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Abstract

We prove a lower bound of Ω(n1/2−c), for all c > 0, on the query complexity of (two-sided
error) non-adaptive algorithms for testing whether an n-variable Boolean function is monotone
versus constant-far from monotone. This improves a Ω̃(n1/5) lower bound for the same problem
that was recently given in [CST14] and is very close to Ω(n1/2), which we conjecture is the
optimal lower bound for this model.

1 Introduction

1.1 Motivation and background

Monotonicity testing of Boolean functions f : {−1, 1}n → {−1, 1} is one of the most natural and
well-studied problems in Property Testing. Introduced by Goldreich, Goldwasser, Lehman, and Ron
in 1998 [GGLR98], this problem is concerned with the query complexity of determining whether a
Boolean function f is monotone or far from monotone. Recall that f is monotone if f(X) ≤ f(Y )
for all X ≺ Y , where ≺ denotes the bitwise partial order on the hypercube. We say that f is ε-close
to monotone if Pr[f(X) 6= g(X)] ≤ ε for some monotone Boolean function g, where the probability
is over a uniform draw of X from {−1, 1}n, and that f is ε-far from monotone otherwise. We are
interested in query-efficient randomized algorithms for the following task:

Given as input a distance parameter ε > 0 and oracle access to an unknown Boolean
function f : {−1, 1}n → {−1, 1}, output Yes with probability at least 2/3 if f is mono-
tone, and No with probability at least 2/3 if f is ε-far from monotone.
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The work of Goldreich et al. [GGLR98] proposed a simple “edge tester” for this task and proved
an O(n2 log(1/ε)/ε) upper bound on its query complexity, subsequently improved to O(n/ε) in the
journal version [GGL+00]. Fischer et al. [FLN+02] established the first lower bounds shortly after,
showing that there exists a constant distance parameter ε0 > 0 such that Ω(log n) queries are
necessary for any non-adaptive tester (one whose queries do not depend on the oracle’s responses
to prior queries). This directly implies an Ω(log log n) lower bound for adaptive testers, since any q-
query adaptive tester can be simulated by a non-adaptive one that simply carries out all 2q possible
executions. (Via a simple argument [FLN+02] also gave an Ω(n1/2) lower bound for non-adaptive
one-sided testers, which must output Yes with probability 1 if f is monotone. Throughout this
work we consider only general two-sided testers, for which lower bounds are more difficult to prove.)

In spite of considerable work on this problem and its variants [GGLR98, DGL+99, GGL+00,
FLN+02, AC06, HK08, BCGSM12], these were the best known results for the basic problem for
more than a decade, until Chakrabarty and Seshadhri [CS13] improved on the linear upper bound
of Goldreich et al. with an Õ(n7/8ε−3/2)-query tester. More recently, Chen et al. [CST14] closed the
gap between upper and lower bounds on the query complexity of non-adaptive testers to within a
polynomial factor by giving a lower bound of Ω̃(n1/5) (an exponential improvement of the [FLN+02]
lower bound). [CST14] also gave an upper bound of Õ(n5/6ε−4) queries (a polynomial improvement
of the [CS13] upper bound in terms of the dependence on n).

In this paper we make further progress towards a complete resolution of the problem with a
lower bound of (almost) Ω(n1/2) against non-adaptive testers, which we conjecture is optimal. In
more detail, our main result is the following:

Theorem 1. For all c > 0 there is a κ = κ(c) > 0 such that any non-adaptive algorithm for testing
whether f : {−1, 1}n → {−1, 1} is monotone versus κ-far from monotone must use Ω(n1/2−c)
queries.

The paper of Chen et al. [CST14] also considered the problem of testing monotonicity of
Booelan-valued functions over general hypergrid domains {1, . . . ,m}n for m ≥ 2, and showed that
it reduces to that of testing monotonicity Boolean functions as defined above (i.e. the case when
m = 2) with essentially no loss in parameters. More precisely, they proved that any lower bound
for κ-testing monotonicity of f : {−1, 1}n → {−1, 1} translates into a lower bound for Ω(κ)-testing
monotonicity of F : {1, . . . ,m}n → {−1, 1} with only a logarithmic loss in terms of n in the query
lower bound. Therefore Theorem 1 along with this reduction yields our most general result:

Theorem 2. For all c > 0 there is a κ = κ(c) > 0 such that for all m ≥ 2, any non-adaptive
algorithm for testing whether F : {1, . . . ,m}n → {−1, 1} is monotone versus κ-far from monotone
must use Ω(n1/2−c) queries.

1.2 Previous work: the [CST14] lower bound

In order to explain our approach in the current paper we first briefly recall the key elements of
the [CST14] lower bound. That paper uses Yao’s method, i.e. it exhibits two distributions Dyes,Dno

over Boolean functions, where each f ∼ Dyes is monotone and almost every f ∼ Dno is constant-
far from monotone. The main conceptual novelty of the [CST14] lower bound was to use linear
threshold functions (LTFs) as both the yes- and no- functions, thereby enabling the application of
sophisticated multidimensional central limit theorems to establish the closeness in distribution that
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is required by Yao’s method. In more detail, a function drawn from the “yes-distribution” Dyes of
[CST14] is

f(X) = sign(u1X1 + · · ·+ unXn) (1)

where each ui is independently uniform over {1, 3}, and a function drawn from the “no-distribution”
Dno is

f(X) = sign(v1X1 + · · ·+ vnXn) (2)

where each vi is independently −1 with probability 1/10 and is 7/3 with probability 9/10.
Fix an arbitrary (adversarially chosen) d × n query matrix X whose elements all are ±1/

√
n,

and let X (1), . . . ,X (n) ∈ {±1/
√
n}d be the columns of this matrix. The d rows of this matrix

correspond to an arbitrary d-element set of n-bit query strings scaled by a factor of 1/
√
n. (Note

that scaling the input does not change the value of a zero-threshold linear threshold function such
as (1) or (2) above.) Define the Rd-valued random variables

S =

n∑

i=1

uiX (i) and T =

n∑

i=1

viX (i). (3)

Recalling (1) and (2) and Yao’s minimax lemma, to prove a d-query monotonicity testing lower
bound for non-adaptive algorithms, it suffices to upper bound

dUO(S,T) ≤ 0.1 (4)

(here the “0.1” constant is arbitrary, any constant in (0, 1) would do) for all possible choices of X ,
where dUO is the “union-of-orthants” distance:

dUO(S,T) := max
{
|Pr[S ∈ O]−Pr[T ∈ O]| : O is a union of orthants in Rd

}
.

Thus, in this approach, the goal is to make d be as large as possible (as a function of n) while
keeping dUO(S,T) at most 0.1.

To obtain their main Ω̃(n1/5) lower bound, [CST14] use a multidimensional central limit theorem
(CLT) of Valiant and Valiant [VV11], which is proved using Stein’s method and which bounds the
earthmover (Wasserstein) distance between sums of independent vector-valued random variables.
[CST14] adapts this earthmover CLT to obtain a CLT for the “union-of-orthants” distance dUO,
and shows that using this CLT the value of d can be taken as large as Ω̃(n1/5).

The key properties of the random variables ui and vi used in [CST14] are that

1. Their first and second moments match, i.e. E[ui] = E[vi] and E[u2
i ] = E[v2

i ]. (This ensures
that S and T have matching means and covariance matrices, which makes it possible to apply
the [VV11] CLT.)

2. The random variable ui is supported entirely on non-negative values, while vi has nonzero
weight on negative values. (The first condition ensures that f ∼ Dyes will be monotone, and
the second ensures that a random f ∼ Dno will w.h.p. be constant-far from monotone.)
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1.3 Our approach and techniques

In light of the above, it is natural to ask whether imposing stronger requirements on the ui,vi

random variables can lead to stronger results: in particular, can matching higher moments than just
the first two lead to an improved lower bound? Pursuing such an approach, one quickly discovers
that extending the [VV11] CLT for earthmover distance (which, as mentioned above, is proved using
Stein’s method) to exploit matching higher moments is a nontrivial technical challenge. Instead,
in this work we return to a much older proof method for CLTs, namely Lindeberg’s “replacement
method” (discussed in detail in Section 4.2), which is well suited for higher moments. Our arguments
show that by combining a careful construction of the random variables (the coefficients of the LTFs)
with a careful analysis of all possible query matrices, the Lindeberg method can be used to obtain
an Ω(n1/2−c) lower bound for monotonicity testing.

We observe that a high-level difference between our paper and that of [VV11] is that [VV11]
proves that a sum of independent d-dimensional random variables converges to a multi-dimensional
Gaussian with matching first two moments (mean and covariance). In contrast, we work with two
different but carefully constructed sums of independent d-dimensional random variables which have
many matching moments, namely the S and T random variables defined in (3). Our goal is not to
establish smaller distance to a multi-dimensional Gaussian (indeed our arguments do not establish
this); rather, as described above, having dUO(S,T) ≤ 0.1 is sufficient for our purposes, and our
goal is to achieve such “rough” closeness for d-dimensional random variables where d is as large as
possible (i.e. as close as possible to n1/2).

As a warmup, in Section 4.2 we first prove an Ω(n1/4−c) lower bound via a fairly straightforward
application of the Lindeberg method. This argument essentially requires only matching moments of
order 1, 2, . . . , 1/c for the ui,vi random variables without other special properties — in particular,
it does not matter just what those moments are as long as they match each other — and the
analysis proceeds in the usual way for the Lindeberg method. However, improving this lower
bound to Ω(n1/2−c) requires many new ideas and significantly more care in the construction and
analysis. We discuss several of the necessary ingredients, and in so doing give an overview of our
proof approach, below.

(1): Suitable choice of distributions. We show that given any positive integer ℓ, there is a
non-negative value µ = µ(ℓ) and a non-negative random variable u such that the first ℓ moments
of u match those of the mean-µ, variance-1 Gaussian N (µ, 1). (This non-negative support of u
ensures that the Dyes functions defined by (1) are monotone as required.) For the Dno functions,
we show that there is a random variable v (see (2)) that has first ℓ moments matching those of
N (µ, 1), has finite support, and takes negative values with nonzero probability. The finite support
and negativity conditions enable us to argue that almost all functions drawn from Dno are indeed
constant-far from monotone, and the fact that v’s moments match those of a Gaussian plays a
crucial role in enabling step (4) to go through, as described below.

(2): Careful choice and analysis of mollifier. The Lindeberg method uses smooth “mollifiers”
with useful analytic properties (bounded derivatives and the like) to approximate discontinuous
indicator functions. We give a careful construction of a particular mollifier which exploits some of
the “nice structure” of the sets (unions of orthants) that we must deal with, and show how this
mollifier’s special properties can be used to obtain a significant savings in bounding the error terms
that arise in Lindeberg’s method. Our analysis based on this particular mollifier shows that to
bound the error terms in Lindeberg’s method, it is enough to give an anticoncentration bound. In
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more detail, we identify a family of (roughly) dh+1 random variables R−i|J (corresponding to the
different possible outcomes of the multi-index J in (19); see Section 4.3), and show that it is enough
to establish that for almost all of these random variables (outcomes of J), there is a strong upper
bound on the probability that R−i|J (which is a sum of n− 1 independent (h + 1)-dimensional
vector-valued random variables) lands in a small origin-centered rectangular box, which we denote
BJ , in R

h+1. Here h is a value which is chosen to be significantly less than ℓ, but still “large enough”
that it suffices for steps (2) and (3) being described here; we will use the remaining ℓ−h matching
moments later in the argument, in step (4).

(3): Pruning arbitrary query sets. We may associate each multi-index J that has |J | = h+ 1
with a multiset A of size h+ 1 drawn from the d-element query set. For simplicity, in the following
informal discussion let us assume that every element in A occurs with multiplicity exactly 1 (this
is indeed the case for most multisets of [d] of size h + 1; recall that h is a fixed integer whereas d
should be thought of as nΘ(1)).

A major difficulty is that for some query sets, it may be the case that for many outcomes of A
(equivalently, J) it is simply impossible to give a strong upper bound on the probability that R−i|J
lands in the small rectangular box BJ . For example, this can be the case if many query strings lie
very close to each other (see the discussion in the last two paragraphs of Section 4 for an extreme
instance of this phenomenon). However, if there are two query strings which are very close to each
other, then with very high probability over the outcomes of u1, . . . ,un the responses to the two
queries for f ∼ Dyes will be the same, and likewise for f ∼ Dno. This should effectively allow us to
“prune” the query set and reduce its size by 1. On the other hand, there is a non-zero probability
that two close but distinct query strings have different answers, and it is intuitively clear that this
probability increases with the distance between the query strings; thus any such pruning must be
done with care.

There is indeed a delicate balance between these two competing demands (pruning queries to
eliminate cases where the desired anti-concentration probability cannot be effectively bounded, and
introducing errors by pruning queries). In Section 5, we perform a careful tradeoff between these
demands, and show that any query set can be pruned (at the cost of a small acceptable increase in
error) in a useful way. The exact condition we require of our pruned query sets is rather involved
so we defer a precise statement of it to Section 5, but roughly speaking, it involves having only
a small fraction of all queries lie too close to the linear span of any small set of query strings
(see Definition 8 for a precise definition). We show in later sections that this condition, which we
refer to as a query set being “scattered,” lets us establish the desired anti-concentration mentioned
above. We note that our pruning procedure heavily uses the fact that query strings are elements of
the (scaled) Boolean hypercube; this enables us to establish and employ some useful facts which,
roughly speaking, exploit some geometrical incompatibility between linear subspaces of Rn and the
Boolean hypercube.

