose spectra can be used to estimate
various combinatorial properties of the hypergraph.

In this paper we introduce a new hypergraph Laplacian operator (generalizing the Laplacian matrix of
graphs) and study its spectra. We prove a Cheeger-type inequality for hypergraphs, relating the second
smallest eigenvalue of this operator to the expansion of the hypergraph. We bound other hypergraph
expansion parameters via higher eigenvalues of this operator. We give bounds on the diameter of the
hypergraph as a function of the second smallest eigenvalue of the Laplacian operator. The Markov
process underlying the Laplacian operator can be viewed as a dispersion process on the vertices of the
hypergraph that can be used to model rumour spreading in networks, brownian motion, etc., and might be
of independent interest. We bound the Mixing-time of this process as a function of the second smallest
eigenvalue of the Laplacian operator. All these results are generalizations of the corresponding results for
graphs.

We show that there can be no linear operator for hypergraphs whose spectra captures hypergraph
expansion in a Cheeger-like manner. Our Laplacian operator is non-linear and thus computing its
eigenvalues exactly is intractable. For any k ∈ �>0, we give a polynomial time algorithm to compute an
approximation to the kth smallest eigenvalue of the operator . We show that this approximation factor is
optimal under the SSE hypothesis (introduced by [RS10]) for constant values of k.

We give a O
( √

log k log r log log k
)
-approximation algorithm for the general sparsest cut in hyper-

graphs, where k is the number of “demands” in the instance and r is the size of the largest hyperedge.
Finally, using the factor preserving reduction from vertex expansion in graphs to hypergraph expansion,

we show that all our results for hypergraphs extend to vertex expansion in graphs.

∗Supported by the Simons Collaboration on Algorithms and Geometry. Part of work done while the author was a student at
Georgia Tech and supported by Santosh Vempala’s NSF award CCF-1217793.
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1 Introduction

There is a rich spectral theory of graphs, based on studying the eigenvalues and eigenvectors of the adjacency
matrix (and other related matrices) of graphs [AM85, Alo86, AC88, ABS10, LRTV11, LRTV12, LOT12].
We refer the reader to [Chu97, MT06] for a comprehensive survey on Spectral Graph Theory. A fundamental
graph parameter is its expansion or conductance defined for a graph G = (V, E) as:

φG
def
= min

S⊂V

∣∣∣E(S , S̄ )
∣∣∣

min
{
vol(S ), vol(S̄ )

}
where by vol(S ) we denote the sum of degrees of the vertices in S and E(S ,T ) is the set of edges which
have one endpoint in S and one endpoint in T . Cheeger’s Inequality [AM85, Alo86], a central inequality in
Spectral Graph Theory, establishes a bound on expansion via the spectrum of the graph:

λ2

2
6 φG 6

√
2λ2

where λ2 is the second smallest eigenvalue of the normalized Laplacian1 matrix of the graph. This theorem
and its many (minor) variants have played a major role in the design of algorithms as well as in understanding
the limits of computation [SJ89, SS96, Din07, ARV09, ABS10]. We refer the reader to [HLW06] for a
comprehensive survey.

It has remained open to define a spectral model of hypergraphs, whose spectra can be used to esti-
mate hypergraph parameters à la Spectral Graph Theory. Hypergraph expansion2 and related hypergraph
partitioning problems are of immense practical importance, having applications in parallel and distributed
computing [CA99], VLSI circuit design and computer architecture [KAKS99, GGLP00], scientific comput-
ing [DBH+06] and other areas. Inspite of this, hypergraph expansion problems haven’t been studied as well as
their graph counterparts (see Section 1.1 for a brief survey). Spectral graph partitioning algorithms are widely
used in practice for their efficiency and the high quality of solutions that they often provide [BS94, HL95].
Besides being of natural theoretical interest, a spectral theory of hypergraphs might also be relevant for
practical applications.

The various spectral models for hypergraphs considered in the literature haven’t been without shortcom-
ings. An important reason for this is that there is no canonical matrix representation of hypergraphs. For
an r-uniform hypergraph H = (V, E) on the vertex set V and having edge set E ⊆ Vr, one can define the
canonical r-tensor form A as follows.

A(i1,...,ir)
def
=

1 {i1, . . . , ir} ∈ E
0 otherwise

.

This tensor form and its minor variants have been explored in the literature (see Section 1.1 for a brief
survey), but have not been understood very well. Optimizing over tensors is NP-hard [HL09]; even getting
good approximations might be intractable [BV09]. Moreover, the spectral properties of tensors seem to be
unrelated to combinatorial properties of hypergraphs (See Appendix A).

Another way to study a hypergraph, say H = (V, E), is to replace each hyperedge e ∈ E by complete
graph or a low degree expander on the vertices of e to obtain a graph G = (V, E′). If we let r denote the size

1 The normalized Laplacian matrix is defined as LG
def
= D−1/2(D − A)D−1/2 where A is the adjacency matrix of the graph and D is

the diagonal matrix whose (i, i)th entry is equal to the degree of vertex i.
2See Definition 2.13 for formal definition
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of the largest hyperedge in E, then it is easy to see that the combinatorial properties of G and H, like min-cut,
sparsest-cut, among others, could be separated by a factor of Ω(r). Therefore, this approach will not be useful
when r is large.

In general, one can not hope to have a linear operator for hypergraphs whose spectra captures hypergraph
expansion in a Cheeger-like manner. This is because the existence of such an operator will imply the existence
of a polynomial time algorithm obtaining a O

(√
OPT

)
bound on hypergraph expansion, but we rule this out

by giving a lower bound of Ω(
√

OPT log r) for computing hypergraph expansion, where r is the size of the
largest hyperedge (Theorem 2.24).

Our main contribution is the definition of a new Markov operator for hypergraphs, obtained by generalizing
the random-walk operator on graphs. Our operator is simple and does not require the hypergraph to be
uniform (i.e. does not require all the hyperedges to have the same size). We describe this operator in
Section 2 (See Definition 2.1). We present our main results about this hypergraph operator in Section 2.1 and
Section 2.3. Most of our results are independent of r (the size of the hyperedges), some of our bounds have a
logarithmic dependence on r, and none of our bounds have a polynomial dependence on r. All our bounds
are generalizations of the corresponding bounds for graphs.

1.1 Related Work

Freidman and Wigderson [FW95] study the canonical tensors of hypergraphs. They bound the second
eigenvalue of such tensors for hypergraphs drawn randomly from various distributions and show their
connections to randomness dispersers. Rodriguez [Rod09] studies the eigenvalues of graph obtained by
replacing each hyperedge by a clique (Note that this step incurs a loss of O(r2), where r is the size of the
hyperedge). Cooper and Dutle [CD12] study the roots of the characteristic polynomial of hypergraphs and
relate it to its chromatic number. [HQ13, HQ14] also study the canonical tensor form of the hypergraph
and relate its eigenvectors to some configured components of that hypergraph. [LM12, LM13a, LM13b]
relate the eigenvector corresponding to the second largest eigenvalue of the canonical tensor to hypergraph
quasi-randomness. Chung [Chu93] defines a notion of Laplacians for hypergraphs and studies the relationship
between its eigenvalues and a very different notion of hypergraph cuts and homologies. [PRT12, SKM12,
PR12, Par13, KKL14, SKM14] study the relation of simplicial complexes to rather different notion of
Laplacian forms and prove isoperimetric inequalities, study homologies and mixing times. Ene and Nguyen
[EN14] studied the hypergraph multiway partition problem (generalizing the graph multiway partition
problem) and gave a 4/3-approximation algorithm. Concurrent to this work, [LM14b] gave approximation
algorithms for hypergraph expansion, and more generally, hypergraph small set expansion; they gave a
Õ

(
k
√

log n
)
-approximation algorithm and a Õ

(
k
√

OPT log r
)

approximation bound for the problem of
computing the set of vertices of size at most |V | /k in a hypergraph H = (V, E), having the least expansion.

Bobkov, Houdré and Tetali [BHT00] defined a Poincairé-type functional graph parameter called λ∞
and showed that it relates to the vertex expansion of a graph in Cheeger like manner, i.e. it satisfies
λ∞/2 6 φV = O

(√
λ∞

)
where φV is the vertex expansion of the graph (see Section 2.3.7 for the definition

of vertex expansion of a graph). [LRV13] gave a O
( √

OPT log d
)

approximation bound for computing the
vertex expansion in graphs having the largest vertex degree d.

Peres et. al.[PSSW09] study a “tug of war” Laplacian operator on graphs that is similar to our hypergraph
Markov operator and use it to prove that every bounded real-valued Lipschitz function F on a subset Y
of a length space X admits a unique absolutely minimal extension to X. Subsequently a variant of this
operator was used to for analyzing the rate of convergence of local dynamics in bargaining networks [CDP10].
[LRTV11, LRTV12, LOT12, LM14a] study higher eigenvalues of graph Laplacians and relate them to graph
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multi-partitioning parameters (see Section 2.3.2).

1.2 Notation

We denote a hypergraph H = (V, E, w), where V is the vertex set of the hypergraph, E ⊂ 2V \ {{}} is the
set of hyperedges and and w : E → �+ gives the edge weights. We define the degree of a vertex v ∈ V as
dv

def
=

∑
e∈E:v∈e w(e). We use n def

= |V | to denote the number of vertices in the hypergraph and m def
= |E| to

denote the number of hyperedges. We use rmin
def
= mine∈E |e| to denote the size of the smallest hyperedge and

use rmax
def
= maxe∈E |e| to denote the size of the largest hyperedge. Since, most of our bounds will only need

rmax, we use r def
= rmax for brevity. We say that a hypergraph is regular if all its vertices have the same degree.

We say that a hypergraph is uniform if all its hyperedges have the same cardinality.
For S ,T ⊂ V , we denote by E(S ,T ) the set of hyperedges which have at least one vertex in S and at least

one vertex in T . We use φH(·) to denote expansion of sets in the hypergraph H (see Definition 2.13). We drop
the subscript whenever the hypergraph is clear from the context.

A list of edges e1, . . . , el such that ei ∩ ei+1 , ∅ for i ∈ [l − 1] is referred as a path. The length of a path is
the number of edges in it. We say that a path e1, . . . , el connects two vertices u, v ∈ V if u ∈ e1 and v ∈ el.
We say that the hypergraph is connected if for each pair of vertices u, v ∈ V , there exists a path connecting
them. The diameter of a hypergraph, denoted by diam(H), is the smallest value l ∈ �>0, such that each pair
of vertices u, v ∈ V have a path of length at most l connecting them.

For an x ∈ R, we define x+ def
= max {x, 0} and x− def

= max {−x, 0}. For a non-zero vector u, we define
ũ def

= u/ ‖u‖. We use 1 ∈ �n to denote the vector having 1 in every coordinate. For a vector X ∈ �n, we define
its support as the set of coordinates at which X is non-zero, i.e. supp(X) def

= {i : X(i) , 0}. We use � [·] to
denote the indicator variable, i.e. � [x] is equal to 1 if event x occurs, and is equal to 0 otherwise. We use χS

to denote the indicator function of the set S ⊂ V , i.e.

χS (v) =

1 v ∈ S
0 otherwise

.

We use µ(·) to denote probability distributions on vertices. We use µ∗ to denote the stationary distributions
on vertices (we will define the stationary distribution later, see Section 2.1). We denote the 2-norm of a vector
by ‖·‖, and its 1 norm by ‖·‖1.

We use Π(·) to denote projection operators. For a subspace S , we denote by ΠS : �n → �n the projection
operator that maps a vector to its projection on S . We denote by Π⊥S : �n → �n the projection operator that
maps a vector to its projection orthogonal to S .

We use d+

dt f to denote the right-derivative of a function f , i.e.

d+

dt
f (a) = lim

x→a+

f (x) − f (a)
x − a

.

Similarly, we use d−
dt f to denote the left-derivative of f .

2 The Hypergraph Markov Operator

We now formally define the hypergraph Markov operator M : �n → �n. For a hypergraph H, we denote its
Markov operator by MH . We drop the subscript whenever the hypergraph is clear from the context.
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Definition 2.1 (The Hypergraph Markov Operator).
Given a vector X ∈ �n, M(X) is computed as follows.

1. For each hyperedge e ∈ E, let (ie, je) := argmaxi, j∈e

∣∣∣Xi − X j
∣∣∣, breaking ties randomly (See Re-

mark 4.2).

2. We now construct the weighted graph GX on the vertex set V as follows. We add edges {{ie, je} : e ∈ E}
having weight w({ie, je}) := w(e) to GX . Next, to each vertex v we add self-loops of sufficient weight
such that its degree in GX is equal to dv; more formally we add self-loops of weight

w({v, v}) := dv −
∑

e∈E:v∈{ie, je}

w(e) .

3. We define AX to be the random walk matrix of GX , i.e., AX is obtained from the adjacency matrix of
GX by dividing the entries of the ith row by the degree of vertex i in GX .

Then,
M(X) def

= AXX .

Remark 2.2. We note that unlike most of spectral models for hypergraphs considered in the literature, our
Markov operator M does not require the hypergraph to be uniform (i.e. it does not require all hyperedges to
have the same number of vertices in them).

Remark 2.3. Let GX denote the adjacency matrix of the graph in Definition 2.1. Then, by construction,
AX = GXD−1, where D is the diagonal matrix whose (i, i)th entry is di. A folklore result in linear algebra is
that the matrices GXD−1 and D−1/2GXD−1/2 have the same set of eigenvalues. This can be seen as follows;
let v be an eigenvector of GXD−1 with eigenvalue λ, then

D−1/2GXD−1/2
(
D−1/2v

)
=

(
D−1/2

)
·
(
GXD−1

)
v =

(
D−1/2

)
· (λ v) = λ

(
D−1/2v

)
.

Hence, D−1/2v will be an eigenvector of D−1/2GXD−1/2 having the same eigenvalue λ. Therefore, we will
often study D−1/2GXD−1/2 in the place of studying GXD−1.

Definition 2.4 (Hypergraph Laplacian). Given a hypergraph H, we define its Laplacian operator L as

L def
= I − M .

Here, I is the identity operator and M is the hypergraph Markov operator. The action of L on a vector X is
L(X) def

= X − M(X). We define the matrix LX
def
= I − AX (See Remark 2.3). We define the Rayleigh quotient

R (·) of a vector X as

R (X) def
=

XT L(X)
XT X

.

Our definition of M is inspired by the ∞-Harmonic Functions studied by [PSSW09]. We note that M
is a generalization of the random-walk matrix for graphs to hypergraphs; if all hyperedges had exactly two
vertices, then {ie, je} = e for each hyperedge e and M would be the random-walk matrix.

5



Let us consider the special case when the hypergraph H = (V, E, w) is d-regular. We can also view the
operator M as a collection of maps { fr : �r → �r}r∈�>0

as follows. We define the action of fr on a tuple
(x1, . . . , xr) as follows. It picks the coordinates i, j ∈ [r] which have the highest and the lowest values
respectively. Then it decreases the value at the ith coordinate by (xi − x j)/d and increases the value at the
jth coordinate by (xi − x j)/d, whereas all other coordinates remain unchanged. For a vector X ∈ �n, the
computation of M(X) in Definition 2.1 can be viewed as simultaneously applying these maps to each edge
e ∈ E, i.e. for each hyperedge e ∈ E, f|e| is applied to the tuple corresponding to the coordinates of X
represented by the vertices in e.

Comparison to other operators. One could ask if any other set of maps {gr : �r → �r}r∈�>0
used in this

manner gives a ‘better’ Markov operator? A natural set of maps that one would be tempted to try are the
averaging maps which map an r-tuple (x1, . . . , xr) to

(∑
i xi/r, . . . ,

∑
i xi/r

)
.

If we consider the embedding of the vertices of a hypergraph H = (V, E, w) on �, given by the vector
X ∈ �V , then the length l(·) of a hyperedge e ∈ E is l(e) def

= maxi, j∈e
∣∣∣Xi − X j

∣∣∣. We believe that l(e) is the most
essential piece of information about the hyperedge e. As a motivating example, consider the special case
when all the entries of X are in {0, 1}. In this case, the vector X defines a cut (S , S̄ ), where S = supp(X), and
the l(e) indicates whether e is cut by S or not. Building on this idea, we can use the average length of edges
to bound expansion of sets. We will be studying the length of the hyperedges in the proofs of all the results
in this paper. A well known fact from Statistical Information Theory is that moving in the direction of ∇l
will yield the most information about the function in question. We refer the reader to [Në83, BTN01] for the
formal statement and proof of this fact, and for a comprehensive discussion on this topic. Our set of maps
move a tuple precisely in the direction of ∇l, thereby achieving this goal.

For a hyperedge e ∈ E the averaging maps will yield information about the function �i, j∈e
∣∣∣Xi − X j

∣∣∣ and
not about l(e). In particular, the averaging maps will have a gap of factor Ω(r) between the hypergraph
expansion3 and the square root spectral gap4 of the operator. In general, if a set of maps changes r′ out of r
coordinates, it will have a gap of Ω(r′) between hypergraph expansion and the square root of the spectral gap.

