
ar
X

iv
:1

50
2.

02
15

5v
1

 [
cs

.D
S]

 7
 F

eb
 2

01
5

Secretary Problems with Non-Uniform Arrival Order

Thomas Kesselheim∗ Robert Kleinberg† Rad Niazadeh†

Abstract

For a number of problems in the theory of online algorithms, it is known that the assumption
that elements arrive in uniformly random order enables the design of algorithms with much
better performance guarantees than under worst-case assumptions. The quintessential example
of this phenomenon is the secretary problem, in which an algorithm attempts to stop a sequence
at the moment it observes the maximum value in the sequence. As is well known, if the sequence
is presented in uniformly random order there is an algorithm that succeeds with probability 1/e,
whereas no non-trivial performance guarantee is possible if the elements arrive in worst-case
order.

In many of the applications of online algorithms, it is reasonable to assume there is some
randomness in the input sequence, but unreasonable to assume that the arrival ordering is uni-
formly random. This work initiates an investigation into relaxations of the random-ordering
hypothesis in online algorithms, by focusing on the secretary problem and asking what perfor-
mance guarantees one can prove under relaxed assumptions. Toward this end, we present two
sets of properties of distributions over permutations as sufficient conditions, called the (p, q, δ)-
block-independence property and (k, δ)-uniform-induced-ordering property. We show these two
are asymptotically equivalent by borrowing some techniques from the celebrated approximation
theory. Moreover, we show they both imply the existence of secretary algorithms with constant
probability of correct selection, approaching the optimal constant 1/e as the related parameters
of the property tend towards their extreme values. Both of these properties are significantly
weaker than the usual assumption of uniform randomness; we substantiate this by providing
several constructions of distributions that satisfy (p, q, δ)-block-independence. As one applica-
tion of our investigation, we prove that Θ(log logn) is the minimum entropy of any permutation
distribution that permits constant probability of correct selection in the secretary problem with
n elements. While our block-independence condition is sufficient for constant probability of
correct selection, it is not necessary; however, we present complexity-theoretic evidence that
no simple necessary and sufficient criterion exists. Finally, we explore the extent to which the
performance guarantees of other algorithms are preserved when one relaxes the uniform random
ordering assumption to (p, q, δ)-block-independence, obtaining a positive result for Kleinberg’s
multiple-choice secretary algorithm and a negative result for the weighted bipartite matching
algorithm of Korula and Pál.

∗Max-Planck-Institut für Informatik, Campus E1 4, 66123 Saarbrücken, Germany, E-Mail:
thomas.kesselheim@mpi-inf.mpg.de.

†Department of Computer Science, Cornell University, Gates Hall, Ithaca, NY 14853, USA, E-Mail: {rdk,
rad}@cs.cornell.edu.

http://arxiv.org/abs/1502.02155v1

1 Introduction

A recurring theme in the theory of online algorithms is that algorithms may perform much bet-
ter when their input is in (uniformly) random order than when the ordering is worst-case. The
quientessential example of this phenomenon is the secretary problem, in which an algorithm at-
tempts to stop a sequence at the moment it observes the maximum value in the sequence. As is well
known, if the sequence is presented in uniformly random order there is an algorithm that succeeds
with probability 1

e , whereas no non-trivial performance guarantee is possible if the elements arrive
in worst-case order.

In many of the applications of online algorithms, it is reasonable to assume there is some
randomness in the input sequence, but unreasonable to assume that the input ordering is uniformly
random. It is therefore of interest to ask which algorithms have robust performance guarantees,
in the sense that the performance guarantee holds not only when the input order is drawn from
the uniform distribution, but whenever the input order is drawn from a reasonably broad family
of distributions that includes the uniform one. In other words, we seek relaxations of the standard
random-ordering hypothesis which are weak enough to include many distributions of interest, but
strong enough to enable one to prove the same (or qualitatively similar) performance guarantees
for online algorithms.

This work initiates an investigation into relaxations of the random-ordering hypothesis in online
algorithms, by focusing on the secretary problem and asking what performance guarantees one
can prove under relaxed assumptions. In the problems we consider there are three parties: an
adversary that assigns values to items, nature which permutes the items into a random order, and
an algorithm that observes the items and their values in the order specified by nature. To state
our results, let us say that a distribution over permutations, is secretary-admissible (abbreviated
s-admissible) if it is the case that when nature uses this distribution to sample the ordering of
items, there exists an algorithm that is guaranteed at least a constant probability of selecting
the element of maximum value, no matter what values the adversary assigns to elements. If this
constant probability approaches 1

e as the number of elements, n, goes to infinity, we say that the
distribution is secretary-optimal (s-optimal).

Question 1: What natural properties of a distribution suffice to guarantee that it is
s-admissible? What properties suffice to guarantee that it is s-optimal?