(4): Handling scattered query sets. A careful analysis of scattered query sets lets us show that
if G is a (h+ 1)-dimensional Gaussian whose mean and covariance matrix match those of R−i|J ,
then G satisfies the desired anti-concentration bound. To show that the above-mentioned random
variable R−i|J — which is not a Gaussian — also satisfies this anti-concentration bound, we exploit
the fact that u’s first ℓ moments match those of v, which in turn match the first ℓ moments of
a variance-1 Gaussian (recall ingredient (1), “Suitable choice of distributions,” above). (This is
where we use the “remaining” ℓ − h matching moments for u and v alluded to earlier.) This lets
us adapt the simple argument that was employed for the “warm-up” result to establish that the
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two distributions R−i|J and G must both put almost the same amount of weight as each other on
the box BJ mentioned above; since G is anti-concentrated on this box, it follows that R−i|J must
have similar anti-concentration.

The fact that v matches the first ℓ moments of a Gaussian is crucial here, since otherwise the
penalty incurred for the “smoothing” term in Lindeberg’s method (the final term on the RHS of
the inequality of Proposition 4.2) would be prohibitively large. By having v match the moments of
a Gaussian, though, we can use the aforementioned analysis (showing that the Gaussian G satisfies
the desired anti-concentration bound) in order to give a strong upper bound on this smoothing
penalty, and thereby obtain our overall desired result.

1.4 Organization.

In Section 3 we establish the existence of real random variables u,v with the “matching moments”
property that we require. Section 4 proves an Ω(n1/4−c) lower bound for monotonicity testing via
a “vanilla” application of Lindeberg’s method using higher-order matching moments, and outlines
our approach for going beyond n1/4−c. Section 5 describes our pruning procedure that transforms
an arbitrary query set into a “scattered” query set. In Sections 6 we give our lower bound for
scattered query sets, and finally in Section 7 we put together the pieces and complete the proof of
Theorem 1.

2 Preliminaries

Given n ∈ N, we let [n] denote {1, . . . , n}, and given a ≤ b ∈ N we let [a : b] denote {a, . . . , b}. We
use lowercase letters to denote real numbers, uppercase letters to denote vectors of real numbers,
and boldface (e.g. x and X) to denote random variables. We will also use calligraphic letters like
X to denote sets or multisets of vectors.

For X ∈ Rn we use Bℓ2(X, r) to denote {Y ∈ Rn : ‖X −Y ‖2 ≤ r}, the Euclidean ball of radius
r centered at X. For Y,Z ∈ {±1/

√
n}n, the Hamming distance dHam(Y,Z) is defined as the number

of coordinates where Y and Z differ.
Recall that a k-variable Boolean function f is a linear threshold function (LTF) if there exist

real values w1, . . . , wk, θ such that f(x) = sign(
∑k

i=1 wixi − θ).
We will require the following useful fact on the number of distinct LTFs over the k-dimensional

Boolean hypercube (where we view two LTFs as distinct if they differ as Boolean functions):

Fact 2.1. [Sch50] The total number of distinct LTFs over {−1, 1}k is upper bounded by 2k
2
.

Given a d-dimensional multi-index J = (J1, . . . , Jd) ∈ Nd, we write |J | to denote J1 + · · · + Jd
and J ! to denote J1!J2! · · · Jd!. We write supp(J) to denote the set {i ∈ [d] : Ji 6= 0}, and #J to
denote |supp(J)|. (Note that #J ≤ |J |.) Given X ∈ Rd we write XJ to denote

∏d
i=1(Xi)

Ji , and
X|J ∈ R#J to denote the projection of X onto the coordinates in supp(J). For f : Rd → R, we
write f (J) to denote the J-th derivative, i.e.

f (J) =
∂J1+···+Jdf

∂xJ11 · · · ∂xJdd
.

We will use the standard multivariate Taylor expansion:
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Fact 2.2 (Multivariate Taylor expansion). Given a smooth function f : Rd → R and k ∈ N,

f(X +∆) =
∑

|J |≤k

f (J)(X)

J !
·∆J + (k + 1)

∑

|J |=k+1

(
∆J

J !
E
[
(1− τ )kf (J)(X + τ∆)

])
,

for X,∆ ∈ Rd, where τ is a random variable uniformly distributed on the interval [0, 1].

We recall the standard Berry–Esséen theorem (see for example, [Fel68]) for sums of independent
real random variables:

Theorem 3 (Berry–Esséen). Let s = x1 + · · ·+ xn, where x1, . . . ,xn are independent real-valued
random variables with E[xj ] = µj and Var[xj ] = σ2

j , and suppose that |xj −E[xj]| ≤ τ with proba-
bility 1 for all j ∈ [n]. Let g denote a Gaussian random variable with mean

∑n
j=1 µj and variance∑n

j=1 σ
2
j , matching those of s. Then for all θ ∈ R, we have

∣∣Pr[s ≤ θ]−Pr[g ≤ θ]
∣∣ ≤ O(τ)√∑n

j=1 σ
2
j

.

3 The Dyes and Dno distributions

The main results of this section are the following:

Proposition 3.1 (The “yes” random variable). Given an odd ℓ ∈ N, there exists a value µ = µ(ℓ)
> 0 and a real random variable u such that

1. u is supported on at most ℓ nonnegative real values; and

2. E[uk] = E[N (µ, 1)k] for all k ∈ [ℓ].

Proposition 3.2 (The “no” random variable). Given µ > 0 and ℓ ∈ N, there exists a real random
variable v such that

1. v is supported on at most ℓ+ 1 real values, with Pr[v < 0] > 0; and

2. E[vk] = E[N (µ, 1)k] for all k ∈ [ℓ].

Note the difference between these two propositions: the first requires u to be supported entirely on
nonnegative values, while the second requires v to put nonzero weight on some negative value.

Let c > 0 (this should be viewed as the “c” of Theorem 1), and let h = h(c) ∈ N denote an odd
constant that depends on c only. Let u and v denote random variables given in Proposition 3.1
and 3.2, respectively, with ℓ = h3 and µ = µ(ℓ). As discussed in Section 1.2 the “yes” distribution
Dyes of Boolean functions is given by (1) and the “no” distribution by (2), where each ui is i.i.d.
distributed according to u and likewise for the vi’s and v. It is clear that u and v have matching first
ℓ-th moments, and Proposition 3.1 ensures that every function in the support of Dyes is monotone.
In Appendix B we show that with probability 1 − on(1), a random LTF drawn from Dno is κ-far
from all monotone Boolean functions, where κ > 0 depends on the values of µ and ℓ and hence on
c only.

Thus the above two Propositions 3.1 and 3.2 are enough for the basic framework of Yao’s method
to go through and establish our lower bound, once we show that equation (4) holds. We do this in
the rest of the paper, but first in the remainder of this section we prove Propositions 3.1 and 3.2.
We start with the easier Proposition 3.2.

7



3.1 Proof of Proposition 3.2

For each x ∈ R, let A(x) denote the (ℓ+ 1)-dimensional real vector defined by

A(x)k =

{
xk for k ∈ [ℓ],

1[x < 0] for k = ℓ+ 1.

Consider the vector P ∈ Rℓ+1 defined by

Pk =

{
E[N (µ, 1)k] for k ∈ [ℓ],

Pr[N (µ, 1) < 0] for k = ℓ+ 1.

Since P = E
x∼N (µ,1)[A(x)] the point P is in the convex hull of the point set V := {A(x) : x ∈ R} ⊂

R

ℓ+1. Hence Carathéodory’s theorem implies that P lies in the convex hull of some (ℓ + 1)-point
subset of V , i.e. there exist x1, . . . , xℓ+1 ∈ R and 0 ≤ µ1, . . . , µℓ+1 with

∑
j µj = 1 such that

P =
ℓ+1∑

j=1

µjA(xj).

The desired random variable v is defined by Pr[v = xj] = µj. It is clear that v is supported on
at most ℓ+ 1 real values, and v satisfies the desired moment condition since

E[N (µ, 1)k ] = Pk =
ℓ+1∑

j=1

µjx
k
j = E[vk], for all k ∈ [ℓ].

Finally, since

0 < Pr[N (µ, 1) < 0] = Pℓ+1 =

ℓ+1∑

j=1

µj1[xj < 0],

it must be the case that Pr[v < 0] > 0, and the proposition is proved.

3.2 Proof of Proposition 3.1

Given a sequence of real numbers (m1, . . . ,mℓ), consider the problem of deciding whether there ex-
ists a real random variable x such that E[xi] = mi for i = 1, . . . , ℓ. This is a form of the well-studied
classical moment problem, and a complete solution has been given in terms of the moment vector
lying in a particular well-specified cone. More precisely, the following can be found in [Akh65].

Theorem 4. Let m = (m1,m2, . . . ,m2n). There is a random variable x supported on R such that
E[xi] = mi for i = 1, . . . , 2n if and only if

A
R

(m) =




1 m1 . . . mn

m1 m2 . . . mn+1
...

...
. . .

...
mn mn+1 . . . m2n


 � 0.
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The corresponding problem when the support of the desired random variable x is restricted to
non-negative reals is also completely solved, by the following result:

Theorem 5. Let m = (m1,m2, . . . ,m2n+1). There is a random variable x supported on [0,∞) such
that E[xi] = mi for i = 1, . . . , 2n+ 1 if and only if

A
R

(m) =




1 m1 . . . mn

m1 m2 . . . mn+1
...

...
. . .

...
mn mn+1 . . . m2n


 � 0 and A+

R

(m) =




m1 m2 . . . mn+1

m2 m3 . . . mn+2
...

...
. . .

...
mn+1 mn+2 . . . m2n+1


 � 0.

We use the above results by taking each mℓ to equal E[zℓ
µ], where zµ is distributed according

to N (µ, 1) (so mℓ = mℓ(µ) is a function of µ). Our aim is to show that µ = µ(ℓ) can be taken to
be a sufficiently large integer (in terms of ℓ) such that

A
R

(m(µ)) =




1 m1 . . . mℓ

m1 m2 . . . mℓ+1
...

...
. . .

...
mℓ mℓ+1 . . . m2ℓ


 � 0 (5)

and A+
R

(m(µ)) =




m1 m2 . . . mℓ+1

m2 m3 . . . mℓ+2
...

...
. . .

...
mℓ+1 mℓ+2 . . . m2ℓ+1


 � 0. (6)

If these two conditions hold, then we may take u′ to be the nonnegative random variable x whose
existence is asserted by Theorem 5. Applying Carathéodory’s theorem, an argument similar to the
proof of Proposition 3.2 allows us to obtain from u′ a nonnegative random variable u with support
size at most ℓ and the same moments. This will finish the proof of Proposition 3.1.

As the Gaussian zµ = N (µ, 1) is itself a random variable such that E[zi
µ] = mi, for i = 1, . . . , 2ℓ,

Theorem 4 implies that (5) holds; thus, it remains to prove (6).
Observe that mk = mk(µ) is a degree-k polynomial in µ. We define

Pdet(µ) = det(A+
R

(m)).

Our argument requires the following four technical claims.

Claim 3.3. There exists µ0 such that A+
R

(m(µ)) is non-singular for all µ ∈ R \ [−µ0, µ0].

Proof. Observe that Pdet(µ) is a degree-T polynomial in µ with T < (ℓ + 1)(2ℓ + 1). Thus, given
that Pdet(µ) is not the identically-0 polynomial, if µ0 is set to be the largest magnitude of the zero
of this polynomial, we get the claim.

To see that Pdet(µ) is not identically zero, we consider the matrix A+
R

(m(0)) obtained by taking
µ = 0. This matrix has (i, j)th entry E[N (0, 1)i+j−1], which is 0 if i + j is even. By inspection of
this matrix we see that for odd ℓ > 1, we have

A+
R

(m(0)) =

(
0 1
1 0

)
⊗B(ℓ),
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where B(ℓ) is the square matrix of dimension (ℓ+1)/2 that has (i, j)th entry E[N (0, 1)2(i+j−1)]. It
follows that Pdet(0) = (−1)(ℓ+1)/2 det(B(ℓ))2. Recalling that for k even we have

E[N (0, 1)k ] = (k − 1)!! = 1 · 3 · 5 · · · (k − 1),

the product of the odd numbers from 1 to k − 1, it can be shown that

det(B(ℓ)) =
∏

j odd,1≤j≤ℓ

j!.

We include a proof of this fact in Appendix C. The lemma then follows.

Claim 3.4. If µ > µ0 is an integer, then |det(A+
R

(m(µ)))| ≥ 1.

Proof. The fact that each raw moment E[N (0, 1)k ] of the Gaussian is an integer easily implies that
mk(µ) = E[(N (0, 1) + µ)k] is a polynomial with integer coefficients, and hence Pdet(µ) has integer
coefficients as well. Together with Claim 3.3 this gives the claim.

