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Abstract

Finding cliques in random graphs and the closely related “planted” clique variant, where a
clique of size k is planted in a random G(n, 1/2) graph, have been the focus of substantial study
in algorithm design. Despite much effort, the best known polynomial-time algorithms only solve
the problem for k = Θ(

√
n).

In this paper we study the complexity of the planted clique problem under algorithms from
the Sum-Of-Squares hierarchy. We prove the first average case lower bound for this model: for
almost all graphs in G(n, 1/2), r rounds of the SOS hierarchy cannot find a planted k-clique
unless k ≥ (

√
n/ logn)1/r/Cr. Thus, for any constant number of rounds planted cliques of size

no(1) cannot be found by this powerful class of algorithms. This is shown via an integrability
gap for the natural formulation of maximum clique problem on random graphs for SOS and
Lasserre hierarchies, which in turn follow from degree lower bounds for the Positivestellensatz
proof system.

We follow the usual recipe for such proofs. First, we introduce a natural ”dual certificate”
(also known as a ”vector-solution” or ”pseudo-expectation”) for the given system of polynomial
equations representing the problem for every fixed input graph. Then we show that the matrix
associated with this dual certificate is PSD (positive semi-definite) with high probability over the
choice of the input graph.This requires the use of certain tools. One is the theory of association
schemes, and in particular the eigenspaces and eigenvalues of the Johnson scheme. Another is
a combinatorial method we develop to compute (via traces) norm bounds for certain random
matrices whose entries are highly dependent; we hope this method will be useful elsewhere.

1 Introduction

1.1 The problem and main result

Finding cliques in random graphs has been the focus of substantial study in algorithm design. Let
G(n, p) denote Erdös-Renyi random graphs on n vertices where each edge is kept in the graph with
probability p. It is easy to check that in a random graph G ← G(n, 1/2), the largest clique has
size (2 + o(1)) log2 n with high probability. On the other hand, the best known polynomial-time
algorithms can only find cliques of size (1 + o(1)) log2 n and obtaining better algorithms remains a
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longstanding open problem: Karp [Kar76] suggested that even finding cliques of size (1 + ε) log2 n
could require superpolynomial time.

Motivated by this, much attention has been given to the related planted clique problem or
hidden clique problem introduced by Jerrum [Jer92] and Kucera [Kuc95]. Here, we are given a
graph G← G(n, 1/2, k) generated by first choosing a G(n, 1/2) random graph and placing a clique
of size k in the random graph for t≫ log2 n. The goal is to recover the hidden clique for as small
a k as possible given G. The study of the planted clique problem and its variations (like finding
planted dense subgraphs) is motivated from several other more recent directions. Its potential as
being hard on average has lead to proposals to base crypto systems on variants of it [ABW10]. It
was used to argue that testing k-wise independence is hard near the information theoretic limit
by [AAK+07]. It is used in [ABBG10] to argue that evaluating some financial derivatives is hard.
It was also used to justify the hardness of sparse principal component detection by Bethet and
Rigollet [BR13]. Another source of interest comes from the related algorithmic problem of finding
large communities in social networks. The best known polynomial-time algorithms can solve the
problem for k = Θ(

√
n) [AKS98] (see [DGGP14] for a near linear-time algorithm) and improving

on this bound has received significant attention. The algorithmic problem has also been of much
interest in the context of signal finding in molecular biology (pattern discovery in DNA sequences)
as modeled in the work of [PS+00].

In this work we exhibit a lower bound for the problem in the powerful Lasserre [Las01] and
“sum-of-squares” (SOS) [Par00] semi-definite programming hierarchies1. As it happens, proving
such lower bounds for the planted clique problem reduces easily to proving an integrality gap of
value k for the natural formulation of the maximum clique problem in these hierarchies on G(n, 1/2)
graphs. Our main result then is the following average-case lower bound for maximum clique. We
defer the formal definition of the semi-definite relaxation and hierarchies for now, and only note a
few facts. First, that implementing the rth level of the SOS hierarchy (namely, r rounds), takes
roughly nO(r) time, which is polynomial for constant r. Second, the above algorithm for k = Θ(

√
n)

may be viewed as implementing only one round. Third, that r = log n suffices for exact solution of
the problem, namely finding the maximum clique. Our lower bound implies that polynomial time
(when the number of rounds r is constant) cannot handle even k = no(1), and that as many as
(log n)1/2 rounds cannot handle k = (log n)O(1). Here are more precise statements2.

Theorem 1.1. With high probability, for G← G(n, 1/2) the natural r-round SOS relaxation of the
maximum clique problem has an integrality gap of at least n1/2r/Cr(log n)2.

As a corollary we obtain the following lower bound for the planted clique problem.

Corollary 1.2. With high probability, for G← G(n, 1/2, t) the natural r-round SOS relaxation of
the planted clique problem has an integrality gap of at least n1/2r/tCr(log n)2.

1.2 Background and related work

Linear and semi-definite hierarchies are one of the most powerful and well-studied techniques in
algorithm design. The most prominent of these are the Sherali-Adams hierarchy (SA) [SA90],
Lovasz-Schrijver hierarchy (LS) [LS91], their semi-definite versions SA+, LS+ and Lasserre and SOS

1For brevity, in the following, we will use SOS hierarchy as a common term for the formulations of Lasserre [Las01]
and Parrilo [Par00] which are essentially the same in our context.

2Throughout, c, C denote constants.
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hierarchies. The hierarchies present progressively stronger convex relaxations for combinatorial
optimization problems parametrized by the number of rounds r, where the r-round relaxation
can be solved in nO(r) time on instances of size n in all of them. In terms of relative power
(barring some minor technicalities about how the numbering of rounds starts), it is known that
LS+(r) < SA+(r) < SOS(r). Because they capture most powerful techniques for combinatorial
optimization, lower bounds for hierarchies serve as strong unconditional evidence for computational
hardness. Such lower bounds are even more relevant and compelling in situations where we do not
have NP-hardness results, as is the case for typical average-case optimization problems.

Broadly speaking, our understanding of the SOS hierarchy is more limited than those of LS+ and
SA+ hierarchies and in fact the SOS hierarchy appears to be much more powerful. A particularly
striking example of this phenomenon was provided by a recent work of Barak et al. [BBH+12].
They showed that a constant number of rounds of the SOS hierarchy can solve the much studied
unique games problem on instances which need super constant number of LS+,SA+ rounds. It was
also shown by the works of [BRS11, GS11] that the SOS hierarchy captures the sub-exponential
algorithm for unique games of [ABS10]. These results emphasize the need for a better understanding
of the power and limitations of the SOS hierarchy.

From the perspective of proving limitations, all known lower bounds for the SOS hierarchy
essentially have their origins in the works of Grigoriev [Gri01b, Gri01a], some of which were later
independently rediscovered by Schoenebeck [Sch08]. These works show that even Ω(n) rounds of
SOS hierarchy cannot solve random 3XOR or 3SAT instances, implying a strong unconditional
average-case lower bound for a natural distribution.

Most subsequent lower bounds for SOS hierarchy such as those of [Tul09], [BCV+12] rely on
[Gri01b] and [Sch08] and gadget reductions. For example, Tulsiani [Tul09] shows that 2O(

√
logn)

rounds of SOS has an integrality gap of n/2O(
√
logn) for maximum clique in worst-case. This is in

stark contrast to the average-case setting: even a single round of SOS gets an integrality gap of
at most O(

√
n) for maximum clique on G(n, 1/2) [FK00]. Thus, the worst-case and average-case

problems have very different complexities. Finally, using reductions tend to induce distributions
that are far from uniform and definitely not as natural as G(n, 1/2).

For max-clique on random G(n, 1/2) graphs, Feige and Krauthgamer [FK00] showed that
LS+(r), and hence SOS(r), has an integrality gap of at most

√
n/2Ω(r) with high probability.

Complementing this, they also showed [FK03] that the gap remains
√
n/2r for LS+(r) with high

probability. However, there were no non-trivial lower bounds known for the stronger SOS hierarchy.
For the planted clique problem, other algorithmic techniques were studied. Jerrum [Jer92]

showed that a broad class of Markov chain Monte-Carlo (MCMC) based methods cannot solve the
problem when the planted clique has size O(n1/2−δ) for any constant δ > 0. Another approach for
the planted clique problem based on optimizing a third order tensor was suggested by Frieze and
Kannan [FK08]. However, the corresponding optimization problem is NP-hard in the worst-case.

In a recent work, Feldman et al. [FGR+13] introduced the framework of statistical algorithms

which generalizes many algorithmic approaches like MCMC methods and showed that such algo-
rithms cannot find large cliques when the planted clique has size O(n1/2−δ) in less than nΩ(logn)

time3. However, their framework seems quite different from hierarchy based algorithms. In partic-
ular, the statistical algorithms framework is not applicable to algorithms which first pick a sample,
fix it, and then perform various operations (such as convex relaxations) on it, as is the case for the

3The results of [FGR+13] actually apply to the harder bipartite planted clique problem, but this assumption is
not too critical.
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hierarchies above.
Meka and Wigderson [MW13] addressed SOS lower bounds for planted clique and claimed a

stronger bound than Thm 1.1. While there was a fatal error in their proof, many of the techniques
introduced there are used in the present paper.

Independent of our work, Deshpande and Montanari [DM15] recently gave a degree 4 SOS lower
bound for planted clique; while they are only able to handle the degree 4 case (i.e., r = 2) , they
obtain a better bound for this case than us (roughly n1/3 vs n1/4 as we do).

1.3 Proof systems and SDP hierarchies

A potentially simpler problem than deciding is a large clique exists is the problem of producing
short certificates to the non-existence of such cliques. This puts the problem in the realm of proof
complexity. Indeed, we approach the problem of SOS lower bounds from this viewpoint, via the
positivstellensatz proof system perspective of Grigoriev and Volobjov [GV01]. We explain this
proof system next in general, and then specialize to Boolean problems and specifically to planted
clique.

Suppose we are given a system of polynomial equations or “axioms”

f1(x) = 0, f2(x) = 0, . . . , fm(x) = 0,

where each fi : R
n → R is a n-variate polynomial. A positivstellensatz refutation of the system

F = ((fi)) is an identity of the form

m
∑

i=1

figi ≡ 1 +
N
∑

i=1

h2i ,

where {g1, . . . , gm} and {h1, . . . , hN} are arbitrary n-variate polynomials. Clearly, if there exists
an identity as above, then the system F has no solution over reals. Starting with the seminal work
of Artin on Hilbert’s seventeenth problem [Art27], a long line of important results in real algebraic
geometry – [Kri64, Ste73, Put93, Sch91]; cf. [BCR98] and references therein – showed that, under
some (important) technical conditions4, such certifying identities always exist for an infeasible
system. This motivates the following notion of complexity for refuting systems of polynomial
equations.

Definition 1.3 (Positivstellensatz Refutation, [GV01]). Let F ≡ {f1, . . . , fn : R
n → R}, be a

system of axioms, where each fi is a real n-variate polynomial. A positivstellensatz refutation of
degree r (PS(r) refutation, henceforth) for F is an identity of the form

m
∑

i=1

figi ≡ 1 +
N
∑

i=1

h2i , (1.1)

where g1, . . . , gm, h1, . . . , hN are n-variate polynomials such that deg(figi) ≤ 2r for all i ∈ [m] and
deg(hj) ≤ r for all j ∈ [N ].

