
ar
X

iv
:1

50
4.

02
54

7v
2

 [c
s.

D
C

]
14

 A
pr

 2
01

5

Byzantine Agreement with Optimal Early Stopping, Optimal
Resilience and Polynomial Complexity

Ittai Abraham∗

VMware Research
Palo Alto, CA, USA

iabraham@vmware.com

Danny Dolev†

Hebrew University of Jerusalem
Jerusalem, Israel

dolev@cs.huji.ac.il

August 13, 2018

Abstract

We provide the first protocol that solves Byzantine agreement with optimal early stopping (min{f + 2, t + 1}
rounds) and optimal resilience (n > 3t) using polynomial message size and computation.

All previous approaches obtained sub-optimal results and used resolve rules that looked only at the immediate
children in the EIG (Exponential Information Gathering) tree. At the heart of our solution are new resolve rules that
look at multiple layers of the EIG tree.

1 Introduction

In 1980 Pease, Shostak and Lamport [PSL80, LSP82] introduced the problem of Byzantine agreement, a fundamental
problem in fault-tolerant distributed computing. In this problemn processes each have some initial value and the
goal is to have all correct processes decide on some common value. The network is reliable and synchronous. If all
correct processes start with the same initial value then this must be the common decision value, and otherwise the
value should either be an initial value of one of the correct processes or some pre-defined default value.1 This should
be done in spite of at mostt corrupt processes that can behave arbitrarily (called Byzantine processes). Byzantine
agreement abstracts one of the core difficulties in distributed computing and secure multi-party computation — that
of coordinating a joint decision. Pease et al. [PSL80] prove that Byzantine agreement cannot be solved forn ≤ 3t.
Therefore we say that a protocol that solves Byzantine agreement forn > 3t hasoptimal resilience. Fisher and Lynch
[FL82] prove that any protocol that solves Byzantine agreement must have an execution that runs fort + 1 rounds.
Dolev et al. [DRS90] prove that any protocol must have executions that run formin{f + 2, t + 1} rounds, where
f is the actual number of corrupt processes. Therefore we say that a protocol that solves Byzantine agreement with
min{f + 2, t+ 1} rounds hasoptimal early stopping.

The protocol of [PSL80] has optimal resilience and optimal worst caset + 1 rounds. However the message com-
plexity of their protocol is exponential. Following this result, many have studied the question of obtaining a protocol
with optimal resilience and optimal worst case rounds that uses only polynomial-sized messages (and computation).

Dolev and Strong [DS82] obtained the first polynomial protocol with optimal resilience. The problem of obtain-
ing a protocol with optimal resilience, optimal worst case rounds and polynomial-sized messages turned out to be

∗Part of the work was done at Microsoft Research Silicon Valley.
†Part of the work was done while the author visited Microsoft Research Silicon Valley. Danny Dolev is Incumbent of the Berthold Badler Chair

in Computer Science. This research project was supported inpart by The Israeli Centers of Research Excellence (I-CORE)program, (Center No.
4/11), and by grant 3/9778 of the Israeli Ministry of Scienceand Technology.

1Other versions of the problem may not restrict to a value on one of the correct processes, if not all initial values are the same, or require
agreement on a leader’s initial value, which can be reduced to the version we defined.

1

http://arxiv.org/abs/1504.02547v2

surprisingly challenging. Building on a long sequence of results, Berman and Garay [BG93] presented a protocol
with optimal worst case rounds and polynomial-sized messages forn > 4t. In an exceptional tour de force, Garay
and Moses [GM93, GM98], presented a protocol for binary-valued Byzantine agreement obtaining optimal resilience,
polynomial-sized messages andmin{f + 5, t + 1} rounds. We refer the reader to [GM98] for a detailed and full
account of the related work. Recently Kowalski and Mostéfaoui [KM13] improved the message complexity tõO(n3)
but their solution does not provide early stopping and requires exponential computation.

Worst case running oft+1 rounds is the best possible if the protocol is to be resilientto an adversary that controls
t processes. However, in executions where the adversary controls onlyf < t processes, the optimal worst case can be
improved tof+2 rounds. Berman et al. [BGP92] were the first to obtain optimal resilience and optimal early stopping
(i.e. min{f + 2, t + 1} rounds) using exponential size messages. Early stopping isan extremely desirable property
in real world replication systems. In fact, agreement in a small number of rounds whenf = 0 is a core advantage of
several practical state machine replication protocols (for example [CL99] and [KAD+07] focus on optimizing early
stopping in the fault free case).

Somewhat surprisingly, after more than 30 years of researchon Byzantine Agreement, the problem of obtaining
the best of all worlds is still open. There is no protocol withoptimal resilience, optimal early stopping and polynomial-
sized message. The conference version of [GM98] claimed to have solved this problem but the journal versiononly
proves amin{f + 5, t+ 1} round protocol, then says it ispossibleto obtain amin{f + 3, t+ 1} round protocol and
finally the authors say theybelieveit should be possible to obtain amin{f + 2, t+ 1} round protocol. We could not
see how to directly extend the approach of [GM98] to obtain optimal early stopping. The main contribution ofthis
paper is solving this long standing open question and providing the optimalmin{f + 2, t + 1} rounds with optimal
resilience and polynomial complexity. Moreover, our result applies directly for arbitrary initial values and not onlyto
binary initial values, as some of the previous results.

Our Byzantine agreement protocol obtains a stronger notionof multi-valued validity. If v 6= ⊥ is the decision
value then at leastt + 1 correct processes started with valuev. The multi-valued validity property is crucial in our
solution for early stopping with monitors. This property isalso more suitable in proving that Byzantine agreement
implements an ideal world centralized decider that uses themajority value. We note that several previous solutions
(in particular [GM98]) are inherently binary and their extension to multi-valued agreement does not have the stronger
multi-valued validity property.

Theorem 1. Givenn processes, there exists a protocol that solves Byzantine agreement. The protocol is resilient to
any Byzantine adversary of sizet < n/3. For any such adversary, the total number of bits sent by any correct process
is polynomial inn and the number of rounds ismin{f + 2, t+ 1} wheref is the actual size of the adversary.

Overview of our solution. At a high level we follow the framework set by Berman and Garay[BG93]. In this
framework, if at a given round all processes seem to behave correctly then the protocol stops quickly thereafter. So if
the adversary wants to cause the protocol to continue for many rounds it must have at least one corrupt process behave
in a faulty manner in each round. However, behaving in a faulty manner will expose the process and in a few rounds
the mis-behaving process will become publicly exposed as corrupt.

This puts the adversary between a rock and a hard place: if toofew corrupt processes are publicly exposed then the
protocol reaches agreement quickly, if too many corrupt process are exposed then a “monitor” framework (also called
“cloture votes”) that runs in the background causes the protocol to reach agreement in a few rounds. So the only path
the adversary can take in order to generate a long execution is to publicly expose exactly one corrupt process each
round. In thet < n/4 case, this type of adversary behavior keeps the communication polynomial.

For t < n/3 a central challenge is that a corrupt process can cause communication to grow in roundi but will be
publicly exposed only in roundi + 2. Naively, such a corrupt process may also cause communication to grow both
in roundi andi + 1 and this may cause exponential communication blowup. Garayand Moses [GM98] overcome
this challenge by providing a protocol such that, if there are at most two new corrupt processes in roundi and no
new corrupt process in roundi + 1 then even though they are publicly exposed in roundi + 2 they cannot increase
communication in roundi+ 1 (also known as preventing “cross corruption”).

At the core of the binary-valued protocol of Garay and Moses is the property that one value can only be decided on
even rounds and the other only on odd rounds. This property seems to raise several unsolved challenges for obtaining

2

optimal early stopping. We could not see how to overcome these challenges and obtain optimal early stopping using
this property. Our approach allows values to be fixed in a way that is indifferent to the parity of the round number (and
is not restricted to binary values).

Two key properties of our protocol that makes it quite different from all previous protocols. First, the value of a
node is determined by the values of its children and grandchildren in the EIG tree ([BNDDS92]). Second, if agreement
is reached on a node then the value of all its children is changed to be the value of the node. This second property is
crucial because otherwise even though a node is fixed there could be disagreement about the value of its child. Since
the value of the parent of the fixed node depends on its children and grandchildren, the disagreement on the grandchild
may cause disagreement on the parent and this disagreement could propagate to the root.

The decision to change the value of the children when their parent is fixed is non-trivial. Consider the following
scenario with a nodeσ, child σp and grandchildσpq: some correct reach agreement that the value ofσpq is d, then
some correct reach agreement that the value ofσp is d′ 6= d and hence the value ofσpq is changed (colored) tod′. So
it may happen that some correct decide the value ofσ based onσpq being fixed ond and some other correct decide
the value ofσ based onσpq being colored tod′. Making sure that agreement is reached in all such scenariosrequires
us to have a relatively complex set of complementary agreement rules.

To bound the size of the tree by a polynomial size we prove thatthe adversary is still between a rock and a hard
place: roughly speaking there are three cases. If just one new process is publicly exposed in a given round then the tree
grows mildly (remains polynomial). If three or more new processes are exposed in the same round then this increases
the size of the tree but can happen at most a constant number oftimes before a monitor process will cause the protocol
to stop quickly.

The remaining case is when exactly two new processes are exposed, then a sequence of (possibly zero) rounds
where just one new process is exposed in each round, followedby a round where no new process is exposed. This is a
generalized version of the “cross corruption” case of [GM98] where the adversary does not face increased risk of being
caught by the monitor process. We prove that in these cases the tree essentially grows mildly (remains polynomial).

In order to deal with this generalized “cross corruption” weintroduce a special resolve rule (SPECIAL-BOT RULE)
tailored to this scenario. In particular, in some cases we fixthe value of a nodeσ to ⊥ (a special default value) if
we detect enough support. This solves the generalized “cross corruption” problem but adds significant complications.
Recall that when we fix a value to a node then we also fix (color) the children of this node with the same value.

Suppose a process fixes a nodeσ to ⊥. The risk is that some correct processes may have used a childσp with
valued but some other correct process will see⊥ for σp (because whenσ is fixed to⊥ we color all its children to
⊥). Roughly speaking, we overcome this difficulty by having two resolve rule thresholds. The base is then − t
threshold (RESOLVE RULE, IT-TO-RT RULE) and the other is with an− t− 1 threshold (RELAXED RULE). In essence
thisn− t− 1 rule is resilient to disagreement on one child node (that mayoccur due to coloring). We then make sure
that theSPECIAL-BOT RULE can indeed change only one child value. This delicate interplay between the resolve rules
is at the core of our new approach.

The adversary. Givenn > 3t andφ ≤ t, as in [GM98], we will consider a(t, φ)-adversary- an adversary that
can control up toφ corrupt processes that behave arbitrarily and at mostt− φ corrupt processes that are always silent
(send some default value⊥ to all processes every round). The(t, φ)-adversary will be useful to model executions in
which all correct processes have detected beforehand some common set of at leastt− φ corrupt processes and hence
ignore them throughout the protocol. Note that the standardt-adversary is just a(t, t)-adversary.

2 The EIG structure and rules

In this section we define the EIG structure and rules.

Let N be the set of processes,n = |N | and assume thatn > 3t. Let D be a set of possible decision values. We
assume some decision⊥ ∈ D is the designated default decision.

LetΣr be the set of all sequences of lengthr of elements ofN without repetition. LetΣ0 = ǫ, the empty sequence.
LetΣ =

⋃

0≤j≤t+1
Σj . An Exponential Information Gatheringtree (EIG in short) is a tree whose nodes are elements

in Σ and whose edges connect each node to the node representing its longest proper prefix. Thus, nodeǫ hasn children,

3

and a node fromΣk has exactlyn− k children.

We will typically use the Greek letterσ to denote a sequence (possibly empty) of labels corresponding to a node
in an EIG tree. We use the notationσq to denote the node in the EIG tree that corresponds to the child of nodeσ that
corresponds to the sequenceσ concatenated withq ∈ N . We denote bȳǫ the root node of the tree that corresponds
to the empty sequence. Given two sequencesσ, σ′ ∈ Σ, let σ′

❁ σ denote thatσ′ is a proper prefix ofσ andσ′ ⊑ σ
denote thatσ′ is a prefix ofσ (potentiallyσ′ = σ).

In the EIG consensus protocol each process maintains a dynamic tree data structureIT . This data structure maps
a set of nodes inσ to values inD. Intuitively, this tree contains all the information the process has heard so far.
Each processz also maintains two global dynamic setsF ,FA. The setF contains processes thatz detected as faulty,
andFA contains processes thatz knows are detected by all correct processes. The protocol for updatingF ,FA is
straightforward:

• In each round the processes exchange theirF lists and update theirF andFA sets once a faulty process appears
in t+ 1 or 2t+ 1 lists, respectively.

• When a process is detected as faulty every correct process masks its future messages to⊥.

The basic EIG protocol will be invoked repeatedly, and several copies of the EIG protocol may be running con-
currently. The accumulated set of faulty processes will be used across all copies (the rest of the variables and data
structures are local to each EIG invocation). Therefore, weassume that when the protocol is invoked the following
property holds:

Property 1. When the protocol is invoked, no correct process appears in the faulty sets of any other correct process.
Moreover,FAp ⊆ Fp andFAp ⊆ Fq for any two correct processesp andq,

Each invocation of the EIG protocol is tagged with a parameter φ, known to all processes. An EIG protocol with
parameterφ, will run for at mostφ + 1 rounds. At the beginning of the agreement protocol the faulty sets are empty
at all correct processes and the EIG protocol with parameterφ = t is executed. Each additional invocation of the
EIG protocol is with a smaller value ofφ. In the non-trivial case, when the EIG protocol with parameter φ is invoked
then|

⋂

iFAi| ≥ t − φ. There will be one exception to this assumption, and it is handled in Lemma 1. Thus, other
than in that specific case, it is assumed that we have a(t, φ)-adversary during the execution of the EIG protocol with
parameterφ.

The basic EIG protocol for a correct processz with initial valuedz ∈ D is very simple:

1. Init: SetIT(ǭ) := dz, soIT(ǭ) is set to be the initial value.
2. Send: in each roundr, 1 ≤ r ≤ φ+1, for everyσ ∈ IT∩Σr−1, such thatz /∈ σ, send the message〈σ, z, IT(σ)〉

to every process.
3. Receive set:in each roundr, letSr := {σx ∈ Σr}.
4. Receive rule: in each roundr, for all σx ∈ Sr set

IT(σx) :=

⊥ if x ∈ F

d if x 6∈ F sent〈σ, x, d〉 andd ∈ D;

IT(σ) otherwise.

Note: assigning ofIT(σx) := IT(σ) whenx /∈ F is crucial for the case wherex is correct and has halted in the
previous round. Thus, if a process is silent but is not detected (possibly because it has halted due to early stopping)z
assigns it the value it heard in the previous round.

We use a second dynamic EIG tree data structureRT . Intuitively, if a process puts a value in a node of this tree
then, essentially, all correct processes will put the same value in the same node in at most 2 more rounds. Processes
use several rules to close branches of theIT tree whose value inRT is already determined by all. We present later the
rules for closing branches of theIT tree. To handle this, we modify lines 2 and 3 as described below (and keep lines
1 and 4 as above).

2. Send: in each roundr, 1 ≤ r ≤ φ+1, for everyσ ∈ IT ∩Σr−1, such thatz /∈ σ, and the branchσ is not closed
send the message〈σ, z, IT(σ)〉 to every process.

4

3. Receive set:in each roundr, letSr = {σx ∈ Σr | branchσx is not closed}.

Informally,ITz(σp) = d (whereITz denotes theIT tree at processz) indicates that processz received a message
from processp that said that his value forσ wasd. RTz(σp) = d indicates, essentially, that processz knows that
every correct processx will agree and haved ∈ RTx(σp) in at most two more rounds.

Observe that we record in the EIG tree only information from sequences of nodes that do not contain repetition,
therefore, not every message a process receives will be recorded.

At the end of each round, we apply the rules below to determinewhether to assign values to nodes inRT , assigning
that value inRT is calledresolvingthe node.

2.1 The Resolve Rules

A key feature of our algorithm is that whenever we put a value intoRT(σ) we also color (assign) all the descendants
of σ in RT with the same value. Observe that this means we may color a nodeσw in RT to d even ifw is correct and
sentd′ 6= d to all other correct processes.