Claim 3.5. For all integer µ > 0, we have that the largest singular value of A+
R

(m(µ)), denoted
σmax(A

+
R

(m(µ))), satisfies σmax(A
+
R

(m(µ))) ≤ (ℓ+ 1)2 · (2ℓ+ 1)! · µ2ℓ+1.

Proof. We have σmax(A
+
R

(m(µ))) ≤ ‖A+
R

(m(µ))‖F . We use the following simple upper bound on
the kth moment of the mean-µ, variance-1 Gaussian N (µ, 1):

E[N (µ, 1)k] = E[(N (0, 1) + µ)k] =

⌊k/2⌋∑

j=0

(
k

2j

)
(2j − 1)!! · µk−2j < (⌊k/2⌋ + 1) · k! · µk.

The claim follows by combining the two inequalities.

Claim 3.6. For all integer µ > µ0, we have that the smallest singular value of A+
R

(m(µ)), denoted
σmin(A

+
R

(m(µ))), satisfies

σmin(A
+
R

(m(µ))) ≥ 1

(2ℓ+ 1)ℓ(2ℓ+2) · µℓ(2ℓ+1)
.

Proof. We just use the simple inequality that for any symmetric matrix A ∈ R(ℓ+1)×(ℓ+1):

σmin(A) ≥
|det(A)|
σmax(A)ℓ

≥ 1

(2ℓ+ 1)ℓ(2ℓ+2) · µℓ(2ℓ+1)
.

The last inequality uses Claim 3.4 and Claim 3.5.

With these technical claims in hand, we proceed to establish (6). In case A+
R

(m(µ)) � 0 for some
integer µ > µ0, we are done. Otherwise, towards a contradiction, let us assume that A+

R

(m(µ)) has
a negative eigenvalue for every integer µ > µ0. This means that for every integer µ > µ0, we have

λmin(A
+
R

(m(µ))) ≤ − 1

(2ℓ+ 1)ℓ(2ℓ+2) · µℓ(2ℓ+1)
. (7)

Let us define the random variable z′
µ to be distributed as z′

µ = max{zµ, 0}. It is straightforward
to upper bound the difference in moments between the random variables zµ and z′

µ:
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Claim 3.7. For k ∈ N, we have
∣∣E[z′k

µ ]−E[zk
µ]
∣∣ ≤ e−

µ2

2 · (k − 1)!!.

Proof. We have
∣∣E[z′k

µ ]−E[zk
µ]
∣∣ =

∫ 0

y=−∞

1√
2π

· |y|k · e−
(y−µ)2

2 dy

≤ e−
µ2

2

∫ 0

y=−∞

1√
2π

· |y|k · e− y2

2 dy

= e−
µ2

2 · (k − 1)!!

where the last line used the fact that the k-th absolute moment of N (0, 1) is at most (k− 1)!!.

To conclude the proof, let m′
i(µ) = E[z′i

µ]. Then by Claim 3.7, we have (where ‖M‖∞ denotes
the entrywise maximum absolute value of any element of the matrix M)

‖A+
R

(m(µ))−A+
R

(m′(µ))‖∞ ≤ e−
µ2

2 · (2ℓ)!!. (8)

Let u ∈ Rℓ+1 be the unit vector minimizing uTA+
R

(m(µ))u, so λmin(A
+
R

(m(µ))) = uTA+
R

(m(µ))u.
We have

λmin(A
+
R

(m′(µ)))− λmin(A
+
R

(m(µ))) ≤ uT (A+
R

(m′(µ))−A+
R

(m(µ)))u

≤ (ℓ+ 1)‖A+
R

(m′(µ))−A+
R

(m(µ))‖∞,

so by (7) and (8) we get that

λmin(A
+
R

(m′(µ))) ≤ − 1

(2ℓ+ 1)ℓ(2ℓ+2) · µℓ(2ℓ+1)
+ (ℓ+ 1) · e−µ2

2 · (2ℓ)!!.

By choosing µ = µ(ℓ) to be a sufficiently large integer relative to ℓ we can make λmin(A
+
R

(m′(µ))) <
0, which is a contradiction with Theorem 5 and the fact that z′

µ is supported on [0,∞).

4 Warmup: an Ω(n1/4−c) lower bound via higher moments

In this section we give the basic Lindeberg argument using matching higher moments. This im-
mediately improves the Ω̃(n1/5) lower bound in [CST14] to Ω(n1/4−c) for any constant c > 0 (see
the end of Section 4.2) and is the first step in our proof of the Ω(n1/2−c) lower bound. The main
technical ingredient is a higher-moments extension of the [GOWZ10] multidimensional CLT, which
we use in place of the [VV11] multidimensional CLT used in [CST14].

4.1 A useful mollifier

We begin with a couple of basic propositions:

Proposition 4.1. Let A,Ain ⊆ Rd where Ain ⊆ A. Let Ψin : Rd → [0, 1] be a function satisfying
Ψin(X) = 1 for all X ∈ Ain and Ψin(X) = 0 for all X /∈ A. Then for all random variables S,T:

∣∣Pr[S ∈ A]−Pr[T ∈ A]
∣∣ ≤

∣∣E[Ψin(S)] −E[Ψin(T)]
∣∣ +max

{
Pr[S ∈ A \ Ain], Pr[T ∈ A \ Ain]

}
.
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Proof. Observe that Pr[S ∈ A] ≥ E[Ψin(S)] and Pr[S ∈ A] ≤ E[Ψin(S)] + Pr[S ∈ A \ Ain], and
likewise for T. As a result, we have

Pr[S ∈ A]−Pr[T ∈ A] ≤ E[Ψin(S)] +Pr[S ∈ A \ Ain]−E[Ψin(T)], and

Pr[S ∈ A]−Pr[T ∈ A] ≥ E[Ψin(S)] −Pr[T ∈ A \ Ain]−E[Ψin(T)].

Combining these, we have the proposition.

We will use the following lemma of Bentkus [Ben03]. For completeness we include its proof.

Proposition 4.2 (Lemma 2.1 of [Ben03]). Let A,Ain,Aout ⊆ R

d with Ain ⊆ A ⊆ Aout. Let
Ψin : Rd → [0, 1] be a function where Ψin(X) = 1 for all X ∈ Ain and Ψin(X) = 0 for all X /∈ A,
and let Ψout : R

d → [0, 1] be a function where Ψout(X) = 1 for all X ∈ A and Ψout(X) = 0 for all
X /∈ Aout. Then for all random variables S,T we have that

∣∣Pr[S ∈ A]−Pr[T ∈ A]
∣∣ ≤ max

{∣∣E[Ψin(S)]−E[Ψin(T)]
∣∣,
∣∣E[Ψout(S)] −E[Ψout(T)]

∣∣}

+max
{
Pr[T ∈ Aout \ A], Pr[T ∈ A \ Ain]

}
.

Proof. For the case when Pr[S ∈ A] ≥ Pr[T ∈ A], we have

Pr[S ∈ A]−Pr[T ∈ A] ≤ E[Ψout(S)]−E[Ψout(T)] +E[Ψout(T)]−Pr[T ∈ A].

The proposition follows from E[Ψout(T)] ≤ Pr[T ∈ Aout] = Pr[T ∈ A] +Pr[T ∈ Aout \ A].
Now for the case when Pr[T ∈ A] > Pr[S ∈ A], we have

Pr[T ∈ A]−Pr[S ∈ A] ≤ Pr[T ∈ A]−E[Ψin(T)] +E[Ψin(T)]−E[Ψin(S)].

The proposition follows from Pr[T ∈ A] ≤ E[Ψin(T)] +Pr[T ∈ A \ Ain].

For the rest of this section, we need to define a sufficiently fast growing function α : N → R

+:

α(k) = 2e · (64)k · k! · k2k+2.

As is standard in Lindeberg-type arguments, our proof will employ a “mollifier”, i.e. a smooth
function which approximates the indicator function of a set. In this work we require a specific
mollifier whose properties are tailored to our sets of interest (unions of orthants) and are given in
the following proposition.

Proposition 4.3 (Product mollifier). Let O be a union of orthants in Rd. For all ε > 0, there
exists a smooth function ΨO : Rd → [0, 1] with the following properties:

1. ΨO(X) = 0 for all X /∈ O.

2. ΨO(X) = 1 for all X ∈ O with mini{|Xi|} ≥ ε.

3. For any multi-index J ∈ N
d such that |J | = k, ‖Ψ(J)

O ‖∞ ≤ α(k) · (1/ε)k.

4. For any J ∈ N
d, Ψ

(J)
O (X) 6= 0 only if X ∈ O and |Xi| ≤ ε for all i such that Ji 6= 0.

Equivalently, Ψ
(J)
O (X) 6= 0 only if X ∈ O and ‖X|J‖∞ ≤ ε.

12



We note that while properties (1)–(3) above are entirely standard, we are not aware of previous
work which uses property (4). As we shall see this property is particularly useful in our setting
where the goal is to bound the union-of-orthants distance dUO. To prove Proposition 4.3, we first
prove the following easier version of it.

Proposition 4.4. Let O1 be an orthant in Rd. For all ε > 0, there exists a smooth function ΨO1 :
R

d → [0, 1] with the following properties:

1. ΨO1(X) = 0 for all X /∈ O1.

2. ΨO1(X) = 1 for all X ∈ O1 with mini{|Xi|} ≥ ε.

3. For any multi-index J ∈ N
d such that |J | = k, ‖Ψ(J)

O1
‖∞ ≤ α(k) · (1/ε)k.

4. For any J ∈ N
d, Ψ

(J)
O1

(X) 6= 0 only if X ∈ O1 and |Xi| ≤ ε for all i such that Ji 6= 0.

Equivalently, Ψ
(J)
O1

(X) 6= 0 only if X ∈ O1 and ‖X|J‖∞ ≤ ε

We first see how Proposition 4.4 can be used to prove Proposition 4.3.

Proof of Proposition 4.3. Let O = ∪i∈[m]Oi, where the Oi’s are (disjoint) orthants in Rd. Let ΨOi

be the function obtained by applying Proposition 4.4 to the orthant Oi, and let ΨO =
∑

i∈[m]ΨOi
.

We claim that ΨO satisfies the required conditions. Properties (1) and (2) follow immediately from
the corresponding properties of ΨOi

.

For properties (3) and (4), observe that from Proposition 4.4, for each i ∈ [m], Ψ
(J)
Oi

(X) = 0 if
X 6∈ Oi. Also by the definition of ΨO we have

Ψ
(J)
O (X) =

∑

i∈[m]

Ψ
(J)
Oi

(X).

Since the Oi’s are pairwise disjoint, we have that for any X ∈ Rd, at most one of the summands is
non-zero. Thus, using property (3) from Proposition 4.4, we get property (3) for ΨO. Using the
same reasoning and property (4) from Proposition 4.4, we get property (4) for ΨO.

To prove Proposition 4.4 we will need the following one-dimensional version of ΨO1 . This is the
standard mollifier construction in one-dimension. For completeness we prove it in Appendix A.

Claim 4.5. For all ε > 0, there exists a smooth function Φε : R→ [0, 1] which satisfies:

1. If x < 0, then Φε(x) = 0.

2. If x > ε, then Φε(x) = 1.

3. ‖Φ(k)
ε ‖∞ ≤ α(k) · (1/ε)k.

Proof of Proposition 4.4. Without loss of generality we may assume our orthant O1 is (R+)d. Let

ΨO1(X) =
∏

i∈[d]

Φε(Xi).
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Then Properties (1) and (2) of Proposition 4.4 follow directly from Properties (1) and (2) of Claim
4.5. By the product rule and the definition of ΨO1 , we have for any multi-index J :

Ψ
(J)
O1

(X) =
∏

i∈[d]

Φ(Ji)
ε (Xi). (9)

Using property (3) of Claim 4.5, we get

‖Ψ(J)
O1

‖∞ =
∏

i∈[d]

‖Φ(Ji)
ε ‖∞ ≤

∏

i∈supp(J)

α(Ji) · (1/ε)Ji ≤ α(k) · (1/ε)k .

The last inequality uses that
∑d

i=1 Ji = k and that logα(·) is sub-additive. This gives property
(3). To prove property (4), we again use (9) and observe

Ψ
(J)
O1

(X) 6= 0 ⇒ Φ(Ji)
ε (Xi) 6= 0 for all i ∈ [d].

For any i ∈ [d] such that Ji 6= 0, the latter implies that 0 ≤ Xi ≤ ε since Φε(Xi) is constant outside
0 ≤ Xi ≤ ε. This finishes the proof of Proposition 4.4.

4.2 Lindeberg’s replacement method and an Ω(n1/4−c)-query lower bound

Let ui and vi, i ∈ [n], denote independent random variables distributed according to u and v from
Proposition 3.1 and 3.2 with ℓ = h and µ = µ(h), for some odd constant h = h(c) ∈ N to be
specified at the end of this subsection. We note that only in this subsection, Section 4.2, do we
take ℓ = h rather than ℓ = h3 (for the Ω(n1/4−c) lower bound that we establish in this subsection,
we only require ℓ = h).