4We avoid going into the details here as the conditions are easily met in the presence of Boolean axioms.
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Our interest in positivstellensatz refutations as above comes from the known relations between
such identities and SOS hierarchy. Informally (and under appropriate technical conditions), identi-
ties as above of degree r show that SOS hierarchy can certify infeasibility of the axioms in 2r+Θ(1)
rounds and vice versa. We will focus on showing degree lower bounds for identities as above and
use them to get integrality gaps for the the SOS hierarchy. We formalize this in Section 12. For a
brief history of the different formulations from [GV01], [Las01], [Par00] and the relations between
them and results in real algebraic geometry we refer the reader to [OZ13].

Given the above setup, we shall consider the following set of natural axioms to test if a graph
G has a clique of size k.

Definition 1.4. Given a graph G, let Clique(G, k) denote the following set of polynomial axioms:

(Max-Clique): x2i − xi, ∀i ∈ [n]

xi · xj , ∀ pairs {i, j} /∈ G (1.2)
∑

i

xi − k.

Here, the equations on the first line are Boolean axioms restricting feasible solutions to be in
{0, 1}n. The equations on the second line constrain the support of any feasible x to define a clique
in G. Finally, the equation on the third line specifies the size of support of x. Thus, for any graph
G, Clique(G, k) is feasible if and only if G has a clique of size k. Our core result is to show lower
bounds on positivstellensatz refutations for Clique(G, k).

Theorem 1.5 (Main). With high probability over G← G(n, 1/2), the system Clique(G, k) defined
by Equation 1.2 has no PS(r) refutation for k ≤ n1/2r/Cr(log n)1/r

Given the above theorem it is easy to deduce the integrality gap for the SOS hierarchy, The-
orem 1.1: see Section 12. We next highlight the outline of the proof, and some of our techniques
which may be of broader interest.

1.4 Outline

We now give an outline of our arguments. As in most previous works (cf. [Gri01a], [Gri01b],
[Sch08]) on showing lower bounds for PS(r) refutations, our main tool will be a dual certificate.
We note that in the context of hierarchies above, this object is called either a vector solution5,
or pseudo-expectation6. We now turn to define this important notion, which arises naturally from
using duality to prove that a degree r refutation like 1.1 does not exist. Let P(n, 2r) : Rn → R be
the set of n-variate real polynomials of total degree at most 2r.

Definition 1.6 (PSD Mappings). A linear mapping M : P(n, 2r) → R is said to be positive
semi-definite (PSD) ifM(P 2) ≥ 0 for all n-variate polynomials P of degree at most r.

Definition 1.7 (Dual Certificates). Given a set of axioms f1, . . . , fm, a dual certificate for the
axioms is a PSD mapping M : P(n, 2r) → R such that M(fig) = 0 for all i ∈ [m] and all
polynomials g such that deg(fig) ≤ 2r.

5in which numerical values to variables are replaced by vector values
6reflecting the view of these values as moments of a (possibly nonexistent) probability distribution
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Under reasonable technical conditions which ensure strong duality, the converse also holds. For
the clique axioms from Equation 1.2, a dual certificate would correspond to a feasible vector solution
for the r-round SOS relaxation for maximum clique (see Figure 12 for the exact formulation) with
value k.

The following elementary lemma will be crucial.

Lemma 1.8 (Dual Certificate). Given a system of axioms ((fi)), there does not exist a PS(r)
refutation of the system if there exists a dual certificate M : P(n, 2r)→ R for the axioms.

The existence of such a mapping trivially implies a lower bound for PS(r) refutations: apply
M to both sides of a purported PS(r) identity as in Equation 1.1 to arrive at a contradiction.

The lemma suggests a general recipe for proving PS(r) refutation lower bounds:

• Design a dual certificateM: For the clique axioms we care about, it is easy to figure out what
the right dual certificate M “should be” by working backwards from the axioms. The same
happens also for the PS(r) refutation lower bounds of [Gri01a, Gri01b]. The main hurdle
then is to show that the obtained mapping M is indeed PSD. At a high level, this reduces

to proving a certain random matrix M ∈ R
(nr)×(

n
r) is PSD. We show that M is PSD in three

steps.

• Reduction to PSDness of another matrix M ′: The matrix M has many zero rows and columns
which makes it difficult to work with. In Section 5 we fix this by filling in the zero rows and
columns of M to obtain a new matrix M ′. We then argue that to show M is PSD it is
sufficient to show that M ′ is PSD.

• (Deterministic) Matrix analysis: E = E[M ′] is PSD with a large minimum eigenvalue
λmin(E). We show this statement in Section Section 7 by using the theory of association
schemes described below.

• Large deviation: with high probability, ‖M ′ − E‖ ≤ λmin(E). This is done by using the
structure of our matrix M ′ along-with a careful application of the trace method to bound the
norms of certain random matrices with dependent entries.

We note here the main techniques used.

Techniques: Association schemes As discussed, the essence of proving Theorem 1.5 involves
showing that a certain random matrix is positive semi-definite (PSD) with high probability. In
our case, this calls for showing a relation of the form A ≺ B7 for two matrices A,B whose rows
and columns are indexed by subsets of [n] of size r. This in turn leads us to matrices which
though complicated to describe, will be set-symmetric - the entry defined by any two (row and
column) sets I, J depends solely on the size of the intersection I ∩ J . The set of all such matrices,
called the Johnson scheme, is quite well studied in combinatorics as a special case of association
schemes. In particular, all such matrices commute with one another and their common eigenspaces
are completely understood. This theory allows us to estimate the eigenvalues and norms of various
matrices that arise in the analysis.

7Here and henceforth ≺ denotes PSD ordering: A ≺ B if and only if B − A is positive definite.
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Techniques: Trace bounds for locally random matrices After various simplifications and
reductions, a central problem we have to deal with is upper bounding the spectral norm of certain
random matrices, defined by the underlying random graph G← G(n, 1/2). As above, these matrices
have rows and columns indexed by subsets of vertices. The entry (I, J) of the matrix will be a
random variable of expectation zero, which depends only on the edges and non-edges of G in the
subgraph induced by I ∪ J (hence we name such matrices local). In the simple case when r = 1
(so rows and columns are indexed by singletons), which is the one studied in the analysis of the√
n approximation algorithm, the random variables in all entries are mutually independent, and a

norm bound is easy to obtain by a straightforward use of the trace method. However, for r > 1 as
we need to handle, the entries of the matrix are dependent whenever the edge sets of their entries
intersect. This significantly complicates the trace calculation, and we develop some combinatorial
tools to bound the trace of high powers of such local matrices.

2 Dual certificate for PS(r) refutations of max-clique

We will specify the dual certificateM by defining it for polynomials where each individual variable
has degree at most 1 and extend M multi-linearly to all polynomials: for any polynomial P ,
M(P ) =M(P̃ ) where P̃ is obtained from P by reducing the individual degrees of all variables to
1. We can do this without loss of generality because of the Boolean axioms.

As mentioned in the introduction, we can often work out what the dual certificate should be
from the axioms and basic linear algebra. As an example, we first work out the case where the
graph G is the complete graph; this will also help us draw a concrete connection to the work of
[Gri01a].

2.1 Complete graph and knapsack

For complete graph, the clique axioms simplify to

(Max-Clique): x2i − xi, ∀i ∈ [n]
∑

i

xi − k.

These incidentally also correspond to proving lower bounds for knapsack as studied by Grigoriev
[Gri01a] (and was what lead us to the specific dual certificate we study). However, in the context
of lower bounds for knapsack, the axioms are mainly interesting for non-integer k and Grigoriev
shows that for non-integer k ≤ n/2, the above system has no PS(r) refutation for r < k.

The above axioms tell us that any candidate dual certificate MGr ≡: P(n, 2r) → R should
satisfy:

MGr

((

n
∑

i=1

xi − k

)(

∏

i∈I
xi

))

= 0, ∀I, |I| < 2r.

For I ⊆ [n], let XI =
∏

i∈I xi. Now, as the above equation is symmetric, it is natural to assume that
MGr is also symmetric in the sense that MGr(XI) = f(|I|) for some function f : {0, . . . , 2r} →
R+. Working from this assumption, Grigoriev derives the following recurrence relation for f :
{0, . . . , 2r} → R+,

f(i+ 1) =
k − i

n− i
f(i).
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From the above it follows that we can define f and henceM as follows:

MGr(XI) = f(|I|) = f(0) · k(k − 1) · · · (k − |I|)
n(n− 1) · · · (n− |I|)

Grigoriev takes f(0) = 1. Here we set f(0) =
( n
2r

)

with a view towards what is to come. Thus, the
final certificate is

MGr(XI) =

(

n

2r

)

· k(k − 1) · · · (k − |I|)
n(n− 1) · · · (n− |I|) =

(

n− |I|
2r − |I|

)

·
( k
|I|
)

(2r
|I|
) . (2.1)

Grigoriev shows the following:

Theorem 2.1 ([Gri01a]). For k < n/2, the mapping MGr defined above is PSD for r < k.

2.2 Certificate for clique axioms

Following a similar approach, we now derive the dual certificate for the clique axioms from Equations
1.2, which we restate below for convenience: given a graph G on n vertices, k ≤ n, the axioms of
Clique(G, k) are

(Max-Clique): x2i − xi, ∀i ∈ [n]

xi · xj, ∀ pairs {i, j} /∈ G (2.2)
∑

i

xi − k.

The above axioms tell us that any candidate dual certificate M ≡MG : P(n, 2r) → R should
satisfy:

M (XI) = 0, ∀I, |I| ≤ 2r, I is not a clique in G,

M
((

n
∑

i=1

xi − k

)

XI

)

= 0, ∀I, |I| < 2r. (2.3)

The above equations give us a system of linear equations thatM needs to satisfy. By working
with the equations, it is easy to guess a natural solution for the system.

Given a graph G on [n], and I ⊆ [n], |I| ≤ 2r, let

degG(I) = |{S ⊆ [n] : I ⊆ S, |S| = 2r, S is a clique in G}|.

For instance, if r = 1 and v ∈ G, then degG({v}) is the degree of vertex v.
We defineM≡MG : P(n, 2r)→ R for monomials as follows: for I ⊆ [n], |I| ≤ 2r, let

M
(

∏

i∈I
xi

)

= degG(I) ·
k(k − 1) · · · (k − |I|+ 1)

2r(2r − 1) · · · (2r − |I|+ 1)
= degG(I) ·

( k
|I|
)

(2r
|I|
) . (2.4)

It is easy to check the following claim:

Claim 2.2. For any graph G, M≡MG defined by Equation 2.4 satisfies Equations 2.3.

8



Proof. The first equation in Equation 2.3 follows immediately from the definition ofM. Now, for
I ⊆ [n], |I| < 2r,

M
((

∑

i

xi − k

)

X(I)

)

= (|I| − k)M(X(I)) +
∑

j /∈I
M(X(I ∪ {j}))

= (|I| − k) · degG(I) ·
( k
|I|
)

(2r
|I|
) +

∑

j /∈I
degG(I ∪ {j}) ·

( k
|I|+1

)

( 2r
|I|+1

)

=

( k
|I|+1

)

( 2r
|I|+1

) ·



−(2r − |I|) · degG(I) +
∑

j /∈I
degG(I ∪ {j})



 .

Observe that our notion of degree, degG, satisfies the following recurrence: for |I| < 2r,

degG(I) =
1

2r − |I| ·
∑

j /∈I, j adjacent to all of I

degG(I ∪ {j}) =
1

2r − |I|
∑

j /∈I
degG(I ∪ {j}).

The above two equations imply thatM satisfies the second equation in 2.3.