Our set of maps { fr}r∈�>0
are also the very natural greedy maps which bring the pair of coordinates which

are farthest apart slightly closer to each other. Let us consider the continuous dispersion process where
we repeatedly apply the markov operator ((1 − dt)I + dt M) ( for an infinitesimally small value of dt) to an
arbitrary starting probability distribution on the vertices (see Definition 2.10). In the case when the maximum
value (resp. minimum value) in the r-tuple is much higher (resp. much lower) than the second maximum
value (resp. second minimum value), then these set of greedy maps are essentially the best we can hope for,
as they will lead to the greatest decrease in variance of the values in the tuple. In the case when the maximum
value (resp. minimum value) in the tuple, located at some coordinate i1 ∈ [r] is close to the second maximum
value (resp. second minimum value), located at some coordinate i2 ∈ [r], the dispersion process is likely to
decrease the value at coordinate i1 till it equals the value at coordinate i2 after which these two coordinates
will decrease at the same rate (see Section 4 and Remark 4.2). Therefore, our set of greedy maps addresses
all cases satisfactorily.

3See Definition 2.13.
4The spectral gap of a Laplacian operator is defined as its second smallest eigenvalue. See Definition 2.8 for the definition of

eigenvalues of the Markov operator M.
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2.1 Hypergraph Eigenvalues

Stationary Distribution. A probability distribution µ on V is said to be stationary if M(µ) = µ . We define
the probability distribution µ∗ as follows.

µ∗(i) =
di∑

j∈V d j
for i ∈ V .

µ∗ is a stationary distribution of M, as it is an eigenvector with eigenvalue 1 of AX ∀X ∈ �n.

Laplacian Eigenvalues. An operator L is said to have an eigenvalue λ ∈ � if for some vector X ∈ �n,
L(X) = λ X. It follows from the definition of L that λ is an eigenvalue of L if and only if 1−λ is an eigenvalue
of M. In the case of graphs, the Laplacian Matrix and the adjacency matrix have n orthogonal eigenvectors.
However for hypergraphs, the Laplacian operator L (respectively M) is a highly non-linear operator. In
general non-linear operators can have a lot more more than n eigenvalues or a lot fewer than n eigenvalues.

From the definition of stationary distribution we get that µ∗ is an eigenvector of M with eigenvalue 1.
Therefore, µ∗ is an eigenvector of L with eigenvalue 0. As in the case of graphs, it is easy to see that the
hypergraph Laplacian operator has only non-negative eigenvalues.

Proposition 2.5. Given a hypergraph H and its Laplacian operator L, all eigenvalues of L are non-negative.

Proof. Let v be an eigenvector of L and let γ be the corresponding eigenvalue. Then, from the definition of L
(Definition 2.1), v is an eigenvector of the matrix

(
I −GvD−1

)
with eigenvalue γ. Using Remark 2.3, we get

D−1/2v is an eigenvector of the matrix
(
I − D−1/2GvD−1/2

)
with eigenvalue γ. Therefore,

0 6

(
D−1/2v

)T (
I − D−1/2GvD−1/2

) (
D−1/2v

)
(
D−1/2v

)T (
D−1/2v

) =

(
D−1/2v

)T (
γ
(
D−1/2v

))
(
D−1/2v

)T (
D−1/2v

) = γ

where the first inequality follows from the folklore fact that the symmetric matrix
(
I − D−1/2GvD−1/2

)
� 0.

Hence, the proposition follows. �

We start by showing that L has at least one non-trivial eigenvalue.

Theorem 2.6. Given a hypergraph H, there exists a non-zero vector v ∈ �n and a λ ∈ � such that 〈v, µ∗〉 = 0
and L(v) = λ v.

Given that a non-trivial eigenvector exists, we can define the second smallest eigenvalue γ2 as the smallest
eigenvalue from Theorem 2.6. We define v2 to be the corresponding eigenvector.

It is not clear if L has any other eigenvalues. We again remind the reader that in general, non-linear
operators can have very few eigenvalues or sometimes even have no eigenvalues at all. We leave as an open
problem the task of investigating if other eigenvalues exist. We study the eigenvalues of L when restricted to
certain subspaces. We prove the following theorem (see Theorem 4.6 for formal statement).

Theorem 2.7 (Informal Statement). Given a hypergraph H, for every subspace S of �n, the operator ΠS L
has an eigenvector, i.e. there exists a non-zero vector v ∈ S and a γ ∈ � such that

ΠS L(v) = γ v .

7



Given that L restricted to any subspace has an eigenvalue, we can now define higher eigenvalues of L à la
Principal Component Analysis (PCA).

Definition 2.8. Given a hypergraph H, we define its kth smallest eigenvalue γk and the corresponding
eigenvector vk recursively as follows. The basis of the recursion is v1 = µ∗ and γ1 = 0. Now, let S k :=
span ({vi : i ∈ [k]}). We define γk to be the smallest non-trivial5 eigenvalue of Π⊥S k−1

L and vk to be the
corresponding eigenvector.

We will often use the following formulation of these eigenvalues.

Proposition 2.9. The eigenvalues defined in Definition 2.8 satisfy

γk = min
X

XT Π⊥S k−1
L(X)

XT Π⊥S k−1
X

= min
X⊥v1,...,vk−1

R (X) .

vk = argminX

XT Π⊥S k−1
L(X)

XT Π⊥S k−1
X

= argminX⊥v1,...,vk−1
R (X) .

2.2 Hypergraph Dispersion Processes

A Dispersion Process on a vertex set V starts with some distribution of mass on the vertices, and moves mass
around according to some predefined rule. Usually mass moves from vertex having a higher concentration of
mass to a vertex having a lower concentration of mass. A random walk on a graph is a dispersion process, as
it can be viewed as a process moving probability-mass along the edges of the graph. We define the canonical
dispersion process based on the hypergraph Markov operator (Definition 2.10).

Definition 2.10 (Continuous Time Hypergraph Dispersion Process). Given a hypergraph H = (V, E, w), a
starting probability distribution µ0 on V , we (recursively) define the probability distribution on the vertices
at time t according to the following heat equation

dµt

dt
= −L(µt) .

Equivalently, for an infinitesimal time duration dt, the distribution at time t + dt is defined as a function of
the distribution at time t as follows

µt+dt = ((1 − dt)I + dt M) ◦ µt .

This dispersion process can be viewed as the hypergraph analogue of the heat kernel on graphs; indeed,
when all hyperedges have cardinality 2 (i.e. the hypergraph is a graph), the action of the hypergraph Markov
operator M on a vector X is equivalent to the action of the (normalized) adjacency matrix of the graph on X.
This process can be used as an algorithm to estimate size of a hypergraph and for sampling vertices from it,
in the same way as random walks are used to accomplish these tasks in graphs. We further believe that this
dispersion process will have numerous applications in counting/sampling problems on hypergraphs, in the
same way that random walks on graphs have applications in counting/sampling problems on graphs.

A fundamental parameter associated with the dispersion processes is its Mixing Time.
5 By non-trivial eigenvalue of Π⊥S k−1

L, we mean vectors in �n \ S k−1 as guaranteed by Theorem 2.7.
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Definition 2.11 (Mixing Time). Given a hypergraph H = (V, E, w), a probability distribution µ is said to be
(1 − δ)-mixed if ∥∥∥µ − µ∗∥∥∥1 6 δ .

Given a starting probability distribution µ0, we define its Mixing time tmix
δ

(
µ0

)
as the smallest time t such that∥∥∥µt − µ∗

∥∥∥
1 6 δ

where the µt are as given by the hypergraph Dispersion Process (Definition 2.10).

We will show that in some hypergraphs on 2k vertices, the mixing time can be O (poly(k)) (Theorem 2.18).
We believe that this fact will have applications in counting/sampling problems on hypergraphs à la MCMC
(Markov chain monte carlo) algorithms on graphs.

2.3 Summary of Results

Our first result is that assuming the SSE hypothesis, there is no linear operator (i.e. a matrix) whose eigen-
values can be used to estimate φH in a Cheeger like manner. See Section 9 for a definition of SSE hypothesis
(Hypothesis 9.1).

Theorem 2.12. Given a hypergraph H = (V, E, w), assuming the SSE hypothesis, there exists no polynomial
time algorithm to compute a matrix A ∈ �V×V , such that

c1λ 6 φH 6 c2
√
λ

where λ is any polynomial time computable function of the eigenvalues of A and c1, c2 ∈ �
+ are absolute

constants.

Next, we show that our Laplacian operator L has eigenvalues (see Theorem 2.6, Theorem 2.7 and
Proposition 2.9). We relate the hypergraph eigenvalues to other properties of hypergraphs as follows.

2.3.1 Spectral Gap of Hypergraphs

Definition 2.13. Given a hypergraph H = (V, E, w), and a set S ⊂ V , we denote by E(S ,V \ S ), the edges
which have at least one end point in S , and at least one end point in V \ S , i.e.

E(S ,V \ S ) def
= {e ∈ E : e ∩ S , ∅ and e ∩ (V \ S ) , ∅} .

We define the expansion of S as

φ(S ) def
=

∑
e∈E(S ,V\S ) w(e)

min
{∑

i∈S di,
∑

i∈S̄ di
}

and define the expansion of the hypergraph H as φH
def
= minS⊂V φ(S ).

A basic fact in spectral graph theory is that a graph is disconnected if and only if λ2, the second smallest
eigenvalue of its normalized Laplacian matrix, is zero. Cheeger’s Inequality is a fundamental inequality
which can be viewed as robust version of this fact.

9



Theorem (Cheeger’s Inequality [AM85, Alo86]). Given a graph G, let λ2 be the second smallest eigenvalue
of its normalized Laplacian matrix. Then

λ2

2
6 φG 6

√
2λ2 .

We prove a generalization of Cheeger’s Inequality to hypergraphs.

Theorem 2.14 (Hypergraph Cheeger’s Inequality). Given a hypergraph H,

γ2

2
6 φH 6

√
2γ2 .

Hypergraph Diameter A well known fact about graphs is that the diameter6 of a graph G is at most
O

(
log n/

(
log(1/(1 − λ2))

))
where λ2 is the second smallest eigenvalue of the graph Laplacian. Here we

prove a generalization of this fact to hypergraphs.

Theorem 2.15. Given a hypergraph H = (V, E, w) with all its edges having weight 1, its diameter is at most

diam(H) 6 O

 log |V |
log 1

1−γ2

 .
We note that this bound is slightly stronger than the bound of O

(
log |V | /γ2

)
.

2.3.2 Higher Order Cheeger Inequalities.

Given a parameter k ∈ �>0, the small set expansion problem asks to compute the set of size at most |V | /k
vertices having the least expansion. This problem arose in the context of understanding the Unique Games
Conjecture and has a close connection to it [RS10, ABS10]. In recent work, higher eigenvalues of graph
Laplacians were used to bound small-set expansion in graphs. [LRTV12, LOT12] show that for a graph G
and a parameter k ∈ �>0, there exists a set S ⊂ V of size O (n/k) such that

φ(S ) 6 O
( √

λk log k
)
.

We prove a generalization of this bound to hypergraphs (see Theorem 6.1 for formal statement).

Theorem 2.16 (Informal Statement). Given hypergraph H = (V, E, w) and parameter k < |V |, there exists a
set S ⊂ V such that |S | 6 O (|V | /k) satisfying

φ(S ) 6 O
(
min

{ √
r log k, k log k log log k

√
log r

} √
γk

)
where r is the size of the largest hyperedge in E.

Moreover, it was shown that a graph’s λk (the kth smallest eigenvalue of its normalized Laplacian matrix)
is small if and only if the graph has roughly k sets eaching having small expansion. This fact can be viewed
as a generalization of the Cheeger’s inequality to higher eigenvalues and partitions.

6See Section 1.2 for the definition of graph and hypergraph diameter.
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Theorem. [LOT12, LRTV12] For any graph G = (V, E, w) and any integer k < |V |, there exist Θ(k) non-empty
disjoint sets S 1, . . . , S ck ⊂ V such that

max
i∈[ck]

φ(S i) 6 O
( √

λk log k
)
.

Moreover, for any k disjoint non-empty sets S 1, . . . , S k ⊂ V

max
i∈[k]

φ(S i) >
λk

2
.

We prove a slightly weaker generalization to hypergraphs.

Theorem 2.17. For any hypergraph H = (V, E, w) and any integer k < |V |, there exists Θ(k) non-empty
disjoint sets S 1, . . . , S ck ⊂ V such that

max
i∈[ck]

φ(S i) 6 O
(
min

{ √
r log k, k2 log k log log k

√
log r

} √
γk

)
.

Moreover, for any k disjoint non-empty sets S 1, . . . , S k ⊂ V

max
i∈[k]

φ(S i) >
γk

2
.

2.3.3 Mixing Time Bounds

A well known fact in spectral graph theory is that a random walk on graph mixes in time at most O
(
log n/λ2

)
where λ2 is the second smallest eigenvalue of graph Laplacian. Moreover, every graph has some vertex such
that a random walk starting from that vertex takes at least Ω(1/λ2) time to mix (For the sake of completeness
we give a proof of this fact in Theorem B.5), thereby proving that the dependence of the mixing time on λ2 is
optimal. We prove a generalization of the first fact to hypergraphs and a slightly weaker generalization of the
second fact to hypergraphs. Both of them together show that dependence of the mixing time on γ2 is optimal.
Further, we believe that Theorem 2.18 will have applications in counting/sampling problems on hypergraphs
à la MCMC (Markov chain monte carlo) algorithms on graphs.

Theorem 2.18 (Upper bound on Mixing Time). Given a hypergraph H = (V, E, w), for all starting probability
distributions µ0 : V → [0, 1], the Hypergraph Dispersion Process satisfies

tmix
δ

(
µ0

)
6

log(n/δ)
γ2

.

Theorem 2.19 (Lower bound on Mixing Time). Given a hypergraph H = (V, E, w), there exists a probability
distribution µ0 on V such that

∥∥∥µ0 − µ∗
∥∥∥

1 > 1/2 and

tmix
δ

(
µ0

)
>

log(1/δ)
16 γ2

.

We view the condition in Theorem 2.19 that the starting distribution µ0 satisfy
∥∥∥µ0 − µ∗

∥∥∥
1 > 1/2 as the

analogue of a random walk in a graph starting from some vertex.
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2.3.4 Towards Local Clustering Algorithms for Hypergraphs

We believe that the hypergraph dispersion process (Definition 2.10) will have numerous applications in
computing combinatorial properties of graphs as well as in sampling problems related to hypergraphs, in
a manner similar to applications of random-walks/heat-dispersion in graphs. As a concrete example, we
show that the hypergraph dispersion process might be useful towards computing sets of vertices having small
expansion. We show that if the Hypergraph dispersion process mixes slowly, then the hypergraph must
contain a set of vertices having small expansion. This is analogous to the corresponding fact for graphs, and
can be used as a tool to certify upper bounds on hypergraph expansion.

Theorem 2.20. Given a hypergraph H = (V, E, w) and a probability distribution µ0 : V → [0, 1], let µt

denote the probability distribution at time t according to the hypergraph dispersion process (Definition 2.10).
Then there exists a set S ⊂ V such that µ∗(S ) 6 1/2 and

φ(S ) 6 O

 min
t∈[0,tmix

δ (µ0)/2]

√√√
log

(∥∥∥µ0
∥∥∥2
/ ‖µt‖2

)
t

 .
Moreover, such a set can be computed in time Õ

(
|E| tmix

δ

(
µ0

))
.

Therefore, the hypergraph dispersion process can be used as a tool to certify an upper bound on hypergraph
expansion. As in the case of graphs, this upper bound might be better than the guarantee obtained using an
SDP relaxation (Corollary 2.23) in certain settings.

One could ask if the converse of the statement of Theorem 2.20 is true, i.e., if the hypergraph H = (V, E, w)
has a “sparse cut”, then is there a polynomial time computable probability distribution µ0 : V → [0, 1] such
that the hypergraph dispersion process initialized with this µ0 mixes “slowly”? Theorem 2.19 shows that
there exists such a distribution µ0, but it is known if such a distribution can be computed in polynomial time.
We leave this as on open problem.

2.3.5 Computing Eigenvalues

Computing the eigenvalues of the hypergraph Markov operator is intractable, as the operator is non-linear.
We give an exponential time algorithm to compute all the eigenvalues and eigenvectors of M and L; see
Theorem 7.1. We give a polynomial time O

(
k log r

)
-approximation algorithm to compute the kth smallest

eigenvalue, where r is the size of the largest hyperedge.

Theorem 2.21. There exists a randomized polynomial time algorithm that given a hypergraph H = (V, E, w)
and a parameter k < |V |, outputs k orthonormal vectors u1, . . . , uk such that

R (ui) 6 O
(
i log r γi

)
w.h.p., where r is the size of the largest hyperedge.

Complimenting this upper bound, we prove a lower bound of log r for the computing the eigenvalues. See
Section 9 for a definition of SSE hypothesis (Hypothesis 9.1) and see Theorem 9.3 for a formal statement of
the lower bound.

Theorem 2.22 (Informal Statement). Given a hypergraph H and a parameter k > 1, it is SSE-hard to get
better than a O

(
log r

)
-approximation to γk in polynomial time.
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2.3.6 Approximation Algorithms for Hypergraph Partitioning

For a hypergraph H, computing φH is a natural optimization problem in its own right. Theorem 2.14 gives
a bound on φH in terms of γ2. Obtaining a O

(
log r

)
-approximation to γ2 from Theorem 2.21 gives us the

following result directly. See Corollary 7.8 for a formal statement.