Rules for IT-to-RT resolve: The following definitions and rules cause a node to be resolved based on information
in IT .

1. If IT(σw) = d thenwe say: (1)w is a voter of(σ,w, d); (2)w is confirmed on(σ,w, d); (3) For allv ∈ N\{σ},
w is a supporter ofv on (σ,w, d).

Note: the reason that we countw as a voter, as confirmed and as a supporter for all its echoers is that due to the
EIG structurew does not appear in the subtree ofσw.

2. If IT(σwv) = d , then we say thatv is a supporter ofv for (σ,w, d).

Note:again we needv to be a supporter of itself because of the EIG structure.

3. If IT(σwvu) = d then we say thatu is a supporter ofv for (σ,w, d).

4. If there is a set|U | = n− t, such that for eachu′ ∈ U , u′ is a supporter ofv on (σ,w, d) then we say thatv is
confirmed on(σ,w, d).

Note: if σ contains no correct andw is correct, then any correct childv (of σw) will indeed haven−t supporters
for σw and hence will be confirmed. Note that one supporter isw, the other isv and the remaining are all the
n−t−2 correct children ofσwv. Also note thatw is confirmed, so alln−t correct will be confirmed on(σ,w, d).

5. If u 6= w has a set|V | = n− t, such that for eachv′ ∈ V , u is a supporter ofv′ on (σ,w, d) andv′ is confirmed
on (σ,w, d) then u is a voter of(σ,w, d).

Note: this is somewhat similar to the notion of a Voter in grade-cast ([FM97, FM88]). But there is a crucial
difference: all then− t echoers need to beconfirmed. Also note thatw is a voter for itself.

6. IT-TO-RT RULE: If w has a set|U | = n−t, such that for eachu′ ∈ U , u′ is a voter of(σ,w, d) then if σw /∈ RT ,
then putRT(σw) := d and color descendants ofσw with d as well.

Note: this is somewhat similar to the notion of a grade 2 in grade-cast. A crucial difference is that then − t
voters needed are defined with respect tosupportedechoers. This is a non-trivial change that breaks the standard
grade-cast properties. Also note that we not only put a valuein σw but also color all the descendants.

7. ROUND φ+ 1 RULE: if IT(σw) = d andσ ∈ Σt then if σw /∈ RT , then putRT(σw) := d.

Note: this is a standard rule to deal with the last round.

Rules for RT tree resolve:The following definitions and rules cause a node to be resolved based only on infor-
mation inRT (these rules do not look atIT).

5

1. If there is a set|U | = t + 1, such that for eachu′ ∈ U , RT(σwvu′) = d then we sayv is RT-confirmed on
(σ,w, d).

Note: if any correct sees a node as confirmed then it hasn − t that echo its value. At leastt + 1 of them are
correct and they all cause all correct to see the node asRT-confirmed. Of course a node may becomeRT-
confirmed even if it was never confirmed by any correct. Observe that ifRT(σwu) = d then, by coloring,u is
RT-confirmed on(σ,w, d).

2. If u 6= w has a set|V | = n− t, such that eachv′ ∈ V isRT-confirmed on(σ,w, d) and for eachv′ ∈ V \ {u},
RT(σwv′u) = d and ifu ∈ V then alsoRT(σwu) = d, then u isRT-voter of(σ,w, d).

Note: if any correct process sees a node as a voter then it hasn− t echoers that are confirmed. So each of these
n− t echoers will beRT-confirmed. So all correct processes will see this node asRT-voter. Of course a node
can becomeRT-voter even if it was never a voter at any correct process.

3. RESOLVE RULE: If w has a set|U | = t + 1, such that for eachu′ ∈ U , u′ is aRT-voter of (σ,w, d) then if
σw /∈ RT , then putRT(σw) := d, and color descendants ofσw with d as well. The rule applies also for node
σw = ǭ.

Note: if any correct process doesIT-TO-RT RULE then this rule tries to guarantee that all correct processeswill
also put this node inRT . The problem is thatSPECIAL-BOT RULE (see below) may be applied to one of the
echoers and this may cause some of theRT-voters to lose their required support. The following rule fixes this
situation. It reduces the threshold ton− t− 1 but requires that all children nodes are fixed.

4. RELAXED RULE: If all the children ofσw are inRT (i.e.,∀σwv ∈ Σ: σwv ∈ RT) and exists a set|V | = n−t−1,
such that for eachv′ ∈ V , RT(σwv′) = d, then if σw /∈ RT , then putRT(σw) := d, and color descendants of
σw with d as well. The rule applies only for nodes|σw| ≥ 1.

Note:as mentioned above, theRELAXED RULE requires a threshold ofn− t− 1 so that it can take into account
the possibility of one value changing to⊥ due to the following rule:

5. SPECIAL-BOT RULE: If there is a set|V | = t+ 2− |σwu| such that for allv ∈ V , RT(σwuv) = ⊥ and for all
u′ 6= u such thatσwu′ ∈ Σ, σwu′ ∈ RT then if σwu /∈ RT , then putRT(σwu) := ⊥, and color descendants
of σwu with ⊥ as well. The rule applies only for|σwu| ≥ 2.

Note:This rule can be applied to at most one child.

6. SPECIAL-ROOT-BOT RULE: If exists a set|U | = t + 1 such that for eachu ∈ U , RT(u) = ⊥ then if ǭ /∈ RT ,
then putRT(ǭ) := ⊥, and color descendants ofǭ with ⊥ as well.

Note: this rule is important in order to stop quickly ift+ 1 correct processes start with the value⊥.

To prevent the data structures from expanding too much processes close branches of the tree, and from that point
on they do not send messages related to the closed branches. We use the notation{σ ∈ RT [r]} to denote an indicator
variable that equals true ifRT(σ) was assigned some value by the end of roundr, and false otherwise.

Branch Closing and Early Resolve rules:There are three rules to close a branch inIT two of them also trigger
an early resolve. By the end of roundr, r ≤ φ,

1. DECAY RULE: if ∃σ′ ⊑ σ such thatσ′ ∈ RT [r − 1], then close the branchσ ∈ IT .

Note: this is the simple case: if a process already fixed the value ofσ′ in RT in roundr − 1 then it stops in the
end of roundr, since by the end of roundr + 1 all correct processes will putσ′ in RT (and will interpret this
process’s silence in the right way during roundr + 1). There is no need to continue. Coloring will fix all the
values of this subtree.

2. EARLY IT-TO-RT RULE: if σ ∈ Σr−1 and existsU ⊆ N ,U ∩{u′ | u′ ∈ σ} = ∅, |U | = n−r, such that for every
u, v ∈ U \ F , IT(σu) = IT(σv), then ifσ /∈ RT , then putRT(σ) := IT(σ) and close the branchσ ∈ IT .

6

Note: this is a case where the process can forecast that all correctprocesses will putσ in RT in the next round
(because the process sees that all children nodes agree). Sothe process can fixσ in this round and stop now, be-
cause all correct processes will fixσ in RT next round (and will interpret this process’s silence in theright way).

3. STRONG IT-TO-RT RULE: if σ ∈ Σr−2 and existsU ⊆ N , U ∩ {u′ | u′ ∈ σ} = ∅, |U | = n − r + 1 such that
for everyu, v ∈ U \ F , wherev 6= u, IT(σuv) = IT(σvu) then, ifσ /∈ RT , then putRT(σ) := IT(σ) and
close the branchσ ∈ IT.

Note: in this case all the correct children ofσ except for at most one will be fixed in the next round to the same
value, so theRELAXED RULE will be applied toσ in the next round. So we can fixσ in this round and stop now.

In each round all the above rules are applied repeatedly until none holds any more.

The rules above imply that there are two ways to give a value toa node inRT . One is assigning it a value using
the various rules, and the other is coloring it as a result of assigning a value to one of its predecessors. We will use the
termcolor for the second one and the termput for the first one.

Rules for fault detection and masking: The following definitions and rules are used to detect faultyprocesses,
put them intoF and hence mask them (all messages fromF are masked to⊥). The last rule also defines an additional
masking. The process first updates itsF andFA sets using the sets received from the other processes duringthe
current round. A process is added toF or FA once it appears int + 1 or 2t + 1 sets, respectively. Next the process
applies the following fault detection rules. The fault detection is executed before applying any of the resolve rules
above. When a new process is added toF , the new masking is applied and the fault detection is repeated until no new
process can be added. Only then the resolve rules above are applied.

At processz by the end of roundr:

1. Not Voter: If ∃σw ∈ Σr−1 andw 6= z and 6 ∃σ′ ⊑ σw such thatσ′ ∈ RT and it is not the case that there exists
a set|U | = n− t− 1 such that for eachu′ ∈ U , IT(σwu′) = IT(σw) then addw toF .

Note: this is the standard detection rule after one round - if anything looks suspicions then detect.

2. Not IT-to-RT : If ∃σw ∈ Σr−2 for whichw does not have a set|U | = n− t, such that for eachu′ ∈ U , u′ is a
voter of(σ,w, d), and6 ∃σ′ ⊑ σ such thatσ′ ∈ RT then addw toF .

Note: this is the standard detection rule after two rounds - if anything looks suspicions then detect.

3. If u, u 6= w, has a set|V | = n − t, such that for eachv′ ∈ V , u is a supporter ofv′ on (σ,w, d) then we say
thatu is anunconfirmed voterof (σ,w, d).

Note: the notion of anunconfirmed voteris exactly that of a voter in the standard grade-cast protocol.

4. If w has a set|U | = t+ 1, such that for eachu′ ∈ U , u′ is an unconfirmed voter of(σ,w, d) then we say that
σw is leaning towardsd.

Note: the notion ofleaning towardsis exactly that of getting grade≥ 1 in the standard grade-cast protocol.

5. Not Masking: If σw ∈ Σr−3 is leaning towardsd and there existsu, |V | = t+1, andd′ 6= d such that for each
v′ ∈ V , IT(σwuv′) = d′ and there exists|σ′′| > |σ| such thatIT(σ′′wu) 6= ⊥ then

(a) IT(σ′′wu) = ⊥;
(b) if by the end of the round6 ∃σ′ ⊑ σ′′w such thatσ′ ∈ RT then addu to F .

Note: If σw is leaning towardsd thenu must have heard at leastt+1 sayd onσw. If t+1 sayu saidd′ thenu
must have saidd′ to some correct. Sou must have receivedd′ from σw but in the next roundu hearst + 1 say
σw saidd. Sou must conclude thatw is faulty andu must mask him from the next round. Ifu did not mask
someσ′′wu then theNot Masking rule will detectu as faulty and mask all suchσ′′wu for you and also mark
you as faulty. The reason we wait until the end of the round to add that node toF is that it might be a node of

7

a correct process that stopped in the previous round and hence did not send any messages in the current round,
and therefore did not send masking. In such a case we mask its virtual sending, but do not add it toF .

Finalized Output: By the end of each round (after applying all the resolve rules), the process checks whether there
is a frontier inRT. A frontier (also called a cut) is said to exist if for allσ ∈ Σφ+1 there exists some sub-sequence
σ′ ⊑ σ such thatσ′ ∈ RT .

1. Early Output rule : By the end of a round, if̄ǫ ∈ RT , output RT(ǭ).
2. Final Output rule : Otherwise, if there is a frontier,output ⊥.

Observe that the existence of a frontier can be tested from the currentIT in O(|IT|) time.

Stopping rule: If all branches ofIT are closed, stop the protocol.

3 The Consensus Protocol Analysis

The EIG protocol implicitly presented in the previous section is a consensus protocolDφ, whereφ, 1 ≤ φ ≤ t is
a parameter. ProtocolDφ runs for at mostφ + 1 rounds and solves Byzantine agreement against a(t, φ)-adversary.
Denote byG the set of correct processes,|G| ≥ n− t, wheren = |N |, and byS, S =

⋂

q∈G Fq, the set of processes
that are masked to⊥ by all correct processes. Lets := |S|.

Our solution invokes several copies of the EIG protocol. Foreach invoked protocol,Dφ, there are two cases: either
s ≥ t− φ, or we are guaranteed that the input of all correct processesthat start the protocol is the same (in particular,
it may be that some correct processes have halted and do not start the protocol). The following lemma deals with this
latter case.

Lemma 1. [Validity and Fast Termination] For any(t, t)-adversary, andn ≥ 3t+ 1,

1. if every correct process that starts the protocol holds the same input valued thend is the output value of all
correct processes that start the protocol, by the end of round 2, and all of them complete the protocol by the end
of round 3.

2. if all correct processes start the protocol andt + 1 correct processes start with⊥ then all correct processes
output⊥ by the end of round 3 and stop the protocol by the end of round 4.

3. For p, q ∈ G, nop will add q toFp in either of the above cases.

Proof. To prove the first item, let us follow the protocol. LetG1 be the set of correct processes that start the protocol
and letG2 = G \G1, be the remaining correct processes that remain silent throughout the protocol.

Initially, for everyz ∈ G1, ITz(ǭ) = dz.

In the 1st round every correct processz ∈ G1 sends〈ǭ, z, dz〉 to every process. By the end of the 1st round,
every correct process applies the receive rule for all the other processes. Thus, every correct processz ∈ G1 has
ITz(x) := dx, for everyx ∈ G, since it completes the missing values from correct processes in G2 to be its own
input value. Thus, the receive rule assigns at eachz ∈ G1, ITz(σx) := ITz(σ) for a missing value byx ∈ G2 for σ.
EARLY IT-TO-RT RULE, may be applied by some correct processes at the end of the first round, and as a result will put
RT(ǭ) = d and will outputd.

SinceITz(x) = d for all x ∈ G, by the end of the 1st round, everyz ∈ G1 sees everyx ∈ G as supporter ofx for
(ǭ, ǭ, d).

In the 2nd round, every correct processz ∈ G1 that did not applyEARLY IT-TO-RT RULE by the end of the 1st
round, sends〈x, z, d〉 for every processx ∈ G to every process. Again, if any correct process did not send amessage,
its missing value for anyx ∈ G will be assigned the same value at all correct processes. Notice that some additional
correct processes may not send in the second round.

By the end of the 2nd round, after applying the receive rule, at eachz ∈ G1 that did not applyEARLY IT-TO-RT

RULE by the end of the 1st round,ITz(xy) = d for everyx, y ∈ G. Thus, for every suchx, everyy ∈ G \ {x}, is a
supporter ofx for (ǭ, ǭ, d). As a result, for the set|G| = n− t, for eachu′ ∈ G, u′ is a supporter ofv for (ǭ, ǭ, d), for

8

everyv ∈ G. Therefore, everyv ∈ G is confirmed on(ǭ, ǫ, d). Therefore, every processz ∈ G1, that did not apply
EARLY IT-TO-RT RULE by the end of the 1st round, sees every processx ∈ G as a voter of(ǭ, ǭ, d). This implies that
it can apply theIT-TO-RT RULE and will putRT(ǭ) = d, will output d, and will stop the protocol by the end of round
3.

For the second claim: by the end of the 1st round, every correct processz hasITz(x) := ⊥, for at leastt + 1
processesx ∈ G. Let A = {x | x ∈ G & dx = ⊥}. If ⊥ was the input value to all correct processes, we are done by
the previous claim. Otherwise, no correct process will apply EARLY IT-TO-RT RULE to a value that is not⊥.

In the 2nd round, every correct processz sends〈x, z, dx〉 for every processx ∈ G to every process. By the end of
the 2nd round, after applying the receive rule, at eachz ∈ G, ITz(xy) = dx, for everyx, y ∈ G. Thus, every process
z ∈ G sees each processv ∈ A both as supporter ofv for (ǭ, v,⊥), and also as supporter ofu for (ǭ, v,⊥) for every
u ∈ G.

In the 3rd round, every correct processz sends〈vx, z,⊥〉 for every processv ∈ A andx ∈ G to every process.
If any correct process appliedEARLY IT-TO-RT RULE in the previous round, then its missing value regarding other
correct processes will be identical at all correct processes. By the end of the 3rd round, after applying the receive
rule, at eachz ∈ G, ITz(vxy) = ⊥, for everyv ∈ A, andx, y ∈ G. Thus, every processz ∈ G sees every process
u ∈ G \ {v} as a supporter ofu′ for (ǭ, v,⊥), for everyu′ ∈ G \ {v} andv ∈ A. For every suchv andu′, v is also a
supporter ofu′ for (ǭ, v,⊥). Thus, every suchu′ is confirmed on(ǭ, v,⊥), for everyv ∈ A. Moreover, by definition,
every suchv is also confirmed on(ǭ, v,⊥).