Thus, to prove our main theorem Theorem 1.5, it suffices to show that M as defined above is
PSD with high probability. We now argue that in fact, to show thatM is PSD we do not need to
consider all polynomials P of degree at most r. Rather, it is sufficient to show that M(P 2

1 ) ≥ 0
whenever P1 is multilinear and homogeneous of degree r.

Lemma 2.3. For any P of degree at most r we may write P = P1+
∑

i P2i(x
2
i − xi)+P3(

∑

i xi−k)
where P1 is multilinear and homogeneous of degree r, P3 has degree at most r− 1, and all P2i have
degree at most r − 2.

Proof. We first make P multilinear by removing any terms which are not multilinear from P as
follows. If P has a term of the form x2i f where f has degree at most r−2, write x2i f = (x2i−xi)f+xif .
Iteratively applying this procedure, we may write P = P ′ plus terms of the form (x2i − xi)f where
P ′ is multilinear of degree at most r and f has degree at most r − 2.

We now make P ′ multilinear and homogeneous of degree r by removing any terms which have
lower degree as follows. If P ′ has a term of the form XI where |I| < r, write

XI =
1

|I| − k

(

∑

i

xi − k

)

XI +
1

k − |I|
∑

i∈I
(x2i − xi)XI\{i} +

1

k − |I|
∑

i/∈I
XI∪{i}

Iteratively applying this procedure, we may write P = P1 plus terms of the form (x2i − xi)f and
terms of the forms (

∑

i xi − k)g where P1 is multilinear and homogeneous of degree r, all such f
have degree at most r − 2 and all such g have degree at most r − 1. Putting everything together,
the result follows.

Corollary 2.4. IfM(P 2
1 ) ≥ 0 for all multilinear homogeneous P1 of degree r then M is PSD.

Proof. AssumeM(P 2
1 ) ≥ 0 for all multilinear homogeneous P1 of degree r andM(P 2) < 0 for some

P ∈ P(n, r). Using Lemma 2.3, we may write P = P1 +
∑

i P2i(x
2
i − xi) + P3(

∑

i xi − k) where P1

is multilinear and homogeneous of degree r. M(P 2) =M(P 2
1 ) soM(P 2

1 ) < 0. Contradiction.
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Thus, showing thatM is PSD with high probability is equivalent to showing that the following

matrix M ≡MG ∈ R
([n]

r )×(
[n]
r ) is PSD with high probability for G← G(n, 1/2): for I, J ∈

([n]
r

)

,

M(I, J) = degG(I ∪ J) ·
( k
|I∪J |

)

( 2r
|I∪J |

) . (2.5)

In the remainder of the paper, we show thatM is PSD with high probability for k ≤ Ωr(n
1/2r/(log n)1/r).

Theorem 2.5 (Main Technical Theorem). There exists a constant c > 0 such that, with high
probability over G ← G(n, 1/2), the matrix MG defined by Equation 2.5 is PSD for k ≤ 2−cr ·
(
√
n/ log n)1/r.

3 Overview of proof of Theorem 2.5

The proof of Theorem 2.5 is quite technical, and is broken into two parts, where the second part is
further broken down into smaller parts. While we gave a sketch of the proof of Theorem 2.5 in the
inroduction, we give a more detailed overview of the proof here. Recall that all matrices mentioned
below are random matrices which are specified by the choice of the random graph G.

As mentioned in the introduction, the matrix M = MG has many zero rows and columns which
makes it difficult to work with. The first part is to fill in the zero rows and columns of M to obtain
a new matrix, M ′, which is nonsingular and has no high variance entries. In Section 5 we define
this matrix M ′ and show that if M ′ is PSD, so is M . The idea is that M and M ′ are symmetric
and the nonzero part of M is a principal submatrix of M ′, so the smallest nonzero eigenvalue of
M is at least as large as the smallest eigenvalue of M ′.

The second part is to prove that M ′ is PSD (indeed we prove that it has a high positive smallest
eigenvalue). This is stated in the main technical lemma Lemma 8.1. For the proof of Lemma 8.1 we
decompose the matrix M ′ as M ′ = E+L+∆, where (a) E = E[M ′] is the expectation matrix; (b)
L will be a “local” random matrix such that for sets I, J , L(I, J) only depends on the edges among
the vertices of I ∪ J and (c) ∆ is a “global” error matrix whose entries are small in magnitude.

Having defined E (which is set-symmetric), let us spell out what the other matrices are.
The“local” random matrix L is defined in a simple way as follows:

L(I, J) =

{

−E(I, J) if some edge in E(I ∪ J) \ (E(I) ∪ E(J)) is missing from G

β(|I ∩ J |) otherwise
,

where E(I) denotes the set of possible edges between vertices of I and β : {0, . . . , r} → R+ is
suitably chosen so that each individual entry of L has expectation zero.

Finally, define the last matrix ∆ = M ′ − E − L.
The proof that M ′ is PSD proceeds in three modular steps:

1. We use the results about Johnson scheme to show that E ≻ 0 and has a large least eigenvalue
(roughly Ωr(k

rnr)); see Section 7.

2. We next show that ‖L‖ < Ck2rnr−1/2 log n by exploiting the recursive structure of the matrix
L and some careful trace calculations. This is the most technically intensive part of the proof,
and requires the development of some combinatorial tools to estimate the trace of high powers
of L; see Section 8.2.
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3. We then show that ‖∆‖ < Ck2rnr−1/2 log n. This is done by first showing that every entry of
∆ is small in magnitude, via concentration bounds on the number of cliques in random graphs,
and bounding its norm using Gershgorin’s circle theorem (Lemma 4.1); see Section 8.3.

4 Preliminaries

We shall use the following notations8:

1. P(n, 2r) denotes the set of n-variate polynomials of degree at most 2r.

2. PS(r) denotes positivstellensatz refutations of degree at most r as defined in Definition 1.3.

3. A linear mappingM : P(n, 2r)→ R is said to be positive semi-definite (PSD) ifM(P 2) ≥ 0
for all P ∈ P(n, r).

4. For 0 ≤ r ≤ n, let
([n]
r

)

,
([n]
≤r

)

denote all subsets of size exactly and at most r, respectively.

5. For 0 ≤ r ≤ n, R(
[n]
r )×(

[n]
r ) denotes matrices with rows and columns indexed by subsets of [n]

of size exactly r. Similarly, R(
[n]
≤r)×(

[n]
≤r) denotes matrices with rows and columns indexed by

subsets of [n] of size at most r.

6. We will view linear functionals M : P(n, 2r) → R as matrices M ∈ R
([n]
≤r)×(

[n]
≤r), where for

I, J ∈
([n]
≤r

)

, MIJ =M
(
∏

s∈I∪J xs
)

. In general, this correspondence is not bijective. However,
as we only deal with mappings which are constant under multi-linear extensions throughout,
the correspondence is one-to-one. It is a standard fact that a mappingM is PSD if and only
if the matrix M is PSD.

7. For I ⊆ [n], let XI =
∏

i∈I xi.

8. By default all vectors are column vectors. For a set I, 1(I) denotes the indicator vector of
the set I.

9. For a matrix A ∈ R
m×n, A† ∈ R

n×m denotes its conjugate matrix.

We will also need the following standard fact from matrix theory (see [GVL96] for instance).

Lemma 4.1 (special case of Gershgorin circle theorem). For any square matrx M ∈ R
N×N ,

‖M‖ ≤ max
i∈[N ]





N
∑

j=1

|Mij |



 .

Finally, we need McDiarmid’s inequality for obtaining tail bounds for functions of independent
random variables (see [?] for instance)

8Some are repeated from the introduction so as to have them at one place.
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Theorem 4.2 (McDiarmid’s inequality). Let X1, . . . ,Xn be independent random variables and let
f be a function over the domain space of (X1, . . . ,Xn). Let c1, . . . , cn > 0 be such that for all i,
x1, . . . , xn, x

′
i,

|f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci.

Then, for all t > 0,

Pr [|f(X1, . . . ,Xn)− E[f ]| > t] ≤ 2 exp

( −2t2
∑n

i=1 c
2
i

)

.

5 Reduction to PSDness of M ′

In this section, we define the matrix M ′ and show that if M ′ is PSD then so is M . We use the
following notations for brevity: For any set I ⊆ [n], let E(I) = {{i, j} : i 6= j ∈ I}. For 0 ≤ i ≤ r,
let

β(i) =

(

k

2r − i

)

/

(

2r

2r − i

)

. (5.1)

For every T ⊆ [n], let MT ∈ R
([n]

r )×(
[n]
r ), with MT (I, J) = β(|I ∩J |) if I∪J ⊆ T , and G contains

every edge in E(T ) \ E(I) ∪ E(J) (i.e., the only edges in T missing in G are those with both end
points in one of I or J). We will study the matrix

M ′ =
∑

T :|T |=2r

MT . (5.2)

Intuitively, for every I, J , M ′(I, J) is what M(I, J) would be had we added cliques on the
subsets I, J to the graph. The above definition avoids the problem of the whole row and column
corresponding to I or J becoming zero if either was not a clique and controls the variance of the
entries. We now show that to show M is PSD, it is sufficient to show that M ′ is PSD.

Lemma 5.1. If M ′ is PSD then M is PSD.

Proof. The reason this lemma is true is because as shown below, the nonzero part of M is a principal
submatrix of M ′.

Proposition 5.2. Whenever I and J are cliques of size r in G, M ′(I, J) = M(I, J)

Proof. Suppose that I and J are cliques in G. Then, MT (I, J) = β(|I ∩ J |) if I ∪ J ⊆ T and T is
a clique and 0 otherwise. Therefore,

M ′(I, J) =
∑

T

MT (I, J) = β(|I ∩ J |) · |{T : I ∪ J ⊆ T, T clique}| = M(I, J).

Corollary 5.3. The nonzero part of M is a principal submatrix of M ′.

We now use the following elementary fact about matrices.
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Proposition 5.4. If A is a principal submatrix of a symmetric matrix B then the smallest eigen-
value of A is at least as large as the smallest eigenvalue of B.

Proof. Without loss of generality, A is an l× l matrix and B is an m×m matrix where l ≤ m. Let
v ∈ R

l be a unit eigenvector of A with minimal eigenvalue λmin. If we let w ∈ R
m be the extension

of v to R
m with zeros in the other coordinates, wTBw = vTAv = λmin. This implies that the

smallest eigenvalue of B is at most λmin and the result follows.

Combining Corollary 5.3 and Proposition 5.4, if M ′ is PSD then M is PSD, as needed.

6 Johnson scheme

Association schemes is a classical area in combinatorics and coding theory (cf. for instance [vLW01]).
We shall use a few classical results (lemmas 6.6, 6.7 below), about the eigenspaces and eigenvalues
of association schemes and the Johnson scheme in particular. We also introduce two bases for the
Johnson scheme, which will play a key role in bounding the eigenvalues of various matrices later.

We start with some basics about the Johnson scheme - some of our notations are non-standard
but they fit better with the rest of the manuscript.

Definition 6.1 (Set-Symmetry). A matrix M ∈ R
([n]

r )×(
[n]
r ) is set-symmetric if for every I, J ∈

([n]
r

)

, M(I, J) depends only on the size of |I ∩ J |.

Definition 6.2 (Johnson Scheme). For n, r ≤ n/2, let J ≡ Jn,r ⊆ R
([n]

r )×(
[n]
r ) be the subspace of

all set-symmetric matrices. J is called the Johnson scheme.