Corollary 2.23 (Informal Statement). There exists a randomized polynomial time algorithm that given a
hypergraph H = (V, E, w), outputs a set S ⊂ V such that φ(S ) = O

( √
φH log r

)
w.h.p., where r is the size of

the largest hyperedge in E.

We note that Corollary 2.23 also follows directly from [LM14b].
One could ask if this bound can be improved. We show that this bound is optimal (up to constant factors)

under SSE (see Theorem 9.2 for a formal statement of the lower bound).

Theorem 2.24 (Informal Statement). Given a hypergraph H, it is SSE-hard to get better than aO
( √

φH log r
)

bound on hypergraph expansion in polynomial time.

Many theoretical and practical applications require multiplicative approximation guarantees for hyper-
graph sparsest cut. In a seminal work, Arora, Rao and Vazirani [ARV09] gave a O

( √
log n

)
-approximation

algorithm for the (uniform) sparsest cut problem in graphs. [LM14b] gave a O
( √

log n
)
-approximation

algorithm for hypergraph expansion.

Sparsest Cut with General Demands In an instance of the Sparsest Cut with General Demands, we
are given a hypergraph H = (V, E, w) and a set of demand pairs (s1, t1), . . . , (sk, tk) ∈ V × V and demands
D1, . . . ,Dk > 1. We think of the si as sources, the ti as as targets, and the value Di as the demand of the
terminal pair (si, ti) for some commodity i. The generalized expansion of H w.r.t. D is defined as

ΦH
def
= min

S⊂V

w(E(S , S̄ ))∑k
i=1 |χS (si) − χS (ti)|

.

Arora, Lee and Naor [ALN08] O
( √

log k log log k
)
-approximation algorithm for the sparsest cut in graphs

with general demands. We give a similar bound for the sparsest cut in hypergraphs with general demands.

Theorem 2.25. There exists a randomized polynomial time algorithm that given an instance of the hypergraph
Sparsest Cut problem with general demands H = (V, E,D), outputs a set S ⊂ V such that

Φ(S ) 6 O
( √

log k log r log log k
)
ΦH

w.h.p., where k = |D| and r = maxe∈E |e|.

2.3.7 Vertex Expansion in Graphs and Hypergraph Expansion

Given a graph G = (V, E, w) having maximum vertex degree d and a set S ⊂ V , its internal boundary N in(S ),
and external boundary Nout(S ) is defined as follows.

N in(S ) def
=

{
v ∈ S : ∃u ∈ S̄ such that {u, v} ∈ E

}
Nout(S ) def

=
{
v ∈ S̄ : ∃u ∈ S such that {u, v} ∈ E

}
.

The vertex expansion of this set φV(S ) is defined as

φV(S ) def
=

∣∣∣N in(S )
∣∣∣ +

∣∣∣Nout(S )
∣∣∣

|S |
.
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Vertex expansion is a fundamental graph parameter that has has applications both as an algorithmic primitive
and as tool to proving communication lower bounds [LT80, Lei80, BTL84, AK95, SM00].

There is a well known reduction from vertex expansion in graphs to hypergraph expansion.

Reduction 2.26.
Input: Graph G = (V, E) having maximum degree d.
We construct hypergraph H = (V, E′) as follows. For every vertex v ∈ V , we add the hyperedge {v}∪Nout({v})
to E′.

Theorem 2.27. Given a graph G = (V, E, w) of maximum degree d and minimum degree c1d (for some
constant c1), the hypergraph H = (V, E′) obtained from Reduction 2.26 has hyperedges of cardinality at most
d + 1 and,

c1φH(S ) 6
1
d
· φV(S ) 6 φH(S ) ∀S ⊂ V .

We refer the reader to [LM14b] for a proof of this theorem.

Remark 2.28. The dependence on the degree in Theorem 2.27 is only because vertex expansion and
hypergraph expansion are normalized differently : the vertex expansion of a set S is defined as the number of
vertices in the boundary of S divided by the cardinality of S , whereas the hypergraph expansion of a set S is
defined as the number hyperedges crossing S divided by the sum of the degrees of the vertices in S .

We define a Markov operator Mvert on graphs similar to the hypergraph Markov operator (see Defini-
tion 10.3 for formal statement). Using this Markov operator on graphs, the analogs of all our results for
hypergraphs can be proven for vertex expansion in graphs. More formally, we have a Markov operator
Mvert and a Laplacian operator Lvert def

= I − Mvert, whose eigenvalues satisfy the vertex expansion (in graphs)
analogs of Theorem 2.147, Theorem 2.15, Theorem 2.16, Theorem 2.17, Theorem 2.18, Theorem 2.19,
Theorem 2.21, and Theorem 2.25.

Bobkov et. al. [BHT00] defined a Poincairé-type functional graph parameter called λ∞ and related it to
vertex expansion in a Cheeger-like manner (see Section 10 for details). We show that λ∞ coincides with the
second smallest eigenvalue of Lvert.

Theorem 2.29. For a graph G, λ∞ is the second smallest eigenvalue of Lvert def
= I − Mvert.

2.3.8 Discussion

We stress that none of our bounds have a polynomial dependence on r, the size of the largest hyperedge
(Theorem 2.16 has a dependence on Õ (min {r, k})) . In many of the practical applications, the typical instances
have r = Θ(nα) for some α = Ω(1); in such cases have bounds of poly(r) would not be of any practical utility.

We also stress that all our results generalize the corresponding results for graphs.

2.4 Organization

We begin with an overview of the proofs in Section 3. We prove the existance on hypergraph eigenvalues
(Theorem 2.6, Theorem 2.7, formally Theorem 4.6, and Proposition 2.9) in Section 4. We prove Theorem 2.20
in Section 4. We prove the hypergraph Cheeger Inequality (Theorem 2.14), and bound on the hypergraph
diameter (Theorem 2.15) in Section 5.1. We study the higher order Cheeger inequalities (Theorem 2.17 and

7A Cheeger-type Inequality for vertex expansion in graphs was also proven by [BHT00].
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Theorem 2.16) in Section 6. We prove our bounds on the mixing time (Theorem 2.18 and Theorem 2.19) in
Section 4. We give an exponential time algorithm for computing our hypergraph eigenvalues (Theorem 7.1)
in Section 7.1. We give our approximation algorithm for computing hypergraph eigenvalues (Theorem 2.21)
in Section 7.2. We prove our hardness results for computing hypergraph eigenvalues (Theorem 2.22) and
for hypergraph expansion ( Theorem 2.24), and that no linear hypergraph operator exists (Theorem 2.12) in
Section 9. We present our algorithm for hypergraph expansion (Corollary 2.23, formally Corollary 7.8) in
Section 7.3, and we present our algorithm for sparsest cut with general demands (Theorem 2.25) in Section 8.

3 Overview of Proofs

Hypergraph Eigenvalues. To prove that hypergraph eigenvalues exist (Theorem 2.7 and Proposition 2.9),
we study the hypergraph dispersion process in a more general setting (Definition 4.1). We start the dispersion
process with an arbitrary vector µ0 ∈ �n. Our main tool here is to show that the Rayleigh quotient (as a
function of the time) monotonically decreases with time. More formally, we show that the Rayleigh quotient
of µt+dt, the vector at time t + dt (for some infinitesimally small dt), is not larger than the Rayleigh quotient
of µt, the vector at time t. If the under lying matrix Aµt did not change between times t and t + dt, then this
fact can be shown using simple linear algebra. If the under lying matrix Aµt changes between t and t + dt,
then proof requires a lot more work. Our proof involves studying the limits of the Rayleigh quotient in
the neighborhoods of the time instants at which the support matrix changes, and exploiting the continuity
properties of the process.

To show that eigenvectors exist, we start with a candidate eigenvector, say X, that satisfies the conditions
of Proposition 2.9. We study a slight variant of hypergraph dispersion process starting with this vector X. We
use the monotonicity of the Rayleigh quotient to conclude that ∀t > 0, the vector at time t of this process,
say Xt, also satisfies the conditions of Proposition 2.9. Then we use the fact that the number of possible
support matrices |{AY : Y ∈ �n}| < ∞ to argue that there exists a time interval of positive Lebesgue measure
during which the support matrix does not change. We use this to conclude that the vectors Xt during that
time interval must also not change (the proof of this uses the previous conclusion that all Xt the conditions of
Proposition 2.9) and hence must be an eigenvector.

Mixing Time Bounds. To prove a lower bound on the mixing time of the Hypergraph Dispersion process
(Theorem 2.19), we need to exhibit a probability distribution that is far from being mixed and takes a long time
to mix. To show that a distribution µ takes a long time to mix, it would suffice to show that µ − µ∗ is “close”
to v2, as we can then use our previous assertion about the monotonicity of the Rayleigh quotient to prove a
lower bound on the mixing time. As a first attempt at constructing such a distribution, one might be tempted
to consider the vector µ∗ + v2. But this vector might not even be a probability distribution if v2(i) < −µ∗(i)
for some coordinate i. A simple fix for this would to consider the vector µ def

= µ∗ + v2/(n ‖v2‖∞). But then
‖µ − µ∗‖1 = ‖v2/(n ‖v2‖∞)‖1 which could be very small depending on ‖v2‖∞. Our proof involves starting
with v2 and carefully “chopping” of the vector at some points to control its infinity-norm while maintaining
that its Rayleigh quotient is still O (γ2). We show that this suffices to prove the desired lowerbound on the
mixing time.

The main idea used in proving the upper bound on the mixing time of (Theorem 2.18) is that the support
matrix at any time t has a spectral gap of at least γ2. Therefore, after every unit of the time, the component of
the vector µt that is orthogonal to µ∗, decreases in `2-norm by a factor of at least 1 − γ2 (irrespective of the
fact that the support matrix might be changing infinitely many times during that time interval).
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Hypergraph Diameter. Our proof strategy for Theorem 2.15 is as follows. Let M′ def
= I/2 + M/2 be a lazy

version of M. Fix some vertex u ∈ V . Consider the vector M′(χu). This vector will have non-zero values at
exactly those coordinates which correspond to vertices that are at a distance of at most 1 from u. Building
on this idea, it follows that the vector M′t(χu) will have non-zero values at exactly those coordinates which
correspond to vertices that are at a distance of at most t from u. Therefore, the diameter of H is the smallest
value t ∈ �>0 such that the vectors

{
M′t(χu) : u ∈ V

}
have non-zero entries in all coordinates. We will upper

bound the value of such a t. The key insight in this step is that the support matrix AX of any vector X ∈ �n

has a spectral gap of at least γ2, irrespective of what the vector X is.

Hypergraph Cheeger’s Inequality. We appeal to the formulation of eigenvalues in Proposition 2.9 to
prove Theorem 2.14.

γ2 = min
X⊥1

XT L(X)
XT X

=

∑
e∈E w(e) maxi, j∈E(Xi − X j)2

d
∑

i X2
i

.

First, observe that if all the entries of the vector X were in {0, 1}, then the support of this vector X, say S ,
will have expansion equal to R (X). Building on this idea, we start with the vector v2, and it use to construct
a line-embedding of the vertices of the hypergraph, such that the average “distortion” of the hyperedges is
at most O

(√
γ2

)
. Next, we represent this average distortion as an average over cuts in the hypergraph and

conclude that at least one of these cuts must have expansion at most this average value. Overall, we follow the
strategy of proving Cheeger’s Inequality for graphs. However, we need some new ideas to handle hyperedges.

Higher Order Cheeger’s Inequalities. Proving our bound for hypergraph small-set expansion (Theo-
rem 2.16) requires a lot more work. We start with the spectral embeddings, the canonical embedding of the
vertex set into �k given by the top k eigenvectors. As a first attempt, one might try to “round” this embedding
using the rounding algorithms for small set expansion on graphs, namely the algorithms of [BFK+11] or
[RST10] or [LM14b]. However, the rounding algorithm of [BFK+11] uses the fact that the vectors should
satisfy `2

2-triangle inequality. More crucially the algorithms of [BFK+11] and [LM14b] use the fact that the
inner product between any two vectors is non-negative. Neither of these properties are satisfied by the spectral
embedding8. The rounding algorithm of [RST10] crucially uses the fact that the Rayleigh quotient of the
vector Xl obtained by picking the lth coordinate from each vector of the spectral embedding be “small” for at
least one coordinate l. It is easy to show that this fact holds for graphs, but this is not true for hypergraphs
because of the “max” in the definition of the eigenvalues.

Our proof starts with the spectral embedding and uses a simple random sampling algorithm due to
[LM14b] to sample a set of vectors, say S , whose corresponding unit vectors are “close” togethor. We use
this set to construct a line-embedding of the hypergraph, where a vertex u ∈ S is mapped to the value equal
to the length of the vector corresponding to u in the spectral embedding, and vertices not in S get mapped to
0. This step is similar to the rounding algorithm of [LM14a], who studied a variant of small-set expansion in
graphs. We then bound the length9 of the hyperedges under this line-embedding. We handle the hyperedges
whose vertices have roughly equal lengths by bounding the probability of them being split in the random
sampling step, in a manner similar to [LM14b] . We handle the hyperedges whose vertices have very large
disparity in lengths by showing that they must be having a large contribution to the Rayleigh quotient (in
other words, such hyperedges are “already paid for”). This suffices to bound the expansion of the set obtained

8If the vi’s are the spectral embedding vectors, then one could also try to round the vectors vi ⊗ vi. This will have the property〈
vi ⊗ vi, v j ⊗ v j

〉
> 0. However, by rounding these vectors one can only hope to prove a O

( √
γk2 polylog k

)
(see [LRTV11]).

9Length of an edge e under X is defined as maxi, j∈e

∣∣∣Xi − X j

∣∣∣.
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by our rounding algorithm (Algorithm 6.3). To show that the set is small, we use a combination of the
techniques studied in [LRTV12] and [BFK+11]. This gives uses the desired bound for small-set expansion.
To get a bound on hypergraph multi-partitioning (Theorem 2.17), at a high level, we use a stronger form of
our hypergraph small-set expansion bound together with the framework of [LM14a].

Computing Eigenvalues. We show that the exact computation of the eigenvalues of our Laplacian operator
is intractable (Theorem 2.22). [LRV13] showed a lower bound of Ω(

√
OPT log d) for the computation of

vertex expansion on graphs of maximum degree d. The reduction from vertex expansion to hypergraph
expansion (Theorem 2.27) implies a lower bound of Ω(

√
OPT log r) for the computation of hypergraph

expansion of hypergraphs having hyperedges of cardinality at most r. This immediately implies that one can
not get better than an Ω(log r) approximation to the eigenvalues of L in polynomial time, as any o(log r)-
approximation for the eigenvalues of L will imply a o(

√
OPT log r) bound for hypergraph expansion via

the Hypergraph Cheeger’s Inequality (Theorem 2.14). Building on this, we can show that there is no linear
operator whose spectra captures hypergraph expansion in a Cheeger-like manner.

We give a O
(
k log r

)
-approximation algorithm for γk (Theorem 2.21). Our algorithm proceeds inductively.

We assume that we have computed k − 1 orthonormal vectors u1, . . . , uk−1 such that R (ui) 6 O
(
i log r γi

)
,

and show how to compute an approximation to γk. Our main idea is to show that there exists a unit vector
X ∈ span {v1, . . . , vk} which is orthogonal to span {u1, . . . , uk−1} and has small Rayleigh quotient. Note that
unlike the case of matrices, for an X ∈ span {v1, . . . , vk}, we can not bound XT L(X) by maxi∈[k] vT

i L(vi). The
operator L is non-linear, and there is no reason to believe that something like the celebrated Courant-Fischer
Theorem for matrices holds for this operator. In general, for an X ∈ span {v1, . . . , vk}, the Rayleigh quotient
can be much larger than γk. We will show that for such an X, R (X) 6 k γk. However, we still do not have
a way to compute such a vector X. We given an SDP relaxation and a rounding algorithm to compute an
“approximate” X.

Sparsest Cut with General Demands. To prove Theorem 2.25, we start with a suitable SDP relaxation
together with `2

2-triangle inequality constraints. Let the SDP vectors be denoted by {ū}u∈V . Arora, Lee
and Naor [ALN08] gave a way to embed any n point negative-type metric space into `1 while incurring a
distortion of at most O

( √
log n log log n

)
. We use this construction to embed the SDP vectors into `1. Let us

denote these `1 vectors by { f (u)}u∈V . Till this point, this proof is the same as the corresponding proof for
sparsest cut with general demands in graphs.

Picking a certain coordinate, say i, gives an embedding of the vertices onto the line where vertex
u 7→ f (u)(i). From each such line embedding we can recover a cut having expansion proportional the average
distortion of edges under this line embedding. In the case of graphs, we can proceed by enumerating over
all line embeddings obtained from the coordinates of { f (u)}u∈V , and outputting the best cut. This cut can be
shown to be an O

( √
log k log log k

)
-approximation.

However, this approach will not work in the case of hypergraphs because of the more complicated
objective function for the SDP relaxation of sparsest cut in hypergraphs. Therefore, we must proceed
differently. We show that a simple random projection of the { f (u)}u∈V vectors does not increase the “length”
of the edges by too much, while still keeping the vectors spread out on average. We use this to obtain a
O

( √
log r ·

√
log k log log k

)
-approximation to ΦH .
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4 The Hypergraph Dispersion Process

In this section we will prove Theorem 2.6, Theorem 2.7, Proposition 2.9, Theorem 2.18 and Theorem 2.19.
For the sake of simplicity, we assume that the hypergraph is regular. All our proofs easily extend to the
general case.