As a result, every processz ∈ G sees every processu ∈ G as a voter to(ǭ, v,⊥), for everyv ∈ A. Thus,v ∈ RTz

for everyv ∈ A. Thus, it can apply theSPECIAL-ROOT-BOT RULE and will putRT(ǭ) = ⊥ by the end of round3,
and will stop by the end of round4.

To prove the 3rd claim, observe that the fault detection rules can be applied only in rounds2 or 3. If a correct
process did not send any message in round2, it is because of applyingEARLY IT-TO-RT RULE, and it’s missing values
will not cause any other correct process to be suspected as a faulty process, neither the correct process that did not
send. By the end of the 2nd roundǭ will be in RTq for everyq ∈ G, and no one will apply any fault detection rules
anymore.

If all correct processes participated in round2, then Not-Voter will not apply to any correct process. If anycorrect
process did not send any message in round3, it’s missing values will not harm any correct process or itself and all
correct processes will be inRT by the end of the round. For similar reasons, the Not-Maskingrule will not cause any
correct process to be added toF .

The only case in which not all correct processes invoke aDφ protocol is when some of the background running
monitors are being invoked by some of the correct processes,while others may have already stopped. This special case
is guaranteed to be when the inputs of all participating correct processes is⊥, and consensus can be still be achieved.
Lemma 1implies the following:

Corollary 1. For any(t, t)-adversary, andn ≥ 3t + 1, if every correct process that invokes the protocol start with
input⊥, then⊥ is the output value at each participating correct process bythe end of round 2, and each participating
correct process completes the protocol by the end of round 3.Moreover, forp, q ∈ G, nop will add q to Fp.

The gossip exchange among correct processes about identified faults ensures the following:

Lemma 2. For a (t, φ)-adversary and protocolDφ, n ≥ 3t+ 1, assumingProperty 1, for anyk, 1 ≤ k ≤ φ + 1, by
the end of roundk, for every two correct processesp, q, FAp ⊆ Fq andFAp[k − 1] ⊆ FAp[k].

Proof. Prior to invocation the claim holds byProperty 1. In each round processes exchange theirF sets. If a process
finds out that some processb appears in the lists of at leastt + 1 processes it addsb to F , and if it appears in2t + 1
lists it adds it to bothF andFA. TheF andFA sets are never decreased, andFA is updated only through gossiping.
Therefore, it is easy to see that by the end of each round the claim holds.

A node may initially assign a value using one of the “put” rules and later it may color it to a different value. In
the arguments below we sometimes need to refer to the value that was put to a node rather than the value it might be

9

colored to. Once a node has a value it is not assigned a value using any put rule any more. Thus, the value assigned
using a put rule is an initial value that may be assigned to a node before it is colored, or that node may never have a
value put to it. To focus on these put operations, we will add,for proof purposes, that whenever a nodep uses a put
rule for someσ, exceptROUND φ + 1 RULE, it also putsσ in PTp (The “Put-Tree”) and as a result at that moment,
PTp(σ) = RTp(σ). We do not color nodes inPTp, thus forσ that is colored, but was not assigned a value prior to
that,PTp(σ) is undefined. We excludeROUND φ+ 1 RULE fromPT on purpose.

The following is the core statement of the technical properties of the protocol. The only way we found to prove all
these is via an induction argument that proves all properties together. The theorem contains four items.

The detection part proves that correct processes are never suspected as faulty. The challenge is that the various
rules instruct processes when to stop sending messages, andthat might cause other correct processes to be suspected
as faulty.

The validity part proves that if a correct process sends a value, it will reach theRT of every other correct process
within two rounds. It also proves that if a correct process decides not to send a value (thus, closed a branch), the
appropriate node will be inRT of every correct process. The third claim in the validity part is that if a process appears
in FA, then it appears inRT of every correct process within two rounds.

The safety part intends to prove consistency in theRT . The challenge is that coloring may cause the trees of
correct processes to defer. Therefore the careful statements looks atPT, and which rule was used in order to assign
the value to it. The⊥ value is a default value, therefore there is a special consideration of whether the value the process
puts is⊥ or not. The end result is that if a node appears inPT of two correct processes, it carries the same value.

The liveness part shows that if a node appears inRT of a correct process, it will appear inRT of any other correct
process within two rounds.

Theorem 2. For a (t, φ)-adversary and protocolDφ, n ≥ 3t+ 1, assumingProperty 1and that all correct processes
participate in the protocol, then for any1 ≤ k ≤ φ+ 1 :

1. No False Detection:For p, q ∈ G, noq will add p to Fq in roundk.
2. Validity:

(a) For σ ∈ Σk−3 if p ∈ G, sends〈σ, p, dp〉, then at the end of roundk, at every correct processx, either
RTx(σp) = dp or ∃σ′

❁ σ such thatσ′ ∈ RTx. For k = φ+1, the property holds also for anyσ ∈ Σk−2

and for anyσ ∈ Σk−1.
(b) If z ∈ FA in the beginning of roundk − 2, then by the end of roundk, at every correct process, either

RT(σz) = ⊥ or ∃σ′
❁ σ such thatσ′ ∈ RT . For k = φ + 1, the property holds forz ∈ FA in the

beginning of roundsk − 1 or k.
(c) For σ ∈ Σk−1, if p ∈ G, does not send〈σ, p, d〉 for anyd ∈ D, then at the end of roundk, at every correct

processx, ∃σ′
❁ σ such thatσ′ ∈ RTx.

3. Safety: For p, q ∈ G, x ∈ N , |σx| ≤ φ,σx ∈ PTp[k], then

(a) if p appliesRESOLVE RULE to putPTp(σx) = d, d 6= ⊥, and v is one of theRT-confirmed nodes
on (σ, x, d) in RTp used in applying this rule inRTp, and in additionPTq(σxv) = ⊥, thenq applied
SPECIAL-BOT RULE to putσxv;

(b) if |σx| ≥ 1 and PTp(σx) = d, d 6= ⊥, then, by the end of roundk, |Vq | ≤ t, whereVq = {u |
PTq(σxu) = ⊥};

(c) if |σx| ≥ 1 andPTp(σx) = ⊥ and it wasn’t put usingSPECIAL-BOT RULE, then, by the end of roundk,
|Vq| ≤ t, whereVq = {u | PTq(σxu) 6= ⊥};

(d) if σx ∈ PTq[k], thenPTp(σx) = PTq(σx).
4. Liveness:For p, q ∈ G, if σ ∈ RTp[k − 2] thenσ ∈ RTq[k]. For k = φ+ 1, if σ ∈ RTp thenσ ∈ RTq.

Proof ofTheorem 2. We prove the theorem by induction onk. We first prove the theorem assumingφ > 1 and will
conclude by proving the theorem for the caseφ = 1.

As the proof is quite complex, we split it into three ranges,k = 1, k ≤ φ − 1, andk ≤ φ + 1. We will prove the
following claims, where each handles the appropriate range:

10

Claim 1. Theorem 2holds fork = 1.

The general case. This is where most of the technical challenge lies:

Claim 2. Theorem 2holds for1 < k ≤ φ− 1.

The final two rounds, when the resolve rules are slightly different:

Claim 3. Theorem 2holds forφ− 1 < k ≤ φ+ 1.

Proof ofClaim 1. We will prove each of the four items separately.

Proof of Item1 for Claim 1. (Detection) By the end of round 1, a process may add another toF only through gossip-
ing. Property 1implies that no correct process will suspect any other correct process. The rest of the fault detection
rules are not applicable in the first round.

Proof of Item2 for Claim 1. (Validity) For k = 1, Statement2c and Statement2b vacuously hold, since there was
no such round. For proving Statement2a observe that in the first round onlyEARLY IT-TO-RT RULE is applicable.
Assume that a correct processp ∈ G appliesEARLY IT-TO-RT RULE by the end of round1, thus nodeσ is ǭ, since
σ = ǫ. This implies that for everyx ∈ N \ Fp, ITp(x) = d. SinceG ∩ Fp = ∅, we conclude that for every correct
processq, dq = d, and by the end of the 2nd round, byLemma 1, all correct processes will haveRT(ǭ) = d = dp and
we are done.

Proof of Item3 for Claim 1. (Safety) Only Statement3d is applicable fork = 1. Notice that the only case in which
σx ∈ PTp[1] is whenp appliesEARLY IT-TO-RT RULE in the end of the 1st round and as a result puts some valued to
the root node in itsRTp. In such a case, it is clear that ifσ ∈ PTq[1] thenPTp(σ) = PTq(σ).

Proof of Item4 for Claim 1. (Liveness) This item vacuously holds.

This completes the proof ofClaim 1.

Now we move to proving the main part of the theorem.

Proof ofClaim 2. The proof is by induction. The base case isClaim 1. Assume correctness for anyk′′, 1 ≤ k′′ < k,
and we will prove the claim fork, k ≤ φ− 1.

Proof of Item1 for Claim 2. (Detection) The fault detection takes place in every round before any resolve rule is
applied. By induction we know that a correct process will notadd another correct process toF using gossiping
from other processes. The three rules to add a process toF are based on the messages accumulated inIT . The
induction onk − 1 allows us to determine what messages correct processes willbe sending in roundk.

Let roundk be the first round at which a processp is not sending messages related to the branch ofσ. There
are three cases in which a correct process,p, stops sending, by usingDECAY RULE, EARLY IT-TO-RT RULE and
STRONG IT-TO-RT RULE. If p closes the branch ofσ at the end of roundk − 1 and is not sending messages related to
it in roundk, the receive rule instructs correct processes what values to add to theirIT.

Let’s consider the three fault detection rules. Not-Voter is not applicable, since in the previous roundp sent its
messages appropriately. Sincep is correct every correct process that sends messages echo’sthe message it sent, and
whenever a correct process applies the receiving rule to assign messages to processes that did not send messages in
the current round it adds the messagep originally sent. For the similar reason Not-IT-to-RT is notapplicable.

The last fault detection rule is Not-Masking. Assume that a correct processq is expecting processp to mask away
some processw. The Not-Masking rule allowsq to mask the non-sending by⊥, but q will not addp to F if by the
end of the roundq will have∃σ′ ⊑ σ′′w such thatσ′ ∈ RT . Thus,p will not be inF during the processing of all the
rules below. Statement2c that is proved next guarantees that also by the end of the round a correct processp will not
be added toF .

11

Proof of Item2 for Claim 2. (Validity)

For Statement2a, the case ofk = φ+1 is excluded for now. Assume thatp sends〈σ, p, dp〉 in roundk− 2. If any
correct processx is not sending a message〈σ, x, dx〉, then by the protocol it should have set eitherσ′ ∈ PTx[k − 4]
(if usedDECAY RULE) or σ′ ∈ PTx[k − 3] (if usedEARLY IT-TO-RT RULE or STRONG IT-TO-RT RULE) for some
σ′

❁ σ, and we are done by induction (Statement3d). If there is a correct nodex ∈ σ, then the claim holds by
induction (Statement2a). So we are left with the case that no correct node appears inσ and all correct processes are
participating in roundk − 2. By the end of roundk − 2 every correct processx will apply the receiving rule and will
haveITx(σp) = dp.

If any correct,x (x 6= p), doesn’t send a message〈σp, x, dp〉 then we are done by induction, using similar argument
as above. Therefore, by the end of roundk−1, every correct process will apply the receiving rule and will haven−t−1
children nodes forp in its IT . Thus, by the end of roundk − 1, for everyx ∈ G, at everyy ∈ G, x is a supporter ofx
for (σ, p, dp). And for everyx, y ∈ G, wherex 6= y 6= v, ITx(σpy) = dp. In roundk some correct process (including
p) may not send messages and all the rest will send identical valuedp messages. The above implies that the receiving
rule will assign to each correct process that does not send messages the identical valued at every correct process that
still process messages for this branch.

As we argued before, sincep itself is confirmed on each node it echoes, every correct process will be a voter and
therefore, by the end of roundk, at every correct processx ∈ G, that still process messages for this branch either
RTx(σp) = dp, or∃σ′

❁ σp such thatσ′ ∈ RTx.

The proof of Statement2b is identical to the above, as if it is the case of a correct process sending⊥.

Proving Statement2c: Let σ ∈ Σk−1 andp ∈ G. If p does not send any message〈σ, p, d〉 for anyd ∈ D in round
k, then either the branch was closed earlier and we are done by induction, or this is the first round any correct process
doesn’t send a message on this branch. Thus,p appliedDECAY RULE, EARLY IT-TO-RT RULE or STRONG IT-TO-RT

RULE by the end of roundk − 1.

We will cover each of the closing rules separately.

Proving the claim in casep ∈ G usesDECAY RULE: by definition∃σ′
❁ σ such thatσ′ ∈ RTp[k − 2], which

results in closing the branch by the end of roundk − 1 and not sending in roundk. If ∃σ′′
❁ σ, σ′′ ∈ RTp[k − 3],

then we are done by induction. Otherwise, it must be because of messages received in roundk− 2. All such messages
are reflected inITp. To influence aσ′ ∈ RTp, it should be as a result of applyingIT-TO-RT RULE, ROUND φ + 1
RULE, EARLY IT-TO-RT RULE, or STRONG IT-TO-RT RULE. Sincek − 2 6= φ + 1, we conclude that it is not a result
of applyingROUND φ + 1 RULE. If it is a result ofp applyingEARLY IT-TO-RT RULE, or STRONG IT-TO-RT RULE

in roundk − 2 then this branch would be closed already be the end of roundk − 1 and we are done by induction.
Similarly, if any other correct process closed the branch bythe end of roundk − 2, we are done by induction.

Assume now the case that it is a result ofp’s using IT-TO-RT RULE. Thus, there should be someσ̄w, such that
σ′ ⊆ σ̄, σ̄w ∈ Σk−4 andp appliedIT-TO-RT RULE in roundk− 2 to put it inRTp (andPTp, for proof purposes). Let
d be the value assigned byp toPTp(σ̄w) as a result of processingITp by the end of roundk− 2.. If there is a correct
node inσ̄w, we are done by induction. Since this is not the case, then when p appliedIT-TO-RT RULE it observed a set
U of n− t processes inITp that are voters of(σ̄, w, d), of which at leastt+ 1 are correct processes. LetŪ be the set
of correct voters inU .

For each voterv ∈ Ū there is a set ofWv of n− t processes that are confirmed on(σ̄, w, d), wherev is a supporter
to eachu ∈ Wv on (σ̄, w, d). Since we assume that there is no correct nodes inσ̄w, v 6= w.

By definition, for eachu ∈ Wv \ {w, v}, ITp(σ̄wuv) = d, and sincev ∈ G and no correct process closed the
branch or stopped sending yet, then by the end of roundk− 2, for everyx ∈ G \ {u, v}, ITx(σ̄wuv) = d. If v ∈ Wv,
then all will also haveITx(σ̄wv) = d.

For u ∈ G, sinceσ̄w ∈ Σk−4, by induction,RTx(σ̄wuv) = d, or ∃σ′
❁ σ̄wuv such thatσ′ ∈ RTx, at every

x ∈ G.

Foru 6∈ G, by the end of roundk− 1, for everyx ∈ G, at everyy ∈ G, x is a supporter ofx for (σ̄wu, v, d). And
for everyx, y ∈ G, wherex 6= y 6= v, ITx(σ̄wuvy) = d. In roundk some correct process (includingp) may not send
messages and all the rest will send identical valued messages. The above implies that the receiving rule will assign
to each correct process that does not send messages the identical valued at every correct process that still process

12

messages for this branch.

As we argued before, sincev itself is confirmed on each node it echoes, every correct nodewill be a voters and
therefore, by the end of roundk, at every correct processx ∈ G, that still process messages for this branch, and for
everyu ∈ Wv, eitherRTx(σ̄wuv) = d, or∃σ′

❁ σ̄wuv such thatσ′ ∈ RTx.