As we will soon see, J is also a commutative algebra. There is a natural basis for the subspace
J :

Definition 6.3 (D-Basis). For 0 ≤ ℓ ≤ r ≤ n, let Dℓ ≡ Dn,r,ℓ ∈ R
([n]

r )×(
[n]
r ) be defined by9

Dℓ(I, J) =

{

1 |I ∩ J | = ℓ

0 otherwise.
(6.1)

For example, D0 is the well-studied disjointness matrix. Clearly, {Dℓ : 0 ≤ ℓ ≤ r} span the
subspace J . Also, it is easy to check that the Dℓ’s and hence all the matrices in J , commute with
one another.

Another important collection of matrices that come up naturally while studying PSD’ness of
set-symmetric matrices is the following which gives a basis of PSD matrices for the Johnson scheme.

Definition 6.4 (P-Basis). For 0 ≤ t ≤ r, let Pt ≡ Pn,r,t ∈ R
([n]

r )×(
[n]
r ) be defined by10

Pt(I, J) =

(|I ∩ J |
t

)

.

Equivalently, for T ⊆ [n], if we let PT be the PSD rank one matrix

PT = 1 ({I : I ⊆ [n], I ⊇ T}) · 1 ({I : I ⊆ [n], I ⊇ T})† ,
9We will often omit the subscripts n, r.

10We will often omit the subscripts n, r.
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then
Pt =

∑

T :T⊆[n],|T |=t

PT . (6.2)

The equivalence of the above two definitions follows from a simple calculation: there is a non-zero
contribution to (I, J)’th entry from the T ’th summand from Equation 6.2 if and only if T ⊆ I ∩ J .
Clearly, Pt � 0 for 0 ≤ t ≤ r. We will exploit this relation repeatedly by expressing matrices in
J as linear combinations of Pt’s. The following elementary claim relates the two bases ((Dℓ)) and
((Pt)) for fixed n, r.

Claim 6.5. For fixed n, r, the following relations hold:

1. For 0 ≤ t ≤ r, Pt =
∑r

ℓ=t

(

ℓ
t

)

Dℓ.

2. For 0 ≤ ℓ ≤ r, Dℓ =
∑r

t=ℓ(−1)t−ℓ
(

t
ℓ

)

Pt.

Proof. The first relation follows immediately from the definition of Pt. The second relation follows
from inverting the set of equations given in (1).

The main nontrivial result from the theory of association schemes we use is the following char-
acterization of the eigenspaces of matrices in J . The starting point for these characterizations is
the fact that matrices in J commute with one another and hence are simultaneously diagonalizable.
We refer the reader to Section 7.4 in [God] (the matrices Pt in our notation correspond to matrices
Ct in [God]) for the proofs of these results.

Lemma 6.6. Fix n, r ≤ n/2 and let J ≡ J (n, r) be the Johnson scheme. Then, for Pt as defined

by Equation 6.2, there exist subspaces V0, V1, . . . , Vr ∈ R
([n]

r ) that are orthogonal to one another
such that:

1. V0, . . . , Vr are eigenspaces for {Pt : 0 ≤ t ≤ r} and consequently for all matrices in J .

2. For 0 ≤ j ≤ r, dim(Vj) =
(

n
j

)

−
(

n
j−1

)

.

3. For any matrix Q ∈ J , let λj(Q) denote the eigenvalue of Q within the eigenspace Vj . Then,

λj(Pt) =

{

(n−t−j
r−t

)

·
(r−j
t−j

)

j ≤ t

0 j > t
. (6.3)

The above lemma helps us estimate the eigenvalues of any matrix in Q ∈ J if we can write Q
as a linear combination of the Pt’s or Dℓ’s. To this end, we shall also use the following estimate on
the eigenvalues of such linear combinations.

Lemma 6.7. Let Q =
∑

ℓ αℓDℓ ∈ J (n, r), and βt =
∑

ℓ≤t

(

t
ℓ

)

αℓ, where αℓ ≥ 0. Then, for
0 ≤ j ≤ r,

λj(Q) ≤
∑

t≥j

βt ·
(

n− t− j

r − t

)

·
(

r − j

t− j

)

.
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Proof. By Claim 6.5,

∑

ℓ

αℓDℓ =
∑

ℓ

αℓ





∑

t≥ℓ

(−1)t−ℓ

(

t

ℓ

)

Pt



 =
∑

t

Pt





∑

ℓ≤t

(−1)t−ℓ

(

t

ℓ

)

αℓ





�
∑

t

Pt





∑

ℓ≤t

(

t

ℓ

)

αℓ



 =
∑

t

βtPt.

Therefore, as Q and Pt’s have common eigenspaces, by Lemma 6.6,

λj(Q) ≤ λj

(

∑

t

βtPt

)

≤
∑

t

βtλj(Pt) =
∑

t≥j

βt ·
(

n− t− j

r − t

)

·
(

r − j

t− j

)

.

7 PSD’ness of the expectation matrices

In the section we show that if r is not too large then the expectation matrix E = E[M ′] is PSD with
high minimal eigenvalue. As a warmup, we first show that the expectation matrix EM = E[M ] is
PSD. We start by writing down EM .

Claim 7.1. For I, J ∈
(n
r

)

, and EM = E[M ],

EM (I, J) =

(

n− |I ∪ J |
2r − |I ∪ J |

)

·
(

k
|I∪J |

)

( 2r
|I∪J |

) · 2−(2r2 ). (7.1)

Proof. The claim follows from observing that for all I and J , E[degG(I ∪ J)] =
( n−|I∪J |
2r−|I∪J |

)

· 2−(2r2 ).
To see this, note that for all I and J there are

( n−|I∪J |
2r−|I∪J |

)

sets of size 2r containing I ∪ J and each

is a clique with probability 2−(
2r
2 ).

The expectation matrix above is just a scalar multiple ofMGr (viewed as a matrix) as defined
in Equation 2.1. Therefore, by Theorem 2.1, EM as defined above is PSD for r < min(k, n − k).
We give a simpler proof of this claim here for the case when r ≤ min(k2 , n− k).

Theorem 7.2. The matrix EM is positive definite for r ≤ min(k2 , n− k).

Proof. We will show this by writing EM as a suitable positive linear combination of the PSD
matrices Pt’s from Section 6. More concretely, for any α0, . . . , αt > 0, we have

0 ≺
∑

t

αtPt =

r
∑

ℓ=0

(

ℓ
∑

t=0

αt

(

ℓ

t

)

)

Dℓ.

Now, let eℓ = EM (I, J) for any I and J with |I ∪ J | = 2r − ℓ, i.e.,

eℓ = 2−(
2r
2 ) ·

(

n− 2r + ℓ

ℓ

)

·
( k
2r−ℓ

)

( 2r
2r−ℓ

) .
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Then, EM =
∑r

ℓ=0 eℓDℓ. Therefore, we will be done if we can find αt’s such that for every 0 ≤ ℓ ≤ r,

eℓ =
∑ℓ

t=0 αt

(ℓ
t

)

. By examining the first values of ℓ, it is easy to guess what the αt should be. First

observe that eℓ = e0 ·
(

n−2r+ℓ
ℓ

)

/
(

k−2r+ℓ
ℓ

)

and let αt = e0
(

n−k
t

)

/
(

k−2r+t
t

)

. Then,

e0

(

n− 2r + ℓ

ℓ

)

= e0

ℓ
∑

t=0

(

n− k

t

)

·
(

k − 2r + ℓ

ℓ− t

)

=
ℓ
∑

t=0

αt ·
(

k − 2r + t

t

)(

k − 2r + ℓ

ℓ− t

)

=
ℓ
∑

t=0

αt ·
(

ℓ

t

)

·
(

k − 2r + ℓ

ℓ

)

.

Therefore, eℓ =
∑

t

(ℓ
t

)

αt and the lemma now follows:

EM =

r
∑

ℓ=0

eℓDℓ =

r
∑

ℓ=0

(

ℓ
∑

t=0

αt

(

ℓ

t

)

)

Dℓ � αrI.

7.1 PSD’ness of E

Now that we have shown that EM is positive definite when r is not too large, we use similar ideas
to analyze E = E[M ′], the expectation matrix we will actually be using. We begin by writing down
E.

Claim 7.3. For I, J ∈
(n
r

)

, and E = E[M ′],

E(I, J) =

(

n− |I ∪ J |
2r − |I ∪ J |

)

·
(

k
|I∪J |

)

( 2r
|I∪J |

) · 2−r2−(|I∩J|
2 ). (7.2)

Proof. The claim follows from observing that for all I and J , conditioned on the edges in E(I) and
E(J) being present, E[degG(I ∪ J)] =

( n−|I∪J |
2r−|I∪J |

)

· 2−(2r2 )+(|I|2 )+(|J|
2 )−(

|I∩J|
2 ) =

( n−|I∪J |
2r−|I∪J |

)

· 2−r2−(|I∩J|
2 ).

To see this, note that for all I and J there are
( n−|I∪J |
2r−|I∪J |

)

sets of size 2r containing I ∪ J ,

and conditioned on the edges in E(I) and E(J) being present, each is a clique with probability

2−(
2r
2 )+(

|I|
2 )+(

|J|
2 )−(

|I∩J|
2 ). Now note that |I| = |J | = r and −

(2r
2

)

+2
(r
2

)

= −(2r2−r)+(r2−r) = −r2
so −

(2r
2

)

+
(|I|
2

)

+
(|J |
2

)

−
(|I∩J |

2

)

= −r2 −
(|I∩J |

2

)

Lemma 7.4. If k < n−2r
3r·2r−1 and r ≤ k

2 then E is PSD with minimal eigenvalue 2−O(r2)krnr

Proof. By Equation 7.2, E =
∑

ℓ eℓDℓ, where eℓ =
(n−2r+l

l

)

· (
k

2r−ℓ)
( 2r
2r−ℓ)

· 2−r2−(ℓ2). We next express E

as a linear combination of Pt’s: E =
∑

t αtPt. By Claim 6.5, Dℓ =
∑r

t=ℓ(−1)t−ℓ
(t
ℓ

)

Pt so

αt =
t
∑

ℓ=0

(−1)t−ℓ

(

t

ℓ

)

eℓ.
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Now note that for all l ≥ 1, eℓ = n−2r+ℓ
ℓ · ℓ

k−2r+ℓ · 2ℓ−l · eℓ−1 = n−2r+ℓ
21−l(k−2r+ℓ)

· eℓ−1. If k < n−2r
3r·2r−1

then the terms in the sum for αt increase geometrically by a factor of at least 3 and the sum will
therefore be dominated by the last term. In particular, αt ≥ et

2 . Thus, αt > 0 for all t ∈ [0, r] and

αr ≥
er
2

=
1

2
·
(

n− r

r

)

·
(

k
r

)

(2r
r

) · 2−r2−(r2) = 2−O(r2)krnr

Since the Pt’s are PSD and Pr = I, E is PSD with minimal eigenvalue 2−O(r2)krnr, as needed.

8 PSD’ness of dual certificate

We are now ready to prove our main result, Theorem 1.5, with the aid of several technical results
whose proof is deferred to Section 9 and Section 10. We prove Theorem 1.5 by showing that the
matrix M will be PSD with high probability (Theorem 2.5). In turn, we show that M is PSD with
high probability with our main technical lemma, which says that M ′ is PSD with high probability
(this is sufficient by Lemma 5.1).

Lemma 8.1 (Main Technical Lemma). For c a sufficiently large constant the following holds.

The matrix M ′ ∈ R
([n]

r )×(
[n]
r ) defined by Equation 5.2 is positive definite with high probability, for

k < 2−cr(
√
n/ log n)1/r.