Let X ∈ {±1/
√
n}d×n denote a query matrix, and let X (i) denote its ith column. Recall that

S =

n∑

i=1

uiX (i) and T =

n∑

i=1

viX (i). (10)

Our goal is to show that dUO(S,T) ≤ 0.1 when d = O(n1/4−c).
To this end, let O denote a union of orthants such that

dUO(S,T) =
∣∣Pr[S ∈ O]−Pr[T ∈ O]

∣∣. (11)

Following [Mos08, GOWZ10], we first use the Lindeberg replacement method to bound
∣∣E[ΨO(S)]−E[ΨO(T)]

∣∣,

and then apply Proposition 4.1 to bound (11).
For all i ∈ {0, 1 . . . , n} we introduce the Rd-valued hybrid random variable:

Q(i) =
i∑

j=1

vjX (j) +
n∑

j=i+1

ujX (j),

and note that Q(0) = S and Q(n) = T. Informally we think of getting T from S via Q(1), . . . ,Q(n−1)

by swapping out each of the summands ujX (j) for vjX (j) one by one. The main idea is to bound
the difference in expectations

∣∣E[ΨO(Q
(i−1))]−E[ΨO(Q

(i))]
∣∣, (12)
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since summing over all i ∈ [n] gives an upper bound on

∣∣E[ΨO(S)]−E[ΨO(T)]
∣∣ =

∣∣E[ΨO(Q
(0))]−E[ΨO(Q

(n))]
∣∣ ≤

n∑

i=1

∣∣E[ΨO(Q
(i−1))]−E[ΨO(Q

(i))]
∣∣

via the triangle inequality.
To bound (12), we define the random variable

R−i =

i−1∑

j=1

vjX (j) +

n∑

j=i+1

ujX (j) (13)

and note that
∣∣E[ΨO(Q

(i−1))]−E[ΨO(Q
(i))]

∣∣ =
∣∣E[ΨO(R−i + viX (i))]−E[ΨO(R−i + uiX (i))]

∣∣.

Truncating the Taylor expansion of ΨO at the h-th term (Fact 2.2), we get

E
[
ΨO(R−i + viX (i))

]
=
∑

|J |≤h

1

J !
· E
[
Ψ

(J)
O (R−i) · (viX (i))J

]

+
∑

|J |=h+1

h+ 1

J !
·E
[
(1− τ )h ·Ψ(J)

O (R−i + τ · viX (i)) · (viX (i))J
] (14)

where τ is a random variable uniformly distributed on the interval [0, 1] (so the very last expectation
is with respect to τ , vi and R−i). Writing the analogous expression for E[ΨO(R−i + uiX (i))], we
observe that by Propositions 3.1 and 3.2 the first sums are equal term by term, i.e. we have

∑

|J |≤h

1

J !
· E
[
Ψ

(J)
O (R−i) · (viX (i))J

]
=
∑

|J |≤h

1

J !
· E
[
Ψ

(J)
O (R−i) · (uiX (i))J

]

for each |J | ≤ h. Thus we may cancel all but the last terms to obtain

∣∣E[ΨO(Q
(i−1))]−E[ΨO(Q

(i))]
∣∣ ≤

∑

|J |=h+1

h+ 1

J !
· ‖Ψ(J)

O ‖∞ ·
(
E
[
|(viX (i))J |

]
+E

[
|(uiX (i))J |

])
.

Observe that there are |{J ∈ Nd : |J | = h+ 1}| = Θ(dh+1) many terms in this sum. Recalling that
each coordinate of X (i) has magnitude 1/

√
n, that both ui and vi are supported on at most h+1

real values that depend only on h (by Propositions 3.1 and 3.2), and Proposition 4.3, we have

∣∣E[ΨO(Q
(i−1))]−E[ΨO(Q

(i))]
∣∣ = Oh(1) ·

(
d

ε

)h+1

· 1

n(h+1)/2
. (15)

Summing over all i ∈ [n] costs us a factor of n and so we get

∣∣E[ΨO(S)] −E[ΨO(T)]
∣∣ = Oh(1) ·

(
d

ε

)h+1

· 1

n(h−1)/2
.

With this in hand we are in place to apply Proposition 4.1. Let

Bε =
{
X ∈ O : |Xi| ≤ ε for some i ∈ [d]

}
.
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Since both v and u are supported on values of magnitude Oh(1), we have that both Pr[S ∈ Bε] and
Pr[T ∈ Bε] are bounded by Oh(dε)+Oh(d/

√
n) by using the standard 1-dimensional Berry-Esseen

inequality (Theorem 3) together with a union bound across the d dimensions. So all in all we have

dUO(S,T) ≤ Oh(dε) +Oh(d/
√
n) +Oh(1) ·

(
d

ε

)h+1

· 1

n(h−1)/2
.

We note as an aside at this point that given any 0 < c < 1/4, we may take ε = n−1/4 and take h
to be the smallest odd integer at least 1/c. Then the RHS above is Oh(n

−c) when d = O(n1/4−c)
as desired. This gives the Ω(n1/4−c) query lower bound claimed earlier:

Proposition 4.6. Given any 0 < c < 1/4, there is a κ = κ(c) > 0 such that any non-adaptive
algorithm for testing whether f : {−1, 1}n → {−1, 1} is monotone versus κ-far from monotone
must use Ω(n1/4−c) queries.

4.3 Going beyond Ω(n1/4)

The setup for the Ω(n1/2−c) bound is exactly the same as that of the Ω(n1/4−c) bound except that
ui,vi are distributed according to u and v from Proposition 3.1 and 3.2, respectively, with ℓ = h3

and µ = µ(ℓ), for some odd constant h = h(c) ∈ N to be specified later (see Equation (22)). We
then repeat Lindeberg’s replacement method on two random variables S and T as defined in (10),
but only using the first h matching moments of ui and vi (with the higher h3−h matching moments
being reserved for another application of Lindeberg’s method later, as mentioned in “(4): Handing
pruned query sets” in Section 1.3 above).

The improvement to the Ω(n1/2−c) bound comes from a more careful analysis of the sum in (14)
which in turn translates into a stronger bound on the difference (12) than that was given in (15).
Specifically, rather than using the naive bound

∣∣Ψ(J)
O (R−i + τ · viX (i))

∣∣ ≤ ‖Ψ(J)
O ‖∞ = Oh(1) · (1/ε)h+1

for each of the Θ(dh+1) possible outcomes of J ∈ Nd (which shows up as the Oh(1) · (d/ε)h+1 term
in (15)), we shall instead argue that almost all of these outcomes actually make a much smaller
contribution than Oh(1) · (1/ε)h+1. For this purpose, we will leverage the fourth property of ΨO

from Proposition 4.3; note that the proof of the Ω(n1/4−c) lower bound in Section 4.2 uses the first
three properties of ΨO from Proposition 4.3, but not the fourth.

Recall ε is the parameter of our mollifier ΨO(·). Throughout the rest of the paper we shall take

ε = n4/h−1/2 and δ = n−1/2 (16)

but we continue to write “ε” and “δ” as separate parameters for conceptual clarity. See Table 1 as
a reference for parameter settings used from Section 4.3 through the rest of the paper.

Revisiting equation (14) of the proof above, we have that

∣∣E[ΨO(Q
(i−1))]−E[ΨO(Q

(i))]
∣∣

≤ Oh(1)
∑

|J |=h+1

(
E
[∣∣Ψ(J)

O (R−i + τ · viX (i)) · (viX (i))J
∣∣
]
+E

[∣∣Ψ(J)
O (R−i + τ · uiX (i)) · (uiX (i))J

∣∣
])
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Parameter settings Where the parameters are set

h = h(c) = smallest odd integer > 5/c Equation (22)
ℓ = h3 Section 3
µ = µ(ℓ) Proposition 3.1

ε = n4/h−1/2 Equation (16)

δ = n−1/2 Equation (16)
β = Oh(1) Equation (17)

Table 1: Parameter settings used from Section 4.3 onward. The value “c” may be any positive
absolute constant.

For each multi-index J with |J | = h+ 1 we relax

E
[∣∣Ψ(J)

O (R−i + τ · viX (i)) · (viX (i))J
∣∣
]
≤ E

[
∣∣(viX (i))J

∣∣ · sup
T∈[−βδ,βδ]d

E
[∣∣Ψ(J)

O (R−i + T )
∣∣
]]

, (17)

where β = Oh(1) is an absolute constant that depends only on the largest value in the support of v
(which depends only on h). Observe that since each coordinate of X (i) has magnitude 1/

√
n, each

coordinate of the vector-valued random variable τ · viX (i) is supported on values in [−βδ, βδ], for
the β as described above. Combining the above with an analogous bound for the ui term, we have

∣∣E[ΨO(Q
(i−1))]−E[ΨO(Q

(i))]
∣∣ ≤ Oh(1)

n(h+1)/2

∑

|J |=h+1

(
sup

T∈[−βδ,βδ]d
E
[∣∣Ψ(J)

O (R−i + T )
∣∣
])

. (18)

We obtain an improved upper bound on this sum by exploiting the distributional properties of
the d-dimensional random variable R−i+T . In particular we would like to show that for most ways
of choosing h+1 out of the d coordinates, it is quite unlikely that all h+1 chosen coordinates can
simultaneously take a value in the small interval [−βδ, βδ]. (Note that almost all J with |J | = h+1
satisfy #J = h+1.) The fourth property of ΨO from Proposition 4.3 implies that having all these
coordinates be small is the only way an outcome of R−i + T can have

E
[∣∣Ψ(J)

O (R−i + T )
∣∣
]

make a nonzero contribution to the sum in (18). In other words, we would like to use the fact that
for all J ∈ Nd with |J | = h+ 1 we have

sup
T∈[−βδ,βδ]d

E
[∣∣Ψ(J)

O (R−i + T )
∣∣
]
≤ Oh(1) ·

(
1

ε

)h+1

·Pr
[
(R−i)|J ∈ BJ

]
, (19)

where we use BJ to denote the origin-centered (#J)-dimensional box [−ε− βδ, ε+ βδ ]#J . Recall
that the analysis of the previous subsection simply used the weaker bound obtained from (19) by
upper bounding Pr[(R−i)|J ∈ BJ ] by 1.

Unfortunately, given an arbitrary query set, we cannot argue that the RHS of (19) is typically
small. Indeed, consider a d-query set X in which a single fixed string Q ∈ {±1/

√
n}n is repeated

d times. In such a situation, every outcome of J will have

Pr
[
(R−i)|J ∈ BJ

]
= Pr

[
(R−i)1 ∈ [−ε− βδ, ε+ βδ ]

]
,
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because every coordinate of every outcome of (R−i) is the same, and this probability over the 1-
dimensional random variable (R−i)1 may be as large as Ω(ε); thus no significant savings is achieved
over the earlier analysis. However, it is clear that such a query set X is highly “degenerate,” in the
sense that it can be replaced by a 1-query set (which we denote by X ∗) consisting of just one copy
of Q, which will serve just as well as X for the purpose of monotonicity testing. (More precisely, the
“union-of-orthants” distance dUO(S,T) corresponding to the original query set will be precisely the
same as the union-of-orthants distance dUO(S

∗,T∗) corresponding to the reduced query set X ∗.)
Is it possible that every “degenerate” query set (for which (18) is large) can be “pruned” down

to an essentially equivalent query set (in terms of our dUO measure) for which we can give a strong
upper bound? Perhaps surprisingly, the answer is yes; however, doing this requires significant work
and careful analysis. In the next section we describe and analyze our pruning procedure, and in
Section 6 we show how an analysis based on (19) can handle pruned query sets.

5 Pruning a query set

In this section we explain how an arbitrary query set can be “pruned” so as to make it “scattered.”
(The definition of a “scattered” query set is somewhat complicated, involving the density of points
that lie close to the linear span of other sets of points, so we defer it to Section 5.3.) We show that
the pruning procedure has only a negligible effect on the variation distance dUO(S,T) that we are
aiming to bound. In later sections we give a lower bound against scattered query sets and thereby
prove our main result.

We give some preliminary geometric results in Section 5.1, and after some setup in Section 5.2,
describe and analyze the pruning procedure in Section 5.3.

5.1 Useful results about hypercubes and subspaces

The first geometric result we require is a variant of a well known fact due to Odlyzko [Odl88]. We
begin by recalling the original fact:

Fact 5.1. Let V ⊆ Rn be a subspace of dimension k. Then |V ∩ {±1/
√
n}n| ≤ 2k.

Our variant is more restrictive than the original statement in that it only deals with subspaces
V of the form V = span{V (1), . . . , V (k)}, for some V (1), . . . , V (k) ∈ {±1/

√
n}n (though see Remark

6). However, the variant is significantly more general in that it gives us a bound on the number of
Hamming balls that are required to cover all points of {±1/

√
n}n that lie close to (and need not

lie exactly on) the subspace V. (Odlyzko’s fact may be viewed as giving a bound on the number of
radius-0 Hamming balls that are required to cover all points of {±1/

√
n}n that lie exactly on V.)

A detailed statement and proof of our variant follow.
Given r ≥ 0 and a subspace V ⊆ Rn, we define the r-dilation of V to be the set

Bℓ2(V, r) :=
⋃

V ∈V

Bℓ2(V, r).