Definition 4.1 (Projected Continuous Time Hypergraph Dispersion Process). Given a hypergraph H =

(V, E, w), a projection operator ΠS : �n → �n for some subspace S of �n and a function ω0 : V → � such
that ω0 ∈ S , we (recursively) define the functions on the vertices at time t according to the following heat
equation

dωt

dt
= −ΠS L(ωt)

Equivalently, for an infinitesimal time duration dt, the function at time t + dt is defined as

ωt+dt def
= ΠS ((1 − dt)I + dt M) ◦ ωt .

Remark 4.2. We make a remark about the matrices AX for vectors X ∈ �n in Definition 2.1 when being used
in the continuous time processes of Definition 2.10 and Definition 4.1. For a hyperedge e ∈ E, we compute
the pair of vertices

(ie, je) = argmaxi, j∈e

(
Xi − X j

)
and add an edge between them in the graph GX . If the pair is not unique, then we define

S t
e

def
=

{
i ∈ e : ωt(i) = max

j∈e
ωt( j)

}
and Rt

e
def
=

{
i ∈ e : ωt(i) = min

j∈e
ωt( j)

}
and add to GX a complete weighted bipartite graph on S t

e × Rt
e with each edge having weight w(e)/

(∣∣∣S t
∣∣∣ ∣∣∣Rt

∣∣∣).
A natural thing one would try first is to pick a vertex, say i1, from S t

e and a vertex, say j1, from Rt
e and

add an edge between {i1, j1}. However, in such a case, after 1 infinitesimal time unit, the pair (i1, j1) will
no longer have the largest difference in values of X among the pairs in e × e, and we will need to pick some
other suitable pair from S t

e × Rt
e \ {(i1, j1)}. We will have to repeat this process of picking a different pair of

vertices after each infinitesimal time unit. Moreover, each of these infinitesimal time units will have Lebesgue
measure 0. Therefore, we avoid this difficulty by adding a suitably weighted complete graph on S t

e × Rt
e

without loss of generality.

Note that when ΠS = I, then Definition 4.1 is the same as Definition 2.10. We need to study the
Dispersion Process in this generality to prove Theorem 2.7 and Proposition 2.9.

Lemma 4.3 (Main Technical Lemma). Given a hypergraph H = (V, E, w), and a function ω0 : V → �, the
Dispersion process in Definition 4.1 satisfies the following properties.

1.
d
∥∥∥ωt

∥∥∥2

dt
= −2R

(
ωt

) ∥∥∥ωt
∥∥∥2

∀t > 0 . (1)

2. For any t > 010

d+R
(
ωt)

dt
6 0 and

d−R
(
ωt)

dt
6 0 . (2)

10See Section 1.2 for definition of d+

dt f .
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Proof. Fix a time t > 0.

1. Let
A def

= Aωt and A′ = (1 − dt)I + dt A .

Then, for dt→ 0,∥∥∥ωt
∥∥∥2
−

∥∥∥ωt+dt
∥∥∥2

=
〈
ωt − ωt+dt, ωt + ωt+dt

〉
= (ωt)T (I − ΠS A′)(I + ΠS A′)ωt

Now, limdt→0(I + ΠS A′) = I + ΠS . By construction, we have ωt ∈ S . Therefore,∥∥∥ωt
∥∥∥2
−

∥∥∥ωt+dt
∥∥∥2

= 2dt (ωt)T (I − A)ωt .

Therefore
d
∥∥∥ωt

∥∥∥2

dt
= −2R

(
ωt

) ∥∥∥ωt
∥∥∥2
.

2. We will show that
d+R

(
ωt)

dt
6 0 .

The proof of d−R(ωt)
dt 6 0 can be done similarly.

Fix a time t ∈ �+. Note that to show d+R(ωt)
dt 6 0, it suffices to show that for some infinitesimally small

interval [0, dt]
R

(
ωt+t′

)
6 R

(
ωt

)
∀t′ ∈ [0, dt] .

First, let us consider the case when there exists a time interval of positive Lebesgue measure [0, a) such
that

Aωt = Aωt+t′ ∀t′ ∈ [0, a) .

Let
A1

def
= Aωt A′1

def
= (1 − dt)I + dt A1 L1

def
= I − A1 . (3)

In such a case, the heat equation in Definition 4.1 is time-invariant in the interval [t, t + a), and hence
can be solved using folklore methods (see [Chu97, MT06, LPW09] for a comprehensive discussion) to
give

ωt+t′ = e−t′ΠS L1ωt ∀t′ ∈ [0, a) .

Then,

d+R
(
ωt)

dt
= lim

dt→0

R
(
ωt+dt

)
− R

(
ωt)

dt

= lim
dt→0

1
dt


(
e−dt ΠsL1ωt

)T
(I − A1)

(
e−dt ΠsL1ωt

)
(
e−dt ΠsL1ωt)T (

e−dt ΠsL1ωt) −
(ωt)T (I − A1)ωt

(ωt)Tωt

 .
Using the matrix exponential expansion

e−tL =

∞∑
n=0

(−t L)n

n!
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and using dt→ 0, we get

d+R
(
ωt)

dt
= lim

dt→0

1
dt

((I − dt ΠS L1)ωt)T (I − A1)
(
(I − dt ΠS L1)ωt)

((I − dt ΠS L1)ωt)T ((I − dt ΠS L1)ωt)
−

(ωt)T (I − A1)ωt

(ωt)Tωt


Next, using (I − A1)dt = I − A′1, and that ωt ∈ S we get

d+R
(
ωt)

dt
= lim

dt→0

1
dt2

 (ωt)T A′1ΠS (I − A′1)ΠS A′1ω
t

(ωt)T A′1ΠS ΠS A′1ω
t −

(ωt)T (I − A′1)ωt

(ωt)Tωt


= lim

dt→0

1
dt2

 (ωt)T
(
ΠsA′1ΠS

) (
I −

(
ΠsA′1ΠS

)) (
ΠsA′1ΠS

)
ωt

(ωt)T
(
ΠsA′1ΠS

) (
ΠsA′1ΠS

)
ωt

−
(ωt)T

(
I −

(
ΠsA′1ΠS

))
ωt

(ωt)Tωt


(Using ωt ∈ S )

6 0 (Proposition B.1) .

Next, we consider the case when

Aωt , Aωt+t′ ∀t′ ∈ (0, a]

for some sufficiently small interval (0, a] of positive Lebesgue measure. Let us also choose this interval
(0, a] such that,

Aωt+t1 = Aωt+t2 ∀t1, t2 ∈ (0, a] .

This can be done without loss of generality. Then, using the argument in the previous case, we get that

R
(
ωt+a

)
6 R

(
ωt+t1

)
∀t1 ∈ (0, a] .

This implies that
R

(
ωt+a

)
6 lim

α→0
R

(
ωt+α

)
. (4)

Therefore, to finish the proof, we need only show that

lim
α→0

R
(
ωt+α

)
= R

(
ωt

)
.

Recall from Remark 4.2 that

S t
e

def
=

{
i ∈ e : ωt(i) = max

j∈e
ωt( j)

}
and Rt

e
def
=

{
i ∈ e : ωt(i) = min

j∈e
ωt( j)

}
.

The contribution of e to the numerator of R
(
ωt) is

fe(t) def
=

w(e)∣∣∣S t
e

∣∣∣ ∣∣∣Rt
e

∣∣∣ ∑
i∈S t

e, j∈Rt
e

(
ωt(i) − ωt( j)

)2
.

We make the following claim.

Claim 4.4. fe(t) is a continuous function of the time t ∀t > 0.
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Proof. This follows from the definition of process. The projection operator ΠS , being a linear operator,
is continuous. Being a projection operator, it has operator norm at most 1. For a fixed edge e, and
vertex v ∈ e, the rate of change of mass at v due to edge e is at most ωt(v)/d (from Definition 4.1).
Since, v belongs to at most d edges, the total rate of change of mass at v is at most ωt(v).

Since, there are at most r vertices in e, we get that for any time t and for every ε > 0,

| fe(t + α) − fe(t)| 6 ε ∀ |α| <
ε

2r
.

Therefore, fe(t) is a continuous function. �

Claim 4.4 implies that
lim
α→0

∑
e∈E

fe(t + α) =
∑
e∈E

fe(t) . (5)

Next, from the continuity of the dispersion process (Definition 4.1), we get

lim
α→0

∥∥∥ωt+α
∥∥∥2

=
∥∥∥ωt

∥∥∥2 (6)

Therefore, from (5) and (6) we get that

lim
α→0

R
(
ωt+α

)
= R

(
ωt

)
and hence, this finishes the proof of the lemma.

�

4.1 Bottlenecks for the Hypergraph Dispersion Process

In this section we prove that if the hypergraph dispersion process mixes slowly, then it must have a set of
vertices having small expansion (Theorem 2.20).

Theorem 4.5 (Stronger form of Theorem 2.20). Given a hypergraph H = (V, E, w) and a functionω0 : V → �
such that

〈
ω0, µ∗

〉
= 0, let ωt denote the probability distribution at time t according to the hypergraph

dispersion process (Definition 4.1 with S = V). Then, for any T > 0, there exists a set S ⊂ V such that
µ∗(S ) 6 1/2 and

φ(S ) 6 O

 min
t∈[0,T ]

√√√
log

(∥∥∥ω0
∥∥∥2
/ ‖ωt‖2

)
t

 .
Moreover, such a set can be computed in time Õ (T |E|).

Proof. Fix a time t > 0. Using Lemma 4.3 (1) we get

d
∥∥∥ωt

∥∥∥2

dt
= −2R

(
ωt

) ∥∥∥ωt
∥∥∥2
.

Integrating with respect to t from 0 to t and using Lemma 4.3 (2) we get

log


∥∥∥ωt

∥∥∥2∥∥∥ω0
∥∥∥2

 6 −2R
(
ωt

)
t .
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Rearranging, we get

R
(
ωt

)
6

log
(∥∥∥ω0

∥∥∥2
/
∥∥∥ωt

∥∥∥2
)

2t
.

Using a proposition that we will prove in Section 5.1 (Proposition 5.3), we can conclude that there exists a
set S ⊂ V such that

φ(S ) 6 O
( √

R (ωt)
)
6 O


√√√

log
(∥∥∥ω0

∥∥∥2
/ ‖ωt‖2

)
t

 .
This completes the proof of this theorem.

To prove Theorem 2.20 as stated, we invoke this theorem with ω0 def
= µ0−

(〈
µ0, µ∗

〉
/ ‖µ∗‖2

)
µ∗ and observe

that
1
4

∥∥∥µt
∥∥∥2
6

∥∥∥ωt
∥∥∥2
6

∥∥∥µt
∥∥∥2

∀t ∈ [0, tmix
δ

(
µ0

)
/2] .

�

4.2 Eigenvalues in Subspaces

Theorem 4.6 (Formal statement of of Theorem 2.7). Given a hypergraph H, for every subspace S of �n,
the operator ΠS L has a eigenvector, i.e. there exists a non-zero vector v ∈ S and a γ ∈ � such that

ΠS L(v) = γ v and γ = min
X∈S

XT ΠS L(X)
XT X

.

Proof. Fix a subspace S of �n. Using Lemma 4.3 (2) and the compactness of the unit ball, γ exists and is
well defined. We define the set of vectors Uγ as follows.

Uγ
def
=

{
X ∈ S : XT X = 1 and XT ΠS L(X) = γ

}
. (7)

From the definition of γ, we get that Uγ is non-empty. Now, the set Uγ could potentially have many
vectors. We will show that at least one of them will be an eigenvector. As a warm up, let us first consider the
case when

∣∣∣Uγ

∣∣∣ = 1. Let v denote the unique vector in Uγ. We will show that v is an eigenvector of ΠS L. To
see this, we define the unit vector v′ as follows.

v′ def
=

ΠS M(v)
‖ΠS M(v)‖

.

Since v is the vector in S having the smallest value of R (·), we get

R (v) 6 R
(
v′

)
.

But from Lemma 4.3(2), we get the R (·) is a monotonic function, i.e. R (v′) 6 R (v) . Therefore

R (v) = R
(
v′

)
.

Therefore, v′ also belongs to Uγ. But we assumed that
∣∣∣Uγ

∣∣∣ = 1. Therefore, v′ = v, or in other words v is an
eigenvector of ΠS L.

ΠS L(v) = (1 − ‖ΠS M(v)‖) v = γ v .
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The general case when
∣∣∣Uγ

∣∣∣ > 1 requires more work, as the operator L is non-linear. We follow the

general idea of the case when
∣∣∣Uγ

∣∣∣ = 1. We let ω0 def
= v for any v ∈ Uγ. We define the set of unit vectors{

ωt}
t∈[0,1] recursively as follows (for an infinitesimally small dt).

ωt+dt def
=

((1 − dt)I + dt ΠS M) ◦ ωt

‖((1 − dt)I + dt ΠS M) ◦ ωt‖
. (8)

As before, we get that
ωt ∈ Uγ ∀t > 0 . (9)

If for any t, ωt = ωt′ ∀t′ ∈ [t, t + dt], then ωt = ωt′ ∀t′ > t, and we have that ωt is an eigenvector of ΠS M,
and hence also of ΠS L (of eigenvalue γ). Therefore, let us assume that ωt , ωt+dt ∀t > 0.

LetAω be the set of support matrices of
{
ωt}

t>0, i.e.

Aω
def
= {Aωt : t > 0} .

Note that unlike the set
{
ωt}

t>0 which could potentially be of uncountably infinite cardinality, theAω is of
finite size. A matrix AX is only determined by the pair of vertices in each hyperedge which have the largest
difference in the values of X. Therefore,

|Aω| 6
(
2r)m < ∞ .

Now, since |Aω| is finite, (using Lemma B.2) there exists p, q ∈ [0, 1], p < q such that

Aωt = Aωp ∀t ∈ [p, q] .

For the sake of brevity let A def
= Aωp denote this matrix.

We now show that ωp is an eigenvector of ΠS L. From (9), we get that for infinitesimally small dt (in fact
anything smaller than q − p will suffice),

R
(
ωp) − R (

ωp+dt
)

= 0 .

Let α1, . . . , αn be the eigenvalues of A′ def
= ((1 − dt)I + dt A) and let v1, . . . , vn be the corresponding eigenvec-

tors. Since A is a stochastic matrix,

A � (1 − 2dt)I �
1
2

I or αi >
1
2
∀i . (10)

Let c1, . . . , cn ∈ � be appropriate constants such that

ωp =
∑

i

civi .

Then using Proposition B.1, we get that

0 = R
(
ωp) − R (

ωp+dt
)

=
1
dt
·

(
(ωp)T (I − ΠS A′)ωp

(ωp)Tωp −
(ωp)T A′ΠS (I − ΠS A′)ΠS A′ωp

(ωp)T A′ΠS A′ωp

)
=

1
dt

2

∑
i, j c2

i c2
j(αi − α j)2(αi + α j)∑

i c2
i
∑

i c2
i α

2
i

.

23



Since, all αi > 1/2 (from (10)), the last term can be zero if and only if for some eigenvalue α ∈ {αi : i ∈ [n]},

ci , 0 if and only if αi = α .

Or equivalently, ωp is an eigenvector of A, and ωt = ωp ∀t ∈ [p, q]. Hence, by recursion

ωt = ωp ∀t > p .

Therefore,

ΠS L(ωp) =

(
1 − α

dt

)
ωp

Since we have already established that R (ωp) = γ, this finishes the proof of the theorem.
�

Proposition 2.9 follows from Theorem 4.6 as a corollary.

Proof of Proposition 2.9 . We will prove this by induction on k. The proposition is trivially true of k = 1. Let
us assume that the proposition holds for k − 1. We will show that it holds for k. Recall that vk is defined as

vk = argminX

XT Π⊥S k−1
L(X)

XT Π⊥S k−1
X

.

Then from Theorem 4.6, we get that vk is indeed an eigenvector of Π⊥S k−1
L with eigenvalue

γk = min
X

XT Π⊥S k−1
L(X)

XT Π⊥S k−1
X

.

�

We now show that Theorem 2.6 follows almost directly from Theorem 4.6.

Theorem 4.7 (Restatement of Theorem 2.6). Given a hypergraph H = (V, E, w), there exists a non-zero
vector v ∈ �n and a λ ∈ � such that 〈v, µ∗〉 = 0 and L(v) = λ v.

Proof. Considering the subspace of vectors orthogonal to µ∗, from Theorem 4.6 we get that there exists a
vector v ∈ �n and a λ ∈ � such that〈

v, µ∗
〉

= 0 and Π⊥
{µ∗}L(v) = λ v .

Since Lv is a Laplacian matrix, the vector µ∗ is an eigenvector with eigenvalue 0. Therefore,

L(v) = Π⊥
{µ∗}L(v) = λ v .

This finishes the proof of the theorem. �
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4.3 Upper bounds on the Mixing Time

Theorem 4.8 (Restatement of Theorem 2.18). Given a hypergraph H = (V, E, w), for all starting probability
distributions µ0 : V → [0, 1], the Hypergraph Dispersion Process (Definition 2.10) satisfies

tmix
δ

(
µ0

)
6

log(n/δ)
γ2

.