To prove Lemma 8.1, we first decompose M ′ as M ′ = E+L+∆ in Section 8.1. We then analyze
L and ∆ in Section 8.2 and Section 8.3 respectively. We put all the pieces together to show the
PSD’ness of M ′ in Section 8.4.

For the remainder of this section, we shall use the following additional notations:

• For 0 ≤ i ≤ r, let

α(i) =

( k
2r−i

)

( 2r
2r−i

) ·
(

n− 2r + i

i

)

· 2−r2−(i2). (8.1)

• For 0 ≤ i ≤ r, let p(i) = 2−(r−i)2 . Then, for I, J ∈
([n]
r

)

with |I∩J | = i, p(i) is the probability
that E(I ∪ J) \ (E(I) ∪ E(J)) ⊆ G.

• In the following we will adopt the convention that I, J,K denote elements of
([n]
r

)

and T, T ′

denote elements of
([n]
2r

)

.

• All matrices considered below will be over R(
[n]
r )×(

[n]
r ) unless otherwise specified.

• We write A ≈r B if there exist constants c, C such that cr
2
B ≤ A ≤ Cr2B.

8.1 Decomposition of M ′

For the proof of Lemma 8.1 we decompose the matrix M ′ as M ′ = E+L+∆, where (a) E = E[M ′]
is the expectation matrix; (b) L will be a “local” random matrix such that for sets I, J , L(I, J)
only depends on the edges between the vertices of I ∪ J and (c) ∆ is a “global” error matrix whose
entries are small in magnitude.
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To this end, first observe that by Equation 7.2, for E ≡ E[M ′],

E(I, J) = α(|I ∩ J |). (8.2)

Now, define L ∈ R
([n]

r )×(
[n]
r ) as follows: for I, J ∈

([n]
r

)

,

L(I, J) =

{

α(|I ∩ J |) · 1−p(|I∩J |)
p(|I∩J |) if E(I ∪ J) \ (E(I) ∪ E(J)) ⊆ G

−α(|I ∩ J |) otherwise
. (8.3)

Finally, define ∆ = M ′ −E −L. We have already shown in Section 7 that E is PSD with minimal
eigenvalue 2−O(r2)krnr. There are now two remaining modular steps in the proof:

1. We show that ‖L‖ is 2O(r2)k2rnr−1/2 log n by exploiting the recursive structure of the matrix
L and some careful trace calculations. This is the most technically intensive part of the proof.

2. We then show that ‖∆‖ is 2O(r2)k2rnr−1/2 log n. This is done by first showing that each entry
of ∆ is small in magnitude and using Lemma 4.1.

The next two subsections address these two steps with the corresponding technical elements
dealt with in Section 9 and Section 10 respectively.

8.2 Bounding the norm of the locally random matrix L

In this subsection, we bound the norm of the matrix L.

Lemma 8.2. For some constant C > 0, with probability at least 1− 1/n over the random graph G,

‖L‖ ≤ O(1) · 2Cr2 · k2r · nr · log n√
n

.

We will prove the lemma by further decomposing L according to the intersection sizes of the
indexing sets and using the recursive structure of the matrixM ′. To this end, we define the following
closely related locally-random matrix. For a ∈ [r], let Ra ∈ R

(na)×(
n
a) be the matrix supported only

on disjoint sets and defined as follows: for V,W ∈
([n]
a

)

,

Ra(V,W ) =











2a
2 − 1 if V ∩W = ∅ and {{v,w} : v ∈ V,w ∈W} ⊆ G

−1 if V ∩W = ∅ and {{v,w} : v ∈ V,w ∈W} 6⊆ G

0 if V ∩W 6= ∅
. (8.4)

In other words, for disjoint V,W ∈
([n]
a

)

the Ra(V,W )’th entry is essentially (up to a constant
multiple) a shift of the indicator random variable which is 1 if all edges in V ×W are in G and 0
otherwise.

Note that E[Ra] = 0. The following technical claim proved in Section 9 bounds the norm of Ra.
The proof relies on computing the trace of powers of Ra.

Claim 8.3 (See Section 9). If n ≥ 100, for all ε ∈ (0, 1), Pr
[

||Ra|| > 2a
2+2a+2 ln (nε )n

a− 1
2

]

< ε.
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Note that 2a
2
na is an easy bound for ‖Ra‖ (each entry of the matrix is at most 2a

2
in magnitude);

the main advantage of the claim is the multiplicative n−1/2 factor.
In the remainder of this section we use the recursive structure of the matrix L to prove Claim 8.2

assuming the above claim. We first introduce some notation:

• For a matrix X ∈ R
([n]
r1
)×([n]

r2
), and 0 ≤ i ≤ min {r1, r2}, let Xi ∈ R

([n]
r1
)×([n]

r2
) be the matrix

such that Xi(I, J) = X(I, J) if |I ∩ J | = i and 0 otherwise11.

• For a matrix X ∈ R
( [n]
r1−i)×(

[n]
r2−i), let X(i) ∈ R

([n]
r1
)×([n]

r2
), be defined as follows:

X(i)(I, J) =

{

X(I \ (I ∩ J), J \ (I ∩ J)) if |I ∩ J | = i

0 otherwise
. (8.5)

The next claim relates the norms of “lifts” of matrix R, R(i). Conceptually, bounding the norms
of matrices with non-zero entries on intersecting indexing sets are reduced to that of the disjoint
case. Note that the requirement R = R0 exactly captures the latter.

Lemma 8.4. For 0 ≤ i ≤ min {r1, r2} and R ∈ R
( [n]
r1−i)×(

[n]
r2−i), if R = R0 then ‖R(i)‖ ≤

(r1
i

)(r2
i

)

·
‖R‖.

Proof. We partition the entries of R(i) as follows.

Definition 8.5. For any X,Y,K such that X ⊆ [1, r1], Y ⊆ [1, r2], and K ⊆ V (G) where |K| =
|X| = |Y | = i, let R

(i)
X,Y,K be the matrix such that the following is true:

1. R
(i)
X,Y,K(I, J) = R(i)(I, J) = R(I \ K,J \ K) if K = {ix : x ∈ X} = {jy : y ∈ Y } where

i1, · · · , ir1 are the elements of I in increasing order and j1, · · · , jr2 are the elements of J in
increasing order.

2. R
(i)
X,Y,K(I, J) = 0 otherwise.

Proposition 8.6. For all X,Y,K, ||R(i)
X,Y,K || ≤ ||R||.

Proof. The nonzero part of R
(i)
X,Y,K can be viewed as a submatrix of R, so it cannot have larger

induced norm than R.

Proposition 8.7. R(i) =
∑

X,Y,K R
(i)
X,Y,K .

Proof. If R(i)(I, J) = 0 then
∑

X,Y,K R
(i)
X,Y,K(I, J) = 0. If R(i)(I, J) 6= 0 then |I ∩ J | = i. This

implies that K = {ix : x ∈ X} = {jy : y ∈ Y } if and only if K = I ∩ J , X is the set of indices
of K in I, and Y is the set of indices of K in J , which happens for precisely one X,Y,K. Thus,

R
(i)
X,Y,K(I, J) = R(i)(I, J) for precisely one I, J,X and is 0 otherwise, so R(i) =

∑

X,Y,K R
(i)
X,Y,K, as

needed.

Proposition 8.8. ||R(i)|| ≤∑X,Y ||
∑

K R
(i)
X,Y,K ||.

11For this paper, we will only use the case where r1 = r2 = r. We put in this extra generality with an eye towards
future work.
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Proposition 8.9. If K1,K2 are distinct subsets of V (G) of size x, R
(i)
X,Y,K1

(I1, J1) 6= 0, and

R
(i)
X,Y,K2

(I2, J2) 6= 0 then I1 6= I2 and J1 6= J2.

Proof. Assume that I1 = I2 = I and let i1, · · · , ir1 be the elements of I in increasing order. Then
K1 = {ix : x ∈ X} = K2. Contradiction. Following similar logic, we cannot have that J1 = J2
either.

Proposition 8.10. For any X,Y ⊆ [1, n], ||∑K R
(i)
X,Y,K || ≤ ||R||.

Proof. Note that we can permute the rows and columns of a matrix without affecting its induced

norm. By Proposition 8.9, we can permute the rows and columns of
∑

K R
(i)
X,Y,K to put it into block

form where each block is the nonzero part of R
(i)
X,Y,K for some K. For a matrix in block form, its

norm is the maximum of the norms of the individual blocks, which by Proposition 8.6 is at most
||R||, as needed.

With these results, Lemma 8.4 follows immediately. Plugging in Proposition 8.10 to Proposition

8.8 gives ||R(i)|| ≤∑X,Y ||
∑

K R
(i)
X,Y,K || ≤

∑

X,Y ||R|| ≤
(r1
i

)(r2
i

)

||R||, as needed.

We now use the above statements to prove Lemma 8.2.

Proof of Lemma 8.2. We claim that for 0 ≤ i ≤ r, and αi as in Equation 8.1

Li = αi ·R(i)
r−i. (8.6)

To see the above, fix I, J ∈
([n]
r

)

with |I ∩ J | = i and let V = I \ (I ∩ J), W = J \ (I ∩ J).
Observe that

E(I ∪ J) \ (E(I) ∪ E(J)) = {{v,w} : v ∈ V,w ∈W}.
We cosider two cases as in the definition of L.
Case 1. E(I ∪ J) \ (E(I) ∪ E(J)) ⊆ G. Then, R

(i)
r−i(I, J) = Rr−i(V,W ) = 2(r−i)2−1 = (1 −

p(i))/p(i). Equation 8.6 now follows from the first case of the definition of L.

Case 2. E(I ∪ J) \ (E(I) ∪ E(J)) 6⊆ G. Then, R
(i)
r−i(I, J) = Rr−i(V,W ) = −1. Equation 8.6

now follows from the second case of the definition of L.
Therefore, by Claim 8.3, Lemma 8.4 and Equation 8.6,

‖Li‖ ≤ O(1) · 2Cr2 · k2r−i · nr · log n√
n

.

The lemma now follows as L =
∑r

i=0 L
i.

8.3 Bounding the norm of the global error matrix ∆

The main claim of this subsection is the following bound on the spectral norm of ∆.

Lemma 8.11. For n > C24r
2
, with probability at least 1− 1/n over the random graph G,

‖∆‖ ≤ 2Cr2 · k2r · nr · log n√
n

.
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The proof relies on the following bound on the individual entries of ∆.

Lemma 8.12. For some universal constant C, and n > C24r
2
, with probability at least 1 − 1/n

over the random graph G, for all I, J ∈
([n]
r

)

, with i = |I ∩ J |,

|∆(I, J)| ≤ 2Cr2 · k2r−i · ni · log n√
n

.

Before proving the lemma, we first use it to bound ‖∆‖.

Proof of Lemma 8.11. Suppose that the conclusion of the previous lemma holds. Then, for any
I ∈

([n]
r

)

,

‖∆‖ ≤
∑

J

|∆(I, J)| =
r
∑

i=0

∑

J :|I∩J |=i

|∆(I, J)|

≤ 2Cr2k2r(log n)√
n

r
∑

i=0

∑

J :|I∩J |=i

(n/k)i

≤ 2Cr2k2r(log n)√
n

r
∑

i=0

(n/k)i 2rnr−i

≤ 2Cr2k2r(log n)nr

√
n

.

The lemma now follows from the above bound and Lemma 4.1.