Our lemma is the following:
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Lemma 5.2. Given any set A = {V (1), . . . , V (k)} ⊆ {±1/
√
n}n and any r ≥ 0, there exists a set

of at most 2k
2
points cover(A) ⊆ {±1/

√
n}n such that

Bℓ2(span(A), r) ∩ {±1/
√
n}n ⊆

⋃

Y ∈cover(A)

BHam(Y, r
2n).

Observe that by taking r = 0, Lemma 5.2 recovers Fact 5.1 for V = span{V (1), . . . , V (k)} where
V (1), . . . , V (k) ∈ {±1/

√
n}n, with the somewhat weaker bound 2k

2
compared to 2k.

Proof. Fix any V ∈ {±1/
√
n}n such that V ∈ Bℓ2(span(A), r), so there exists a U =

∑k
j=1 αjV

(j)

such that ‖U − V ‖2 ≤ r. Let the vector Uround ∈ {±1/
√
n}n be defined by taking

(Uround)i = sign(Ui)
/√

n ∈ {±1/
√
n}

for each i ∈ [n]. It is clear that we have

‖Uround − V ‖2 =
2√
n

√√√√
n∑

i=1

1
[
Vi 6= (Uround)i

]
≤ 2 ·

√√√√
n∑

i=1

(Ui − Vi)2 = 2 · ‖U − V ‖2 ≤ 2r,

and also that

‖Uround − V ‖2 =
√

4 · dHam(Uround, V )

n
.

As a result, we have dHam(Uround, V ) ≤ r2n.
Let cover(A) ⊆ {±1/

√
n}n denote the following set of points:

cover(A) =
{
Uround : U ∈ span(A)

}
.

We will show that |cover(A)| ≤ 2k
2
; this establishes the lemma. To see this, note that

(Uround)i = sign

(
k∑

j=1

αj · V (j)
i

)
, given U =

k∑

j=1

αj · V (j).

In other words, the i-th entry of Uround is given by the value of the k-variable LTF

f(Y ) = sign
(∑k

j=1 αjYj

)

evaluated on the fixed input X(i) = (V
(1)
i , . . . , V

(k)
i ) ∈ {±1/

√
n}k (note that different Uround’s cor-

respond to LTFs with different coefficients, but the n inputs X(1), . . . ,X(n) on which the LTFs are
evaluated are the same over all Uround’s). Thus we can upper bound the number of distinct vectors
Uround by the number of distinct k-variable LTFs (viewed as Boolean functions) over {±1/

√
n}k,

which is at most 2k
2
by Fact 2.1.

Remark 6. Though we do not need it, we note that Lemma 5.2 may easily be generalized to allow
each of V (1), . . . , V (k) to be an arbitrary point in Rn, at the cost of having the RHS become nk+1

instead of 2k
2
. As the VC dimension of the class of all LTFs over Rk is k + 1, Sauer’s lemma tells

us that the number of different ways that LTFs can label a fixed set of n points in Rk (like the
points X(1), . . . ,X(n)) is at most (en/(k + 1))k+1 ≤ nk+1.
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The next geometric lemma that we require is the following:

Lemma 5.3. Fix any positive integer h. There exist two constants γ1 = γ1(h) and γ2 = γ2(h)
with the following property. For any A = {V (1), . . . , V (k)} ⊂ {±1/

√
n}n with k ≤ h and any V ∈

{±1/
√
n}n, there is a vector U = β1V

(1) + · · ·+ βkV
(k) ∈ span(A) such that |βi| ≤ γ1 for all i and

‖V − U‖2 ≤ γ2 · dℓ2
(
V, span(A)

)
.

Roughly speaking, Lemma 5.3 shows that given any set of k ≤ h vectors A = {V (1), . . . , V (k)}
from {±1/

√
n}n and a “target vector” V ∈ {±1/

√
n}n, there exists U ∈ span(A) such that U is

almost as close to V in Euclidean distance as the closest point in span(A), and U can be written as
a “low-weight” linear combination of the elements in A. Note that there are competing demands
imposed by keeping both parameters γ1 and γ2 small; for example, it is easy to see that either one
may individually be made to be 1, but doing this may potentially cause the other one to become
large. The crux of Lemma 5.3 is that it is possible to simultaneously have both γ1 and γ2 bounded
by Oh(1) independent of n.

Proof. Given A and V , we let U = β1V
(1) + · · ·+ βkV

(k) denote the closest point to V in span(A).
Below we view A as a k × n matrix, with V (i) being its i-th row vector. Note that A has m ≤ 2k

many distinct columns, and we let P (1), . . . , P (m) denote these column vectors in {±1/
√
n}k. Let

I ⊆ [m] denote the set of indices i ∈ [m] such that coordinates of U that correspond to columns of
type P (i) have absolute value at most 2/

√
n. (Note that if two coordinates Ua, Ub of U correspond

to the same column type P (i) then Ua = Ub.)
We consider two cases. For Case 1, we show that β1, . . . , βk already satisfy |βi| = Oh(1) for all

i ∈ [k], and we are done. For Case 2, we use β1, . . . , βk to obtain α1, . . . , αk such that |αi| = Oh(1)
for all i ∈ [k] and W = α1V

(1) + · · ·+ αkV
(k) has small Euclidean distance from V as claimed.

Case 1: The set of columns in {P (i) : i ∈ I} spans full dimension k. For this case we pick any
k such columns, say P (1), . . . , P (k) without loss of generality, in I. Then (β1, . . . , βk) is the unique
solution to the following linear system of k equations in variables x1, . . . , xk:

P (i) · (x1, . . . , xk) = P (i) · (β1, . . . , βk), for i ∈ [k].

Each entry of the k×k coefficient matrix given by the P (i)’s is ±1/
√
n, and the right side of each of

the k equations has absolute value at most 2/
√
n. By Cramer’s rule it follows that |βi| = Ok(1) =

Oh(1) for all i, and the lemma is proved in this case.
Case 2: The set of columns in {P (i) : i ∈ I} spans a space of dimension j < k. For this case we

pick j independent columns from {P (i) : i ∈ I}, say P (1), . . . , P (j). Then we pick arbitrarily k − j
vectors T (j+1), . . . , T (k) from {±1/

√
n}n so that they together with P (1), . . . , P (j) span full dimen-

sion k (note that T (i)’s are not necessarily column vectors of A). Solving the following linear system
we get an alternative set of coefficients α1, . . . , αk:

1. For each i ∈ [j], we require P (i) · (x1, . . . , xk) = P (i) · (β1, . . . , βk) ∈ [−2/
√
n, 2/

√
n].

2. For each i ∈ [j + 1 : k], we require T (i) · (x1, . . . , xk) = 0.

Let (α1, . . . , αk) denote the unique solution to this linear system. Similar to Case 1, Cramer’s rule
implies that |αi| = Ok(1) = Oh(1) for all i ∈ [k].
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Finally we complete the proof by showing that the vector W = α1V
(1) + · · · + αkV

(k) is close
to V ; more precisely, we show that

‖V −W‖2 = Oh(1) · ‖V − U‖2 = Oh(1) · dℓ2
(
V, span(A)

)
.

For this we just compare W = α1V
(1)+ · · ·+αkV

(k) with U = β1V
(1)+ · · ·+βkV

(k) entry by entry.
Fix any a ∈ [n] and suppose that the a-th column of A is of type P (b), for some b ∈ [m]. If b ∈ I,
then it is clear that Ua = Wa. If b /∈ I, then we have |Ua − Va| > 1/

√
n since |Ua| > 2/

√
n. On the

other hand, from |αi| = Oh(1) for all i we also have |Wa| ≤ k · Oh(1)/
√
n and thus,

|Wa − Va| = Oh(1)/
√
n < Oh(1) · |Ua − Va|.

The claim now follows.

5.2 Setup for the pruning procedure: compatibility between points and sets

We will use the following simple lemma, which follows directly from the Hoeffding inequality and
the fact that u,v are bounded and E[u] = E[v]. Recall that h = h(c) is an odd integer constant.

Lemma 5.4. Let w1, . . . ,wn denote n independent random variables, where each wi is distributed
according to either u or v given in Proposition 3.2 or 3.1 with ℓ = h3 and µ = µ(ℓ). Let W ∈ Rn

and x =
∑

i∈[n]wiWi, then E[x] = µ ·∑i∈[n]Wi. Moreover, we have

Pr
[
|x−E[x]| ≥ ‖W‖2 · (log n)3/4

]
≤ 1

nω(1)
.

Now we define compatibility between a point V ∈ {±1/
√
n}n and a set A ⊂ {±1/

√
n}n. Let γ1

= γ1(h) and γ2 = γ2(h) denote the constants from Lemma 5.3. Recall that ε = n4/h−1/2.

Definition 7 (Compatibility). Given A = {V (1), . . . , V (k)} ⊂ {±1/
√
n}n for some k ≤ h and V ∈

{±1/
√
n}n, we say that V is incompatible with A if there exist real numbers β1, . . . , βk such that

both (i) |βi| ≤ γ1(h) for all i ∈ [k] and (ii) the vector U = β1V
(1) + · · ·+βkV

(k) ∈ span(A) satisfies
∣∣∣
∑

i∈[n](Vi − Ui)
∣∣∣ >

(
‖V − U‖2 + ε

)
· log n.

Otherwise we say V is compatible with A.

We may equivalently define compatibility as follows: V is compatible with A if for every β1, . . .
βk of magnitude at most γ1(h), the vector U = β1V

(1) + · · ·+ βkV
(k) satisfies

∣∣∣
∑

i∈[n](Vi − Ui)
∣∣∣ ≤

(
‖V − U‖2 + ε

)
· log n.

Recall from (19) that we would like to give a strong upper bound on Pr[(R−i)|J ∈ BJ ] for as
many multi-indices J with |J | = h+ 1 as possible. Given a fixed set X of d query strings, a subset
A ⊂ X ⊂ {±1/

√
n}n of size k ≤ h corresponds naturally to a multi-index J with |J | = |A|. It is

intuitively helpful to think of a multi-index J as being “built up” by successively adding elements
from X to A one by one, starting with ∅. This motivates the above definition of incompatibility; as
the following lemma shows, if a query string V is incompatible with A, then we get a very strong
bound on the probability Pr[(R−i)|J ∈ BJ ] for the multi-index J corresponding to {V }∪A (which
is desirable for our analysis). We will use this lemma later in Section 6.1 to deal with multi-indices
corresponding to subsets of queries that contain a query that is incompatible with the other queries.
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Lemma 5.5. Suppose V ∈ {±1/
√
n}n is incompatible with set A ⊂ {±1/

√
n}n where k = |A| ≤ h.

Let (A, V ) be the (k+1)×n matrix whose rows are given by the vectors of A followed by V . Then

Pr
[
(A, V ) · (w1, . . . ,wn) ∈ [−2ε, 2ε]k+1

]
=

1

nω(1)
,

where wi’s are independent random variables each of which is distributed according to u or v.

Proof. Let U ∈ Rn be a linear combination of the elements of A that satisfies conditions (i) and
(ii) of Definition 7 (the existence of U is guaranteed by the incompatibility of V with A). Because
U is a “low-weight” linear combination of vectors in A, having (A, V ) · (w1, . . . ,wn) ∈ [−2ε, 2ε]k+1

implies that W := V − U also satisfies

∣∣W · (w1, . . . ,wn)
∣∣ = Oh(ε). (20)

Next observe that by condition (ii) of Definition 7, we have that

∣∣∣
∑

i∈[n]Wi

∣∣∣ >
(
‖W‖2 + ε

)
log n.

On the other hand, Lemma 5.4 gives us that

Pr

[∣∣∣W · (w1, . . . ,wn)− µ
∑

i∈[n]Wi

∣∣∣ ≥ ‖W‖2 · (log n)3/4
]
≤ 1

nω(1)
;

together with the previous inequality, recalling that 0 < µ = Oh(1), this gives

Pr
[∣∣W · (w1, . . . ,wn)

∣∣ = Ω
(
(‖W‖2 + ε) log n

)]
≥ 1− 1

nω(1)
.

This then implies that |W · (w1, . . . ,wn)| = Oh(ε) with probability at most 1/nω(1), which together
with (20) establishes the lemma.

Finally, the following lemma plays a key role in arguing about our pruning procedure:

Lemma 5.6. Let A = {V (1), . . . , V (k)} ⊂ {±1/
√
n}n where k ≤ h, and r ≥ 0. Let R ⊂ {±1/

√
n}n

denote a set of points such that R ∩ A = ∅ and R ⊂ Bℓ2(span(A), r). Then one can partition the
set R into three disjoint sets R = Rcover ∪Rremove ∪Rincomp with the following properties:

1. Rincomp consists of all the points in R that are incompatible with A;

2. |Rcover| ≤ 2h
2
; and

3. For each point W ∈ Rremove, there exists at least one point V ∈ Rcover such that
‖V −W‖2 ≤ 4r. Moreover, every such V ∈ Rcover satisfies

∣∣∣
∑

i(Vi −Wi)
∣∣∣ ≤ (r + ε) log2 n. (21)

As their names suggest, the points in Rcover will be used as a “cover” of the points in Rremove,
which will be removed from the query set in the pruning procedure described later. Also note that
by condition (3), we must have Rremove = ∅ when r = 0.
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Proof. Let Rincomp be as described in (1) above, and let R′ = R \Rincomp.