Proof. Fix a probability distribution µ0 on V . For the sake of brevity, let At denote Aµt and let A′t denote(
(1 − dt)I + dt Aµt

)
. We first note that

A′t � (1 − 2dt)I+ � 0 ∀t . (11)

This follows from the fact that At being a stochastic matrix, satisfies I � At � −I. Let 1 > α2 > . . . > αn be
the eigenvalues of At and let 1/

√
n, v2, . . . , vn be the corresponding eigenvectors. Let α′i

def
= (1− dt) + dtαi for

i ∈ [n] be the eigenvalues of A′t . Writing µt in this eigen-basis, let c1, . . . , cn ∈ � be appropriate constants
such that µt =

∑
i civi. Since µt is a probability distribution on V , its component along the first eigenvector

v1 = 1/
√

n is

c1v1 =

〈
µt,

1
√

n

〉
1
√

n
=

1
n
.

Then, using the fact that α′1 = (1 − dt) + dt · 1 = 1.

µt+dt = A′t µ
t =

n∑
i=1

α′icivi =
1
n

+

n∑
i=2

α′icivi . (12)

Note that at all times t > 0, the component of µt along 1 (i.e. c1v1) remains unchanged. Since for regular
hypergraphs µ∗ = 1/n,

∥∥∥µt+dt − µ∗
∥∥∥ =

∥∥∥µt+dt − 1/n
∥∥∥ =

∥∥∥∥∥∥∥
n∑

i=2

α′icivi

∥∥∥∥∥∥∥ =

√√ n∑
i=2

α′2i c2
i . (13)

Since all the α′i > 0 (using (11)) and α2 > αi ∀i > 2, α′22 > α
′2
i ∀i > 2. Therefore, from (13)

∥∥∥µt+dt − 1/n
∥∥∥ 6 α′2

√√ n∑
i=2

c2
i = α′2

∥∥∥µt − 1/n
∥∥∥ . (14)

We defined γ2 to the second smallest eigenvalue of L. Therefore, from the definition of L, it follows that
(1 − γ2) is the second largest eigenvalue of M. In this context, this implies that

α2 6 1 − γ2 .

Therefore, from the definition of α′2

α′2 = (1 − dt) + dtα2 6 (1 − dt) + dt (1 − γ2) = 1 − dt γ2 .

Therefore, from (14), ∥∥∥µt+dt − 1/n
∥∥∥ 6 (1 − dt γ2)

∥∥∥µt − 1/n
∥∥∥ 6 e−dt γ2

∥∥∥µt − 1/n
∥∥∥ .
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Integrating with respect to time, from time 0 to t,∥∥∥µt − 1/n
∥∥∥ 6 e−γ2t

∥∥∥µ0 − 1/n
∥∥∥ 6 2e−γ2t .

Therefore, for t > log(n/δ)/γ2,∥∥∥µt − 1/n
∥∥∥ 6 δ
√

n
and

∥∥∥µt − 1/n
∥∥∥

1 6
√

n ·
∥∥∥µt − 1/n

∥∥∥ 6 δ .
Therefore,

tmix
δ

(
µ0

)
6

log(n/δ)
γ2

.

�

Remark 4.9. Theorem 2.18 can also be proved directly by using Lemma 4.3, but we believe that this proof
is more intuitive.

4.4 Lower bounds on Mixing Time

Next we prove Theorem 2.19

Theorem 4.10 (Restatement of Theorem 2.19). Given a hypergraph H = (V, E, w), there exists a probability
distribution µ0 on V such that

∥∥∥µ0 − 1/n
∥∥∥

1 > 1/2 and

tmix
δ

(
µ0

)
>

log(1/δ)
16 γ2

.

In an attempt to motivate why Theorem 2.19 is true, we first prove the following (weaker) lower bound.

Theorem 4.11. Given a hypergraph H = (V, E, w), there exists a probability distribution µ0 on V such that∥∥∥µ0 − 1/n
∥∥∥

1 > 1/2 and

tmix
δ

(
µ0

)
>

log(1/δ)
φH

.

Proof Sketch. Let S ⊂ V be the set which has the least value of φH(S ). Let µ0 : V → [0, 1] be the probability
distribution supported on S that is stationary on S , i.e.

µ0(i) =

 1
|S | i ∈ S

0 i < S

Then, for an infinitesimal time duration dt, only the edges in E(S , S̄ ) will be active in the dispersion process,
and for each edge e ∈ E(S , S̄ ), the vertices in e ∩ S will be sending 1/d fraction of their mass to the vertices
in e ∩ S̄ . Therefore,

µ0(S ) − µdt(S ) =
∑

e∈E(S ,S̄ )

1
d
·

1
|S |

dt =

∣∣∣E(S , S̄ )
∣∣∣

d |S |
dt = φH dt .

In other words, mass escapes from S at the rate of φH initially. It is easy to show that the rate at which
mass escapes from S is a non-increasing function of time. Therefore, it will take at least Ω(1/φH) units of
time to remove 1/2 of the mass from the S . Thus the lower bound follows.

�
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Now, we will work towards proving Theorem 2.19.

Lemma 4.12. For any hypergraph H = (V, E, w) and any probability distribution µ0 on V, let α =∥∥∥µ0 − 1/n
∥∥∥2

. Then

tmix
δ

(
µ0

)
>

log(α/δ)
4R

(
µ0 − 1/n

) .
Proof. For a probability distribution µt on V , let ωt be its component orthogonal to µ∗ = 1/

√
n

ωt def
= µt −

〈
µt,

1
√

n

〉
1
√

n
= µt −

1
n
.

As we saw before (in (12)), only ωt, the component of µt orthogonal to 1, changes with time; the component of
µt along 1 does not change with time. For the sake of brevity, let λ = R

(
µ0 − 1/n

)
. Then, using Lemma 4.3(2)

and the definition of ω, we get that

R
(
ωt

)
6 R

(
ω0

)
= λ ∀t > 0 .

Now, using this and Lemma 4.3(1) we get

d
∥∥∥ωt

∥∥∥2

‖ωt‖2
= −2R

(
ωt

)
dt > −2λ dt .

Integrating with respect to time from 0 to t, we get

log
∥∥∥ωt

∥∥∥2
− log

∥∥∥ω0
∥∥∥2
> −2λ t .

Therefore

e−2λt 6

∥∥∥ωt
∥∥∥2∥∥∥ω0
∥∥∥2 =

∥∥∥µt − 1/n
∥∥∥2∥∥∥µ0 − 1/n
∥∥∥2 =

∥∥∥µt − 1/n
∥∥∥2

α
∀t > 0 .

Hence ∥∥∥µt − 1/n
∥∥∥

1 >
∥∥∥µt − 1/n

∥∥∥ > 2δ for t 6
log(α/δ)

4λ
.

Thus
tmix
δ

(
µ0

)
>

log(α/δ)
4R

(
µ0 − 1/n

) .
�

Lemma 4.13. Given a hypergraph H = (X, E) and a vector X ∈ �V , there exists a polynomial time algorithm
to compute a probability distribution µ on V satisfying

‖µ − 1/n‖1 >
1
2

and R (µ − 1/n) 6 4R (X − 〈X, 1〉 1/n) .

Proof. For the sake of building intuition, let us consider the case when 〈X, 1〉 = 0. As a first attempt, one
might be tempted to consider the vector 1/n + X. This vector might not be a probability distribution if
X(i) < −1/n for some coordinate i. A simple fix for this would to consider the vector µ′ def

= 1/n + X/(n ‖X‖∞).
This is clearly a probability distribution on the vertices, but∥∥∥∥∥µ′ − 1

n

∥∥∥∥∥
1

=

∥∥∥∥∥ X
n ‖X‖∞

∥∥∥∥∥
1

=
‖X‖1

n ‖X‖∞
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and ‖X‖1 /(n ‖X‖∞) � 1/2 depending on X, for e.g. when X is very sparse. Therefore, we must proceed
differently.

Since we only care about R (X − 〈X, 1〉 1/n), w.l.o.g. we may assume that
∣∣∣supp(X+)

∣∣∣ =
∣∣∣supp(X−)

∣∣∣ by
simply setting X := X + c1 for some appropriate constant c. W.l.o.g. we may also assume that

∥∥∥X+
∥∥∥ > ∥∥∥X−

∥∥∥.
Let ω be the component of X+ orthogonal to 1

ω
def
= X+ −

〈
X+, 1

〉
n

1 = X+ −

∥∥∥X+
∥∥∥

1

n
1 .

By definition, we get that 〈ω, 1〉 = 0. Now,

‖ω‖1 >
∑

i∈supp(ω−)

|ω(i)| >
∑

i∈supp(X−)

|ω(i)| >
n
2

∥∥∥X+
∥∥∥

1

n
>

∥∥∥X+
∥∥∥

1

2
. (15)

We now define the probability distribution µ on V as follows.

µ
def
=

1
n

+
ω

2 ‖ω‖1
.

We now verify that µ is indeed a probability distribution, i.e. µ(i) > 0 ∀i ∈ V . If vertex i ∈ supp(X+), then
clearly µ(i) > 0. Lets consider an i ∈ supp(X−).

ω(i)
2 ‖ω‖1

=
−

∣∣∣X+
∣∣∣ /n

2 ‖ω‖1
> −

1
n

(Using (15)) .

Therefore, µ(i) = 1/n +ω(i)/(2 ‖ω‖1) > 0 in this case as well. Thus, µ is a probability distribution on V . Next,
we work towards bounding R (µ − 1/n).∑

e

w(e) max
i, j∈e

(µ(i) − µ( j))2 =
1

4 ‖ω‖21
·
∑

e

w(e) max
i, j∈e

(ω(i) − ω( j))2 6
1

4 ‖ω‖21
·
∑

e

w(e) max
i, j∈e

(X(i) − X( j))2 .

(16)
We now bound ‖ω‖2.

‖ω‖22 =
∥∥∥X+ −

〈
X+, 1

〉
1/n

∥∥∥2
=

∥∥∥X+
∥∥∥2
−

〈
X+, 1

〉2

n
=

∥∥∥X+
∥∥∥2
−

∥∥∥X+
∥∥∥2

1

n
. (17)

Since
∣∣∣supp(X+)

∣∣∣ 6 n/2, ∥∥∥X+
∥∥∥2

1 6
n
2

∥∥∥X+
∥∥∥2
.

Combining this with (17), and using our assumption that
∥∥∥X+

∥∥∥ > ∥∥∥X−
∥∥∥, we get

‖ω‖22 =
∥∥∥X+

∥∥∥2
−

∥∥∥X+
∥∥∥2

1

n
>

∥∥∥X+
∥∥∥2

2
>
‖X‖2

4
.

Therefore,

‖µ − 1/n‖2 =
‖ω‖2

4 ‖ω‖21
>

1
4 ‖ω‖21

·
‖X‖2

4
>

1
4 ‖ω‖21

·
‖X − 〈X, 1〉 1/n‖2

4
. (18)
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Therefore, using (16) and (18), we get

R (µ − 1/n) 6 4R (X − 〈X, 1〉 1/n)

and by construction

‖µ − 1/n‖1 =

∥∥∥∥∥ ω

2 ‖ω‖1

∥∥∥∥∥
1

=
1
2

�

We are now ready to prove Theorem 2.19.

Proof of Theorem 2.19.
Let X = v2. Using Lemma 4.13, there exists a probability distribution µ on V such that

‖µ − 1/n‖1 >
1
2

and R (µ − 1/n) 6 4γ2

and for this distribution µ, using Lemma 4.12, we get

tmix
δ (µ) >

log(1/δ)
16 γ2

.

�

Remark 4.14. The distribution in Theorem 2.19 is not known to be computable in polynomial time. We can
compute a probability distribution µ in polynomial time such

‖µ − 1/n‖1 >
1
2

and tmix
δ (µ) >

log(1/δ)
cγ2 log r

for some absolute constant c. Using Theorem 2.21, we get a vector X ∈ �n such that R (X) 6 c1γ2 log r for
some absolute constant c1. Using Lemma 4.13, we compute a probability distribution ν on V such that

‖ν − 1/n‖1 >
1
2

and R (ν − 1/n) 6 4c1γ2 log r .

and for this distribution ν, using Lemma 4.12, we get

tmix
δ (ν) >

log(1/δ)
4c1γ2 log r

.

5 Spectral Gap of Hypergraphs

We define the Spectral Gap of a hypergraph to be γ2, the second smallest eigenvalue of its Laplacian operator.
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5.1 Hypergraph Cheeger’s Inequality

In this section we prove the hypergraph Cheeger’s Inequality Theorem 2.14.

Theorem 5.1 (Restatement of Theorem 2.14). Given a hypergraph H,

γ2

2
6 φH 6

√
2γ2 .

Towards proving this theorem, we first show that a good line-embedding of the hypergraph suffices to
upper bound the expansion.

Proposition 5.2. Let H = (V, E, w) be a hypergraph with edge weights w : E → �+ and let Y ∈ [0, 1]|V | .
Then there exists a set S ⊆ supp(Y) such that

φ(S ) 6

∑
e∈E w(e) maxi, j∈e

∣∣∣Yi − Y j
∣∣∣∑

i diYi

Proof. We define a family of functions {Fr : [0, 1]→ {0, 1}}r∈[0,1] as follows.

Fr(x) =

1 x > r
0 otherwise

Let S r denote the support of the vector Fr(Y). For any a ∈ [0, 1] it is easy to see that∫ 1

0
Fr(a) dr = a . (19)

Now, observe that if a − b > 0, then Fr(a) − Fr(b) > 0 ∀r ∈ [0, 1] and similarly if a − b 6 0 then
Fr(a) − Fr(b) 6 0 ∀r ∈ [0, 1]. Therefore,∫ 1

0
|Fr(a) − Fr(b)| dr =

∣∣∣∣∣∣
∫ 1

0
Fr(a)dr −

∫ 1

0
Fr(b)dr

∣∣∣∣∣∣ = |a − b| . (20)

Also, for a hyperedge e = {ai : i ∈ [r]} if |a1 − a2| >
∣∣∣ai − a j

∣∣∣∀ai, a j ∈ e, then

|Fr(a1) − Fr(a2)| >
∣∣∣Fr(ai) − Fr(a j)

∣∣∣ ∀r ∈ [0, 1] and ∀ai, a j ∈ e . (21)

Therefore,∫ 1
0

∑
e w(e) maxi, j∈e

∣∣∣Fr(Yi) − Fr(Y j)
∣∣∣ dr∫ 1

0
∑

i diFr(Yi)dr
=

∑
e w(e) maxi, j∈e

∫ 1
0

∣∣∣Fr(Yi) − Fr(Y j)
∣∣∣ dr∫ 1

0
∑

i diFr(Yi)dr
(Using (21))

=

∑
e w(e) maxi, j∈e

∣∣∣∣∫ 1
0 Fr(Yi) −

∫ 1
0 Fr(Y j)

∣∣∣∣ dr∑
i di

∫ 1
0 Fr(Yi)dr

(Using (20))

=

∑
e w(e) maxi, j∈e

∣∣∣Yi − Y j
∣∣∣∑

i diYi
(Using (19)) .
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Therefore, ∃r′ ∈ [0, 1] such that∑
e w(e) maxi, j∈e

∣∣∣Fr′(Yi) − Fr′(Y j)
∣∣∣∑

i diFr′(Yi)
6

∑
e w(e) maxi, j∈e

∣∣∣Yi − Y j
∣∣∣∑

i diYi
.

Since Fr′(·) is a value in {0, 1}, we have∑
e w(e) maxi, j∈e

∣∣∣Fr′(Yi) − Fr′(Y j)
∣∣∣∑

i∈V diFr′(Yi)
=

∑
e w(e)�

[
e is cut by S r′

]∑
i∈S r′

di
= φ(S r′) .

Therefore,

φ(S r′) 6

∑
e w(e) maxi, j∈e

∣∣∣Yi − Y j
∣∣∣ dr∑

i diYidr
and S r′ ⊂ supp(Y) .

�

Proposition 5.3. Given a hypergraph H = (V, E, w) and a vector Y ∈ �|V | such that 〈Y, µ∗〉 = 0, there exists
a set S ⊂ V such that

φ(S ) 6 R (Y) + 2

√
R (Y)
rmin

.

Proof. Since 〈Y, µ∗〉 = 0, we have

R (Y) =

∑
e∈E w(e) maxi, j∈e(Yi − Y j)2∑
i diY2

i − (
∑

i diYi)2/(
∑

i di)
=

∑
e∈E w(e) maxi, j∈e(Yi − Y j)2∑
i, j did j

(
Yi − Y j

)2
/(

∑
i di)

.

Let X = Y + c1 for an appropriate c ∈ � such that
∣∣∣supp(X+)

∣∣∣ =
∣∣∣supp(X−)

∣∣∣ = n/2. Then we get

R (Y) =

∑
e∈E w(e) maxi, j∈e(Xi − X j)2∑
i, j did j

(
Xi − X j

)2
/(

∑
i di)

=

∑
e∈E w(e) maxi, j∈e(Xi − X j)2∑
i diX2

i − (
∑

i diXi)2/(
∑

i di)
> R (X) .