Proof of Lemma 8.12. Fix sets I, J with |I∩J | = i. LetA be the event that E(I∪J)\(E(I)∪E(J)) ⊆
G.

Then, by the second case of Equation 8.3, conditioned on ¬A we have ∆(I, J) = 0. Thus, the
claim holds trivially in this case. In the following we condition on A. Observe that

E[M ′(I, J) | A] = E(I, J)/Pr[A] = E(I, J)/p(i).

We next use the following claim that degG(I ∪ J) is concentrated around its mean when condi-
tioned on I ∪ J being a clique. At a high level, this follows from the fact that conditioned on I ∪ J
being a clique, degG(I ∪J) can be written as a (structured) low-degree polynomial in the indicator
variables of the edges not in I ∪ J with small variance. We defer the proof to the appendix.

Claim 8.13 (See Theorem 10.1 of the appendix). For some constant C > 0,

Pr

[∣

∣

∣

∣

degG(I ∪ J)− 2−(
2r
2 )+(

2r−i
2 ) ·

(

n− 2r + i

i

)∣

∣

∣

∣

> 2(ln(C/ε))2ni−1/2 | (I ∪ J a clique)

]

< ε.

As a consequence of the above claim we also get concentration for M ′(I, J) | A. This is because
M ′(I, J) | A is identically distributed as M(I, J) | (I ∪ J a clique). Therefore, taking ε = 1/n2r+1

and applying a union bound over all sets I, J we get that with probability at least 1− 1/n, for all
I, J such that E(I ∪ J) \ (E(I) ∪ E(J)) ⊆ G, and |I ∩ J | = i,

∣

∣

∣

∣

M ′
r(I, J) − β(i)2−(

2r
2 )+(

2r−i
2 ) ·

(

n− 2r + i

i

)∣

∣

∣

∣

< Cr22r
2 · k2r−i · (log n) · ni−1/2.
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Finally, observe that

β(i)2−(
2r
2 )+(

2r−i
2 ) ·

(

n− 2r + i

i

)

= α(i)/p(i),

and conditioned on A, ∆(I, J) = M ′(I, J) − α(|I ∩ J |)/p(|I ∩ J |). The lemma now follows by
combining the above two bounds.

8.4 Putting things together

We now prove Lemma 8.1 and use it to prove our main results.

Proof of Lemma 8.1. By Lemma 7.4, we have that E � 2−Cr2krnr
I. Therefore, by Lemma 8.2 and

Lemma 8.11, with probability at least 1− 2/n, the least eigenvalue of M ′ is at least

2−Cr2krnr − 2O(r2)k2rnr log n√
n

= krnr

(

2−O(r2) − 2O(r2)kr(log n)√
n

)

≥ 0,

for k as in the statement of the lemma for a sufficiently big constant c.

We bring the arguments from previous sections together to prove our main results Theorem 2.5
and Theorem 1.5.

Proof of Theorem 2.5. Follows immediately from Lemma 5.1 and Lemma 8.1.

Proof of Theorem 1.5. Follows immediately from Lemma 1.8, Claim 2.2 and Theorem 2.5.

Theorems 1.1 and 1.2 follow immediately from our PS(r)-refutation lower bound using standard
arguments. We defer these to the appendix.

9 Bounding norms of locally random matrices

In this section we shall develop tools for bounding the norms of locally random matrices (recall their
informal definition from Section 1.4 and more formal one in Section 8.2) associated with random
graphs G← G(n, 1/2), proving Claim 8.3. The idea behind our bounds is to use the trace method.
Recall the trace method: for any matrix M , for any positive integer q, ||M || ≤ 2q

√

tr((MTM)q) so
we can probabilistically bound ||M || by bounding E

[

tr((MTM)q)
]

.
Going back to Claim 8.3 let us first look at the special case of a = 1 to gain some intuition.

In this case, the entries of R1 are (essentially) independent, and so the trace method is easy to
apply. More precisely, R1 is a symmetric random matrix with zeros on the diagonal and the entries
in the upper diagonal taking independent uniformly random ±1 values. It is well known that
‖R1‖ = O(

√
n) in this case (see [Ver] for instance). One can also prove the bound by the trace

method as follows. We have that

E
[

tr((R1
TR1)

q)
]

= E
[

tr(R1
2q)
]

=
∑

i1,··· ,i2q
E





2q
∏

j=1

R1(ij , ij+1)



,

where i2q+1 = i1. We can then look at which products
∏2q

j=1R1(ij , ij+1) have expectation 0.
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Since each individual R1(ij , ij+1) is an independent ±1 random variable with expectation 0, a

term in the summation E

[

∏2q
j=1R1(ij , ij+1)

]

= 0 unless every R1(ij , ij+1) appears an even number

of times in the product. Thus, the vast majority of the terms E

[

∏2q
j=1R1(ij , ij+1)

]

are 0 and we

can count the remaining terms to bound E

[

tr(R2q
1 )
]

.

One way to implement the above argument is to first look at terms E
[

∏2q
j=1R1(ij , ij+1)

]

which

have non-zero expectation and observe that in all such terms, the number of distinct entries in
{ij : j = 1, . . . , 2q} is at most q + 1. We can then bound the number of terms with non-zero
expected value by the number of possible terms which contain at most q+1 distinct elements. This
number can be easily bounded by O((nq)q+1), and picking q optimally results in showing that with
high probability ‖R1‖ = O(

√
n log n), a near-optimal bound.

To handle higher a’s we first generalize the above argument based on constraint graphs to work
with general locally-random matrices. However, unlike for a = 1, distinct entries of the matrix
are now dependent, which significantly complicates the structure of the terms and the associated
count of the terms which have non-zero expectation. The rest of the section is devoted to this.
While we apply our arguments to the particular locally-random matrices arising in our proof, these
techniques should apply more generally to other locally-random matrices.

9.1 Constraint graphs

We next state our main technical result which gives us a way to bound traces of high powers of
locally random matrices based on the structure of the individual terms. The advantage being that
the conditions on the terms will be easier to ascertain in our applications.

Here we use V rather than I for subsets because we will be viewing the individual elements of
each V as vertices.

Theorem 9.1. Assume that we have values a,B > 0 and for every positive q, we have a function
p(G, 2q) such that p(G, 2q) ≥ 0 and p(G, 2q) can be written in the form

p(G, 2q) =
∑

{V1,...,V2q}
f(G, {V1, . . . , V2q})

where the following are true:

1. Vj ⊆ V (G) and |Vj| = a.

2. For every term f(G, {V1, . . . , V2q}) with non-zero expected value, | ∪j Vj | ≤ 2aq − qy + z for
some integers y and z where 1 ≤ y ≤ 2a and z ≥ 0.

3. E[f(G, {V1, . . . , V2q})] ≤ B2q.

Then, if n ≥ 10, for all ε ∈ (0, 1),

Pr

[

| min
q∈Z+

{ 2q
√

p(G, 2q)}| > B

a!
·
(

2ea

(

ln(nz/ε)

2y
+ 1

))y

· na−y/2

]

< ε.

Remark 9.2. We will use this theorem with two types of functions p. When p(G, 2q) = tr((MTM)q)
for some matrix M depending on G, ||M || ≤ 2q

√

p(G, 2q) for all q > 0 so this theorem gives us a
probabilistic bound on ||M ||. When p(G, 2q) = h(G)2q for some function h, then h(G) = 2q

√

p(G, 2q)
for all q > 0 so this theorem gives us a probabilistic bound on h(G).
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Example 9.3. In the case when p(G, 2q) = tr(R2q
1 ), p(G, 2q) =

∑

i1,··· ,i2q
∏2q

j=1R1(ij , ij+1). Each
term here has expected value at most 1 and it is easy to argue that for any term with non-zero
expected value, the number of distinct elements is at most q + 1. Applying Theorem 9.1 with
y = z = 1, and B = 1 we have that for all n ≥ 10, and ε ∈ (0, 1),

Pr
[

||R1|| > 2e
√
n(ln (n/ε) + 2)

]

< ε

This bound is weaker (by a logarithmic factor) than the bounds in e.g. [Ver], but is sufficient for
our purposes.

Before proving the theorem we introduce the concept of constraint graphs which are a useful way
to visualize our calculations. While the statement of the above theorem does not involve constraint
graphs, thinking in terms of constraint graphs is helpful in proving the conditions required to apply
the theorem.

Definition 9.4. Given a family of sets of vertices {Vi}, we define a corresponding constraint graph
C whose vertices are the sets {Vi} and there is an edge between Vi, Vj , i 6= j, if Vi ∩ Vj 6= ∅.

The above definition is useful because of the following elementary lemma.

Lemma 9.5. For any collection of sets {V1, . . . , Vℓ}, if the corresponding constraint graph C has t
connected components, then | ∪i Vi| <

∑

i |Vi| − ℓ+ t.

Proof. Let Vi1 , . . . , Vit belong to the t different connected components of C. Now add the remaining
elements of {V1, . . . , Vℓ} so that each new set is adjacent (in C) to at least one of the previously
added sets (we can do this as the number of connected components is t). Then, each such step
adding a set Vi can increase the size of the union by at most |Vi| − 1. Therefore, the size of the
union is at most

∑

i |Vi| − ℓ+ t.

Proof of Theorem 9.1. In the following we use {Vi} as a short form for {V1, . . . , V2q}. We prove
this result by obtaining an upper bound on the number of terms in p(G, 2q) =

∑

{Vi} f(G, {Vi})
with nonzero expected value. This gives us a probabilistic upper bound for p(G, 2q), implying the
upper bound on minq { 2q

√

p(G, 2q)}.
Definition 9.6. Define N(n, a, q,m) to be the number of ways to choose subsets {Vi : i ∈ [2q]} of
[n] such that | ∪i Vi| ≤ m and for all i, |Vi| = a.

Lemma 9.7. If m ≤ 2aq, then

N(n, a, q,m) ≤
(

1

a!

)2q ( 2aq

2aq −m

)

nmm2aq−m

Proof. We can choose each ordered 2aq-tuple (v1, · · · , v2aq) of elements in [n] which contains at
most m distinct elements as follows. There must be at least 2aq−m elements which are duplicates
of other elements, so we can first choose a set I of 2aq −m indices such that for all i ∈ I, vi = vj
for some j /∈ I. There are

( 2aq
2aq−m

)

choices for I. We then choose the elements {vj : j /∈ I}. There
are no restrictions on these elements so there are nm choices for these elements. Finally, we choose
the elements {vi : i ∈ I}. To determine each vi it is sufficient to specify the j /∈ I such that
vi = vj. For each i there are m choices for the corresponding j, so the number of choices for these
elements is at most m2aq−m. Putting everything together, the total number of choices is at most
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( 2aq
2aq−m

)

nmm2aq−m. Now note that since we are choosing subsets {Vi : i ∈ [2q]} of [n] rather than
one big ordered tuple, the order within each subset does not matter. Thus, there are (a!)2q different
ordered tuples which give the same subsets of elements, so the total number of possibilities for the
subsets {Vi} is at most (a!)−2q

( 2aq
2aq−m

)

nmm2aq−m, as needed.

Now E[p(G, 2q)] =
∑

{Vi} E[f(G, {Vi})]. For every nonzero term E[f(G, {Vi})], we have that
| ∪i Vi| ≤ 2aq − qy + z. If q > z

y then applying Lemma 9.7 with m = 2aq − qy + z, the number of
non-zero terms E[f(G, {Vi})] is at most

(

1

a!

)2q ( 2aq

2aq −m

)

nmm2aq−m ≤
(

1

a!

)2q

(2aqm)2aq−mnm.