Now observe that eachu ∈ Wv, being confirmed on(σ̄, w, d), has a setUu of n − t of supporters inITp of u
for (σ̄, w, d) (one of which isu itself). Let Ūu be the set of correct processes inUu. By definition, for eachu ∈ Wv,
ITp(σ̄wu) = d and for eachu′ ∈ Ūu \ {u}, ITp(σ̄wuu

′) = d. Since no correct process closed the brach or stopped
sending, at everyx ∈ G, ITx(σ̄wuu

′) = d, and ifu ∈ G, thenITx(σ̄wu) = d. Thus, by the end of roundk, at every
correct processx ∈ G \ {u, u′}, that still process messages for this branch,PTx(σ̄wuu

′) = d, whereu ∈ Wv, and
u′ ∈ Ūu \{u}. Thus, eachu ∈ Wv, isRT-confirmed on(σ̄, w, d) and eachv ∈ Ū isRT-voter on(σ̄, w, d). The same
holds, by definition, foru andu′ if they did not closed the branch earlier. This implies that suchx will apply RESOLVE

RULE to assignPTx(σ̄w) = d (or would observe by that time∃σ′
❁ σ̄w such thatσ′ ∈ RTx), which completes the

proof for this case.

Proving the claim in casep ∈ G usesEARLY IT-TO-RT RULE: Assume that a correct processp ∈ G applies
EARLY IT-TO-RT RULE by the end of roundk − 1. Let σ ∈ Σk−2 and denoteσ = τu. The assumption ofp’s
closing the branch implies, among other things, that for every x, y ∈ N \ Fp, such thatτux, τuy ∈ Σk, ITp(τux) =
ITp(τuy) = d, for somed ∈ D, and thusPTp(τu) = d. This also implies that every correct processx that applies
the receiving rule in roundk will assignITx(σp) = ITx(σ) = d. If there is any correct process inτ , we are done by
induction (Statement2aonk− 1, since the correct processes sent ink− 3 or earlier). If this is not the case, whetheru
is correct or not, we conclude that by the end of roundk− 1 every correct processx ∈ G will haveITx(τuy) = d for
everyy ∈ G \ {u, x}, and ifu ∈ G then alsoITx(τu) = d. This is true since byLemma 2, and Item1, G ∩ Fq = ∅.
Thus, by the end of roundk every correct processx that did not close the branch will useIT-TO-RT RULE to obtain
RTx(τu) = d (or would observe by that time∃σ′

❁ τu such thatσ′ ∈ RTx), and we are done.

Proving the claim in casep ∈ G usesSTRONG IT-TO-RT RULE: Assume thatp appliesSTRONG IT-TO-RT RULE by
the end of roundk−1. If there is a correct process inσ, we are done by induction. If∃σ′ ⊑ σ such thatσ′ ∈ RTq[k−1]
for any correctq, we are also done. Otherwise, letσ ∈ Σk−3. By definition there existsU ,U ∩σ = ∅, |U | = n−r+2
such that for everyu, v ∈ U \ F , wherev 6= u, ITp(σuv) = ITp(σvu). Let x be the node such thatσx ∈ Σ, but
x 6∈ U ∪ F . Since we assume that there is no correct process inσ, G ⊆ U ∪ {x}. Assume first thatx is not correct.
If this is the case, then the assumption onU implies that all members ofU are supporters and voters and by the end
of roundk − 1, σ would be inRT of every correct process. If this is not the case, we are left with the option thatx is
correct but doesn’t agree with some of the values all membersof U sent. Denote bȳU the correct member ofU , and it
is clear that|Ū | = n− t− 1 and|U | ≥ n− t. The definition of the setU implies that by the end of roundk− 1, either
p putsσ in PTp, or ∃σ′

❁ σ such thatσ′ ∈ RTp. Moreover, by induction, for every memberu of Ū , σu ∈ RTq of
every correct processq by the end of roundk. Thus, by the end of roundk every correct processq that doesn’t already
haveσ ∈ RTq will be able to applyRELAXED RULE to putσ̄ ∈ RTq, and we are done.

Proof of Item3 for Claim 2. (Safety) Notice that when a processp puts a value to a nodeσx, say in roundk, then at
that point in time6 ∃σ′

❁ σ, such thatσ′ ∈ RTp[k].

Observe that if bothp andq put values toσx prior to roundk, then the claims hold by induction onk. Therefore
we limit ourselves to nodes which valueq puts in itsPT in roundk andp had put a value to that node in itsPT in
some roundk′ ≤ k. Moreover, we limit ourselves to the case where no correct process had put a value to that node in
itsPT in any roundk′′ < k′.

We prove Item3 by backward induction on the lengthℓ = |σx| from ℓ = k to 1. For eachℓ we will go through
all the put rulesp could have applied in setting the value toσx in roundk or earlier, and for each rule we consider the
relevant rulesq could have apply, and we will prove that the four statements hold in each case.

The rules to put a value to a node inRT (andPT) are: 1)IT-TO-RT RULE, 2) RESOLVE RULE, 3) RELAXED RULE,
4) SPECIAL-BOT RULE, 5) SPECIAL-ROOT-BOT RULE, 6) EARLY IT-TO-RT RULE, 7) STRONG IT-TO-RT RULE and 8)
ROUND φ+ 1 RULE.

The caseℓ = k: A node of levelk, wherek ≤ φ, cannot be put inPT by the end of roundk.

The case1 ≤ ℓ < k: let |σx| = ℓ and assume correctness for everyℓ′ > ℓ . Sincek < φ, ROUND φ + 1 RULE is

13

not applicable.

If there is a correct predecessor inσ, we are done by Item2, since by the end of roundℓ + 1 processq will have
σx ∈ RTq (due to coloring), hence no nodeσxu will be in PTq and all four statements clearly hold.

Otherwise, if processx is correct, by Item2, by the end ofℓ + 2 processq will haveσx ∈ RTq. A nodeσxu can
be inPTq only if q appliedEARLY IT-TO-RT RULE, or STRONG IT-TO-RT RULE in that round, so any such node will
also be set to the value ofσx, which is the same at bothp andq, thus all four statements hold.

Otherwise, there is no correct process inσx. Thus, nodex hasn − ℓ children nodes, out of which at leastn − t
are correct and out of thet− ℓ others, at mostφ− ℓ are actively faulty and at leaset− φ are silent.

We start by proving the first three statements and after that we will prove the fourth statement.

➤ Consider the case thatp usedRESOLVE RULEto putσx: RESOLVE RULEimplies that there aret+1RT-voters.
EachRT-voter has a set ofn− t children nodesRT-confirmed for(σ, x, d′). Define, in such a case, byVp the set of
children nodes ofσx that areRT-confirmed tod′ in PTp. By definition, each confirmed node inVp hast+1 children
nodes inRTp with the same valued′.

Proof of Statement3aof Item3 for Claim 2. By definition, confirmed is defined forℓ + 2 ≤ k < φ + 1. For nodev
beingRT-confirmed implies that there is a setVd, such that for eachv′ ∈ Vd,RTp(σxvv

′) = d, where|Vd| = t+1. If
σxv ∈ RTp whenp putsσx, then alsoσxv ∈ PTp, otherwiseσx should be inRTp already. Moreover, ifσxv ∈ RTp,
it should be thatRTp(σxv) = d, otherwise, by coloring,RTp(σxvv

′) would also not be equald. By induction, level
ℓ + 1, Statement3d, we conclude thatq can’t putσxv to ⊥. Therefore, it should be the case that whenp putsσx to
PTp, σxv 6∈ PTp. In such a case, all children nodes ofσxv that are inRTp are inPTp. Specifically, everyv′ ∈ Vd is
in PTp. This also implies thatv 6∈ G. By induction, on levelℓ+ 2, Statement3d, we conclude that for everyv′ ∈ Vd,
if σxvv′ ∈ RTq thenPTp(σxvv

′) = PTq(σxvv
′) = d.

Nodev has exactlyn − ℓ − 1 children nodes. Whenq puts a value to nodeσxv, all children nodes of nodeσxv
are not colored. There are at mostn− ℓ− 1− (t+ 1) < n− t children nodes ofσxv in PTq that are not inVd.

Look at the rulesq may use in order to putσxv to⊥.

— Consider the case thatq usedIT-TO-RT RULE to putσxv to ⊥: If q appliesIT-TO-RT RULE, then it should
have for each votere a setUe of n − t processes confirmed on(σx, v,⊥) in ITq. There is at least one process in
the intersection ofUe andVd. Denote it byu, u ∈ Ue ∩ Vd. Observe that the definition ofVd implies thatu 6= v.
Being confirmed implies thatu has a set of at leastt + 1 correct processesUu such thatITq(σxvuu

′) = ⊥ for
everyu′ ∈ Uu. For any suchu′ that sends messages in this round,ITp(σxvuu

′) = ⊥. If there isu′ that closed
the branch usingDECAY RULE, then it did so before roundk − 2, and we are done by induction. Otherwise it
usedEARLY IT-TO-RT RULE and bothq andp would assign it the same value, and therefore we also conclude that
ITp(σxvuu

′) = ⊥. If it usedSTRONG IT-TO-RT RULE, then there is a setU ′ of at leastt+ 1 correct processes such
thatITp(σxvuu

′) = ITq(σxvuu
′) = ⊥, since all but one send the same value, andq sawn− t of them.

We now argue that ifp has such a set of children node, it implies that ifσxvu ∈ PTp, thenPTp(σxvu) = ⊥.

Consider the various put rulesp can use to put a value toPTp(σxvu). Thus, ifp usesEARLY IT-TO-RT RULE in
roundℓ+3 it should be to the valueITp(σxvu) = ⊥. If p appliesIT-TO-RT RULE in roundℓ+4 it should be the case
thatITp(σxvu) = ⊥. By the end of roundℓ + 5, all the correct children nodes inUu (or U ′), by Item2, will be in
PTp with value⊥ and will color their subtrees inRTp to⊥. Therefore, ifp applies any rule to put the value ofσxvu,
it will be to ⊥. This contradicts the fact thatu ∈ Vd.

—- Consider the case thatq usedRESOLVE RULE to putσxv to ⊥: If q appliesRESOLVE RULE, then it should
have a setUe of RT-confirmed on(σx, v,⊥) in PTq. Eachu in Ue has a setWu of sizet + 1 such that for each
u′ ∈ Wu PTq(σxvuu

′) = ⊥. Since, at least one of the nodes inUe is in Vd, there is a contradiction to the induction
on Statement3b.

— Consider the case thatq usedRELAXED RULE to putσxv to⊥: Contradiction, to Statement3d.

Thus, we are left with the option ofq applyingSPECIAL-BOT RULE putσxv to ⊥, proving the statement.

Proof of Statement3bof Item3 for Claim 2. In this case, potentially some nodes fromVp (though at most one) may
resolve to⊥. Observe that nodeσx in RTq has at mostn− ℓ− (n− t) = t− ℓ children nodes outsideVp. Sinceℓ ≥ 1,

14

for the claim not to hold there should be at least 2 nodes formVp that resolve to⊥. Statement3aand the definition
of SPECIAL-BOT RULE imply that at most one node can be resolved usingSPECIAL-BOT RULE. We are done since
t− ℓ+ 1 < t+ 1.

Proof of Statement3cof Item3 for Claim 2. The observation above implies that every node inVp that is put inRTq

should be with value⊥. Thus, proving this case.

➤ Consider the case thatp usedIT-TO-RT RULE to putσx:
Statement3ais not applicable in this case, and the rest of the cases we discuss next.

Proof of Statement3bof Item3 for Claim 2. The IT-TO-RT RULE implies that inITp there is a setV of n− t voters
of (σ, x, d), whered 6= ⊥. Eachv ∈ V has a setWv of n− t processes that are confirmed on(σ, x, d), wherev is a
supporter to eachu ∈ Wv on (σ, x, d). Each suchu, being confirmed on(σ, x, d), has a setUu of n− t supporters in
ITp tou on(σ, x, d). Each of these sets of sizen− t contains at leastt+1 correct nodes. LetU⊥ be the set of children
nodes, where each one has at mostt correct supporters to(σ, x, d) in ITp. The above implies that|U⊥| ≤ t− ℓ (notice
thatU⊥ ⊆ N \Wv).

Assume by contradiction thatq has|Vq| > t children nodes ofσx in PTq such thatPTq(σxu) = ⊥ for each
u ∈ Vq. Therefore, there must exist two nodes,y1, y2 ∈ Vq that are not from the setU⊥ (becauseℓ ≥ 1 so |U⊥| ≤
t− ℓ ≤ t− 1).

We now go through the put rulesq can apply to put values to the children nodes ofσx. We will also study the
minimal round at whichq can apply these put rules. SinceRTq(σx) can’t have a value when the put rule is applied
by q to the children nodes ofσx, the earliest round at whichq can use any other rule to put it’s value, if at all, is the
end ofℓ+ 2 .

For roundℓ + 2 : If ℓ + 2 ≤ k, then by the end of roundℓ + 2, it can’t be that all echoing processes toy1 or y2
have sent the value⊥. Thus, by the end of roundℓ + 2, q cannot have eithery1 or y2 in RTq with value⊥, and the
claim holds.

For roundℓ + 3 : If ℓ + 3 ≤ k, then by the end of roundℓ + 3, eachy ∈ {y1, y2} hast + 1 correct children that
are supporters ford in ITq and thereforey can’t be inPTq(σxy) for value⊥. Thus, by the end of roundℓ+ 3, q can
have at mostt− ℓ children nodes ofσx in RTq with value⊥, and the claim holds.

If ℓ+4 ≤ k, then by the end of roundℓ+4, by Item2, the value of all correct nodes in all setsV ,Wv andUu above
are already inRTq. This implies thaty1 andy2 each has at leastt+1 children nodes inRTq with valued. The value of
neithery1 nory2 can be put to⊥ using rulesRESOLVE RULE, or RELAXED RULE, and clearly notSPECIAL-ROOT-BOT

RULE. We already excludedEARLY IT-TO-RT RULE, STRONG IT-TO-RT RULE, andIT-TO-RT RULE, so the only rule
that may be applied isSPECIAL-BOT RULE. But SPECIAL-BOT RULE can be applied only when all other sibling nodes
are already inRTq, so it can be applied to eithery1 or y2 but not to both. A contradiction. This completes the proof
of Statement3b for this case, assumingp usedIT-TO-RT RULE to put the value ofRTp(σx).

Proof of Statement3cof Item3 for Claim 2. The proof is identical to the proof of Statement3b with a small change,
except thatSPECIAL-BOT RULE does not produce a value that is different than⊥.

➤ Consider the case thatp usedEARLY IT-TO-RT RULE in order to putσx.

Proof of Statement3bof Item3 for Claim 2. TheEARLY IT-TO-RT RULE implies that inITp there is a setU ,U∩{u′ |
u′ ∈ σx} = ∅, |U | = n − ℓ, such that for everyu, v ∈ U \ F , IT(σxu) = IT(σxv). Assume first that no correct
process closes the branch by the end of roundℓ+ 1. This implies thatq will also see all correct processes sending the
same value. Therefore, it can’t apply any rule on it’sITq to put any child ofσx PTq with a value of⊥. By the end of
roundℓ + 3, by Item2, the value of all correct nodes inU are already inRTq. This implies thatq can’t have a setVq

of more than sizet for any different value.

Now, if there isu ∈ U that closed the branch and did not send in roundℓ + 1, then by the end of roundℓ + 1,
by Statement2c, at every correct processq, ∃σ′

❁ σx such thatσ′ ∈ RTq, which implies that by the end ofℓ + 1,
σx ∈ RTq, contradicting our assumption.

15

Proof of Statement3cof Item3 for Claim 2. The proof is identical to the proof of Statement3b with a small change,
except thatSPECIAL-BOT RULE does not produce a value that is different than⊥.

➤ Consider the case thatp usedSTRONG IT-TO-RT RULE in order to putσx.

Proof of Statement3bof Item3 for Claim 2. Assume for contradiction that∃Vq such that|Vq| = t + 1, whereVq =
{u | PTq(σxu) = ⊥}. TheSTRONG IT-TO-RT RULE implies that inITp, by the end of roundℓ + 2, there is a setU ,
U∩{u′ | u′ ∈ σ} = ∅, |U | = n−ℓ+1 such that for everyu, v ∈ U \F , wherev 6= u, ITp(σxuv) = ITp(σxvu) = d.

Assume first that no correct process closes the branch by the end of roundℓ+2. This implies thatITq will include
all values above appearing inITp for correct processes. We assume that there is no correct process inσx, and that
|σx| ≥ 1. Therefore|Fq \ {u′ | u′ ∈ σx}| < t. Moreover, also|(Fp ∪ Fq) \ {u′ | u′ ∈ σx}| < t. Therefore, there
should be at least two processes inVq that are not inFq. Therefore, there should bey ∈ Vq such thaty ∈ U \(Fp∪Fq).
By the definition ofU , there is a setUq of n−t−1 correct processes such thatITq(σxyu) = d, foru ∈ Uq. Therefore,
by the end of roundℓ+ 3 q can’t havePTq(σxy) = ⊥.