For any a, b ∈ R, we have
(a+ − b+)2 + (a− − b−)2 6 (a − b)2

Therefore we have

R (Y) > R (X) =

∑
e∈E w(e) maxi, j∈e(Xi − X j)2∑

i diX2
i

>

(∑
e∈E w(e) maxi, j∈e(X+

i − X+
j )2

)
+

(∑
e∈E w(e) maxi, j∈e(X−i − X−j )2

)
∑

i di(X+
i )2 +

∑
i di(X−i )2

> min


∑

e∈E w(e) maxi, j∈e(X+
i − X+

j )2∑
i di(X+

i )2 ,

∑
e∈E w(e) maxi, j∈e(X−i − X−j )2∑

i di(X−i )2


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Let Z ∈
{
X+, X−

}
be the vector corresponding the minimum in the previous inequality. Then∑

e∈E

w(e) max
i, j∈e

∣∣∣Z2
i − Z2

j

∣∣∣ =
∑
e∈E

w(e) max
i, j∈e

∣∣∣Zi − Z j
∣∣∣ (Zi + Z j)

=
∑
e∈E

w(e) max
i, j∈e

(Zi − Z j)2 + 2
∑
e∈E

w(e) min
i∈e

Zi max
i, j∈e

∣∣∣Zi − Z j
∣∣∣

6
∑
e∈E

w(e) max
i, j∈e

(Zi − Z j)2 + 2
√∑

e∈E

w(e) max
i, j∈e

(Zi − Z j)2

√√∑
e∈E

w(e)
∑

i∈e Z2
i

rmin

=
∑
e∈E

w(e) max
i, j∈e

(Zi − Z j)2 + 2
√∑

e∈E

w(e) max
i, j∈e

(Zi − Z j)2

√∑
i∈V diZ2

i

rmin

Using R (Z) 6 R (Y),∑
e∈E w(e) maxi, j∈e

∣∣∣∣Z2
i − Z2

j

∣∣∣∣∑
i diZ2

i

6 R (Z) + 2

√
R (Z)
rmin

6 R (Y) + 2

√
R (Y)
rmin

.

Invoking Proposition 5.2 with vector Z2, we get that there exists a set S ⊂ supp (Z) such that

φ(S ) 6 R (Y) + 2

√
R (Y)
rmin

and |S | 6 |supp (Z)| 6
n
2
.

�

We are now ready to prove Theorem 2.14.

Proof of Theorem 2.14.

1. Let S ⊂ V be any set such that vol(S ) 6 vol(V)/2, and let X ∈ �n be the indicator vector of S . Let Y
be the component of X orthogonal to µ∗. Then

γ2 6

∑
e w(e) maxi, j∈e(Yi − Y j)2∑

i diY2
i

=

∑
e w(e) maxi, j∈e(Xi − X j)2∑

i diX2
i − (

∑
i diXi)2/(

∑
i di)

=
w(E(S , S̄ ))

vol(S ) − vol(S )2/vol(V)
=

φ(S )
1 − vol(S )/vol(V)

6 2φ(S ) .

Since the choice of the set S was arbitrary, we get

γ2

2
6 φH .

2. Invoking Proposition 5.3 with v2 we get that

φH 6 R (v2) +

√
R (v2)
rmin

= γ2 + 2
√

γ2

rmin
6

√
2 γ2 .

�
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5.2 Hypergraph Diameter

In this section we prove Theorem 2.15.

Theorem 5.4 (Restatement of Theorem 2.15). Given a hypergraph H = (V, E, w) with all its edges having
weight 1, its diameter is at most

diam(H) 6 O

 log n

log 1
1−γ2

 .
Remark 5.5. A weaker bound on the diameter follows from Theorem 2.18

diam(H) 6 O
(
log n
γ2

)
.

We start by defining the notion of operator powering.

Definition 5.6 (Operator Powering). For a t ∈ �>0, and an operator M : �n → �n, for a vector X ∈ �n we
define Mt(X) as follows

Mt(X) def
= M(Mt−1(X)) and M1(X) def

= M(X) .

Next, we state bound the norms of powered operators.

Lemma 5.7. For vector ω ∈ �n, such that 〈ω, 1〉 = 0,∥∥∥Mt(ω)
∥∥∥ 6 (1 − γ2)t/2 ‖ω‖ .

Proof. We prove this by induction on t. Let v1, . . . , vn be the eigenvectors of Aω and let λ1, . . . , λn be the the
corresponding eigenvalues. Let ω =

∑n
i=1 civi for appropriate constants ci ∈ �. Then, for t = 1,

‖M(ω)‖
‖ω‖

=
‖Aω ω‖
‖ω‖

=

√∑
i c2

i λ
2
i∑

i c2
i

6

√∑
i c2

i λi∑
i c2

i

(Since each λi ∈ [0, 1], λ2
i 6 λi)

=

√
ωT M(ω)
ωTω

6
√

1 − γ2 (From the definition of γ2) (22)

Similarly, for t > 1.∥∥∥Mt(ω)
∥∥∥ =

∥∥∥M(Mt−1(ω))
∥∥∥ 6 (1 − γ2)1/2

∥∥∥Mt−1(ω)
∥∥∥ 6 (1 − γ2)t/2 ‖ω‖

where the last inequality follows from the induction hypothesis. �

Proof of Theorem 2.15. For the sake of simplicity, we will assume that the hypergraph is regular. Our proof
easily extends to the general case. We define the operator M′ def

= I/2 + M/2. Then the eigenvalues of M′ are
1/2 + γi/2, and the corresponding eigenvectors are vi, for i ∈ [n].

Our proof strategy is as follows. Fix some vertex u ∈ V . Consider the vector M′(χu). This vector will
have non-zero values at exactly those coordinates which correspond to vertices that are at a distance of at
most 1 from u (see also Remark 4.2). Building on this idea, it follows that the vector M′t(χu) will have
non-zero values at exactly those coordinates which correspond to vertices that are at a distance of at most t
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from u. Therefore, the diameter of H is the smallest value t ∈ �>0 such that the vectors
{
M′t(χu) : u ∈ V

}
have non-zero entries in all coordinates. We will upper bound the value of such a t.

Fix two vertices u, v ∈ V . Let χu, χv be their respective characteristic vectors and let ωu, ωv be the
components of χu, χv orthogonal to 1 respectively

ωu
def
= χu −

1
n

and ωv
def
= χv −

1
n
.

Then

‖ωu‖ =

√(
χu −

1
n

)T (
χu −

1
n

)
=

√
1 −

1
n
−

1
n

+
n
n2 =

√
1 −

1
n
. (23)

Since 1 is invariant under M′ we get

χT
u M′t(χv) =

(
1
n

+ ωu

)T

M′t
(
1
n

+ ωv

)
=

(
1
n

+ ωu

)T (
1
n

+ M′t(ωv)
)

=
1
n

+ 0 +
1
n

1T M′t(ωv) + ωT
u M′t(ωv) .

Now since M′ is a dispersion process, if 〈ωu, 1〉 = 0, then 〈M′(ωu), 1〉 = 0 and hence
〈
M′t(ωu), 1

〉
= 0.

Therefore,

χT
u M′tχv =

1
n

+ ωT
u M′t(ωv) . (24)

Now, ∣∣∣ωT
u M′t(ωv)

∣∣∣ 6 ‖ωu‖
∥∥∥M′t(ωv)

∥∥∥ 6 (
1 − γ2

2

)t/2

‖ωu‖ ‖ωv‖ (Using Lemma 5.7).

Therefore, from (24) and (23),

χT
u M′tχv >

1
n
−

(
1 − γ2

2

)t/2

‖ωu‖ ‖ωv‖ >
1
n
−

(
1 − γ2

2

)t/2 (
1 −

1
n

)
. (25)

Therefore, for

t >
2 log(n/2)

log
(

2
1−γ2

) ,
we have χT

u M′tχv > 0. Therefore,

diam(H) 6
log n

log
(

1
1−γ2

) .
�

6 Higher Eigenvalues and Hypergraph Expansion

In this section we will prove Theorem 2.16 and Theorem 2.17.
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6.1 Small Set Expansion

Theorem 6.1 (Formal Statement of Theorem 2.16). There exists an absolute constant C such that every
hypergraph H = (V, E, w) and parameter k < |V |, there exists a set S ⊂ V such that |S | 6 24 |V | /k satisfying

φ(S ) 6 C min
{ √

r log k, k log k log log k
√

log r
} √

γk

where r is the size of the largest hyperedge in E.

Our proof will be via a simple randomized polynomial time algorithm (Algorithm 6.3) to compute a set S
satisfying the conditions of the theorem. We will use the following rounding step as a subroutine.

Lemma 6.2 ([LM14b]11). There exists a randomized polynomial time algorithm that given a set of unit
vectors {ū}u∈V , a parameters β ∈ (0, 1) and m ∈ �+ outputs a random set S ⊂ {ū}u∈V such that

1. � [ū ∈ S ] = 1/m.

2. For every ū, v̄ such that 〈ū, v̄〉 6 β,

� [ū ∈ S and v̄ ∈ S ] 6 1/m2 .

3. For any e ⊂ {ū}u∈V

�
[
e is “cut” by S

]
6

c1√
1 − β

log m log log m
√

log |e|max
ū,v̄∈e

‖ū − v̄‖

for some absolute constant c1.

Algorithm 6.3.

1. Spectral Embedding. We first construct a mapping of the vertices in�k using the first k eigenvectors.
We map a vertex i ∈ V to the vector ui defined as follows.

ui(l) =
1
√

di
vl(i) .

In other words, we map the vertex i to the vector formed by taking the ith coordinate from the first k
eigenvectors.

2. Random Projection. Using Lemma 6.2, sample a random set S from the set of vectors {ũi}i∈V with
β = 99/100 and m = k, and define the vector X ∈ �n as follows.

X(i) def
=

‖ui‖
2 if ũi ∈ S

0 otherwise
.

3. Sweep Cut. Sort the entries of the vector X in decreasing order and output the level set having the
least expansion (See Proposition 5.2).

We first prove some basic facts about the Spectral Embedding (Lemma 6.4). The analogous facts for
graphs are well known (folklore).

11We remark that the algorithm from [LM14b] can not directly be used here as the vectors {ũi}i∈V need not have non-negative
inner product.

35



Lemma 6.4 (Spectral embedding).

1. ∑
e∈E maxi, j∈e w(e)

∥∥∥ui − u j
∥∥∥2∑

i di ‖ui‖
2 6 γk .

2. ∑
i∈V

di ‖ui‖
2 = k .

3. ∑
i, j∈V

did j
〈
ui, u j

〉2
= k .

Proof. 1. Follows directly from the fact that {ui}i∈V were constructed using the k vectors, each having
Rayleigh quotient at most γk.

2. Follows from the fact that each eigenvector is of length 1.

3.

∑
i, j

did j
〈
ui, u j

〉2
=

∑
i, j

did j

 k∑
t=1

ui(t)u j(t)


2

=
∑
i, j

did j

∑
t1,t2

ui(t1)u j(t1)ui(t2)u j(t2) =
∑
t1,t2

∑
i, j

did jui(t1)u j(t1)ui(t2)u j(t2)

=
∑
t1,t2

∑
i

diui(t1)ui(t2)

2

Since
√

diui(t1) is the entry to corresponding to vertex i in the tth
1 eigenvector,

∑
i diui(t1)ui(t2) is equal

to the inner product of the tth
1 and tth

2 eigenvectors of L, which is equal to 1 only when t1 = t2 and is
equal to 0 otherwise. Therefore,

∑
i, j

did j
〈
ui, u j

〉2
=

∑
t1,t2

∑
i

diui(t1)ui(t2)

2

=
∑
t1,t2

� [t1 = t2] = k .

�

For the sake of brevity let τ denote

τ
def
= k log k log log k

√
log r . (26)
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Main Analysis. To prove that Algorithm 6.3 outputs a set which meets the requirements of Theorem 6.1,
we will show that the vector X meets the requirements of Proposition 5.3. We will need an upper bound
on the numerator of cut-value of the vector X (Lemma 6.5), and a lower bound on the denominator of the
cut-value of the vector X (Lemma 6.6).

Lemma 6.5.

�

∑
e∈E

w(e) max
i, j∈e

∣∣∣Xi − X j
∣∣∣ 6 8c1τ

√
γk .

Proof. For an edge e ∈ E we have

�

[
max
i, j∈e

∣∣∣Xi − X j
∣∣∣] 6 max

i, j∈e

∣∣∣∣‖ui‖
2 −

∥∥∥u j
∥∥∥2

∣∣∣∣� [ũi ∈ S ∀i ∈ e] + max
i∈e
‖ui‖

2
�

[
e is cut by S

]
(27)

The first term can be bounded by

1
k

max
i, j∈e

∣∣∣∣‖ui‖
2 −

∥∥∥u j
∥∥∥2

∣∣∣∣ 6 1
k

max
i, j∈e

∥∥∥ui − u j
∥∥∥ · ∥∥∥ui + u j

∥∥∥ 6 2
1
k

max
i, j∈e

∥∥∥ui − u j
∥∥∥ max

i∈e
‖ui‖ . (28)

To bound the second term in (27), we will divide the edge set E into two parts E1 and E2 as follows.

E1
def
=

e ∈ E : max
i, j∈e

‖ui‖
2∥∥∥u j
∥∥∥2 6 2

 and E2
def
=

e ∈ E : max
i, j∈e

‖ui‖
2∥∥∥u j
∥∥∥2 > 2

 .

E1 is the set of those edges whose vertices have roughly equal lengths and E2 is the set of those edges whose
vertices have large disparity in lengths. For a hyperedge e ∈ E1, using Lemma B.4 and Lemma 6.2, the
second term in (27) can be bounded by

2c1τ

k
max

l∈e
‖ul‖

2 max
i, j∈e

∥∥∥ui − u j
∥∥∥√

‖ui‖
2 +

∥∥∥u j
∥∥∥2
6

2c1τ

k
max

l∈e
‖ul‖max

i, j∈e

∥∥∥ui − u j
∥∥∥ . (29)

Let us analyze the edges in E2. Fix any e ∈ E2. Let e = {u1, . . . , ur} such that ‖u1‖ > ‖u2‖ > . . . > ‖ur‖. Then
from the definition of E2 we have that

‖u1‖
2

‖ur‖
2 > 2 .

Rearranging, we get

‖u1‖
2 6 2

(
‖u1‖

2 − ‖ur‖
2
)

= 2 〈u1 − ur, u1 + ur〉 6 2 ‖u1 + ur‖ ‖u1 − ur‖

6 2
√

2 max
i∈e
‖ui‖max

i, j∈e

∥∥∥ui − u j
∥∥∥ .

Therefore for an edge e ∈ E2, using this and Lemma 6.2, the second term in (27) can be bounded by

4c1τ

k
max

i∈e
‖ui‖max

i, j∈e

∥∥∥ui − u j
∥∥∥ . (30)

Using (27), (28), (29) and(30) we get

�

[
max
i, j∈e

∣∣∣Xi − X j
∣∣∣] 6 8c1τ

k
max

l∈e
‖ul‖max

i, j∈e

∥∥∥ui − u j
∥∥∥ . (31)
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�

∑
e∈E

w(e) max
i, j∈e

∣∣∣Xi − X j
∣∣∣ 6 8c1τ

k

∑
e∈E

w(e) max
i∈e
‖ui‖max

i, j∈e

∥∥∥ui − u j
∥∥∥

6
8c1τ

k

√∑
e∈E

w(e) max
i∈e
‖ui‖

2
√∑

e∈E

w(e) max
i, j∈e

∥∥∥ui − u j
∥∥∥2

6
8c1τ

k

√∑
i∈V

di ‖ui‖
2
√∑

e∈E

w(e) max
i, j∈e

∥∥∥ui − u j
∥∥∥2

6 8c1τ
√
γk (Using Lemma 6.4)

�

Lemma 6.6.

�

∑
i∈V

diXi >
1
2

 > 1
12

.

Proof. For the sake of brevity, we define D def
=

∑
i∈V diXi. We first bound � [D] as follows.

� [D] =
∑
i∈V

di ‖ui‖
2
� [ũi ∈ S ]

=
∑
i∈V

di ‖ui‖
2 ·

1
k

(From Lemma 6.2)

= k ·
1
k

= 1 (Using Lemma 6.4) .

Next we bound the variance of D.

�
[
D2

]
=

∑
i, j

did j ‖ui‖
2
∥∥∥u j

∥∥∥2
� [ũi, ũi ∈ S ]

6
∑
i, j

〈ũi,ũ j〉6β

did j ‖ui‖
2
∥∥∥u j

∥∥∥2
� [ũi, ũi ∈ S ] +

∑
i, j

〈ũi,ũ j〉>β

did j ‖ui‖
2
∥∥∥u j

∥∥∥2
� [ũi, ũi ∈ S ]

We use Lemma 6.2 to bound the first term, and use the trivial bound of 1/k to bound � [ũi, ũi ∈ S ] in the
second term. Therefore,

�
[
D2

]
6

∑
i, j

〈ũi,ũ j〉6β

did j ‖ui‖
2
∥∥∥u j

∥∥∥2 1
k2 +

∑
i, j

〈ũi,ũ j〉>β

did j ‖ui‖
2
∥∥∥u j

∥∥∥2

〈
ũi, ũ j

〉2

β2

1
k

6
∑
i, j

did j

‖ui‖
2
∥∥∥u j

∥∥∥2

k2 +
1
β2k

〈
ui, u j

〉2


=
1
k2

∑
i

di ‖ui‖
2

2

+
1
β2k

∑
i, j

did j
〈
ui, u j

〉2

=
1
k2 · k

2 +
1
β2k
· k = 1 +

1
β2 6 3 (Using Lemma 6.4) .
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Since D is a non-negative random variable, we get using the Paley-Zygmund inequality that

�

[
D >

1
2
� [D]

]
>

(
1
2

)2
� [D]2

�
[
D2] =

1
4
·

1
3

=
1
12

.