From Lemma 5.2, we know that there is a set cover(A) ⊂ {±1/
√
n}n such that |cover(A)| ≤ 2h

2

and for any W ∈ R′, there is a V ∈ cover(A) such that ‖V −W‖2 ≤ 2r. It follows that there exists
a set Rcover ⊆ R′ with |Rcover| ≤ |cover(A)| ≤ 2h

2
such that for any W ∈ R′, there is a V ∈ Rcover

such that ‖V −W‖2 ≤ 4r. Let Rremove = R′ \ Rcover. Then the only requirement that remains to
be proven is the second inequality in (21).

To prove this, we let A = {V (1), . . . , V (k)} and let U = β1V
(1) + · · ·+ βkV

(k) denote the vector
guaranteed by Lemma 5.3 for A and V , with ‖βi‖ ≤ γ1(h) for all i and

‖U − V ‖2 ≤ γ2(h) · dℓ2(span(A), V ) ≤ γ2(h) · r.

Note that β1, . . . , βk satisfy condition (i) of Definition 7. As V is compatible with A, we have

∣∣∣
∑

i(Vi − Ui)
∣∣∣ ≤

(
‖V − U‖2 + ε

)
· log n.

Similarly, as W is compatible with A as well, we have

∣∣∣
∑

i(Wi − Ui)
∣∣∣ ≤

(
‖W − U‖2 + ε

)
· log n.

Combining these two inequalities, we have

∣∣∣
∑

(Vi −Wi)
∣∣∣ ≤

∣∣∣
∑

(Vi − Ui)
∣∣∣+
∣∣∣
∑

(Wi − Ui)
∣∣∣ ≤

(
‖V − U‖2 + ‖W − U‖2 + 2ε

)
· log n.

Combining this with ‖V − U‖2 ≤ γ2(h) · r and

‖W − U‖2 ≤ ‖W − V ‖2 + ‖V − U‖2 ≤
(
4 + γ2(h)

)
· r,

the second part of (21) is proven. This finishes the proof of the lemma.

5.3 The pruning procedure and its analysis

Let X = {X(1), . . . ,X(d)} ⊆ {±1/
√
n}n denote a query set of size d. We view X as a d× n matrix

with X(i) ∈ {±1/
√
n}n being its i-th row vector and X (j) ∈ {±1/

√
n}d its j-th column vector.

Fix a c > 0, we now specify the function h:

h(c) = the smallest odd integer ≥ 5/c, (22)

and recall that ℓ = h3. Recall our goal is to show that any query set X of size d ≤ n1/2−c satisfies

dUO(S,T) = max
{∣∣Pr[S ∈ O]−Pr[T ∈ O]

∣∣ : O is a union of orthants in Rd
}
≤ 0.1.

Here S =
∑

j ujX (j) and T =
∑

j vjX (j), where uj and vj are independent random variables with
the same distribution as u and v from Proposition 3.2 and 3.1, given constants ℓ and µ(ℓ).

Next we describe a procedure that “prunes” X and outputs a new query set X ∗ ⊆ X , which is
almost as good as X for monotonicity testing, and is what we call a scattered query set.
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Definition 8 (Scattered query sets). Fix A ⊆ X with 0 <|A| ≤ h and a value r > 0. Let

R =
(
X ∩Bℓ2(span(A), r)

)
\ A,

and let R = Rcover ∪Rremove ∪Rincomp denote the partition of R promised by Lemma 5.6. We say
that A is r-scattered if Rremove satisfies

|Rremove | ≤ r|X | log5 n. (23)

We say that X is scattered if A is r-scattered for every A ⊆ X with 0 <|A| ≤ h and every r > 0.

The parameter r above should be thought of as close to zero. Thus the rough idea is that in a
scattered query set X , for every small subset A ⊂ X , only a small number of points in X that lie
close to the span of A are compatible with A. Recall that as discussed earlier, small subsets A (of
size at most h) correspond to different choices of the multi-index J ∈ Nd in (18). Intuitively, our
analysis can handle points that do not lie close to the span of A (we make this intuition precise in
Proposition 6.3), and as discussed above in Lemma 5.5, points that are incompatible with A are
also good for our analysis. Having a query set be scattered will aid us in bounding the sum in
(18); in particular, we will show that for a scattered query set, most multi-indices J are such that
Pr [(R−i)|J ∈ BJ ] / ε#J . This will result in a substantially better bound in (18).

We now state the main lemma, which describes the effect of our pruning procedure:

Lemma 5.7. Fix c > 0, and let h = h(c) be as defined in (22). Given a query set X ⊆ {±1/
√
n}n

with |X | ≤ n1/2−c, there exists a scattered query set X ∗ ⊆ X (so |X ∗| ≤ |X |) such that

dUO(S,T) ≤ dUO(S
∗,T∗) + 0.01,

where S∗ =
∑

j ujX ∗(j) and T∗ =
∑

j vjX ∗(j).

Assuming Lemma 5.7, it now suffices to show that dUO(S
∗,T∗) ≤ 0.09 for any scattered query

set X ∗ ⊆ {±1/
√
n}n of size |X ∗| ≤ n1/2−c, which we will do in the following sections.

The basic step of our pruning procedure is quite straightforward:

Pruning(X ):

1. If X is not scattered, find any pair (A, r) with A ⊆ X , 0 <|A| ≤ h, r > 0 such that A
is not r-scattered (i.e. (23) is violated). For any such A choose the largest possible
r which violates (23).

2. Let R = (X ∩Bℓ2(span(A), r)) \ A and let R = Rcover ∪Rremove ∪Rincomp denote
the partition as promised by Lemma 5.6.

3. Remove all points of Rremove from X .

Given a query set X ⊂ {±1/
√
n}n, we can iteratively prune X via the Pruning procedure above

until we obtain a scattered query set as defined in Definition 8. Starting with a query set X with
|X | ≤ n1/2−c, we write X = X0 ⊃ X1 ⊃ · · · ⊃ Xt = X ∗ to denote the sequence of query sets we get
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from calling Pruning repeatedly until X ∗ is scattered. Note that the final set X ∗ will be nonempty,
because A ∩ R = ∅ for the sets A,R used in the final application of Pruning and thus A remains
in X at the end of Pruning.

To prove Lemma 5.7, we show that X ∗ is almost as effective as X in the following sense:

Claim 5.8. dUO(S,T) ≤ dUO(S
∗,T∗) + 0.01.

Proof. For each i = 0, 1, . . . , t− 1, let (Ai, ri) denote the pair identified in Step 1 of Pruning, when
it is run on Xi. From (23) we have |Xi| − |Xi+1| > ri|Xi| log5 n. On the other hand, we have

t−1∑

i=0

|Xi| − |Xi+1|
|Xi|

≤
t−1∑

i=0

(
1

|Xi+1|+ 1
+ . . . +

1

|Xi|

)
= O(log |X |) = O(log n).

We conclude that
∑

i ri = O(1/ log4 n). Next, let

Si =
∑

j ujX (j)
i , Ti =

∑
j vjX (j)

i , Si+1 =
∑

j ujX (j)
i+1 and Ti+1 =

∑
j vjX (j)

i+1.

We compare dUO(Si,Ti) and dUO(Si+1,Ti+1), and our goal is to show that

dUO(Si,Ti) ≤ dUO(Si+1,Ti+1) +O
(
(ri + ε) log3 n+ (1/

√
n)
)
. (24)

It then follows that

dUO(S,T) ≤ dUO(S
∗,T∗) +O(t/

√
n+ tεlog3 n) +

∑
iO(ri log

3 n) < dUO(S
∗,T∗) + 0.01,

since we have
∑

ri = O(1/ log4 n), t ≤ n1/2−c and ε = n4/h−1/2 with h ≥ 5/c (as defined in (22)).
Fix an i and let R = (Xi ∩Bℓ2(span(Ai), ri)) \Ai and write R = Rcover ∪Rremove ∪Rincomp as

in Lemma 5.6. Let Oi be a union of orthants in |Xi|-dimensional space with

dUO(Si,Ti) =
∣∣Pr[Si ∈ Oi]−Pr[Ti ∈ Oi]

∣∣.

Given Oi, below we define a union of orthants Oi+1 in |Xi+1|-dimensional space. We will then show
that Oi+1 satisfies (27) below and thereby obtain (24).

We start with some terminology. Recall that an orthant in |Xi|-dimensional space can be viewed
as an assignment of a {±1} value to each element of Xi. Given V ∈ Xi and an orthant T in |Xi|-
dimensional space, we let T (V ) ∈ {±1} denote the value assigned to V by T . We say an orthant T
in |Xi|-dimensional space (but not necessarily in Oi) is bad if there exist W ∈ Rremove, V ∈ Rcover

such that ‖V −W‖2 ≤ 4ri but T (V ) 6= T (W ); otherwise we say T is a good orthant. Observe that
by Lemma 5.6, a good orthant T is uniquely determined by its values T (V ), V ∈ Xi+1. We let Oi,b

denote the union of bad orthants in Oi, and let Oi,g denote the union of good orthants in Oi.
As we will see below in Claim 5.9, the probability of Si or Ti lying in a bad orthant is negligible.

Thus, most of |Pr[Si ∈ Oi] −Pr[Ti ∈ Oi]| comes from good orthants of Oi. Inspired by this, we
will take Oi+1 to be the projection of good orthants of Oi onto the |Xi+1|-dimensional space.

We define formally Oi+1 as follows. We say orthants T and T ′ in |Xi|- and |Xi+1|-dimensional
space, respectively, are consistent if every V ∈ Xi+1 satisfies T (V ) = T ′(V ). Given Oi, we define
Oi+1 to be the union of orthants in |Xi+1|-dimensional space each of which is consistent with a
good orthant of Oi. By definition, there is a bijection between orthants of Oi+1 and good orthants
of Oi. For each orthant T ′ of Oi+1, we let g(T ′) denote the corresponding good orthant T of Oi;
let b(T ′) denote the union of all bad |Xi|-dimensional orthants T (not necessarily in Oi) that are
consistent with T ′.

We delay the proof of the following claim:
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Claim 5.9. Let O∗ denote the union of all bad orthants in |Xi|-dimensional space. Then

Pr[Si ∈ O∗], Pr [Ti ∈ O∗] = O
(
(ri + ε) log3 n

)
+O(1/

√
n). (25)

Returning to the proof of Claim 5.8, for each orthant T ′ in Oi+1 we have

Pr [Si+1 ∈ T ′] = Pr [Si ∈ g(T ′)] +Pr[Si ∈ b(T ′)] and

Pr[Ti+1 ∈ T ′] = Pr [Ti ∈ g(T ′)] +Pr [Ti ∈ b(T ′)].
(26)

Combining (25) and (26), we have
∣∣Pr[Si ∈ Oi]−Pr[Ti ∈ Oi]

∣∣ ≤
∣∣Pr[Si ∈ Oi,b]

∣∣+
∣∣Pr[Ti ∈ Oi,b]

∣∣+
∣∣Pr[Si ∈ Oi,g]−Pr[Ti ∈ Oi,g]

∣∣

≤ O
(
(ri + ε) log3 n+ 1/

√
n
)
+
∣∣Pr[Si+1 ∈ Oi+1]−Pr[Ti+1 ∈ Oi+1]

∣∣

+
∣∣∣
∑

T ′ in Oi+1
Pr[Si ∈ b(T ′)]

∣∣∣+
∣∣∣
∑

T ′ in Oi+1
Pr[Ti ∈ b(T ′)]

∣∣∣

= O
(
(ri + ε) log3 n+ 1/

√
n
)
+
∣∣Pr[Si+1 ∈ Oi+1]−Pr[Ti+1 ∈ Oi+1]

∣∣, (27)

where the sums are over all orthants T ′ in Oi+1. The last inequality used (25) as well as the fact
that the b(T ′)’s are unions of disjoint bad orthants in |Xi|-dimensional space.

This finishes the proof of Claim 5.8.

It remains to prove Claim 5.9.

Proof of Claim 5.9. We focus on Pr[Si ∈ O∗] since the same argument works for Pr[Ti ∈ O∗].
By the definition of bad orthants in |Xi|-dimensional space, we have

Pr[Si ∈ O∗] ≤
∑

V ∈Rcover

Pr
[
∃W ∈ Rremove: ‖V −W‖2 ≤ 4ri but Si has different signs on V,W

]
.

Observe that the number of terms in the sum is |Rcover| = Oh(1).
Fix a V ∈ Rcover. By Lemma 5.4, we have for every W ∈ Rremove such that ‖V −W‖2 ≤ 4ri:

Pr

[∣∣∣
∑

j uj(Vj −Wj)−E[u] ·∑j(Vj −Wj)
∣∣∣ ≥ 4ri · (log n)3/4

]
≤ 1

nω(1)
. (28)

Since the number of such W is at most n1/2−c, we have

Pr
[
∃W ∈ Rremove s.t. ‖V −W‖2 ≤ 4ri and satisfies the condition in (28)

]
≤ 1

nω(1)
. (29)

On the other hand, using the standard 1-dimensional Berry–Esséen Theorem (Theorem 3), and
recalling that ‖V ‖2 = 1 and each uj has variance 1, we have

Pr

[ ∣∣∣
∑

j ujVj

∣∣∣ ≥ (ri + ε) log3 n

]
= 1−O

(
(ri + ε) log3 n

)
−O(1/

√
n). (30)

By Lemma 5.6 every W ∈ Rremove with ‖V −W‖2 ≤ 4ri satisfies
∣∣∑

j(Vj −Wj)
∣∣ ≤ (ri + ε) log2 n.