Sincep appliedSTRONG IT-TO-RT RULE by the end of roundℓ+2, by the end ofℓ+3, by Statement2c, σx ∈ RTq,
soPTq(σxy) will never be set to⊥. A contradiction.

Proof of Statement3cof Item3 for Claim 2. The proof is identical to the proof of Statement3b with a small change,
except thatSPECIAL-BOT RULE does not produce a value that is different than⊥.

➤ Consider the case thatp usedRELAXED RULE to putσx: In this case whenp applies the rule, all its children
nodes are inPTp. By induction (Statement3d), none of these children nodes will appear with a conflictingvalue in
PTq. Sincen−t−1 of them are with the same valued′, then at mostn−ℓ−(n−t−1) = t−ℓ+1 are with a different
value. RELAXED RULE is applied only whenℓ ≥ 1. This immediately implies that Statement3b and Statement3c
hold.

We completed the proof of the first 3 statements. We now prove the last one.

Proof of Statement3dof Item3 for Claim 2. If |σx| ≥ 1, then Statement3band Statement3cclearly prove that State-
ment3dholds, unlessp usesSPECIAL-BOT RULE to putσx. The proof above covers the case thatq uses any rule other
thanSPECIAL-BOT RULE, by symmetry betweenp andq in this statement. Thus, we are left with the case that both
are usingSPECIAL-BOT RULE, and clearly both put⊥.

We are left to consider the case|σx| = 0, thusσx = ǭ. For that we need to consider all put rules thatp andq may
have applied. There are 3 applicable rules,IT-TO-RT RULE, RESOLVE RULE, andSPECIAL-ROOT-BOT RULE, to put
a value tōǫ. Notice thatSPECIAL-BOT RULE andRELAXED RULE are not applicable andEARLY IT-TO-RT RULE, or
STRONG IT-TO-RT RULE were covered in Statement2c.

Nodeǭ hasn children nodes, out of which at leastn− t are correct and out of thet others, at mostφ are actively
faulty and at leaset − φ are silent. Notice that for̄ǫ, every child node that is inRTp is also inPTp, since once we
assign a value tōǫ we do not process any other node.

➤ Consider the case thatp usedEARLY IT-TO-RT RULE or STRONG IT-TO-RT RULE to put a value tōǫ: Both rules
imply thatp sees a unanimous echoing by alln processes, with the exception of at most one process. Since we assume
that all correct processes participate, there is no way thatq will put a different value tōǫ.

➤ Consider the case thatp usedIT-TO-RT RULE to put ǭ and thatRTp(ǭ) = ⊥: The basic arguments are the same
as in the caseℓ ≥ 1, but the set of put rules thatq may apply differ. Ifq also usesIT-TO-RT RULE, then the claim
clearly holds. Ifq usesSPECIAL-ROOT-BOT RULE, then it obtains the same value. So we are left with the case ofq
usingRESOLVE RULE. The arguments are the same as in the caseℓ ≥ 1, which exclude the possibility thatq puts any
value other than⊥ to ǭ, completing the proof of this case.

➤ Consider the case thatp usedIT-TO-RT RULE to put ǭ and thatRTp(ǭ) = d, d 6= ⊥: We now need to consider
the possibility ofq usingIT-TO-RT RULE, RESOLVE RULEandSPECIAL-ROOT-BOT RULE. The arguments for the first
two are the same as above and are left out.

For usingSPECIAL-ROOT-BOT RULE nodeq should have a setVq, |Vq | = t + 1, such that for eachv ∈ Vq,
RTq(v) = ⊥. Notice that also here there is no difference betweenRTq(v) andPTq(v).

16

The IT-TO-RT RULE implies that inITp there is a setVp of n− t voters of(ǭ, ǫ, d). Eachv ∈ Vp has a set ofWv

of n − t children nodes such thatv is a supporter to eachu ∈ Wv on (ǭ, ǫ, d), and each suchu has a setUu of n − t
supporters inITp to (ǭ, ǫ, d). Each of these sets of sizen− t contains at leastt+ 1 correct nodes. Thus, there is a set
U⊥ of size at mostt that does not have at leastt+ 1 correct supporters to(ǭ, ǫ, d).

Thus, there should be a processx ∈ Vq that has a setUx of n− t supporters inITp to (ǭ, ǫ, d). The set contains a
setŪx of at leastt + 1 correct processes that are also supporters inITq to (ǭ, ǫ, d). Consider the various rulesq can
apply to put a value⊥ to RTq(x). By the end of the 2nd round it can applyEARLY IT-TO-RT RULE to set a⊥ to it,
because all processes in̄Ux send a different value. For that reason it can’t applyIT-TO-RT RULE in the end of round
3 to put value⊥ to RTq(x). By the end of round 4 for every processy ∈ Ūx PTq(xy) = d. Processq can’t apply
SPECIAL-BOT RULE to put a value⊥ to x, since that rule is not applicable for|x| = 1. RESOLVE RULE, RELAXED

RULE or STRONG IT-TO-RT RULE, can’t be used to put⊥. Since we assume thatk < φ, the caseφ = 1 is not relevant,
Therefore alsoROUND φ+ 1 RULE can’t be applied either - and we are done.

➤ Consider the case thatp usedRESOLVE RULEto put ǭ: If q usesIT-TO-RT RULE, by symmetry we are done. If
q also usesRESOLVE RULE, by definition both obtain the same value. We are left with thecase thatq usesSPECIAL-
ROOT-BOT RULE. The interesting case is thatRTp(ǭ) = d, d 6= ⊥. Observe that we cannot use the induction onk = 1
since the set of applicable rules differ. The arguments for proving the case are similar to the previous case, the case of
IT-TO-RT RULE, sinceq can’t applySPECIAL-BOT RULE to any node in level1.

➤ Consider the case thatp usedSPECIAL-ROOT-BOT RULE to put ǭ: If q also uses it the claim holds. Otherwise it
falls into the other rules discussed above.

This completes the proof of Statement3d .

This completes the proof of Item3 (Safety) forClaim 2.

Proof of Item4 for Claim 2. (Liveness) It is enough to prove that ifp ∈ G putsσx ∈ PTp in some roundr ≤ k, then
by the end of roundmax(r + 2, φ+ 1) σx ∈ RTq, for everyq ∈ G.

We prove the lemma by backward induction onℓ = |σx|, from ℓ = k to ℓ = 1. As in the proof of Item3, the claim
clearly holds forℓ = k, since no node of levelk, k < φ + 1 can be added toPT by the end of roundk. The case
ℓ = k − 1 is applicable only toEARLY IT-TO-RT RULE, and is covered by the proof of Statement2c.

Assume the induction for anyk ≥ ℓ′ > ℓ and we will prove forℓ, ℓ ≤ φ− 1. If σx contains a correct node then by
induction on Item2 we are done. So assume that there is no correct process inσx. Let p be the first to putσx, where
σx ∈ PTp, and letr be the round at which it did that. Consider the various possible put rules.

➤ Casep appliedEARLY IT-TO-RT RULE, or STRONG IT-TO-RT RULE Statement2c implies the proof.

➤ Casep appliedIT-TO-RT RULE: By definition, this can happen only in roundr = ℓ + 2. The IT-TO-RT RULE

implies that there aret+ 1 correct voters of(σ, x, d) in ITp, each havingn− t nodes, each of which is confirmed on
(σ, x, d) in ITp. LetUx be the set of the confirmed nodes on(σ, x, d) in ITp andVe the set of correct voters. Observe
thatUx contains at leastt+ 1 correct processes.

If by roundr + 1 σx ∈ RTq we are done. If not, then if for anyu ∈ Ux σxu ∈ RTq, it should be inPTq, and it
should be with a valued, because of using eitherIT-TO-RT RULE, EARLY IT-TO-RT RULE, or STRONG IT-TO-RT RULE

by q, and it can’t obtain a different value, because of the correct processes inUx andVe.

If by roundr+ 2 σx ∈ RTq we are done. If not, Item2 implies that bymax(r + 2, k) all voters inVe will appear
in RTq asRT-voters on(σ, x, d), since the nodes inUx will be confirmed to(σ, x, d). These arguments and Item3
imply that if any of them is colored, it should be colored tod. Therefore,q can applyRESOLVE RULE to addσx to
PTq and we are done.

➤ Casep appliedRESOLVE RULE: By definition, assuming that no branch closing took place, this can happen
only in some roundr ≥ ℓ + 4. Assume first thatℓ ≥ 1, we later deal with smaller values ofℓ. If by the end of round
r + 2 processq puts a value toσx or to a predecessor ofσx, we are done. Otherwise, by the induction hypothesis,
by r + 2, each node involved in applyingRESOLVE RULEby p to σx in PTp is either colored or its value put byq in
RTq. We will show that byr + 2 processq can apply one of the rules to put a value toσx in PTq.

LetVp be that set of children nodes ofσx that areRT-confirmed tod′ in RTp. By Statement3d, for everyv ∈ Vp,
if σxv ∈ PTp andσxv ∈ PTq, thenPTp(σxv) = PTq(σxv).

17

None of the nodes inVp can be confirmed to a different value thand′ in RTq, unless it was put byq to a different
value. If d′ 6= ⊥ this can happen to the value of⊥ and by Statement3a, this can happen only usingSPECIAL-BOT

RULE. Thus, there can be at most one such nodez ∈ Vp that was set to⊥ by q.

If none was set usingSPECIAL-BOT RULE, then byr + 2 processq should see the same set of voters thatp did
and is able to applyRESOLVE RULE. Otherwise, it should have applied theSPECIAL-BOT RULE to one of the nodes in
Vp. Before it can applySPECIAL-BOT RULE, all other children nodes ofσx should be put to a value. After applying
SPECIAL-BOT RULE to nodeσxz all the children nodes ofσx have a value inRTq. For everyy ∈ Vp the value isd′,
soq, by that time, would have at leastn − t − 1 children nodes set tod′. Thus,q can applyRELAXED RULE to put a
value toσx and the claim holds.

In the case ofℓ = 1, by definitionq can’t applySPECIAL-BOT RULE to set a value toz. And therefore it should
have been able to useRESOLVE RULEto set a value toσx. The case ofℓ = 0 is similar to the case ofℓ = 1.

➤ Casep appliedRELAXED RULE: sincep applies this rule, all the children nodes ofσx are put to a value inPTp

and by induction byr + 2 also atq. If σx ∈ RTq, we are done. Otherwise, by Statement3d their value is the same as
for p and processq can also applyRELAXED RULE.

➤ Casep appliedSPECIAL-BOT RULE or SPECIAL-ROOT-BOT RULE: exactly as in the previous case.

This completes the proof of Item4 (Liveness) forClaim 2.

This completes the proof ofClaim 2.

We can now complete the proof of the Theorem by covering the case ofk ∈ {φ, φ+ 1}

Proof ofClaim 3. We cover both cases for each item.

Proof of Item1 for Claim 3. (Detection) There is no special issues that surface in the last two round regarding detec-
tion, and the proof for the casek < φ holds.

Proof of Item2 for Claim 3. (Liveness)

➤ Consider the casek = φ: There is no difference between the arguments for this case and those ofk < φ.

➤ Consider the casek = φ + 1: If |σx| = φ and if any correct process is not sending in this round it is because
of applying theRT [r − 3] limitation, and by induction we are done. Otherwise, ifz sends, thenROUND φ + 1 RULE

completes the proof. The case|σx| < φ is identical to that ofk < φ.

The proof of Statement2bis similar to the case in which a correct process sends⊥ in the first round (Statement2a).

Proof of Item3 for Claim 3. (Safety) Item3 is not applicable in casek = φ+ 1.

Consider the casek = φ. The case|σx| = φ: A value to a node at this level can’t be put at any round≤ φ. Observe
that two correct processes may put conflicting values in their RT to a nodeσxy at levelφ+1 that is associated with a
faulty process, since they may have conflicting values in their IT for that node. This may happen only if there wasn’t
any correct predecessor ofx in σ, since Item2 implies that before assigningy a value it would already be colored. By
Property 1, there is no conflict on all thet − φ faulty nodes that are initially inFA. Thus, there can be at most one
faulty node in levelφ+ 1. Item2 also implies that during roundφ+ 1 nodeσx will be assigned a value by all correct
processes, and therefore so will nodeσxy.

Statement3ais not applicable in the case of|σx| = φ.

Proof of Statement3c for Claim 3. Nodeσx was put to⊥ by processp. By the assumption of Statement3c, SPECIAL-
BOT RULE wasn’t applied.ROUNDφ+1 RULE is not applicable, since we are in levelφ. IT-TO-RT RULE andRESOLVE

RULE are not relevant, since there is only a single level of nodes in IT or RT. SPECIAL-ROOT-BOT RULE is relevant
only for the case ofσx = ǭ, which can’t happen for|σx| = φ. If processp usesEARLY IT-TO-RT RULE, or STRONG IT-
TO-RT RULE, then similar arguments to those used in the proof of Statement 2ccan be used.

We are left withRELAXED RULE. Nodeσx hasn − t − 1 children nodes inRTp all having the value⊥ and all
but one are clearly correct nodes. Since there are exactlyn − φ − 1 nodes in levelφ + 1, and there can be at most

18

n− φ − 1 − (n − t − 2) = t − φ + 1 nodes holding a non⊥ value. Thus, nodeq can’t havet+ 1 or more children
nodes with a value not⊥ when it applies it’s put operation; Completing the arguments for Statement3c.

Proof of Statement3b for Claim 3. Nodeσx was put tod, d 6= ⊥ by processp. Thus, SPECIAL-BOT RULE is not
applicable and, as in Statement3c, we are left withRELAXED RULE. Nodeσx hasn − t − 1 children nodes inRTq

all having the valued and all but one are clearly correct nodes. Since there are exactly n− φ− 1 nodes in levelφ+1,
and there can be at mostn − φ − 1 − (n − t − 2) = t − φ + 1 nodes holding a nond value. Thus, nodeq can’t
havet + 1 or more children nodes with a value notd when it applies it’s put operation; completing the arguments for
Statement3b.

Proof of Statement3d for Claim 3. Cased = ⊥, if σx ∈ PTq, then by Statement3c, the only applicable rules forq
areRELAXED RULE, or SPECIAL-BOT RULE. Both will result in validating the claim. Cased = 6⊥, if σx ∈ PTq, then
by Statement3b it is clear that the only possible rule to be applied isRELAXED RULE, which results in validating the
claim for Statement3d.

For node|σx| < φ − 1 identical arguments to those used in the proof ofClaim 2 complete the proof of Item3
(Safety) forClaim 3.

Proof of Item4 for Claim 3. (Liveness) The arguments for this item are the same fork = φ andk = φ + 1. As
we mentioned before, it is enough to prove that ifp ∈ G putsσx ∈ PTp in some roundr, then by the end of
max(r + 2, φ+ 1) σx ∈ RTq, for everyq ∈ G. The proof is by backward induction onℓ = |σx|.

Caseℓ = φ + 1. The only round at which a process can put a value to a node in level φ + 1 in it’s RT is during
roundφ+ 1. At that round, every correct process that doesn’t haveσx in itsRT as a colored node, will insert it to its
RT usingROUND φ+ 1 RULE.

Caseℓ = φ. Eitherp usedEARLY IT-TO-RT RULE, or STRONG IT-TO-RT RULE or it set the value in roundφ + 1.
If it usedEARLY IT-TO-RT RULE, or STRONG IT-TO-RT RULE, then Statement2c completes the proof. Now we need
to consider the various potential put rulesp applied in roundφ + 1 in order to put the value forσx. IT-TO-RT RULE

andRESOLVE RULEare not applicable in this case.

➤ Casep appliedRELAXED RULE: If exists a correct process inσ then by Item2 we are done. Ifx 6∈ G then all
children nodes ofσx are either correct or silent, and ifp applies the rule, every correct process can apply the same
rule. If x ∈ G, then there aren − t − 1 correct children nodes ofσx, all of which will send the same value, and all
will apply theRELAXED RULE, completing the proof of this case.