This finishes the proof of the lemma.
�

We are now ready finish the proof of Theorem 6.1.

Proof of Theorem 6.1. By definition of Algorithm 6.3,

� [|supp(X)|] =
n
k
.

Therefore, by Markov’s inequality,

�

[
|supp(X)| 6 24

n
k

]
> 1 −

1
24

. (32)

Using Markov’s inequality and Lemma 6.5,

�

∑
e∈E

w(e) max
i, j∈e

∣∣∣Xi − X j
∣∣∣ 6 384c1τ

√
γk

 > 1 −
1
48

. (33)

Therefore, using a union bound over (32), (33) and Lemma 6.5, we get that

�

∑e∈E w(e) maxi, j∈e
∣∣∣Xi − X j

∣∣∣∑
i diXi

6 1000c1τ
√
γk and |supp(X)| 6 24

n
k

 > 1
48

.

Invoking Proposition 5.3 on this vector X, we get that with probability at least 1/48, Algorithm 6.3 outputs a
set S such that

φ(S ) 6 1000c1τ
√
γk and |S | 6 24

n
k
. (34)

Also, from every hypergraph H = (V, E, w), we can obtain a graph G = (V, E′, w′) as follows. We replace
every e ∈ E by a constant degree expander graph on |e| vertices and set the weights of the new edges to
be equal to w(e). By this construction, it is easy to see that the kth smallest eigenvalue of the normalized
Laplacian of G is at most r γk. Therefore, using [LRTV12, LOT12] we get a set S ⊂ V such that

φH(S ) 6 φG(S ) 6 O
( √

r γk log k
)

and |S | 6 2
n
k
. (35)

(34) and (35) finish the proof of the theorem. �

6.2 Hypergraph Multi-partition

In this section we only give a sketch of the proof of Theorem 2.17, as this theorem can be proven by essentially
using Theorem 6.1 and the ideas studied in [LM14a].
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Theorem 6.7 (Restatement of Theorem 2.17). For any hypergraph H = (V, E, w) and any integer k < |V |,
there exists ck non-empty disjoint sets S 1, . . . , S ck ⊂ V such that

max
i∈[ck]

φ(S i) 6 O
(
min

{ √
r log k, k2 log k log log k

√
log r

} √
γk

)
.

Moreover, for any k disjoint non-empty sets S 1, . . . , S k ⊂ V

max
i∈[k]

φ(S i) >
γk

2
.

Proof Sketch. The first part of the theorem can be proved in a manner similar to Theorem 6.1, additionally
using techniques from [LM14a]. As before, we will start with the spectral embedding and then round it to get
k-partition where each piece has small expansion (Algorithm 6.8). Note that Algorithm 6.8 can be viewed
as a recursive application of Algorithm 6.3; the algorithm computes a “small” set having small expansion,
removes it and recurses on the remaining graph.

Note that step 3a of Algorithm 6.8 is somewhat different from step 2 of Algorithm 6.3. Nevertheless,
with some more work, we can bound the expansion of the set obtained at the end of step 3b by12 O

(
τ′
√
γk

)
.

The proof of this bound on expansion follows from stronger forms of Lemma 6.5 and Lemma 6.6.
Once we have this, we can finish the proof of this theorem in a manner similar to [LM14a]. [LM14a]

studied k-partitions in graphs and gave an alternate proof of the graph version of this theorem (Theorem 2.3.2).
They implicitly show how to use an algorithm for computing small-set expansion to compute a k-partition in
graphs where each piece has small expansion. A similar analysis can be used for hypergraphs as well.

12Similar to (26), τ′ def
= min

{ √
r log k, k2 log k log log k

√
log r

}
.
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Algorithm 6.8. Define k′ def
= 105k.

1. Initialize t := 1 and Vt := V and C := φ.

2. Spectral Embedding. We first construct a mapping of the vertices in�k using the first k eigenvectors.
We map a vertex i ∈ V to the vector ui defined as follows.

ui(l) =
1
√

di
vl(i) .

3. While l 6 105k

(a) Random Projection. Using Lemma 6.2, sample a random set S from the set of vectors {ũi}i∈V
with β = 99/100 and m = k, and define the vector X ∈ �n as follows.

X(i) def
=

‖ui‖
2 if ũi ∈ S and i ∈ Vl

0 otherwise
.

(b) Sweep Cut. Sort the entries of the vector X in decreasing order and compute the set S having
the least expansion (See Proposition 5.2). If∑

i∈S

‖ui‖
2 > 3 or φ(S ) > 105τ′

√
γk

then discard S , else C ← C ∪ {S } and Vl+1 ← Vl \ S .

(c) l← l + 1 and repeat.

4. Output C.

�

7 Algorithms for Computing Hypergraph Eigenvalues

7.1 An Exponential Time Algorithm for computing Eigenvalues

Theorem 7.1. Given a hypergraph H = (V, E, w), there exists an algorithm running in time Õ (2rm) which
outputs all eigenvalues and eigenvectors of M.

Proof. Let X be an eigenvector M with eigenvalue γ. Then

γ X = M(X) = AXX .

Therefore, X is also an eigenvector of AX . Therefore, the set of eigenvalues of M is a subset of the set of
eigenvalues of all the support matrices {AX : X ∈ �n}. Note that a support matrix AX is only determined by
the pairs of vertices in each hyperedge which have the largest difference in values under X. Therefore,∣∣∣{AX : X ∈ �n}∣∣∣ 6 (

2r)m .
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Therefore, we can compute all the eigenvalues and eigenvectors of M by enumerating over all 2rm matrices.
�

7.2 Polynomial Time Approximation Algorithm for Computing Hypergraph Eigenvalues

Since L is a non-linear operator, computing its eigenvalues exactly is intractable. In this section we give a
O

(
k log r

)
-approximation algorithm for γk.

Theorem 7.2 (Restatement of Theorem 2.21). There exists a randomized polynomial time algorithm that,
given a hypergraph H = (V, E, w) and a parameter k < |V |, outputs k orthonormal vectors u1, . . . , uk such
that

R (ui) 6 O
(
i log r γi

)
w.h.p.

We will prove this theorem inductively. We already know that γ1 = 0 and u1 = µ∗. Now, we assume that
we have computed k − 1 orthonormal vectors u1, . . . , uk−1 such that R (ui) 6 O

(
i log r γi

)
. We will now show

how to compute uk.
Our main idea is to show that there exists a unit vector X ∈ span {v1, . . . , vk} which is orthogonal to

span {u1, . . . , uk−1}. We will show that for such an X, R (X) 6 k γk (Proposition 7.3). Then we give an SDP
relaxation (SDP 7.4) and a rounding algorithm (Algorithm 7.5, Lemma 7.6) to compute an “approximate” X′.

Proposition 7.3. Let u1, . . . , uk−1 be arbitrary orthonormal vectors. Then

min
X⊥u1,...,uk−1

R (X) 6 k γk .

Proof. Consider subspaces S 1
def
= span {u1, . . . , uk−1} and S 2

def
= span {v1, . . . , vk}. Since rank(S 2) >

rank(S 1), there exists X ∈ S 2 such that X ⊥ S 1. We will now show that this X satisfies R (X) 6 O (k γk),
which will finish this proof. Let X = c1v1 + . . . + ckvk for scalars ci ∈ � such that

∑
i c2

i = 1.
Recall that γk is defined as

γk
def
= min

Y⊥v1,...,vk−1

YT LYY
YT Y

.

We can restate the definition of γk as follows,

γk = min
Y⊥v1,...,vk−1

max
Z∈�n

YT LZY
YT Y

.

Therefore,
γk = vT

k Lvk vk > vT
k LXvk ∀X ∈ �n . (36)

The Laplacian matrix LX , being positive semi-definite, has a Cholesky Decomposition into matrices BX

such that LX = BX BT
X .
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R (X) = XT LXX =
∑

i, j∈[k]

cic jvT
i BX BT

Xv j (Cholesky Decomposition of LX )

6
∑

i, j∈[k]

cic j ‖BXvi‖ · ‖BXvi‖ (Cauchy-Schwarz inequality)

=
∑

i, j∈[k]

cic j

√
vT

i LXvi

√
vT

j LXv j 6
∑

i, j∈[k]

cic j
√
γ1γ j (Using (36))

6

∑
i

ci

2

max
i, j

√
γiγ j 6 k γk .

�

Next we present an SDP relaxation (SDP 7.4) to compute the vector orthogonal u1, . . . , uk−1 having the
least Rayleigh quotient. The vector Ȳi is the relaxation of the ith coordinate of the vector uk that we are
trying to compute. The objective function of the SDP and (37) seek to minimize the Rayleigh quotient;
Proposition 7.3 shows that the objective value of this SDP is at most k γk. (38) demands the solution be
orthogonal to u1, . . . , uk−1.

SDP 7.4.
SDPval def

= min
∑
e∈E

w(e) max
i, j∈e

∥∥∥Ȳi − Ȳ j
∥∥∥2
.

subject to ∑
i∈V

∥∥∥Ȳi
∥∥∥2

= 1 (37)

∑
i∈V

ul(i) Ȳi = 0 ∀l ∈ [k − 1] (38)

Algorithm 7.5 (Rounding Algorithm for Computing Eigenvalues).

1. Solve SDP 7.4 on the input hypergraph H with the previously computed k − 1 vectors u1, . . . , uk−1.

2. Sample a random Gaussian vector g ∼ N(0, 1)n. Set Xi
def
=

〈
Ȳi, g

〉
.

3. Output X/ ‖X‖.

Lemma 7.6. With constant probability Algorithm 7.5 outputs a vector uk such that

1. uk ⊥ ul ∀l ∈ [k − 1].

2. R (uk) 6 192 log r SDPval.

Proof. We first verify condition (1). For any l ∈ [k − 1], we using (38)

〈X, ul〉 =
∑
i∈V

〈
Ȳi, g

〉
ul(i) =

〈∑
i∈V

ul(i) Ȳi, g

〉
= 0 .
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We now prove condition (2). To bound R (X) we need an upper bound on the numerator and a lower
bound on the numerator of the R (·) expression. For the sake of brevity let L denote LX . Then

�
[
XT LX

]
6

∑
e∈E

w(e)�
[
max
i, j∈e

(Xi − X j)2
]
6 4 log r

∑
e∈E

w(e) max
i, j∈e

∥∥∥Ȳi − Ȳ j
∥∥∥2 (Using Fact B.3)

= 4 log r SDPval

Therefore, by Markov’s Inequality,

�
[
XT LX 6 96 log r SDPval

]
> 1 −

1
24

. (39)

For the denominator, using linearity of expectation, we get

�

∑
i∈V

X2
i

 =
∑

i

�

[〈
Ȳi, g

〉2
]

=
∑

i

∥∥∥Ȳi
∥∥∥2

= 1 (Using (37)) .

Now applying Lemma 7.7 to the denominator we conclude

�

∑
i

X2
i >

1
2

 > 1
12

. (40)

Using Union-bound on (39) and (40) we get that

� [R (X) 6 192 SDPval] >
1
24
.

�

Lemma 7.7. Let z1, . . . , zm be standard normal random variables (not necessarily independent) such
�

[∑
i z2

i

]
= 1 then

�

∑
i

z2
i >

1
2

 > 1
12

.

Proof. We will bound the variance of the random variable R =
∑

i z2
i as follows,

�
[
R2

]
=

∑
i, j

�
[
z2

i z2
j

]
6

∑
i, j

(
�

[
z4

i

]) 1
2
(
�

[
z4

j

]) 1
2

=
∑
i, j

3�
[
z2

i

]
�

[
z2

j

]
(Using �

[
g4

]
= 3

(
�

[
g2

])2
for gaussians )

= 3

∑
i

�
[
z2

i

]2

= 3

By the Paley-Zygmund inequality,

�

[
R >

1
2
� [R]

]
>

(
1
2

)2
� [R]2

�
[
R2] > 1

12
.

�
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We now have all the ingredients to prove Theorem 2.21.

Proof of Theorem 2.21. We will prove this theorem inductively. For the basis of induction, we have the first
eigenvector u1 = v1 = 1/

√
n. We assume that we have computed u1, . . . , uk−1 satisfying R (ui) 6 O

(
i log r γi

)
.

We now show how to compute uk.
Proposition 7.3 implies that for SDP 7.4,

SDPval 6 k γk .

Therefore, from Lemma 7.6, we get that Algorithm 7.5 will output a unit vector which is orthogonal to all ui

for i ∈ [k − 1] and
R (uk) 6 192 k log r γk .

�

7.3 Approximation Algorithm for Hypergraph Expansion

Here we show how to use our algorithm for computing hypergraph eigenvalues (Theorem 2.21) to compute
an approximation for hypergraph expansion.

Corollary 7.8 (Formal statement of Corollary 2.23). There exists a randomized polynomial time algorithm
that given a hypergraph H = (V, E, w), outputs a set S ⊂ V such that

φ(S ) = O

√ 1
rmin

φH log r


w.h.p.

Proof. Theorem 2.21 gives a randomized polynomial time algorithm to compute a vector X ∈ �n such that
R (X) 6 O

(
γ2 log r

)
. Invoking Proposition 5.3 with this vector X, we get a set S ⊂ V such that

φ(S ) = O

√ 1
rmin

R (X)
 = O

√ 1
rmin

γ2 log r
 = O

√ 1
rmin

φH log r
 .

Here the last inequality uses γ2/2 6 φH from Theorem 2.14. �

8 Sparsest Cut with General Demands

In this section we study polynomial time (multiplicative) approximation algorithms for hypergraph expansion
problems. We study the Sparsest Cut with General Demands problem and given an approximation algorithm
for it (Theorem 2.25).

Theorem 8.1 (Restatement of Theorem 2.25). There exists a randomized polynomial time algorithm that
given an instance of the hypergraph Sparsest Cut problem with general demands H = (V, E,D), outputs a set
S ⊂ V such that

Φ(S ) 6 O
( √

log k log r log log k
)
ΦH

w.h.p., where k = |D| and r = maxe∈E |e|.
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Proof. We prove this theorem by giving an SDP relaxation for this problem (SDP 8.2) and a rounding
algorithm for it (Algorithm 8.4). We introduce a variable ū for each vertex u ∈ V . Ideally, we would want all
vectors ū to be in the set {0, 1} so that we can identify the cut, in which case maxu,v∈e ‖ū − v̄‖2 will indicate
whether the edge e is cut or not. Therefore, our objective function will be

∑
e∈E w(e) maxu,v∈e ‖ū − v̄‖2. Next,

we add (41) as a scaling constraint. Finally, we add `2
2 triangle inequality constraints between all triplets

of vertices (42), as all integral solutions of the relaxation will trivially satisfy this. Therefore SDP 8.2 is a
relaxation of ΦH .

SDP 8.2.
min

∑
e∈E

w(e) max
u,v∈e
‖ū − v̄‖2

subject to ∑
u,v∈D

‖ū − v̄‖2 = 1 (41)

‖ū − v̄‖2 + ‖v̄ − w̄‖2 > ‖ū − w̄‖2 ∀u, v, w ∈ V (42)

Our main ingredient is the following theorem due to [ALN08].

Theorem 8.3 ([ALN08]). Let (X, d) be an arbitrary metric space, and let D ⊂ X be any k-point subset. If
the space (D, d) is a metric of the negative type, then there exists a 1-Lipschitz map f : X → L2 such that the
map f |D : D→ L2 has distortion O

( √
log k log k log k

)
.

Algorithm 8.4.

1. Solve SDP 8.2.

2. Compute the map f : V → �n using Theorem 8.3.

3. Pick g ∼ N(0, 1)n and define xi
def
= 〈g, f (vi)〉 for each vi ∈ V .

4. Arrange the vertices of V as v1, . . . , vn such that x j 6 x j+1 for each 1 6 j 6 n − 1. Output the sparsest
cut of the form

({v1, . . . , vi} , {vi+1, . . . , vn}) .

W.l.o.g. we may assume that the map f is such that f |D has the least distortion among all 1-Lipschitz
maps f : V → L2 ([ALN08] give a polynomial time algorithm to compute such a map.) For the sake of
brevity, let Λ = O

( √
log k log log k

)
denote the distortion factor guaranteed in Theorem 8.3. Since SDP 8.2 is

a relaxation of ΦH , we also get that objective value of the SDP is at most ΦH .
Now, using Fact B.3, we get

�

[
max
u,v∈e
|xu − xv|

]
6 2

√
log r max

u,v∈e
‖ f (u) − f (v)‖ .

Therefore, using Markov’s inequality

�

∑
e

w(e) max
u,v∈e
|xu − xv| 6 48

√
log r ΦH

 > 1 −
1
24

. (43)
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Next,

�

 ∑
u,v∈D

|xu − xv|

 =
∑

u,v∈D

‖ f (u) − f (v)‖ >
1
Λ

∑
u,v∈D

‖ū − v̄‖2 =
1
Λ
.

Here the last equality follows from (41). Now, using Lemma 7.7, we get

�

 ∑
u,v∈D

|xu − xv| >
1

2Λ

 > 1
12

(44)

Using, (43) and (44) we get that with probability at least 1/24∑
e w(e) maxu,v∈e |xu − xv|∑

u,v∈D |xu − xv|
6 96

√
log r Λ ΦH .