Moreover, by our assumptions, each of these nonzero terms E[f(G, {Vi})] has value at most B2q,
so

E[p(G, 2q)] ≤
(

1

a!

)2q

(2aqm)2aq−mnmB2q.

Now, by Markov’s inequality applied to p(G, 2q),

Pr

[

2q
√

p(G, 2q) > 2q
√

E[p(G, 2q)]/ε
]

< ε.

We next choose a value q so as to minimize our estimate on 2q
√

E[p(G, 2q)]/ε. Specifically, we set
q = ⌈ln(nz/ε)/2y⌉ (we arrive at this value by minimizing the general estimate as a function of q by
setting the derivative to 0 - we spare the reader the details). As long as n ≥ 10, this guarantees
that q > z/y so that

2q
√

E[p(G, 2q)]/ε ≤ B

a!
· 1

ε1/2q
· (2aqm)a−m/2q · nm/2q

=
B

a!
· na−y/2 ·

(

nz

ε

)1/2q

(2aqm)a−m/2q

≤ B

a!
· na−y/2 ·

(

nz

ε

)1/2q

· (2aq)y

≤ B

a!
· na−y/2 · ey · (2a)y ·

(

ln(nz/ε)

2y
+ 1

)y

.

The claim now follows by rearranging the above bound.

9.2 Bounds on ||Ra||
In this subsection, we prove Claim 8.3 using Theorem 9.1. For convenience, we restate Claim 8.3
here with more precise constants.

Theorem 9.8. If n ≥ 100, for all ε ∈ (0, 1), Pr
[

||Ra|| > 2a
2+2a+2 ln (nε )n

a− 1
2

]

< ε.

The core of the proof will be to bound |∪2qj=1Vij | for any term
∏2q

j=1Ra(Vij , Vij+1) with non-zero

expectation which appear in the expansion of tr((RT
aRa)

q). We will do so by arguing that the
constraint graph associated with the term has at most 2aq − q + 1 connected components, which
we do by inductively decomposing Ra as follows.
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Definition 9.9. Given a partition (A,B) of [1, n], define Ra,A,B(V1, V2) = Ra(V1, V2) if V1 ⊆ A
and V2 ⊆ B and 0 otherwise.

Proposition 9.10.
∑

A,B Ra,A,B = 2n−2aRa

Proof. Ra,A,B(V1, V2) = Ra(V1, V2) = 0 whenever V1 and V2 are not disjoint. For all disjoint V1 and
V2, Ra,A,B(V1, V2) = Ra(V1, V2) for 2

n−2a choices of A and B and is 0 for the rest.

Corollary 9.11. ||Ra|| ≤ 22amaxA,B {||Ra,A,B ||}

Proof. Since Ra = 22a−n
∑

A,B Ra,A,B, ||Ra|| ≤ 22a−n
∑

A,B ||Ra,A,B || ≤ 22a maxA,B {||Ra,A,B ||}

Now given A and B, take

p(G, 2q) = tr((RT
a,A,BRa,A,B)

q) =
∑

{Vij :i∈[1,q],j∈[1,2]}

q
∏

i=1

RT
a,A,B(Vi1, Vi2)Ra,A,B(Vi2, V(i+1)1)

=
∑

{Vij :i∈[1,q],j∈[1,2]}:

∀i,Vi1⊆B

∀i,Vi2⊆A

q
∏

i=1

Ra(Vi1, Vi2)Ra(Vi2, V(i+1)1)

where we take V(q+1)1 = V11.
To simplify this expression, rename the sets of vertices as follows.

Definition 9.12.

1. If i ∈ [1, 2q] and i is odd then take Wi = V( i+1
2

)1

2. If i ∈ [1, 2q] and i is even then take Wi = V( i
2
)2

We now have that

p(G, 2q) =
∑

{Wi:i∈[1,2q]}:
∀ odd i,Wi⊆B

∀ even i,Wi⊆A

2q
∏

i=1

Ra(Wi,Wi+1), (9.1)

where we take W2q+1 = W1. To study which of these terms may have non-zero expectation, we
first define a graph related to the corresponding constraint graph.

Definition 9.13. Given a constraint graph C, let H be a graph with two types of edges, product
edges and constraint edges, such that

1. V (H) = {Wi : i ∈ [1, 2q]}

2. EP (H) = {(Wi,Wi+1) : i ∈ [1, 2q]}

3. EC(H) = {(Wi,Wj) : i 6= j,Wi ∩Wj 6= ∅}
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Now, each Ra(Wi,Wi+1) is a random variable with expectation 0, so if any Ra(Wi,Wi+1) is
independent from everything else, the product will have expectation 0. Such dependencies arise
due to the presence of edges from G occurring in (at least two) different “elements” (say (Wi,Wi+1),
(Wj ,Wj+1) for i 6= j) of the term. Such repeated occurrences manifest in our constraint graphs
(and the graph H defined above) as (three or four) cycles in the graph, which we call independence
breaking. For a term to have non-zero expectation it must be that every element (Wi,Wi+1) is on
some such cycle. This implies that each product

∏2q
i=1 Ra(Wi,Wi+1) has zero expected value unless

all of the product edges in the corresponding H are part of independence-breaking cycles. This
places restrictions on H (see Lemma 9.17) which in turn places restrictions on the constraint graph
C, allowing us to use Theorem 9.1. We make these ideas precise below.

Definition 9.14. Given q and {W1, · · · ,W2q}, we define Wi±2q = Wi for all i ∈ [1, 2q].

Definition 9.15. If q ≥ 2,

1. Define an independence breaking 3-cycle in H to consist of product edges (Wi,Wi+1), (Wi+1,Wi+2)
and a constraint edge ((Wi, j), (Wi+2, j)).

2. Define an independence breaking 4-cycle to consist of product edges e1 = (Wi1 ,Wi1+1), e2 =
(Wi2 ,Wi2±1) and constraint edges (Wi1 ,Wi2) and (Wi1+1,Wi2±1).

Proposition 9.16. For all W1, · · · ,W2q such that Wi ⊆ B whenever i is odd and Wi ⊆ A whenever
i is even, if the corresponding H has a product edge (Wi,Wi+1) which is not contained in any
independence-breaking cycle then E[

∏2q
i=1 Ra(Wi,Wi+1)] = 0

Proof. If (Wi,Wi+1) is not contained in any independence-breaking cycle then no edge between Wi

and Wi+1 appears anywhere else so Ra(Wi,Wi+1) is a random variable with expectation 0 which
is independent from everything else and thus E[

∏2q
i=1 Ra(Wi,Wi+1)] = 0.

We now bound the number of connected components in H with the following lemma.

Lemma 9.17. Let q ≥ 2 and H be a graph such that

1. Every product edge of H is contained in an independence-breaking cycle.

2. Every constraint edge of H is of the form (Wi,Wi+j) where j is even.

Then, the number of connected components in the graph defined by only the constraint edges of H
is at most q + 1.

The intuitive idea behind this lemma is that if we add the constraint edges in the right order,
every new constraint edge can put two product edges into independence breaking cycles. For exam-
ple, a constraint edge between Wi−1 and Wi+1 puts the product edges (Wi−1,Wi) and (Wi,Wi+1)
into an independence breaking 3-cycle. If we then add a constraint edge between Wi−2 and Wi+2,
this puts the product edges (Wi−2,Wi−1) and (Wi+1,Wi+2) into an independence breaking 4-cycle.
The final constraint edge can put 4 product edges into independence breaking cycles, so the number
of constraint edges needed is q − 1.

To make this argument work, we use an inductive proof. We note that if there is no Wi which is
isolated in H, we must have at least q constraint edges. On the other hand, if there a Wi which is
isolated, there must be a constraint edge between Wi−1 and Wi+1. As noted above, this constraint
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edge puts the product edges (Wi−1,Wi) and (Wi,Wi+1) into an independence breaking 3-cycle.
We take this to be the first constraint edge. We then argue that we can essentially delete Wi

and merge Wi−1 and Wi+1 which allows us to use the inductive hypothesis. We make these ideas
rigorous below.

Proof of Lemma 9.17. We prove Lemma 9.17 by induction on q. The base case q = 2 is trivial, as
we clearly need at least one constraint edge, so the number of connected components in H is at
most 3. Now assume that q = k ≥ 3 and the result is true for q = k − 1.

First note that if there is no Wi which is isolated (when looking only at constraint edges), then
there are at most q connected components in H. Thus, we may assume that Wi is isolated for some
i. Now note that for the product edge (Wi−1,Wi), since Wi is isolated, there are no independence
breaking 3-cycles or 4-cycles where Wi is the endpoint of a constraint edge. Thus, we must have
that (Wi−1,Wi) is part of an independence breaking 3-cycle consisting of (Wi−1,Wi), (Wi,Wi+1),
and a constraint edge (Wi−1,Wi+1).

Now form a new graph H ′ as follows. Delete Wi and contract the constraint edge between Wi−1

and Wi+1. More precisely,

1. Take V (H ′) = V (H) \ {Wi−1,Wi,Wi+1} ∪ {U}

2. Take Eproduct(H
′) = Eproduct(H) \ {(Wj ,Wj+1) : j ∈ [i− 2, i + 1]} ∪ {(Wi−2, U), (U,Wi+2)}

3. Take

Econstraint(H
′) = Econstraint(H) \ {(Wi−1,Wj) : (Wi−1,Wj) ∈ Econstraint(H)}
\ {(Wi+1,Wj) : (Wi+1,Wj) ∈ Econstraint(H)}
∪ {(U,Wj) : (Wi−1,Wj) ∈ Econstraint(H) or (Wi+1,Wj) ∈ Econstraint(H)}

After doing this, rename U as Wi−1 and rename each Wj where j > i+ 1 as Wj−2. In going from
H to H ′, we have effectively reduced both q and the number of connected components by 1. To
complete the proof, we need to check that H ′ satisfies the inductive hypotheses. Based on the
reduction from H to H ′, we still have that every constraint edge is of the form (Wi,Wi+j) where j
is even. We check that every product edge is still part of an independence-breaking cycle case by
case.

1. Every independence-breaking cycle which did not contain the constraint edge (Wi−1,Wi+1)
in H is preserved in H ′ except that the vertices may have been renamed. The reason for this
is that such an independence breaking cycle in H cannot contain Wi and can contain at most
one of {Wi−1,Wi+1}.

2. The independence-breaking 3-cycle inH consisting of the product edges (Wi−1,Wi), (Wi,Wi+1)
and the constraint edge (Wi−1,Wi+1) is removed, but so are the product edges (Wi−1,Wi)
and (Wi,Wi+1), so this is fine.

3. If we have an independence breaking 4-cycle inH consisting of the product edges (Wi−2,Wi−1),
(Wi+1,Wi+2) and the constraint edges (Wi−1,Wi+1), (Wi−2,Wi+2), this becomes an independence-
breaking 3-cycle in H ′ with product edges (Wi−2,Wi−1), (Wi−1,Wi) and a constraint edge
(Wi−2,Wi) (note that Wi−1 and Wi+1 are merged into Wi−1 in H ′ and Wi+2 is renamed as
Wi in H ′).
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H ′ satisfies the inductive hypotheses, so looking only at the constraint edges, H ′ has at most
(q − 1) + 1 = q connected components. H has one more connected component than H ′ (the vertex
Wi in H), so H has at most q + 1 connected components, as needed.

The above lemma combined with Lemma 9.5 gives the following corollary.