➤ Casep appliedSPECIAL-BOT RULE: using similar arguments as above, this case is applicable only if x 6∈ G,
and as the arguments above show, if any correct process applies this rule, all will.

For node|σ| < φ−1 identical arguments to those used in the proof ofClaim 2complete the proof of this case.

This completes the proof ofClaim 3.

We now prove the theorem for the case ofφ = 1.

By assumption there is at most one faulty process, sayb, that doesn’t appear inFA of any correct process. There
are at most two rounds of information exchange.

In the first round every process sends its input value. By the end of the first round, at everyz, ITz(ǭ) = dz .
ITz(z) = dz, and for everyx ∈ N \ Fz, ITz = dx, wheredx is the value received fromx, and for everyy ∈ Fz,
ITz = ⊥. The only rule that may be applied by a correct process by the end of this round is theEARLY IT-TO-RT

RULE.

Assume thatz applies theEARLY IT-TO-RT RULE by the end of round 1. This can happen only when all inputs
are⊥ or whenFz = ∅ and all input values are identical. If this happen,z setsRTz(ǭ) = ITz(ǭ) = dz . z does not
send any message in round 2. Following that, every correct processp that doesn’t stop sends to every process the set
of values it entered toITp(x) for everyx ∈ N. If a correct processz stops, all these values are identical, other than
the values associated withb. Moreover, forz and any other correct process that did not send a message, allcorrect
processes add to theirIT the same value for it. By the end of round 2, every correct process,p, that did not stop

19

appliesROUND φ + 1 RULE to copyITp(σ), for σ ∈ Σ2 to RTp(σ). By the previous discussion it is clear that all
will have identical values regarding all node, other than maybe the nodes onσ that includeb. Therefore, every correct
processp will be able to applyRELAXED RULE and will put the same value tōǫ.

This discussion shows, implicitly that all the items of the theorem hold for this case.

Now consider the case that no correctz stopped at the end of round 1. In the second round every correct process
sends to every process the set of values it entered toITp(x) for everyx ∈ N. By the end of round 2 every correct
process,p, appliesROUND φ + 1 RULE to copyITp(σ), for σ ∈ Σ2 to RTp(σ). By the end of the second round, for
everyp, q, z correct processesRTp(zp) = RTp(zq) = RTq(zp).

Sinceb is the only potentially faulty process we conclude that for everyp, q, z ∈ N \ {b}, RTp(bz) = RTq(bz).

We now show that the theorem holds in this case.

To prove that Item2 (Validity) holds, let’s look at its three statements. Statement2cvacuously holds. Statement2a
holds, since for every correct process that sends in the lastround there is consensus. For everyp in G that sends in
the first round, as we mentioned before, all processes, butb, sent the same valuedp thatp sent in the first round, and
by applyingRELAXED RULE, which can be applied to nodep, all reach consensus. For everyp ∈ FA, the same
arguments hold.

To prove that Item3 holds, let’s look at its four statements.

Proof of Statement3awhenφ = 1. By definition, nodep, p ∈ G, can applyRESOLVE RULEonly on nodēǫ. Assume
it resolved tod, d 6= ⊥.By definitionp observed at least 2 processes as voters tod, and it identifiedn−tRT-confirmed
nodes. All correct processes among them will never resolve to ⊥. The only possibility that another correct processq
can resolve any to⊥ is nodeb. If nodeb is RT-confirmed, it has at least 2 children nodesx, y such thatRTp(bx) =
RTp(by) = ⊥. Since bothx andy are necessarily correct processes, we conclude thatRTq(bx) = RTq(by) = ⊥.
Moreover, for allRT-confirmed nodesz in RTp, except of nodeb, RTp(z) = RTq(z) = d, since all are correct. The
only ruleq may be able to apply to resolveb to ⊥ is SPECIAL-BOT RULE. But SPECIAL-BOT RULE is not applicable
to nodes of level 1.

Proof of Statement3band Statement3cwhenφ = 1. These statements clearly hold sincePTp is defined only for
nodes in level 1, andPTq is not defined for levelφ+ 1.

Proof of Statement3dwhenφ = 1. Consider three cases, ifx ∈ G, then by Item2 we conclude equality. Consider
the case thatx = b. In this case, as we wrote above, for everyp, q, z ∈ N \ {b}, RTp(bz) = RTq(bz). Therefore, ifp
applied a rule to concludeb ∈ PTp, so will q. We are left with the case ofx = ǭ. As we just proved, on every node of
level 1,p andq agrees. All but one of them are nodes associated with correctprocesses. The only node on level 2 on
which p andq differ is nodexb. But because of coloring, both color nodexb by the value ofx. Therefore, on every
nodeσ, |σ| ≥ 1 if σ ∈ RTp, thenσ ∈ RTq. Therefore, every rulep applies holds also forq. This completes the proof
of Statement3d.

To prove that Item4 holds consider the 3 possible levels.ROUND φ+ 1 RULE implies that it holds for levelφ+ 1.
Statement3dproves the rest of the cases.

To prove that Item1 holds observe that byProperty 1, it holds initially. In the first round, no detection takes place.
In the 2nd round, no correct process suspects any other correct process.

This completes the proof ofTheorem 2.

The following Theorem summarizes the properties needed from our protocol.

Theorem 3. For a (t, φ)-adversary and protocolDφ andn ≥ 3t+1 and assuming that all correct processes participate
in the protocol:

1. Every correct process outputs the same value.
2. If the input values of all correct processes are the same, this is the output value. Every correct process outputs

it by round2 and stops by round3.

20

3. If t+1 of the correct processes hold an input value of⊥, then all correct processes output⊥ by the end of round
3 and stop by the end of round4.

4. If the actual number of faults isfφ < φ, then all correct processes complete the protocol by the endof round
fφ + 2.

5. If the actual number of faults isfφ = 0, and all correct processes start with the same initial value, then all
correct processes complete the protocol by the end of round1.

6. If the actual number of faults isfφ = 1, and all correct processes start with the same initial value, then all
correct processes complete the protocol by the end of round2.

7. If a correct process outputs in roundk, it stops by the end of roundk + 1.
8. If a correct process stops in the end of roundk, all correct processes output by roundk + 1 and stop by round

k + 2.

Proof ofTheorem 3.
Proof of Statement1: By definition a correct process outputs a value once it identifies a frontier. It is clear that by
the end of roundφ+ 1 there is a frontier for every correct process. Define the front of RT to be:σx is in the front of
RT if existsp ∈ G such thatσx ∈ RTp and for everyq ∈ G, σ 6∈ RTq. Theorem 2implies that ifσ is in the front of
processp, within two rounds it will be in the front of any other correctprocess. Since all correct processes shares the
front, then if ǭ ∈ RTp, it will be at every other correct process and vice versa. Since a process does not stop for two
rounds after it holds a frontier the first claim holds.

Proof of Statement2: Lemma 1proves the second claim.

Proof of Statement3: The proof ofTheorem 2implies thatSPECIAL-ROOT-BOT RULE can be applied by the end of
round 3 if there aret+ 1 correct processes that start with input⊥. Thus, the third claim holds.

Proof of Statement4: Observe that if the actual number of faults isfφ andfφ < φ, then for everyσ ∈ Σφ+1 there is a
prefix of lengthk, k ≤ fφ+1 in which a correct process appears as the last node. Ifk ≤ φ− 1 then byTheorem 2, by
k + 2 every correct process will have that prefix in itsRT and will be able to applyDECAY RULE to close the branch
by the end of roundφ+ 2.

Consider a prefixτp of lengthφ+1. By assumptionτ contains all faulty processes. Therefore, by the end of round
φ + 2, every correct process will be able to applyEARLY IT-TO-RT RULE to addτp to RT and will close the branch.
Observe that sometimes more than one rule can be applied, butsince we go down from the later rounds to the earlier
ones, we happen to close the branch earlier.

We are left with the case ofτp of lengthφ. There is at most one corrupt node, sayx, that can send values relating
to τp that will be added to theIT of correct processes in roundsφ + 1 and roundφ + 2. In roundφ + 1 all correct
processes becomes children nodes and by the end of roundφ + 2 all will add τp to theirPT and would be able to
applySTRONG IT-TO-RT RULE to close the branch.

Thus, in all cases, by the end of roundφ+ 2 all correct processes will close all branches and can outputa value.

Proof of Statement5: since there are no faults, all correct processes applyEARLY IT-TO-RT RULE by the end of the
first round to set a value tōǫ.

Proof of Statement6: since there is a single fault, all correct processes applySTRONG IT-TO-RT RULE by the end of
the 2nd round to set a value toǭ.

Proof of Statement7: The branch closing rules immediately imply that there can be at most one round between
adding the final value toRT that produces the frontier, thus providing output, and closing of all branches that imply
stopping the protocol.

Proof of Statement8: The first part of the statement holds, since ifp stops by the end of roundk, it doesn’t send
anything in roundk + 1. Theorem 2(Statement2c) imply that by the end of that round every correct process will
output a value, and by the previous statement all will stop bythe end ofk + 2.

4 Monitors

We follow the approach of [BG93, GM93, GM98] with some modifications for guaranteeing early stopping.

21

In roundr = 1 we runDt using the initial values. For each integerk, in round1 < r = 1+ 4k < t− 1 we invoke
protocolDt−1−4k whose initial values is either⊥ (meaning everything is OK) orBAD (meaning that too many corrupt
processes were detected). We call this sequence of protocols thebasic monitor sequence. We will actually run 4 such
sequences.

4.1 The Basic Monitor Protocol

Each processz stores two variables:v ∈ D, the current value, andearly, a boolean value. Initiallyv equals the initial
input of processz andearly := false . Later,early = true will be an indicator that the next decision protocol must
decide⊥ (because there is not enough support forBAD). Each process remembers the last value ofearlyq it received
from every other processq, even ifq did not send one recently.

Throughout this section we use the notation:r̄ ≡ r (mod 4).

Algorithm 1: The Basic Monitor protocol (at processz)
1: if r̄ = 1:
2: if r < t − 1 then invokeprotocolDt+1−r with initial valuevz ;
3: if r̄ = 2:
4: at the end of the round:
5: if |FA| ≥ r + 3 thensetvz := BAD

6: otherwisesetvz := ⊥;
7: if r̄ = 3:
8: sendvz to all;
9: at the end of the round:

10: if |{q | vq = BAD}| ≤ t thensetearlyz := true

11: otherwisesetearlyz := false ;
12: if r̄ = 0:
13: sendearlyz to all;
14: at the end of the round:
15: if |{q | earlyq = true}| ≥ t+ 1 thensetvz := ⊥;
16: if every previously invoked protocol produced an output then setvz := ⊥.

The monitor protocol runs in the background until the process halts. The monitor protocol invokes a newDφ

protocol every 4 rounds. In each round, the monitor’s lines of code are executed before running all the other protocols,
and its end of round lines of code are executed before ending the current round in all currently running protocols.
This is important, since it needs to detect, for example, whether all currently running protocols produced outputs for
determining its variable for the next round. At the end of each round the monitor protocol applies the monitorhalting
and monitordecision rules below to determine whether to halt all the running protocols at once, or only to commit to
the final decision value.

When a process is instructed to apply a monitordecision it applies the following definition. If it is instructed to
halt (monitorhalting), then if it did not previously apply the monitordecision, it applies monitordecision first and then
halts all currently running protocols that were invoked by the monitor at once.

Definition 1 (monitordecision). A process that did not previously decide,decidesBAD, if any previously invoked
protocol outputsBAD. Otherwise, it decides on the output ofDt.

When a process is instructed to decide without halting, it may need to continue running all protocols for few more
rounds to help others to decide. We define “halt byr+ x” to mean continue to run all active protocols until the end of
roundmin{r + x, t+ 1}, unless an halt is issued earlier.

4.2 Monitor Halting and Decision Conditions

Given that different processes may end various invocationsof the protocols in different rounds we need a rule to make
sure that all running protocols end by the end of roundf + 2. The challenge in stopping all protocols by the end

22

of f + 2 is the fact that individual protocols may end at roundf + 2 and we do not have a room to exchange extra
messages among the processes. This also implies that we needto have a halting rule at every round of the monitor
protocol, sincef + 2 may occur at any round.

Each halting rule implies how other rules need to be enforcedin later rounds, since any process may be the first to
apply a monitorhalting at a given round and we need to ensure that for every extension of the protocols, until everyone
decides, all will reach the same decision despite the fact that those that have halted are not participating any more. The
conditions take into account processes that may have halted. A process considers another one as halted if it doesn’t
receive any message from it in any of the concurrently running set of invoked protocols, monitors and the gossiping of
F .

To achieve that we add the following set of rules.

Monitor Halting Rules:
HBAD . Apply monitorhalting if any monitor stops with outputBAD. Otherwise if any monitor outputsBAD, apply

monitordecision now and monitorhalting byr + 2.
H1. Casēr = 1:

(a) If all previously invoked protocols stopped, apply monitorhalting.
(b) Otherwise, if only the latest invoked protocol did not stop and|{q | earlyq = true or q halted}| ≥ n− t,

then apply monitorhalting.
(c) Otherwise, if only the latest invoked protocol did not stop and|{q | earlyq = true or q halted}| ≥ t + 1,

then apply monitordecision now and monitorhalting byr + 2.
H2. Casēr = 2:

(a) If all previously invoked protocols stopped, apply monitorhalting.
(b) Otherwise, if only the latest invoked protocol did not stop and|{q | earlyq = true or q halted}| ≥ n − t

was true in the previous round, then apply monitorhalting.
(c) Otherwise, if only the latest invoked protocol did not stop and|{q | earlyq = true or q halted}| ≥ t + 1

was true in the previous round, then apply monitordecision and now and monitorhalting byr + 1.
H3. Casēr = 3: If all previously invoked protocols stopped, apply monitor halting.
H4. Caser̄ = 0: If all previously invoked protocols stopped and|{q | earlyq = true or q halted}| ≥ n − t then

apply monitorhalting.

Lemma 3. If n > 3t and there aref , f ≤ t, corrupt processes then all correct processes apply monitor halting by the
end of roundmin(t+ 1, f + 2).

Proof. We need to show that all previously invoked protocols halt bythe end of roundmin(t+1, f +2). Observe that
Theorem 3(Statement4), implies thatDt itself is stopped bymin(t+ 1, f + 2).

By definition, protocolDφ is invoked in roundrφ, whereφ = t + 1 − rφ. By Theorem 3(Statement4), Dφ is
stopped bymin(φ + 1, tφ + 2), if the upper bound on the number of faults (that were not detected by all correct
processes before invoking the protocol) istφ. Note that if the number of faults that are not detected by allis higher
thantφ the protocol may not stop byφ+ 1.

Let’s study the number of faults that are not detected by all correct processes whenDφ is invoked.Figure 1Line 3
indicates that if any correctp setvp := BAD in roundrφ − 3, then, byLemma 2, the number of faults that are not
detected by all correct processes whenDφ is invoked is at mostt − rφ. In such a case, byTheorem 3, Dφ will be
stopped by roundmin(φ+ 1, tφ + 2), wheretφ ≤ t− rφ. Let us call theseDφ regular-protocols.

If no correctp setsvp := BAD, then all correct processes invokeDφ with v = ⊥, therefore no matter how many
faults are present (as long as not more thant), Lemma 1guarantees thatDφ is stopped within 3 rounds, and all outputs
are obtained within 2 rounds. Let us call theseDφ fast protocols.

For regular-protocols we need to prove that the extra conditions hold. In addition, for fast-protocols we need also
to prove that the protocol that was invoked recently will also stop in time.

Let us consider ther (mod 4) round at whichmin(t+ 1, f + 2) falls.

Casemin(t + 1, f + 2) (mod 4) = 0: By H4 we need to show that all previously invoked protocols will bestopped
and that|{q | earlyq = true or q halted}| ≥ n− t, at every correct process.

23

For regular-protocols, since all are stopped by roundmin(t + 1, f + 2) then when correct processes executed
Line 3, just before stopping, none would setv := BAD. Therefore, all will setv to ⊥ and laterearly to true. Thus,
the extra property forH4 holds, and all will halt.

For fast-protocols, since no process setsv to BAD, every previously invoked protocol stops within at most 3 rounds
(Theorem 3, Statement2). The latest protocol was invoked 3 rounds ago, and we are done. The arguments for the
extra condition inH4 are the same as for the regular-protocols.