Combining this with (29) and (30), we have that the probability of

sign
(∑

ujVj

)
= sign

(∑
ujWj

)
, for all W ∈ Rremove with ‖V −W‖2 ≤ 4ri,

is at least 1−O((ri + ε) log3 n)−O(1/
√
n). Claim 5.9 then follows.
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6 A lower bound against scattered query sets

With the pruning procedure of the previous section in hand — showing how an arbitrary query
set can be pruned so as to make it scattered — we now focus on proving a lower bound against
scattered query sets via the approach outlined in Section 4.3. In Section 7 we will see how such
a lower bound along with our analysis in the previous section can be easily combined to complete
the proof of our main theorem, Theorem 1.

We briefly recall the setup of our approach. Fix a c > 0, and let h and ℓ be defined as in (22).
Recall that ε = n4/h−1/2 and δ = 1/

√
n. Let X = {X(1), . . . ,X(d)} ⊆ {±1/

√
n}n denote a query set

with d ≤ n1/2−c. Let uj and vj denote independent random variables with the same distribution
as u and v given in Proposition 3.1 and 3.2 with parameters ℓ and µ = µ(ℓ). Recall that

R−i =

i−1∑

j=1

vjX (j) +

n∑

j=i+1

ujX (j)

as defined in (13). Revisiting our discussion in Section 4.3, recall that our goal is to upper bound
the quantity on the RHS of (18) using (19); to be precise we would like to show that the probability
Pr [(R−i)|J ∈ BJ ] is typically small for most choices of J ∈ Nd with |J | = h+1, where BJ denotes
the origin-centered (#J)-dimensional box [−ε−βδ, ε+βδ ]#J and β = Oh(1) is an absolute constant
that depends only on the largest value in the support of u and v. We do so in this section via the
following lemma:

Lemma 6.1. If X is a scattered query set of size d ≤ n1/2−c, then
∑

|J |=h+1

Pr
[
(R−i)|J ∈ BJ

]
= O

(
dh+1 ·

(
1/d+ ε log6 n

)h)
, (31)

where BJ denotes the origin-centered (#J)-dimensional box BJ = [−ε− βδ, ε + βδ ]#J .

Instead of focusing on the sum in (31) we let I = (V(1), . . . ,V(h+1)) denote a sequence of h+ 1
points sampled from X uniformly at random, with replacement. Let #I denote the number of
distinct points in I, and (R−i)I denote the projection of R−i onto the coordinates that correspond
to points in I. Lemma 6.1 then follows directly from the following lemma, as the distribution of I
is close to the uniform distribution over J with |J | = h+ 1.

Lemma 6.2. If X is a scattered query set of size d ≤ n1/2−c, then

E
I

[
Pr
[
(R−i)|I ∈ BI

]]
= O

((
1/d+ ε log6 n

)h)
, (32)

where BI denotes the origin-centered (#I)-dimensional box BI = [−ε− βδ, ε + βδ ]#I.

Proof of Lemma 6.1. Let g denote the following natural map from X h+1 to {J ∈ Nd : |J | = h+1}:
g(I) = (J1, . . . , Jd),

where Ji is the number of times X(i) appears in I = (V (1), . . . , V (h+1)) ∈ X h+1.
It is clear that g is surjective. As a result, we have

∑

|J |=h+1

Pr
[
(R−i)|J ∈ BJ

]
≤

∑

I∈Xh+1

Pr
[
(R−i)|I ∈ BI

]
= dh+1 · E

I

[
Pr
[
(R−i)|I ∈ BI

]]
.

Lemma 6.1 then follows directly from Lemma 6.2.
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Let I = (V (1), . . . , V (h+1)) ∈ X h+1. For each j ∈ [2 : h+ 1], we let

dj = dℓ2
(
V (j), span{V (1), . . . , V (j−1)}

)
, (33)

and define ηj for each j ∈ [2 : h+ 1] as:

ηj =





0 if V (j) is incompatible with {V (1), . . . , V (j−1)}
1 if V (j) is compatible with {V (1), . . . , V (j−1)} but dj < ε

ε/dj otherwise.

(34)

We will use the following proposition to bound Pr[(R−i)|I ∈ BI ]:

Proposition 6.3. Given an I = (V (1), . . . , V (h+1)) ∈ X h+1, we have

Pr
[
(R−i)|I ∈ BI

]
≤ O




h+1∏

j=2

ηj


+O

(
1

nh

)
,

where BI denotes the origin-centered (#I)-dimensional box BI = [−ε− βδ, ε + βδ ]#I .

We delay the proof of Proposition 6.3 to the next section, but first use it to prove Lemma 6.2.

Proof of Lemma 6.2 assuming Proposition 6.3. Let dj and ηj denote two random variables defined
from I in the same fashion as (33) and (34). By Proposition 6.3, it suffices to show that

E
I



h+1∏

j=2

ηj


 = O

((
1/d+ ε log6 n

)h)
.

Note that ηj is a nonnegative random variable with Pr[ηj ≤ 1] = 1.

Fix j ∈ [2 : h+1]. Let (V (1), . . . , V (j−1)) ∈ X j−1 denote a possible outcome of (V(1), . . . ,V(j−1))
and let A denote the set that consists of V (1), . . . , V (j−1), so |A| ≤ j − 1 ≤ h. For any r > 0, let

R =
(
X ∩Bℓ2(span(A), r)

)
\ A and R = Rcover ∪Rremove ∪Rincomp

denotes the three-way partition of R promised by Lemma 5.6. By definition, we have

∣∣Rcover ∪Rremove

∣∣ ≤ rd log5 n+ 2h
2
= rd log5 n+Oh(1).

This implies that, conditioning on A being the set of the first j − 1 points sampled in I:

Pr
[
dj ≤ r and V(i) is compatible with A | A

]
≤ r log5 n+Oh(1/d), for all r > 0. (35)

By the definition of ηj, we have (note that the smallest nonzero value for ηj is ε/2)

E
[
ηj |A

]
=

∫ 1

0
Pr
[
ηj ≥ x |A

]
dx ≤ (ε/2) +

∫ 1

ε/2
Pr
[
ηj ≥ x |A

]
dx (36)

By the definition of ηj we have for any x : ε/2 ≤ x ≤ 1:

Pr
[
ηj ≥ x |A

]
≤ Pr

[
dj ≤ (ε/x) and V(j) is compatible with A|A

]
.
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It follows from (35) that Pr [ηj ≥ x |A] ≤ (ε/x) log5 n+Oh(1/d). Continuing from (36):

E
[
ηj |A

]
≤ (ε/2) +

∫ 1

ε/2

(
(ε/x) log5 n+Oh(1/d)

)
dx = Oh

(
1/d + ε log6 n

)
,

since ε = n4/h−1/2. As a consequence, we have for any j ∈ [2 : h+ 1],

E[η1 . . . ηj] = E
[
η1 · · ·ηj−1 ·E

[
ηj |V(1), . . . ,V(j−1)

]]
= Oh

(
1/d + ε log6 n

)
· E[η1 · . . .ηj−1].

This finishes the proof of the lemma.

6.1 Proof of Proposition 6.3

Recall that Q(i) denotes the following random variable that is very close to R−i:

Q(i) =

i∑

j=1

vjX (j) +

n∑

j=i+1

ujX (j).

To prove Proposition 6.3, it suffices to show that

Pr
[
(Q(i))|I ∈ B∗

I

]
≤ O




h+1∏

j=2

ηj


+O

(
1

nh

)
, (37)

where B∗
I denotes the origin-centered (#I)-dimensional box [−2ε, 2ε]#I . This is because the entry-

by-entry difference between Q(i) and R−i is at most βδ, so we just need to make the box B∗
I bigger

than the original box BI in Proposition 6.3 (since 2ε > ε+ 2βδ).
We prove (37) in the rest of the section. The claim is trivial if there is a j ≥ 2 such that V (j) is

incompatible with {V (1), . . . , V (j−1)}: When this happens the LHS of (21) can be upper bounded
by 1/nω(1) using Lemma 5.5.

Assume from now on that V (j) is compatible with {V (1), . . . , V (j−1)} for all j ∈ [2 : h+ 1]. Let
L denote the set of j ∈ [2 : h+ 1] such that ηj < 1. Then we have

h+1∏

j=2

ηj =
∏

j∈L

ηj .

When L = ∅, (37) is trivial since the product of ηj’s is 1. From now on, we assume that t = |L| > 1
and let L = {j1, . . . , jt}, with j1 < · · · < jt. For each i ∈ [t], let

γi = dℓ2
(
V (ji), span{V (1), V (j1), . . . , V (ji−1)}

)
,

with γ1 = dℓ2(V
(j1), span{V (1)}) when i = 1 (note that j1 ≥ 2). Using

γi = dℓ2
(
V (ji), span{V (1), V (j1), . . . , V (ji−1)}

)
≥ dℓ2

(
V (ji), span{V (1), V (2) . . . , V (ji−1)}

)
= dji ,

we have
t∏

i=1

γi ≥
t∏

i=1

dji =
∏

j∈L

ε

ηj
= εt ·

h+1∏

j=2

1

ηj
> 0. (38)

Let A denote the (t+ 1)× n matrix whose row vectors are V (1), V (j1), . . . , V (jt). Then
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Lemma 6.4. Matrix A has full rank t+ 1, and

det
(
AAT

)
≥
(

t∏

i=1

γi

)2

.

Proof. It follows directly from (38) that A has full rank.
Next we exhibit a series of transformations U1, . . . , Ut+1 ∈ R

(t+1)×(t+1) with the following
properties: (1) det(Uk) = 1 for all k ∈ [t+ 1]; and (2) for each k ∈ [t+ 1], the off-diagonal entries
of the k × k principal minor of matrix

(U1 · . . . · Uk) ·A ·AT · (U1 · . . . · Uk) (39)

are all zero and the i-th diagonal entry is at least γ2i for all i ∈ [k]. Taking k = t+ 1 and recalling
that det(A ·B) = det(A) · det(B), this gives the claim.

To exhibit these matrices, we simply take Uk to be the lower-triangular matrix corresponding
to the k-th step of the Gram-Schmidt orthogonalization of the first k rows of A. This matrix has
determinant 1, and after its action, (1) the (k, k) entry of the matrix (39) becomes at least γ2k (by
definition of γk); and (2) the off-diagonal entries of the k × k principal minor are 0 as claimed (by
the nature of Gram-Schmidt orthogonalization).

To prove (37) it suffices to show that

Pr
[
(Q(i))|{1}∪L ∈ B′

]
= O




h+1∏

j=2

ηj


+O

(
1

nh

)
, (40)

where B′ = [−2ε, 2ε]t+1. Below we let Q denote (Q(i))|{1}∪L for convenience.
For this purpose, we let w1, . . . ,wn denote independent Gaussian random variables N (µ(ℓ), 1)

with the same first ℓ = h3 moments as both u and v (recall the first paragraph of Section 4.3). Let

G =
n∑

j=1

wjA
(j),

where A(j) denotes the jth column of A. We prove (40) using the following lemma:

Lemma 6.5. Let η =
∏h+1

j=2 ηj . Then the two random variables Q(i) and G satisfy

Pr[G ∈ B′] ≤ O(εη) and
∣∣Pr [Q ∈ B′]−Pr [G ∈ B′]

∣∣ < O(εη) +O
(
1/nh

)
.

Proposition 6.3 then follows (note that we gave out a factor of ε in the first term for free).

Proof of Lemma 6.5. For the first part, we calculate the covariance matrix of G. Let i1, i2 ∈ [t+1]:

Cov
[
wjA

(j)
]
i1,i2

= E
[
(wjA

(j)
i1

− µA
(j)
i1

)(wjA
(j)
i2

− µA
(j)
i2

)
]
= A

(j)
i1

A
(j)
i2

.

So we have Cov[G]i1,i2 =
∑

j A
(j)
i1

A
(j)
i2

and thus, Cov[G] = AAT . The first part of the lemma then
follows directly from Lemma 6.4 and the definition of (the density of) multidimensional Gaussian
distributions.

For the second part we apply Proposition 4.2 and the Lindeberg method over Q(i) and G, with

A = B′ = [−2ε, 2ε]t+1, Ain = [−2ε+ ξ, 2ε− ξ]t+1, and Aout = [−2ε− ξ, 2ε+ ξ]t+1,

for some parameter ξ : 0 < ξ < 2ε to be specified later. We use the following two mollifiers:
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Proposition 6.6. For all ε, ξ > 0 with ξ < 2ε, there exist two smooth functions Ψin,Ψout : R
t+1 →

[0, 1] with the following properties:

1. Ψin(X) = 0 for all X /∈ A and Ψin(X) = 1 for all X ∈ Ain.