Corollary 9.18. For all terms
∏2q

i=1Ra(Wi,Wi+1) occurring in Equation 9.1 with nonzero expec-

tation, | ∪2qi=1 Wi| ≤ 2aq − (2q) + q + 1.

We can now prove Theorem 9.8

Proof of Theorem 9.8. We can now apply Theorem 9.1 with y = 1, and z = 1 by the above corollary.
Every entry of Ra,A,B has magnitude at most 2a

2
so we can take B = 2a

2
. By Theorem 9.1, if

n ≥ 10, for all A and B, for every ε ∈ (0, 1),

Pr

[

||Ra,A,B|| >
2a

2

a!

(

2ea
( lnn− ln ε

2
+ 1
)

)

na−1/2

]

= Pr

[

||Ra,A,B || >
2a

2
ea

a!
(lnn− ln ε+ 2)na− 1

2

]

< ε

Since 4 lnn ≥ e(ln n+ 2) for all n ≥ 100 and a! ≥ a, we have that for all n ≥ 100, for all A and B
and all ε ∈ (0, 1),

Pr

[

||Ra,A,B || > 2a
2+2 ln (

n

ε
)na− 1

2

]

< ε

Now by Corollary 9.11, ||Ra|| ≤ 22a maxA,B {||Ra,A,B ||} so

Pr

[

||Ra|| > 2a
2+2a+2 ln (

n

ε
)na− 1

2

]

< ε

10 Concentration bounds for number of cliques and degG(I)

We now prove large deviation bounds for degG( ) leading to Claim 8.13 which we state below in a
more precise form.

Theorem 10.1. If n ≥ 10, and ε ∈ (0, 1), then for all I ⊆ [n], with |I| = i ≤ 2r,

Pr

[∣

∣

∣

∣

degG(I)− 2−(
2r
2 )+(

i
2) ·
(

n− i

2r − i

)∣

∣

∣

∣

> 2(ln(128/ε))2n2r−i−1/2 | (I is a clique)

]

≤ ε.

To prove the claim we first show a similar concentration bound for the number of cliques of
a certain size in G. While similar results appear in the literature, see for instance [Ruc88, Vu01,
JLR11], we give a short direct proof based on Theorem 9.1.

Definition 10.2. For a graph G, define Na(G) to be the number of a-cliques in G.

Theorem 10.3. For all a, for all n ≥ 10 and ε ∈ (0, 1), E[Na(G)] = 2−(
a
2)
(n
a

)

and

Pr
[

|Na(G)− E[Na(G)]| > (ln(64/ε))2 · na−1
]

< ε.
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Proof. The first part of the theorem is trivial so we focus on the second part. Given a set of vertices

V of size a, define cV to be 1− 2−(
a
2) if V is a clique and −2−(a2) otherwise. Then,

Na(G)− E[Na(G)] =
∑

V :|V |=a

cV .

Now let’s consider the function p(G, 2q) = (
∑

V :|V |=a cV )
2q =

∑

W1,··· ,W2q

∏2q
i=1 cWi

.

Note that E[
∏2q

i=1 cWi
] = 0 unless each set of vertices Wi has two vertices in common with a

different set of vertices Wj. Now consider a graph C2 where the vertices are {W1, . . . ,W2q} and
an edge between Wi,Wj if |Wi ∩Wj | ≥ 2. Let t be the number of connected components in C2.
We claim that | ∪i Wi| ≤ 2aq − 4q + 2t. For, as in the proof of Lemma 9.5, first consider elements
Wi1 , . . . ,Wit belonging to the t different connected components. Now, add the remaining elements
of {W1, . . . ,W2q} so that each new element is adjacent to at least one of the previously added sets.
When doing so, each step can increase the size of the union by at most a − 2. Therefore, the size
of the union is at most at + (a − 2)(2q − t) = 2aq − 4q + 2t. On the other hand, each connected
component in C2 must have at least two vertices, so t ≤ q. Therefore, | ∪i Wi| ≤ 2aq − 2q.

We can now apply Theorem 9.1 with y = 2, z = 0 and B = 1 so that for n ≥ 10, and ε ∈ (0, 1),

Pr

[

|Na(G) −E[Na(G)]| > 1

a!
·
(

ea
(− ln ε

4
+ 1
)

)2

· na−1

]

< ε.

Using the facts that e2 < 8 and m2

m! ≤ 2 for all nonnegative integers m, we have that

Pr
[

|Na(G)− E[Na(G)]| > (ln(64/ε))2 · na−1
]

< ε.

We are now ready to prove Theorem 10.1. The idea is as follows. Let AI be the collection of
vertices which are adjacent to all the vertices in I. Then, conditioned on I being a clique, degG(I)
is just the number of cliques of size 2r− i in the vertices AI which is primarily determined by |AI |.
This is because the edges between vertices of AI are independent of the edges involving vertices in
I so that we can apply Theorem 10.3 to AI .

Proof of Theorem 10.1. Let AI be as above and let us condition on I being a clique. Then, degG(I)
is just the number of cliques of size 2r − i among the vertices in AI . Therefore, by Theorem 10.3,
with probability at least 1− ε/2,

∣

∣

∣

∣

degG(I)− 2−(
2r−i

2 )
( |AI |
2r − i

)∣

∣

∣

∣

≤ (ln(128/ε))2 · n2r−i−1.

We next argue that
( |AI |
2r−i

)

is concentrated around its mean. For j /∈ I, let Xj be the indicator
random variable that is 1 if the j’th vertex is adjacent to all the vertices in I and 0 otherwise.
Then, |AI | =

∑

j /∈I Xj and

( |AI |
2r − i

)

=
∑

J⊆[n]\I,|J |=2r−i

∏

j∈J
Xj ≡ f({Xj : j /∈ I}).
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Observe that the random variables Xj are independent of each other and that

E[f({Xj : J /∈ I})] = 2−i(2r−i)

(

n− i

2r − i

)

.

We next apply McDiarmid’s inequality to the function f . Note that changing any single coordinate
of the inputs to f can change its value by at most n2r−i−1. Therefore, by Theorem 4.2, with
probability at least 1− ε/2,

∣

∣

∣

∣

( |AI |
2r − i

)

− 2−i(2r−i)

(

n− i

2r − i

)∣

∣

∣

∣

≤
√

ln(4/ε) · n2r−i−.5.

Combining the above equations, we get that with probability at least 1− ε,

∣

∣

∣

∣

degG(I)− 2−(
2r−i

2 )−i(2r−i)

(

n− i

2r − i

)∣

∣

∣

∣

≤ (ln(128/ε))2 · n2r−i−1 + 2−(
2r−i

2 ) ·
√

ln(4/ε) · n2r−i−.5 ≤

2 ln((128/ε)2) · n2r−i−.5.

The theorem now follows as
(2r−i

2

)

+ i(2r − i) =
(2r
2

)

−
(i
2

)

.

11 Conclusion and future work

In this work we showed a lower bound for the maximum clique problem on random G(n, 1/2)
graphs in the SOS hierarchy and positivstellensatz proof system. Besides the specific application
to clique lower bounds, the PSD’ness of the matrix M from Equation 2.5 seems to carry further
information that could be potentially useful elsewhere, perhaps for studying various sub-graph
statistics. Further, the arguments related to association schemes and bounding the norm of locally
random matrices could also be useful elsewhere, especially for other SOS hierarchy lower bounds.
One natural and interesting candidate is the densest subgraph problem.

For planted clique itself, the most obvious open problem is to tighten the gap between the
current upper bound of O(

√
n/2r) and our lower bound of 2−O(r)(

√
n/ log n)1/r for r rounds of the

SOS hierarchy. In particular, can a constant number of rounds of SOS beat the square-root barrier
and identify planted cliques of size o(n1/2)? Kelner12 showed that our dual certificate M actually
is not PSD for k roughly O(n1/(r+1)). Thus one needs to come up with a different dual certificate
to approach the upper bound of

√
n even for r = 2.
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12 Hierarchy Gaps and Positivstellensatz Refutations

For a detailed discussion of the hierarchies and PS(r)-refutations we refer the reader to the dis-
cussions in [OZ13]. The basic principle is that, typically, PS(r)-refutations are more robust and
stronger than the hierarchy formulations.

The SOS (or Lasserre) relaxation for maximum clique is stated in Figure 12 (cf. [Tul09]).
Although, the formulation itself is not in terms of an SDP, it is a standard fact that as the program
only involves inner products of vectors, the optimization can be done by semi-definite programming.
The connection between Figure 12 and PS(r)-refutations comes from the following straightforward
lemma stating that a certificate for PS(r)-refutations is simply a primal solution to the standard
r-round SOS-relaxation of the problem.
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SOS-relaxation for Max-Clique. Input: Graph G = (V,E), r - number of rounds. Variables of the
SDP are vectors US, where S ⊆ [n], |S| ≤ r.

maximize
∑

i∈V
‖U{i}‖22.

such that 〈U{i},U{j}〉 = 0, ∀i, j, {i, j} /∈ E

〈US1 ,US2〉 = 〈US3 ,US4〉, S1 ∪ S2 = S3 ∪ S4, |S1 ∪ S2| ≤ r

〈US1 ,US2〉 ∈ [0, 1], |S1|, |S2| ≤ r

‖U∅‖22 = 1

Figure 1: r-round SOS-relaxation for Maximum Clique

Lemma 12.1. Let G = (V,E) be a graph and let Clique(G, k) denote the clique axioms as defined
by Equations 1.2. Suppose that there exists a dual certificateM : P(n, 2r)→ R for Clique(G, k) as
defined in Definition 1.7. Then, the value of the r-round SOS-relaxation for maximum clique given
by Figure 12 is at least k.

Proof. LetM : P(n, 2r)→ R be the dual certificate andM ∈ R
([n]
≤r)×(

[n]
≤r) be the corresponding PSD

matrix. Without loss of generality suppose that M(∅, ∅) = 1. Let M = UU †, where U = R
([n]
≤r)×N

for some N . Finally, for S ∈
([n]
≤r

)

, let US be the S’th row of U . We claim that the collection (US ,
|S| ≤ r) gives a feasible solution for the SDP in Figure 12.

Observe that for any two subsets S1, S2 ∈
([n]
≤r

)

,

〈US1 ,US2〉 = M(S1, S2) =M(XS1∪S2).

Therefore, the vectors (US : |S| ≤ r) satisfy the first two constraints of Figure 12 as M is a dual
certificate. Further, ‖U∅‖2 = M(∅, ∅) = 1 and for any set S,

‖US‖22 = 〈US ,US〉 = 〈US ,U∅〉 ≤ ‖US‖2,

so that ‖US‖ ≤ 1. Thus, (US : |S| ≤ r) give a feasible solution for the program in Figure 12.
Finally, the value of the solution is

∑

i∈V
‖U{i}‖22 =

∑

i∈V
M(X{i}) = k.

This proves the lemma.

Our main theorems now follow.

Proof of Theorem 1.1. Let G ← G(n, 1/2). Then, from the above lemma and the proof of Theo-
rem 1.5 (where we showed the existence of a dual certificate for the clique axioms), the value of the
r-round SOS-relaxation for max-clique on G is at least n1/2r/Cr(log n)1/r with high probability.
The claim follows as the integral value is (2 + o(1)) log2 n with high probability.
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Proof of Corollary 1.2. The value of the relaxation in Figure 12 is clearly monotone with respect to
adding edges. Therefore, from the above argument, for G ← G(n, 1/2, t) the value of the r-round
SOS-relaxation for max-clique on G is at least n1/2r/Cr(log n)1/r with high probability. The claim
follows as the integral value is t with high probability.
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