Casemin(t+ 1, f + 2) (mod 4) = 3: By H3 we need to show that all previously invoked protocols will bestopped.

The arguments for regular-protocols and for fast protocolsare the same, the latest invocation was two rounds ago,
and therefore, byTheorem 3(Statement2), by the end of the current round all will be stopped.

Casemin(t + 1, f + 2) (mod 4) = 2: By H2 we need to show that either all previously invoked protocolshave
stopped by the end of the current round, or all but the last oneand the extra condition holds.

If min(t + 1, f + 2) = t + 1, then no protocol was invoked in the previous round, by definition. All previous
regular or fast protocols will be stopped by the end of the current round.

If min(t+1, f+2) = f+2, by Theorem 3(Statement4), using similar arguments as above, all previous protocols
will be stopped by the end of the current round, except, maybethe last protocol that was invoked in the previous round.
Observe that correct processes set up theirv four rounds ago. Since the current round isf +2, then the round at which
the processes executed Line3 in Figure 1is f − 2 and therefore no process could have more thanf faults, and would
have setv := ⊥. Therefore, every correct process that haven’t halt yet would sendearly = true two rounds ago, and
therefore the extra condition forH2 holds.

Casemin(t + 1, f + 2) (mod 4) = 1: By H1 we need to show that either all previously invoked protocolshave
stopped by the end of the current round, or all but the last oneand the extra condition holds.

If min(t+1, f +2) = t+1, then no protocol was invoked in the current round, by definition. All previous regular
or fast protocols will be stopped by the end of the current round.

If min(t+1, f+2) = f +2, by Theorem 3(Statement4) using similar arguments as above, all previous protocols
will be stopped by the end of the current round, except, maybethe last protocol that was invoked in the previous round.
Observe that correct processes set up theirv three rounds ago. Since the current round isf + 2, then the round at
which the processes executed Line3 in Figure 1is f − 1 and therefore no process could have more thanf faults, and
would have setv := ⊥. Therefore, every correct process that haven’t halt yet would sendearly = true two rounds
ago, and therefore the extra condition forH1 holds.

Lemma 4. If the first process applies monitorhalting in roundr on d then every correct process applies moni-
tor decision by roundmin{r + 4, f + 2, t + 1}, applies monitorhalting by roundmin{r + 5, f + 2, t + 1}, and
obtains the same decision value,d.

Proof. Let p be a correct process applying monitorhalting in the earliest round that any correct process applies it.

Observe that in some of the halting rules a process decides before the last invoked protocol outputs a value. There
may be cases that one process halts and other processes continue to run and even invoke an additional protocol after
the halting. We later prove that whenever these cases happen, the decision value is the same and it notBAD. We show
that any protocol whose output is not taken into account by any correct process must output⊥.

Consider first the case thatp halts with outputBAD. By Theorem 3(Statement1 and Statement8), if p halts with
outputBAD and if the output of that protocol is not ignored by any correct process then all correct processes will output
BAD by next round and will halt within two rounds. This will lead to unanimous decision.

So pending on the fact that we later prove that any protocol whose output is not taken into account by any correct
process will output⊥, we are left to consider the case thatp does not outputBAD.

If r = min(t + 1, f + 2), we are done byLemma 3(andTheorem 3, Statement1). Since every correct process
considers the outputs of the same set of protocols, the decision value is the same at every correct process.

Consider the various halting rules used byp to apply monitorhalting, and letr be the round at which it was applied.

Casep usesH1: There are three possibilities, one in whichp noticed that all previously invoked protocols stopped. In
this case,Theorem 3(Statement8) implies that all correct processes will observe that all previously invoked protocols

24

reported output by the end ofr + 1 and will observe that all previously invoked protocols havestopped by the end of
roundr + 2 and will use ruleH3 to apply monitorhalting. All correct obtain the same decision value, since all will
consider the same set of protocols and, byTheorem 3(Statement1) and the decision rule, will decide the same.

Otherwise, whenp executed roundr it noticed that by the end of that round all previous protocols stopped and
only the one that started at the beginning of roundr did not stop yet and the values ofearly thatp received in round
r − 1 imply that |{q | earlyq = true or q halted}| ≥ n − t. Since no process halted earlier, in roundr − 1 every
correct process setsv := ⊥. By Lemma 1, the protocol that started in roundr will produce output of⊥ in roundr+1
at all correct processes that did not stop earlier, and will stop by roundr + 2. Thus, every correct process will apply
eitherH2 orH3 and will reach the same decision.

Otherwise, whenp executed roundr− 2 it noticed that by the end of that round all previous protocols stopped and
only the one that started at the beginning of roundr − 2 did not stop yet. Moreover,p received at the beginning of
roundr − 3, |{q | earlyq = true or q halted}| ≥ t+ 1. Since no correct halted earlier, the instruction to set thevalue
for early implies that there was a correct processq that set itsearlyq to true in roundr − 4. Thus,q received less
thant BAD. This implies that there aret + 1 correct processes withv = ⊥. Lemma 1, implies that the last protocol
starting in the beginning of roundr − 2 will output value⊥ by the end of roundr and stop by the end of roundr + 1.
By the end of roundr all correct processes will observe the outputs of all previously invoked protocols. Therefore,
by the end of roundr + 1 all correct processes that did not apply monitorhalting already, will either be able to apply
monitorhalting by the end of that round, or will setv := ⊥, since all previously invoked protocols produced output
and even stopped. Since the latest invoked protocol is guarantee to produce an output of⊥, those that have halted will
reach the same decision. Notice that those processes that donot halt will start another protocol in which every correct
process that invoked it has input⊥ and the rest are not participating. ByCorollary 1, by the end of roundr + 3 they
will decide the same decision value and will halt by the end ofroundr + 4.

Casep usesH2: As in the previous case, there are three possibilities, onein which p noticed that all previously
invoked protocols stopped. In this case,Lemma 1implies that all correct processes will observe that all previously
invoked protocols reported output by the end ofr+1 and have stopped by the end of roundr+2. Some may use rule
H3 or ruleH4 to apply monitorhalting and decide the same, and some will invoke the next protocol with input⊥ and
will reach the same decision by roundr + 4 and will halt by the end of roundr + 5.

Otherwise, whenp executed roundr it noticed that by the end of that round all previous protocols stopped and
only the one that started at the beginning of roundr − 1 did not stop yet and the values ofearly thatp received in
roundr − 2 imply that |{q | earlyq = true or q halted}| ≥ n − t. Since no correct process halted earlier, in round
r − 2 every correct process setsv := ⊥. The protocol that started in roundr − 1 will produce output of⊥ in roundr
and stop by roundr + 1. Thus, every correct process will reach the same decision andwill use ruleH3 to halt by the
end of roundr + 1.

Otherwise, whenp executed roundr − 1 it noticed that by the end of that round all previous protocols stopped
and only the one that started at the beginning of roundr − 2 did not stop yet. Moreover,p received in roundr − 3,
|{q | earlyq = true or q halted}| ≥ t + 1. And since no correct process halted earlier, as in the case for halting rule
H1, we are done.

Casep usesH3: Here we need to consider the case were all previously invoked protocols were stopped. In this
case every other correct process that did not apply monitorhalting in roundr will notice currently running protocols
producing outputs by the end of roundr + 1 (Theorem 3, Statement8) and stopping by the end of roundr + 2.
Therefore, by the end of in roundr + 1 every correct process that will not halt by the end of roundr + 1 will set
v := ⊥. Thus, all correct processes participating in the new protocol in roundr + 2 will have an input⊥, and every
correct process not participating will assume to have an input ⊥. Thus, (Corollary 1) by the end of roundr + 3 that
protocol produces an output, and all decides the same decision value and halt by the end of roundr + 4.

Casep usesH4: Here we need to consider the case where all previously invoked protocols were stopped, and, in
addition,p observes|{q | earlyq = true or q halted}| ≥ n − t, which leads to halting by the end of roundr. In
this case, every other correct process that did not apply monitor halting in roundr will notice all previously invoked
protocols producing outputs by the end of roundr+1 and stopping by the end of roundr+2 (Theorem 3, Statement8).
The property|{q | earlyq = true or q halted}| ≥ n− t implies that by the end of roundr + 1 or r + 2 every correct
process will notice|{q | earlyq = true or q halted}| ≥ t + 1. By the end of roundr + 1 all correct processes that

25

did not halt in roundr, but noticed that all previously invoked protocols stoppedby the end of roundr + 1 will apply
monitorhalting in that round. Those that will notice that all previously invoked protocols, except the one starting in
roundr + 1, have stopped, will apply monitorhalting. The same arguments as for the case of using ruleH3, the
decision value is identical at all correct processes.

By the end of roundr + 2, all other correct processes, that did not already apply monitor halting, will either
observe that all previously invoked protocols have stoppedand will apply monitorhalting, or will observe that all
previously invoked protocols except the one starting in round r + 1 have stopped and will have the condition that
|{q | earlyq = true or q halted}| ≥ t+ 1 and will apply monitordecision by the end of roundr + 2 and will halt by
the end of roundr + 3, thus potentially ignoring the output of the last protocol.Again, using previous arguments, all
decision values are the same.

Lemma3 and4 complete the correctness part ofTheorem 1. To simplify the polynomial considerations we look
at a pipeline of monitors.

4.3 Monitors Pipeline

The basic monitor protocol runs a sequence of monitors and tests the number of faults’ threshold every 4 rounds
(Line 5). This allows the adversary to expose more faults in the following round, and be able to further expand the tree
before the threshold is noticed the next time the processes execute Line5. To circumvent this we will run a pipeline of
3 additional sequences of monitors on top of the basic one appearing above. Doing this we obtain that in every round
r one of the 4 monitor sequences will be testing the threshold on the number of faults

Monitor sequencei, for 1 ≤ i ≤ 4 begins in roundi and invokes protocols every 4 rounds, in every roundr,
1 < r = i + 4k < t − 1, it invokes protocolDt−i−4k. Monitor sequence 1 is the basic monitor sequence defined
in the previous subsection. Each monitor sequence independently runs the basic monitor protocol (Figure 1) every 4
rounds. In the monitor protocol, the testr̄ = j, which stands for̄r ≡ r (mod 4) in the basic monitor sequence, is
replaced withr̄i = j, which stands for̄ri ≡ r + 1 − i (mod 4) = j (naturally only forr + 1 − i > 0). Each of the
four monitor sequences decides and halts separately, as in the previous section above.

Notice that protocolDt is invoked only by the basic sequence (Sequence 1). For each of the three other monitor
sequences, the decision rule is: decideBAD, if any invoked protocol (in this sequence) outputsBAD, and⊥ otherwise.
Observe that Lemma3 and4 hold for each individual sequence.

We now state the global decision and global halting rules:

Definition 2 (Global Halting). If any monitor sequence halts withBAD, or all 4 monitor sequences halt, the process
halts.

Definition 3. The globaldecision is the output ofDt, unless any monitor sequence returnsBAD, in which case the
decision isBAD.

The following are immediate consequences of Lemma3 and4 and the above definitions.

Corollary 2. If n > 3t and there aref , f ≤ t, corrupt processes then all correct processes halt by the end of round
min(t+ 1, f + 2).

Corollary 3. If the first correct process halts in roundr on d then every correct process applies globaldecision by
roundmin{r + 4, f + 2, t+ 1}, halts by roundmin{r + 5, f + 2, t+ 1}, and obtains the same decision value.

5 Bounding the size of the tree

Following the approach is [GM98], we make the following definitions:

Definition 4. A nodeσz ∈ Σ is fully corrupt if there does not existp ∈ G andσ′ ⊒ σz such thatσ′ ∈ RTp[|σz|+2].

26

Definition 5. A processz is becomes fully corrupt ati if exists a nodeσz ∈ Σ that is fully corrupt,|σz| = i and for
every previous node|σ′z| < i, nodeσ′z is not fully corrupt.

The following is immediate from the definitions above.

Claim 4. If processz becomes fully corrupt ati then of all the nodes ofΣ that end withz only nodes of roundi and
i+ 1 can be fully corrupt.

Proof. By definition of fully corrupt, all correct processes will have z ∈ F in roundi + 2. So in that round and later
all nodes will put⊥ in RT for z.

Let CT, thecorrupt tree, be a dynamic tree structure.CT is the tree of all fully corrupt nodes (note that due to
coloring, the set of fully corrupt nodes is indeed a tree). Wedenote byCT[i] the state ofCT at the end of roundi. By
the definition of fully corrupt, at roundi we add nodes of lengthi− 2 to CT.

We label the nodes inCT as follows: a nodeσz ∈ CT is aregular node if processz becomes fully corrupt at|σz|
andσz ∈ CT is aspecialnode if processz becomes fully corrupt at|σz| − 1.

Let αi denote the distinct number of processes that become fully corrupt at roundi. For convenience, define
α0 = 0 (this technicality is useful inLemma 7). Let A = α0, α1, . . . be the sequence of counts of process that
become fully corrupt in a given execution.

Following the approach of [GM98], we definewastei = (
∑

j≤i αi)− i. Sowastei is the number of processes that
became fully corrupt till roundi minusi (the round number). The following claim connectswastei to∩p∈GFA[i+3]p
the set of fully detected corrupt processes at roundi+ 3.

Claim 5. For any round4 ≤ r ≤ t+ 1, and any correct process we have|FA[r]| ≥
∑

j≤r−3
αi.

Proof. By the definition ofz becoming fully corrupt ati, all correct processes will havez ∈ F in roundi+ 2. Due to
the gossiping ofF , all correct processes will havez ∈ FA in roundi+ 3.

So if wastei ≥ 6 then in roundr = i + 3 we will have
(

∑

j≤i αi

)

− i ≥ 6 so byLemma 5for each correct

process we have|FA[r]| ≥ r + 3. In this case all correct processes will start in the associated monitor sequence the
next protocol with initial valueBAD and the protocol and monitor sequence and global protocol will reach agreement
and halt onBAD by roundi+ 6 (by Lemma 1).

We will now show that if the adversary maintains a small waste(less than 6 by the argument above, but this will
work for any constant) then theCT tree must remain polynomial sized.

The following key lemma shows that the adversary cannot increase the number of leaves by “cross contamination”.
In more detail, if the adversary causes two fully corrupt processes at roundi1 followed by a sequence of rounds with
exactly one fully corrupt process at each round followed by around with no fully corrupt process at that round then
this action essentially keeps the treeCT growing at a slow (polynomial) rate. We note that the focus on“cross
contamination” follows the approach of [GM98]. But they only verify the case of two fully corrupt followedby a
round with no fully corrupt. We have identified a larger family of adversary behavior that does not increase the waste
(in the long run). Our proof covers this larger set of behaviors and this requires additional work.

Lemma 5. Assume0 < i1 < i2 such thatαi1 = 2, αi2 = 0 and for all i1 < i < i2, αi = 1 then for any
σ ∈ Σi1−1 ∩ CT it is not the case that there existsσpτ ∈ Σi2+1 ∩ CT and there existsσqτ ∈ Σi2+1 ∩ CT (so there is
at most one extension). Moreover the size of the subtree starting fromσp or σq and ending in lengthi2+1 is bounded
byO((i2 − i1)

2).

See the additional analysis inSection 5.1.

To bound the size ofCT, we partition the sequenceA = α0, α1, . . . by iteratively marking subsequences using the
following procedure. For each subsequence we mark, we provethat it either causes the tree to grow in a controllable
manner (so the ending tree is polynomial), or it causes the tree to grow considerably (by a factor ofO(n)) but at the
price of increasing the waste by some positive constant. Since the waste is bounded by a constant, the result follows.

27

1. By Lemma 7we know that ifA contains a0(1)∗0 (a sequence starting with 0 then some 1’s then 0) then it
contains it just once as a suffix ofA. Moreover, this suffix does not increase the size of the tree by more than
O(n). LetA1 be the resulting unmarked sequence after marking such a suffix (if it exists).

2. Mark all subsequences inA1 of the form2(1)∗0 (a sequence starting with 2 then some 1’s then 0). ByLemma 5
each such occurrence will not increase the number of leafs inCT (but may add branches that will close whose
total size is at mostn2 over all such sequences). LetA2 be the remaining unmarked subsequences.