2. Ψout(X) = 0 for all X /∈ Aout and Ψout(X) = 1 for all X ∈ A.

3. For any multi-index J ∈ N
t+1 such that |J | = k,

∥∥Ψ(J)
in

∥∥
∞
,
∥∥Ψ(J)

out

∥∥
∞

≤ α(k) · (1/ξ)k.

Proof. Let Φξ : R → [0, 1] denote the smooth function given in Claim 4.5 (note that we replaced ε
with ξ in Claim 4.5). Let Φin,Φout : R → [0, 1] denote the following two smooth functions:

Φin(x) =

{
Φξ(−x+ 2ε) when x ≥ 0

Φξ(x+ 2ε) when x < 0
and Φout(x) =

{
Φξ(−x+ 2ε+ ξ) when x ≥ 0

Φξ(x+ 2ε+ ξ) when x < 0

Using Φin and Φout, we let

Ψin(X) =
∏

j∈[t+1]

Φin(Xj) and Ψout(X) =
∏

j∈[t+1]

Φout(Xj).

The three conditions on Ψin and Ψout follow from a proof similar to that of Proposition 4.4.

Next from Proposition 4.2, we have
∣∣Pr[Q ∈ A]−Pr[G ∈ A]

∣∣ ≤ max
{∣∣E[Ψin(Q)]−E[Ψin(G)]

∣∣,
∣∣E[Ψout(Q)]−E[Ψout(G)]

∣∣}

+max
{
Pr[G ∈ Aout \ A], Pr[G ∈ A \ Ain]

}
.

As G is a Gaussian distribution with Cov[G] = AAT , we have

max
{
Pr[G ∈ Aout \ A], Pr[G ∈ A \ Ain]

}
≤ Pr[G ∈ Aout] = O


(4ε + 2ξ)t+1

εt
·
h+1∏

j=2

ηj


 ,

where we have used (38), Lemma 6.4, and the definition of the density of multidimensional Gaussian
distributions. To bound |E[Ψin(Q)] −E[Ψin(G)]|, we apply Lindeberg’s method again and follow
the same argument as in 4.2 but this time match all the first ℓ moments, which gives us that

∣∣E[Ψin(Q)]−E[Ψin(G)]
∣∣ ≤ n · Oℓ(1)

ξℓ+1
· 1

n(ℓ+1)/2
.

The same bound also holds for |E[Ψout(Q)]−E[Ψout(G)]| by the same argument.
Combining all these inequalities, we have

∣∣Pr[Q ∈ A]−Pr[G ∈ A]
∣∣ ≤ O


(4ε+ 2ξ)t+1

εt
·
h+1∏

j=2

ηj


+ n · Oh(1)

ξℓ+1
· 1

n(ℓ+1)/2
.

Setting ξ = n2/h2−1/2 < ε, we have

n · Oh(1)

ξℓ+1
· 1

n(ℓ+1)/2
= Oh

(
1

n2h−1

)
= Oh

(
1

nh

)
and

(4ε + 2ξ)t+1

εt
< 6t+1 · ε = Oh(ε).

This finishes the proof of the lemma.
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7 Putting all the pieces together

Finally we put all the pieces together and prove our main theorem.

Proof of Theorem 1. Fix a c > 0. Recall that h = h(c) ≥ 5/c, ℓ = h3 and ε = n4/h−1/2.
Let u1, . . . ,un and v1, . . . ,vn denote independent random variables with the same distribution

as u and v as given in Proposition 3.1 and 3.2, respectively, with parameters ℓ and µ = µ(ℓ). Using
Theorem 9 in Appendix B, a function drawn from Dno is κ(c)-far from monotone, with probability
1− on(1), for some constant distance parameter κ(c) that depends on c only. Thus, to prove that
a non-adaptive algorithm for monotonicity testing requires Ω(n1/2−c) queries, it suffices to bound

dUO(S,T) ≤ 0.1, for all query sets X ∈ {±1/
√
n}n with |X | ≤ n1/2−c,

where S =
∑

j ujX (j) and T =
∑

j vjX (j).

Let X denote a query set with size at most n1/2−c. It follows from Lemma 5.7 that there exists
a scattered query set X ∗ ⊆ X such that d = |X ∗| ≤ |X | ≤ n1/2−c and

dUO(S,T) ≤ dUO(S
∗,T∗) + 0.01,

where S∗ =
∑

ujX ∗(j) and T∗ =
∑

vjX ∗(j). Let

Q∗(i) =

i∑

j=1

vjX ∗(j) +

n∑

j=i+1

ujX ∗(j),

Combining (18), (19), and Lemma 6.1, we have

∣∣E[ΨO(Q
∗(i−1))]−E[ΨO(Q

∗(i))]
∣∣ ≤ Oh(1)

n(h+1)/2
· 1

εh+1
·
(
dh+1 ·

(
1/d+ ε log6 n

)h)
,

and hence as in Section 4.2, summing over all i ∈ [n] gives that

|E[ΨO(S
∗)−ΨO(T

∗)| = Oh(1)

n(h−1)/2 · εh+1
.

Since d ≤ n1/2−c, we have dε ≪ 1/ log6 n. By Proposition 4.1 (and the 1-dimensional Berry-Esseen
inequality (Theorem 3) together with a union bound across the d dimensions), we have

dUO(S
∗,T∗) ≤ O(dε) +O(d/

√
n) +

Oh(1)

n(h−1)/2 · εh+1
· d = o(1).

It follows that dUO(S,T) < 0.1. This finishes the proof of the theorem.
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A Standard mollifier construction

In this section we prove Claim 4.5. We begin with the following fact (see [KNW10] for a reference).

Fact A.1. There is a smooth function b : R→ [0, 1] such that

(i) If |x| > 1, then b(x) = 0.

(ii) For all ℓ > 0, ‖b(ℓ)‖∞ ≤ e · 32ℓ · ℓ! · ℓ2ℓ+2.

(iii)
∫∞
−∞ b(x)dx = 1.

Note that the bound on ‖b(ℓ)‖∞ from (ii) above is 2−ℓ−1 · α(ℓ). We now restate Claim 4.5.

Claim. For all ε > 0, there is a smooth function Φε : R→ [0, 1] which satisfies:

(1) If x < 0, then Φε(x) = 0.

(2) If x > ε, then Φε(x) = 1.

(3) ‖Φ(k)
ε ‖∞ ≤ α(k)

/
εk.

Proof. First, we define the function bε : R→ [0, 2/ε] as

bε(x) =
2

ε
· b
(
2x

ε

)
.

Observe that as a consequence, we have that bε is smooth; bε(x) = 0 if |x| > ε/2;
∫∞
−∞ bε(x)dx = 1.

Further, taking the kth derivative of bε, we have

dkbε(x)

dxk
=

2k+1

εk+1
· d

kb(y)

dyk

∣∣∣∣
y=2x/ε

As a result, we get that ‖b(k)ε ‖∞ ≤ α(k)
/
εk+1. Let us define g : R→ {0, 1} as

g(x) =

{
1 if x > ε/2

0 otherwise.

We define Φε = bε ∗ g. Since bε ∈ C∞ we have that Φε ∈ C∞. To see that conditions (1) and (2) of
Claim 4.5 hold, we note that

Φε(x) =

∫ ∞

−∞
bε(y) · g(x− y) · dy =

∫ ε/2

−ε/2
bε(y) · g(x− y) · dy.

Note that if x < 0, then g(x − y) 6= 0 implies that y < −ε/2. However, for y < −ε/2, bε(y) = 0.
This proves (1). If x > ε, then for all |y| ≤ ε/2, g(x− y) = 1. Using the fact that bε(x) is a density,
we get (2). Thus, it only remains to prove (3). For any x ∈ R, we have

Φ(k)
ε (x) =

dkΦε(x)

dxk
=
(
b(k)ε ∗ g

)
(x) =

∫ ∞

−∞
b(k)ε (y) · g(x− y) · dy =

∫ ε/2

−ε/2
b(k)ε (y) · g(x− y) · dy.

Since ‖g‖∞ = 1 and the interval length of the integration is ε, we get that
∥∥Φ(k)

ε

∥∥
∞

≤ ε ·
∥∥b(k)ε

∥∥
∞

≤ α(k)
/
εk.

This completes the proof of the claim.
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B Distance to monotonicity for functions from Dno

In this section we prove the following theorem:

Theorem 9. Let Dno be the distribution over functions f(X) = sign(v1X1 + · · · + vnXn) where
each vi is distributed according to v given in Proposition 3.2 with ℓ = h3, h = h(c) as described in
Section 3. Then with probability 1− on(1) over a draw of f from Dno, the function f is Ωc(1)-far
from monotone.

As noted in Section 3, this theorem can be proved using the methods of [CST14]; for the sake
of completeness we give an alternate proof here.

Our proof uses the following claims; in all of them, the hidden constants will depend on c. We
will need the notion of τ -regular LTFs, which we define below.

Definition 10. An LTF f = sign(v1X1 + · · ·+ vnXn) is said to be τ -regular if |vi|/
√∑n

i=1 v
2
i ≤ τ

for all i ∈ [n].

Note that as defined above, the notion of regularity refers to a representation of an LTF and not
the LTF per se. For this section, we will blur this distinction and refer to an LTF being τ -regular
as long as it has a τ -regular representation.

Claim B.1. We have Prv1,...,vn [|{i : vi < 0}| = Ω(n)] = 1− on(1). As a consequence, we also have

Prv1,...,vn

[
n∑

i=1

v2i · 1[vi < 0] = Ω(n)

]
= 1− on(1).

Proof. The first equation follows from item (1) in Proposition 3.2 and an application of Chernoff
bound. The second equation is immediate from the first equation and the fact that the support of
v is bounded (and independent of n).

Claim B.2. A function f ∼ Dno is O(1/
√
n)-regular with probability 1− on(1).

Proof. This follows from the first part of Claim B.1 and the fact that the support of v is bounded
(and independent of n).

Thus far we have been implicitly assuming the domain to be {−1, 1}n, but we may also consider
the domain Rn. We recall the standard definition of the degree-1 Hermite coefficient of a function
f : Rn → R given by an index i ∈ [n]:

f̃(i) = EX∼Nn(0,1)[f(X) ·Xi].

We recall the following fact that is proved in [MORS10] (Proposition 25).

Fact B.3. For an LTF f = sign(v1X1 + . . .+ vnXn), we have

f̃(i) =

√
2

π
· vi√∑n

i=1 v
2
i

.

We also recall the following theorem from [DDS13] (Theorem 57).
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Theorem. If f as defined above is τ -regular, then

n∑

i=1

(f̃(i)− f̂(i))2 = O(τ1/6).

Combining the above theorem with Fact B.3 and Claim B.2, we get that

∑

i:vi<0

f̂(i)2 =
2

π
·
∑

i:vi<0 v
2
i∑

i v
2
i

− on(1).

Combining with the second part of Claim B.1, we have
∑

i:vi<0

f̂(i)2 = Ω(1). (41)

Proof of Theorem 9. Let g : {−1, 1}n → {−1, 1} be any monotone function. As is well known, for
any i ∈ [n] we have ĝ(i) ≥ 0. We thus have

Prx∈{−1,1}n [f(x) 6= g(x)] =
1

4
·E[(f(x)− g(x))2] ≥ 1

4
·
(

n∑

i=1

(f̂(i)− ĝ(i))2

)

≥
∑

i:vi<0

(f̂(i))2 = Ω(1).

Here the first inequality follows by Parseval’s identity while the last one uses (41).

C Determinant of B(ℓ)

Recall that B(ℓ) is an r× r square matrix with r = (ℓ+1)/2, whose (i, j)th entry is (2(i+ j)− 3)!!.
Here we prove by induction on odd ℓ (as B(ℓ) is only defined over odd ℓ) that

det(B(ℓ)) =
∏

j odd, j∈[ℓ]

j!. (42)

The base case of ℓ = 1 is trivial. Now assume for induction that the equation holds for ℓ−2. Given
B(ℓ), we perform the following sequence of linear transformations:

For each j from r down to 2, subtract
[
(2(r+ j)− 3)× column (j − 1)

]
from column j.

Let A denote the new r× r matrix. Note that det(A) = det(B(ℓ)). Then it is easy to verify that
the last row of A is all zero except the (r, 1)th entry, which is (2r − 1)!! = ℓ!!; the (i, j)th entry of
A, i ∈ [r − 1] and j ∈ [2 : r], is

(2(i + j)− 3)!! − (2(i + j − 1)− 3)!! · (2(r + j) − 3) = (2(i+ j − 1)− 3)!! · (2i− 2r),

which is (2i− 2r) times the (i, j − 1)th entry of B(ℓ−2).
This implies that the upper right [r− 1]× [2 : r] submatrix of A is B(ℓ−2) after scaling the rows

by −(2r − 2),−(2r − 4), . . . ,−2, respectively. As a result, we have

det(B(ℓ)) = det(A) = (−1)r+1 · ℓ!! ·
∏

i∈[r−1]

(2i− 2r) · det(B(ℓ−2)) = ℓ! · det(B(ℓ−2)).

We obtain (42) after plugging in the inductive hypothesis for B(ℓ−2). This finishes the induction.
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