Using an analysis similar to Proposition 5.2, we get that the set output in step 4 satisfies

Φ(S ) 6 96
√

log r ΛΦH = O
( √

log k log r log log k
)
ΦH .

�

9 Lower Bound for Computing Hypergraph Eigenvalues

We now use Theorem 2.27 to prove Theorem 2.22 and Theorem 2.24. We begin by describing the Small-Set
Expansion Hypothesis proposed by Raghavendra and Steurer [RS10].

Hypothesis 9.1 (Small-Set Expansion Hypothesis, [RS10]). For every constant η > 0, there exists sufficiently
small δ > 0 such that given a graph G it is NP-hard to distinguish the cases,

Yes: there exists a vertex set S with volume µ(S ) = δ and expansion φ(S ) 6 η,

No: all vertex sets S with volume µ(S ) = δ have expansion φ(S ) > 1 − η.

Small-Set Expansion Hypothesis. Apart from being a natural optimization problem, the small-set expan-
sion problem is closely tied to the Unique Games Conjecture. Recent work by Raghavendra-Steurer [RS10]
established the reduction from the small-set expansion problem to the well known Unique Games problem,
thereby showing that Small-Set Expansion Hypothesis implies the Unique Games Conjecture. We refer the
reader to [RST12] for a comprehensive discussion on the implications of Small-Set Expansion Hypothesis.

Theorem 9.2 (Formal statement of Theorem 2.24). For every η > 0, there exists an absolute constant C
such that ∀ε > 0 it is SSE-hard to distinguish between the following two cases for a given hypergraph
H = (V, E, w) with maximum hyperedge size r > 100/ε and rmin > c1r (for some absolute constant c1).

Yes : There exists a set S ⊂ V such that
φH(S ) 6 ε

No : For all sets S ⊂ V,

φH(S ) > min
{

10−10,C
√

c1

r
ε log r

}
− η
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Proof. We will use the following theorem due to [LRV13].

Theorem ([LRV13]). For every η > 0, there exists an absolute constant C1 such that ∀ε > 0 it is SSE-hard to
distinguish between the following two cases for a given graph G = (V, E, w) with maximum degree d > 100/ε
and minimum degree c1d (for some absolute constant c1).

Yes : There exists a set S ⊂ V of size |S | 6 |V | /2 such that

φV(S ) 6 ε

No : For all sets S ⊂ V,
φV(S ) > min

{
10−10,C2

√
ε log d

}
− η

Using this and the reduction from vertex expansion in graphs to hypergraph expansion (Theorem 2.27),
finishes the proof of this theorem.

�

Theorem 9.3 (Formal statement of Theorem 2.22). For every η > 0, there exists an absolute constant C
such that ∀ε > 0 it is SSE-hard to distinguish between the following two cases for a given hypergraph
H = (V, E, w) with maximum hyperedge size r > 100/ε and rmin > c1r (for some absolute constant c1).

Yes : There exists an X ∈ �n such that 〈X, µ∗〉 = 0 and

R (X) 6 ε

No : For all X ∈ �n such that 〈X, µ∗〉 = 0,

R (X) > min
{
10−10,Cε log r

}
− η

Proof. For the Yes case, if there exists a set S ⊂ V such that φH(S ) 6 ε/2, then for the vector

X def
= χS −

〈χS , µ
∗〉

‖µ∗‖2
µ∗ we have R (X) 6 ε .

For the No case, Proposition 5.3 says that given a vector X ∈ �n such that 〈X, µ∗〉 = 0, we can find a set
S ⊂ V such that φ(S ) 6 2

√
R (X) /rmin.

This combined with Theorem 9.2 finishes the proof of this theorem..
�

9.1 Nonexistence of Linear Hypergraph Operators

Theorem 9.4 (Restatement of Theorem 2.12). Given a hypergraph H = (V, E, w), assuming the SSE hy-
pothesis, there exists no polynomial time algorithm to compute a matrix A ∈ �V×V , such that

c1λ 6 φH 6 c2
√
λ

where λ is any polynomial time computable function of the eigenvalues of A and c1, c2 ∈ �
+ are absolute

constants.
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Proof. For the sake of contradiction, suppose there existed a polynomial time algorithm to compute such a
matrix A and there existed a polynomial time algorithm to compute a λ from the eigenvalues of A such that

c1λ 6 φH 6 c2
√
λ .

Then this would yield a O
(√

OPT
)

approximation for φH . But Theorem 9.2 says that this is not possible
assuming the SSE hypothesis. Therefore, no such polynomial time algorithm to compute such a matrix
exists.

�

10 Vertex Expansion in Graphs and Hypergraph Expansion

Bobkov et. al. defined a Poincairé-type functional graph parameter called λ∞ as follows.

Definition 10.1 ([BHT00]). For an un-weighted graph G = (V, E), λ∞ is defined as follows.

λ∞
def
= min

X∈�n

∑
u∈V maxv∼u (Xu − Xv)2∑
u∈V X2

u −
1
n
(∑

u∈V Xu
)2 .

They showed that λ∞ captures the vertex expansion of a graph in a Cheeger-like manner.

Theorem ([BHT00]). For an un-weighted graph G = (V, E),

λ∞
2
6 φV

G 6
√

2λ∞ .

The computation of λ∞ is not known to be tractable. For graphs having maximum vertex degree d,
[LRV13] gave a O

(
log d

)
-approximation algorithm for computing λ∞, and showed that there exists an

absolute constant C such that is SSE-hard to get better than a C log d approximation to λ∞.
We first show that γ2 of the hypergraph obtained from G via the reduction from vertex expansion in

graphs to hypergraph expansion, is within a factor four of λ∞.

Theorem 10.2. Let G = (V, E) be a un-weighted d-regular graph, and let H = (V, E′) be the hypergraph
obtained from G using Theorem 2.27. Then

γ2

4
6
λ∞
d
6 γ2 .

Proof. Using Theorem 2.27, γ2 of H can be reformulated as

γ2 = min
X⊥1

∑
u∈V maxi, j∈({u}∪N(u))

(
Xi − X j

)2

d
∑

u∈V X2
u

.

Therefore, it follows that λ∞/d 6 γ2. Next, using (x + y)2 6 4 max
{
x2, y2

}
for any x, y ∈ �, we get

γ2 = min
X⊥1

∑
u∈V maxi, j∈({u}∪N(u))

(
Xi − X j

)2

d
∑

u∈V X2
u

6 min
X⊥1

∑
u∈V 4 maxv∼u

(
Xi − X j

)2

d
∑

u∈V X2
u

= 4
λ∞
d
.

�
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Theorem 10.2 shows that λ∞ of a graph G is an “approximate eigenvalue” of the hypergraph markov
operator for the hypergraph obtained from G using the reduction from vertex expansion in graphs to
hypergraph expansion (Theorem 2.27).

We now define a markov operator for graphs, similar to Definition 2.1, for which (1 − λ∞) is the second
largest eigenvalue.

Definition 10.3 (The Vertex Expansion Markov Operator).
Given a vector X ∈ �n, Mvert(X) is computed as follows.

1. For each vertex u ∈ V , let ju := argmaxv∼u |Xu − Xv|, breaking ties randomly (See Remark 4.2).

2. We now construct the weighted graph GX on the vertex set V as follows. We add edges {{u, ju} : u ∈ V}
having weight w({u, ju}) := 1/d to GX . Next, to each vertex v we add self-loops of sufficient weight
such that its weighted degree in GX is equal to 1.

3. We define AX to be the (weighted) adjacency matrix of GX .

Then,
Mvert(X) def

= AXX .

Theorem 10.4 (Restatement of Theorem 2.29). For a graph G, λ∞ is the second smallest eigenvalue of
Lvert def

= I − Mvert.

The proof of Theorem 2.29 is similar to the proof of Theorem 2.6, and hence is omitted.

11 Conclusion and Open Problems

In this paper we introduced a new hypergraph Markov operator as a generalization of the random-walk
operator on graphs. We proved many spectral properties about this operator and hypergraphs, which can be
viewed as generalizations of the analogous properties of graphs.

Open Problems. Many open problems remain. In short, we ask what properties of graphs and random
walks generalize to hypergraphs and this Markov operator? More concretely, we present a few exciting (to
us) open problems.

Problem 11.1. Given a hypergraph H = (V, E, w) and a parameter k, do there exists k non-empty disjoint
subsets S 1, . . . , S k of V such that

max
i
φ(S i) 6 O

( √
γk log k log r

)
?

Problem 11.2. Given a hypergraph H = (V, E, w) and a parameter k, is there a randomized polynomial time
algorithm to obtain a O (polylog k polylog r)-approximation to γk ?

Problem 11.3. Is there a O
( √

log k log log k
)
-approximation algorithm for sparsest cut with general demands

in hypergraphs ?
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A Hypergraph Tensor Forms

Let A be an r-tensor. For any suitable norm ‖·‖�, e.g. ‖.‖22, ‖.‖rr, we define tensor eigenvalues as follows.

Definition A.1. We define λ1, the largest eigenvalue of a tensor A as follows.

λ1
def
= max

X∈�n

∑
i1,i2,...,ir Ai1i2...ir Xi1 Xi2 . . . Xir

‖X‖�
v1

def
= argmaxX∈�n

∑
i1,i2,...,ir Ai1i2...ir Xi1 Xi2 . . . Xir

‖X‖�

We inductively define successive eigenvalues λ2 > λ3 > . . . as follows.

λk
def
= max

X⊥{v1,...,vk−1}

∑
i1,i2,...,ir Ai1i2...ir Xi1 Xi2 . . . Xir

‖X‖�
vk

def
= argmaxx⊥{v1,...,vk−1}

∑
i1,i2,...,ir Ai1i2...ir Xi1 Xi2 . . . Xir

‖X‖�
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Informally, the Cheeger’s Inequality states that a graph has a sparse cut if and only if the gap between
the two largest eigenvalues of the adjacency matrix is small; in particular, a graph is disconnected if any
only if its top two eigenvalues are equal. In the case of the hypergraph tensors, we show that there exist
hypergraphs having no gap between many top eigenvalues while still being connected. This shows that the
tensor eigenvalues are not relatable to expansion in a Cheeger-like manner.

Proposition A.2. For any k ∈ �>0, there exist connected hypergraphs such that λ1 = . . . = λk.

Proof. Let r = 2w for some w ∈ �+. Let H1 be a large enough complete r-uniform hypergraph. We construct
H2 from two copies of H1, say A and B, as follows. Let a ∈ E(A) and b ∈ E(B) be any two hyperedges. Let
a1 ⊂ a (resp. b1 ⊂ b) be a set of any r/2 vertices. We are now ready to define H2.

H2
def
= (V(H1) ∪ V(H2), (E(H1) \ {a}) ∪ (E(H2) \ {b}) ∪ {(a1 ∪ b1), (a2 ∪ b2)})

Similarly, one can recursively define Hi by joining two copies of Hi−1 (this can be done as long as r > 22i).
The construction of Hk can be viewed as a hypercube of hypergraphs.

Let AH be the tensor form of hypergraph H. For H2, it is easily verified that v1 = 1. Let X be the
vector which has +1 on the vertices corresponding to A and the −1 on the vertices corresponding to B. By
construction, for any hyperedge {i1, . . . , ir} ∈ E

Xi1 . . . Xir = 1

and therefore, ∑
i1,i2,...,ir Ai1i2...ir Xi1 Xi2 . . . Xir

‖X‖�
= λ1 .

Since 〈X, 1〉 = 0, we get λ2 = λ1 and v2 = X. Similarly, one can show that λ1 = . . . = λk for Hk. This is in
sharp contrast to the fact that Hk is, by construction, a connected hypergraph. �

B Omitted Proofs

Proposition B.1. Let A be a symmetric n × n matrix with eigenvalues α1, . . . , αn and corresponding eigen-
vectors v1, . . . , vn such that A � 0. Then, for any X ∈ �n

XT (I − A)X
XT X

−
XT AT (I − A)AX

XT AT AX
= 2

∑
i, j c2

i c2
j(αi − α j)2(αi + α j)∑

i c2
i
∑

i c2
i α

2
i

> 0

where X =
∑

i civi.

Proof. We first note that the eigenvectors of I − A are also v1, . . . , vn with 1 − α1, . . . , 1 − αn being the
corresponding eigenvalues.

XT (I − A)X
XT X

−
XT AT (I − A)AX

XT AT AX
=

∑
i c2

i (1 − αi)∑
i c2

i

−

∑
i c2

i α
2
i (1 − αi)∑

i c2
i α

2
i

= 2

∑
i, j c2

i c2
j

(
(1 − αi)α2

j + (1 − α j)α2
i − (1 − αi)α2

i − (1 − α j)α2
j

)
∑

i c2
i
∑

i c2
i α

2
i

= 2

∑
i, j c2

i c2
j(αi − α j)2(αi + α j)∑

i c2
i
∑

i c2
i α

2
i

�
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Lemma B.2. Let f : [0, 1]→ {1, 2, . . . , k} be any discrete function. Then there exists an interval (a, b) ⊂ [0, 1],
a , b, such that for some α ∈ {1, 2, . . . , k}

f (x) = α ∀x ∈ (a, b) .

Proof. Let υ(·) denote the standard Lebesgue measure on the real line. Then since f is a discrete function on
[0, 1] we have

k∑
i=1

υ
(

f −1(i)
)

= 1 .

Then, for some α ∈ {1, 2, . . . , k}

υ
(

f −1(α)
)
>

1
k
.

Therefore, there is some interval (a, b) ⊂ f −1(α) such that

υ ((a, b)) > 0 .

This finishes the proof of the lemma. �

Fact B.3. Let Y1,Y2, . . . ,Yd be d standard normal random variables. Let Y be the random variable defined
as Y def

= max {Yi|i ∈ [d]}. Then

�
[
Y2

]
6 4 log d and � [Y] 6 2

√
log d .

Proof. For any Z1, . . . ,Zd ∈ � and any p ∈ �+, we have maxi |Zi| 6 (
∑

i Zp
i )

1
p . Now Y2 = (maxi Xi)2 6

maxi X2
i .

�
[
Y2

]
6 �


∑

i

X2p
i


1
p
 6

� ∑
i

X2p
i


1
p

( Jensen’s Inequality )

6

∑
i

(
�

[
X2

i

]) (2p)!
(p)!2p


1
p

6 2pd
1
p (using (2p)!/p! 6 (2p)p )

Picking p = log d gives �
[
Y2

]
6 2e log d.

Therefore � [Y] 6
√
�

[
Y2] 6 √

2e log d.
�

Lemma B.4. For any two non zero vectors ui and u j, if ũi = ui/ ‖ui‖ and ũ j = u j/
∥∥∥u j

∥∥∥ then∥∥∥ũi − ũ j
∥∥∥ √
‖ui‖

2 +
∥∥∥u j

∥∥∥2
6 2

∥∥∥ui − u j
∥∥∥ .

Proof. Note that 2 ‖ui‖
∥∥∥u j

∥∥∥ 6 ‖ui‖
2 +

∥∥∥u j
∥∥∥2. Hence,∥∥∥ũi − ũ j

∥∥∥2 (‖ui‖
2 +

∥∥∥u j
∥∥∥2) = (2 − 2

〈
ũi, ũ j

〉
)(‖ui‖

2 +
∥∥∥u j

∥∥∥2)

6 2(‖ui‖
2 +

∥∥∥u j
∥∥∥2
− (‖ui‖

2 +
∥∥∥u j

∥∥∥2)
〈
ũi, ũ j

〉
)
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If
〈
ũi, ũ j

〉
> 0, then∥∥∥ũi − ũ j

∥∥∥2 (‖ui‖
2 +

∥∥∥u j
∥∥∥2) 6 2(‖ui‖

2 +
∥∥∥u j

∥∥∥2
− 2 ‖ui‖

∥∥∥u j
∥∥∥ 〈

ũi, ũ j
〉
) 6 2

∥∥∥ui − u j
∥∥∥2

Else if
〈
ũi, ũ j

〉
< 0, then∥∥∥ũi − ũ j

∥∥∥2 (‖ui‖
2 +

∥∥∥u j
∥∥∥2) 6 4(‖ui‖

2 +
∥∥∥u j

∥∥∥2
− 2 ‖ui‖

∥∥∥u j
∥∥∥ 〈

ũi, ũ j
〉
) 6 4

∥∥∥ui − u j
∥∥∥2

�

Theorem B.5 (Folklore). Given a graph G = (V, E, w), let λ2 be the second smallest eigenvalue of the
normalized Laplacian of G. Then there exists a vertex i ∈ V, such that

tmix
δ (ei) >

log 1/δ
λ2

.

Proof. Let P be the random walk matrix of G, and let α2 be its second largest eigenvalue. Then, λ2 = 1 − α2
(Folklore). Let X be the second eigenvector of P. Then for any j ∈ V

∣∣∣αt
2X( j)

∣∣∣ = PtX( j) =

∣∣∣∣∣∣∣∑l

Pt( j, l)X(l) − µ∗(l)X(l)

∣∣∣∣∣∣∣ 6 ∥∥∥Pt( j, ·) − µ∗
∥∥∥

1 ‖X‖∞ .

Therefore, taking i to be a vertex such that |X(i)| = ‖X‖∞, we get∥∥∥Pt( j, ·) − µ∗
∥∥∥

1 > α
t
2 = (1 − λ2)t .

This proves the theorem.
�
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