3. Mark all subsequences inA2 of the formX(1)∗0 whereX ∈ {3, . . . , t} (a sequence starting with 3 or a larger
number followed by some 1’s then 0). ByLemma 8each occurrence of such a sequence may increase the size of
the tree multiplicatively byO(n) leafs andO(n2) non-leaf nodes, but this also increases thewaste by c−1 > 1
(wherec is the first element of the subsequence). Observe that the remaining unmarked subsequences do not
contain any element that equals 0. LetA3 be the remaining unmarked subsequences.

4. Mark all subsequences of the formY (1)∗ whereY ∈ {2, . . . , t} (a sequence whose first element is 2 or a larger
number followed by some 1’s but no zero at the end). Again, byLemma 8each such occurrence may increase
the size of the tree byO(n) leafs andO(n2) non-leafs, but this also increases thewaste by c > 1. LetA4 be
the remaining unmarked.

5. SinceA3 contains no element that equals zero and we removed all subsequences that have element of value 2 or
larger as the first element thenA4 must either be empty orA4 is a prefix ofA of the form(1)∗ (a series of 1’s).
Since it is a prefix ofA then a sequence of 1’s keeps at most one leaf. So the tree remains small.

Thus, the size ofCT is polynomial, which byLemma 6bounds the size ofIT . This completes the proof of
Theorem 1.

5.1 Additional Analysis

The following lemma bounds the size ofIT as a function of the size ofCT timesO(n7).

Lemma 6. If σ ∈ IT and|σ| > 7 then there existsσ′
❁ σ with |σ′| ≥ |σ| − 7 such thatσ′ ∈ CT.

Proof. Seeking a contradiction letσ = σ′τ be of minimal length such thatσ ∈ IT , |σ| > 7, |τ | = 7 and there does
not existσ′τ ′ ∈ CT such thatτ ′ ⊑ τ .

Let w be the first element inτ soσ′w ⊑ σ′τ then sinceσ′w /∈ CT then by definition, some correct process will
haveσ′w ∈ RT [|σ′w|+2]. By Theorem 2statement4 all correct processes will haveσ′w ∈ RT [|σ′|+5 and will close
the branchσ′w by round|σ′|+ 6 (seeDECAY RULE) a contradiction to the assumption thatσ ∈ IT and|τ | = 7.

The following lemma shows that the protocol stops early if the adversary causes two rounds with no new fully
corrupt and only one fully corrupt per round between them.

Lemma 7. If exists0 ≤ i1 < i2 such thatαi1 = 0, αi2 = 0 and for all i1 < i < i2, αi = 1 then all processes will
halt by the end of roundi2 + 5.

Proof. The only fully corrupt process that can appear in roundi1+1 is the new one fromαi1+1 = 1 (becauseαi1 = 0
and a process can be as a node inCT for only two rounds starting from the first round it is fully corrupt). A simple
induction shows that at roundi1 + j only the new fully corrupt node of roundi1 + j can appear. Once we reach round
i2 then no node can be fully corrupt so all branches will close and all processes will halt by the end of roundi2+5.

We now prove the main technical result of this sectionLemma 5. It shows that having two fully corrupt then a
series of one fully corrupt then a round with no fully corruptdoes not increase the number of leafs in the tree. This
can add some non-leaf nodes to the tree, but the overall addition of such nodes is bounded by a multiplicative factor
of O(n2) over all such sequences.

Proof of Lemma5. Let processesp, q be the two that become fully corrupt ati1. We begin with the case thati2 = i1+1
such that there is no process that becomes fully corrupt ati2. Consider anyσ ∈ CT where|σ| = i1− 1. The following
is the subtree ofσ ∈ CT that we will analyze:

28

σ

p

q

q

p
The following analysis for processp shows that eitherσp or σq or σqp will quickly be in RT . Note that this

implies thatp, q can extend any nodeσ ∈ CT into at most one node of lengthi2 in CT.

Let correctDetectorbe the set of correct processes that detectσp via theNot Voter detection rule in round|σp|+1.
Let correctVoterbe the remaining correct processes (that are not incorrectDetector). Note that by definition ofNot
Voter, the value of all those incorrectVotermust be the same. Letd be this value.

For eachσpu ∈ Σ with u 6= q we have thatσpu /∈ CT (becauseαi1 = 0). So σpu ∈ RT [|σpu| + 2] for
some correct processes and hence their value is fixed (otherwiseσp ∈ RT and we are done) and all correct processes
will have σpu ∈ RT[|σp| + 5]. Let faultyEchobe the set of corrupt children ofσp whose value is fixed tod. Let
faultyEchoOtherbe the remaining corrupt process that are children ofσp whose value is fixed to6= d. Note thatσp has
n− |σp| children of which all but childσpq must be fixed. Hence|faultyEcho |+ |faultyEchoOther | ≥ n− |σp| − 1.

There are three cases to consider:

Case 1: If |correctV oter|+ |faultyEcho| ≥ n− t− 1 thenσp ∈ RT [|σp|+ 5] for all correct processes since all
thesen− t− 1 children ofσp will appear inRT [|σp|+ 5] and soσp ∈ RT [|σp|+ 5] using theRELAXED RULE.

Otherwise,|correctV oter|+|faultyEcho | ≤ n−t−2 so it must be that|correctDetector|+|faultyEchoOther| ≥
t+ 1 − |σp| = t + 2− |σpq|. This is becauseσp hasn− |σp| children and each one of them except of childq must
fix their value inRT [|σp|+ 3].

Case 2: If |correctDetector| ≥ t + 2 − |σpq| thenSPECIAL-BOT RULE will fire on the leveli1 + 1 nodeσqp.
This will occur because all other children ofσq are not fully corrupt - hence will appear inRT [|σq| + 5]. The only
case in whichSPECIAL-BOT RULE may not fire is if in the meantimeσq ∈ RT in which case we are done.

Case 3: It must be thatcorrectDetector ≤ t, hencecorrectVoter ≥ t + 1 on valued (becauseσ contains no
correct process). SincecorrectV oter ≥ t + 1 then all correct processes will see thatσp is leaning towardsd (see
definitions 3. and 4. in the fault detection rules).

For anyw ∈ faultyEchoOther , sincew does not become fully corrupt ati1 or i1 + 1 it must be that are at least
t + 1 correct processes that are children ofσpw that hear fromσpw a valued′, d′ 6= d. So the conditions ofNot
Masking for σpw hold.

This implies thatw is ‘forced’ to send⊥ for σqpw to all correct processes. For ifw sendsd′ 6= ⊥ to any correct
processes forσqpw then byNot Masking rule at round|σpw|+2 = |σqpw|+1 these correct processes will detectw
as corrupt and in the same round maskσqpw to⊥.

Therefore there will be|correctDetector|+ |faultyEchoOther| ≥ t+2− |σqp| children ofσqp that will appear
in IT with value⊥ and since there is no process that becomes fully corrupt ati1 + 1 = i2 then all other children of
σq must appear inRT [|σq| + 5]. So theSPECIAL-BOT RULE will fire on the leveli1 + 1 nodeσqp. This completes
the proof for the casei1 − i2 = 1.

We can now consider the case wherei1 − i2 > 1. The key observation is that the above argument required two
properties for a processz that becomes fully corrupt at roundi. The first is that all the leveli nodes of the formσz
have all their children (except one) fixed to some value. The second is that the leveli + 1 nodes of the formσ′z have
the property that all other children ofσ′ are fixed.

Intuitively, if a child σzu is fixed to the majority value ofσz thenσzu will help fix σz using the relaxed rule.
Otherwise,σzu is fixed to somed′, which implies that at leastt + 1 correct processes receivedd′ from σzu. Hence
σzu must be a masker for the roundi+ 1 nodeσ′z.

Next we observe the structure ofCT given a sequence withi1 − i2 > 1. Letp, q be the two processes ini1, let ℓ =
i2 − i1 +1 and denote byx3, . . . , xℓ the remaining fully corrupt by order of appearance. Using aninductive argument
one can show that anyCT graph will be a subgraph of the following: for every nodeσ ∈ CT of lengthi1 − 1 there
will be two branches that we callspecial branches. These branches will beσpqx3 . . . xℓ andσqpx3 . . . xℓ. Observe
that these branches contain only special nodes. In addition, there will be regular branches as follows:σpx3 . . . xℓ,

29

σqx3 . . . xℓ, σpqx4 . . . xℓ, σqpx4 . . . xℓ, . . .σpqx3 . . . xixi+2 . . . xℓ, σqpx3 . . . xixi+1 . . . xℓ, . . . , σpqx3 . . . xℓ−2xℓ,
σqpx3 . . . xℓ−2, xℓ. Observe that all these regular branches contain regular nodes and that all their children will be
fixed due to roundi2 having no fully corrupt process. The number of regular branches isO(i2 − i1) and the length of
each branch is bounded byO(i2 − i1).

σ

p

q

x3

x4

x5

x5

x4

x5

x3

x4

x5

q

x3

x4

x5

p

x4

x5

x3

x5 x4

x5

The above tree is an example fori2 − i1 = 4. The two special branches are the rightmost and leftmost paths. All
other leafs are the endpoints of all the regular branches. Observe that given one more fully corrupt, each special branch
is split into two branches, one extends the original specialbranch and the other is a new regular branch that continues
as a path. Also observe that one more fully corrupt will simply extend the path of each regular branch by one.

As all the regular branches will have all their children fixed, they cannot be used as leafs to extend the tree. Since
there areO(i2 − i1) regular branches and each of them is of length at mostO(i2 − i1) then the total amount of nodes
added in this process isO((i2− i1)

2) per each leaf inCT of lengthi1− 2. So if the size of the tree without this subtree
is x then the total number of non-tree nodes added by these types of sequences is at mostO(xn2) (this is a crude
bound that can be improved).

We now need to show that at least one of the special branches gets fixed. Since all the regular branches cannot
expand, our goal is to prove that it cannot be the case that both special branches are not fixed (in thei1 − i2 = 1 the
analogue is that eitherσpq or σqp is fixed). Given the key observation and the structure statement we can now apply
a similar argument as we did forp in thei1 − i2 = 1 case. We start withxℓ and going towardsp, q. We will show that
in each iteration on leveli we either fix one of the special branches (and we are done) or wehave sufficient conditions
to use main argument on leveli− 1.

For the base case, considerxℓ. Becausei2 = 0 then all the leveli1 + ℓ − 2 nodes of the formσ′xℓ (for any
σ′) have all their children fixed. So we can apply the main argument: if all these leveli1 + ℓ − 2 nodes get fixed
using theRELAXED RULE then all the regular branches ending withxℓ−1 have all their children fixed and the two
special branches endingxℓ−1 each have their parent withxℓ−1 as a only child. Therefore we continue by induction.
Otherwise, by the argument above, all the leveli1 + ℓ − 2 + 1 nodes of the formσ′xℓ (for any σ′) will be fixed
SPECIAL-BOT RULE. In particular this includes the special branch. So we are done.

For the general case, we assume that all leveli1 + j − 2 nodes of the formσ′xj (for anyσ′) have all their children
fixed and that for the two special branches, the parents ofxj havexj as their only child. Again we can apply the
ii − i2 = 1 arguments: If all these leveli1 + j − 2 node get fixed using theRELAXED RULE then we continue by
induction toj − 1. Otherwise, by the argument above, all the leveli1 + j − 2 + 1 nodes of the formσ′xℓ (for any
σ′) will be fixed by theSPECIAL-BOT RULE. In particular this includes the special branch. So we are done since the
special branch is fixed

The following lemma shows that having a large number (3 or more) of processes becoming fully corrupt at a given
round, followed by a sequence of 1’s and then maybe followed by 0 does increase the number of leafs considerably.
Note that ifαi1−1+αi1 ≥ 6 then the monitor process will cause the protocol to reach agreement and stop in a constant
number of rounds. So we only look at the case thatαi1−1 + αi1 < 6.

Lemma 8. If 2 < αi1 , αi1−1 + αi1 < 6, αi2 ∈ {0, 1} and for all i1 < i < i2, αi = 1 then for anyσ ∈ Σi1−1 ∩ CT
there are at mostO(i2 − i1) nodes of the formστ ∈ Σi2+1 ∩CT. Moreover the size of the subtree starting fromσ and
ending in lengthi2 + 1 is bounded byO((i2 − i1)

2).

30

Proof. Using an overly pessimistic argument, every nodeσ ∈ Σi1−1 ∩ CT can have at mostαi1−1 · αi1 ≤ 16 = O(1)
nodes of lengthi1 + 2 in CT. Even if each such node is a special node then afterO(i2 − i1) rounds of just one fully
corrupt each round, each such node of lengthi1 + 2 will generate at mostO(i2 − i1) regular branches, each is a path
with at mostO(i2 − i1) nodes.

6 Conclusion

In this paper we resolve the problem of the existence of a protocol with polynomial complexity and optimal early
stopping and resilience. The main remaining open question is reducing the complexity of such protocols to a low
degree polynomial. Another interesting open problem is obtaining unbeatable protocols [CGM14] (which is a stronger
notion than early stopping).

We would like to thank Yoram Moses and Juan Garay for insightful discussions and comments.

References

[BG93] Piotr Berman and Juan A. Garay. Cloture votes: n/4-resilient distributed consensus in t+1 rounds.
Mathematical Systems Theory, 26(1):3–19, 1993.

[BGP92] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Optimal early stopping in distributed consensus.
In Adrian Segall and Shmuel Zaks, editors,Distributed Algorithms, volume 647 ofLecture Notes in
Computer Science, pages 221–237. Springer Berlin Heidelberg, 1992.

[BNDDS92] Amotz Bar-Noy, Danny Dolev, Cynthia Dwork, and H.Raymond Strong. Shifting gears: changing
algorithms on the fly to expedite byzantine agreement.Inf. Comput., 97:205–233, April 1992.

[CGM14] Armando Castañeda, Yannai A. Gonczarowski, and Yoram Moses. Unbeatable consensus. In Fabian
Kuhn, editor,Distributed Computing - 28th International Symposium, DISC 2014, Austin, TX, USA,
October 12-15, 2014. Proceedings, volume 8784 ofLecture Notes in Computer Science, pages 91–106.
Springer, 2014.

[CL99] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. InProceedings of the third
symposium on Operating systems design and implementation, OSDI ’99, pages 173–186, Berkeley, CA,
USA, 1999. USENIX Association.

[DRS90] Danny Dolev, Ruediger Reischuk, and H. Raymond Strong. Early stopping in byzantine agreement.J.
ACM, 37:720–741, October 1990.

[DS82] Danny Dolev and H. Raymond Strong. Polynomial algorithms for multiple processor agreement. In
ACM Symposium on Theory of Computing, pages 401–407, New York, NY, USA, 1982. ACM.

[FL82] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure interactive consistency.
Inf. Process. Lett., 14(4):183–186, 1982.

[FM88] Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agreement. InACM Symposium on
Theory of Computing, pages 148–161, 1988.

[FM97] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous byzantine agree-
ment.SIAM J. Comput., 26(4):873–933, 1997.

[GM93] Juan A. Garay and Yoram Moses. Fully polynomial byzantine agreement in t + 1 rounds. InProceedings
of the twenty-fifth annual ACM symposium on Theory of computing, STOC ’93, pages 31–41, New York,
NY, USA, 1993. ACM.

31

[GM98] Juan A. Garay and Yoram Moses. Fully polynomial byzantine agreement for processors in rounds.SIAM
J. Comput., 27:247–290, February 1998.

[KAD +07] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. Zyzzyva: spec-
ulative byzantine fault tolerance. InProceedings of twenty-first ACM SIGOPS symposium on Operating
systems principles, SOSP ’07, pages 45–58, New York, NY, USA, 2007. ACM.

[KM13] Dariusz R. Kowalski and Achour Mostéfaoui. Synchronous byzantine agreement with nearly a cubic
number of communication bits: Synchronous byzantine agreement with nearly a cubic number of com-
munication bits. InProceedings of the 2013 ACM Symposium on Principles of Distributed Computing,
PODC ’13, pages 84–91, New York, NY, USA, 2013. ACM.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.ACM Trans.
Program. Lang. Syst., 4:382–401, July 1982.

[PSL80] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence of faults.J.
ACM, 27(2):228–234, 1980.

32

	1 Introduction
	2 The EIG structure and rules
	2.1 The Resolve Rules

	3 The Consensus Protocol Analysis
	4 Monitors
	4.1 The Basic Monitor Protocol
	4.2 Monitor Halting and Decision Conditions
	4.3 Monitors Pipeline

	5 Bounding the size of the tree
	5.1 Additional Analysis

	6 Conclusion