For example, rather than assuming that ordering of the entire n-tuple of items is uniformly random,
suppose we fix a constant k and assume that for every k-tuple of distinct items, the relative order in
which they appear in the input sequence is δ-close to uniform. Does this imply that the distribution
is s-admissible? In §2 we formalize this (k, δ)-uniform-induced-ordering property (UIOP), and we
prove that it implies s-admissibility for k ≥ 3 and approaches s-optimality as k → ∞ and δ → 0.
To prove this, we relate the uniform-induced-ordering property to another property, the (p, q, δ)-
block-independence property (BIP), which may be of independent interest. Roughly speaking, the
block-independence property asserts that the joint distribution of arrival times of any p distinct
elements, when considered at coarse enough granularity, is δ-close to p i.i.d. samples from the
uniform distribution. While this property may sound much stronger than the UIOP, we show that
it is actually implied by the UIOP for sufficiently large k and small δ.

To substantiate the notion that these properties are satisfied by many interesting distributions
that are far from uniform, we show that they apply to several natural families of permutation distri-
butions, including almost every uniform distribution with support size ω(log n), and the distribution
over linear orderings defined by taking any n sufficiently “incoherent” vectors and projecting them
onto a random line.

1

A distinct but related topic in the theory of computing is pseudorandomness, which shares a
similar emphasis on showing that performance guarantees of certain classes of algorithms are pre-
served when one replaces the uniform distribution over inputs with suitably chosen non-uniform
distributions, specifically those having low entropy. While our interest in s-admissibility and the
(k, δ)-UIOP is primarily motivated by the considerations of robustness articulated earlier, the anal-
ogy with pseudorandomness prompts a natural set of questions.

Question 2: What is the minimum entropy of an s-admissible distribution? What is
the minimum entropy of a distribution that satisfies the (k, δ)-UIOP? Is there an explicit
construction that achieves the minimum entropy?

In §2 and §3 we supply matching upper and lower bounds to answer the first two questions. The an-
swer is the same in both cases, and it is surprisingly small: Θ(log log n) bits. Moreover, Θ(log log n)
bits suffice not just for s-admissibility, but for s-optimality! We also supply an explicit construction,
using Reed-Solomon codes, of distributions with Θ(log log n) bits of entropy that satisfy all of these
properties.

Given that the (k, δ)-UIOP is a sufficient condition for s-admissibility, that it is satisfied in
every natural construction of s-admissible distributions that we know of, and that the minimum
entropy of (k, δ)-UIOP distributions matches the minimum entropy of s-admissible distributions, it
is tempting to hypothesize that the (k, δ)-UIOP (or something very similar) is both necessary and
sufficient for s-admissibility.

Question 3: Find a natural necessary and sufficient condition that characterizes the
property of s-admissibility.

In §4 we show that, unfortunately, this is probably impossible. We construct a strange distribution
over input orderings that is s-admissible, but any algorithm achieving constant probability of correct
selection must use a stopping rule that cannot be computed by circuits of size 2n/ log

2(n). The
construction makes use of a coding-theoretic construction that may be of independent interest: a
binary error-correcting code of block length n and message length m = o(n), such that if one erases
any n − 2m symbols of the received vector, most messages can still be uniquely decoded even if
Ω(m) of the remaining 2m symbols are adversarially corrupted.

Finally, we broaden our scope and consider other online problems with randomly-ordered inputs.

Question 4: Are the performance guarantees of other online algorithms in the uniform-
random-order model (approximately) preserved when one relaxes the assumption about
the input order to the (k, δ)-UIOP or the (p, q, δ)-BIP? If the performance guarantee is
not always preserved in general, what additional properties of an algorithm suffice to
ensure that its performance guarantee is preserved?

This is an open-ended question, but we take some initial steps toward answering it by looking
at two generalizations of the secretary problem: the multiple-choice secretary problem (a.k.a. the
uniform matroid secretary problem) and the online bipartite weighted matching problem. We show
that the algorithm of Kleinberg [25] for the former problem preserves its performance guarantee,
and the algorithm of Korula and Pál [26] for the latter problem does not.

Related Work. The secretary problem was solved by Lindley [28] and Dynkin [15]. A sequence
of papers relating secretary problems to online mechanism design [20, 25, 5] touched off a flurry of
CS research during the past 10 years. Much of this research has focused on the so-called matroid
secretary problem, which remains unsolved despite a string of breakthroughs including a recent

2

pair of O(log log r)-competitive algorithms [27, 18], where r is the matroid rank. Generalizations
are known for weighted matchings in graphs and hypergraphs [14, 23, 26], independent sets [19],
knapsack constraints [4], and submodular payoff functions [7, 17], among others. Of particular
relevance to our work is the free order model [21]; our results on the minimum entropy s-admissible
distribution can be regarded as a randomness-efficient secretary algorithm in the free-order model.

The uniform-random-ordering hypothesis has been applied to many other problems in online
algorithms, perhaps most visibly to the AdWords problem [12, 16] and its generalizations to online
linear programming with packing constraints [2, 13, 24, 32], and online convex programming [1].
Applications of the random-order hypothesis in minimization settings are more rare; see [29, 30]
for applications in the context of facility location and network design.

In seeking a middle ground between worst-case and average-case analysis, our work contributes
to a broad-based research program going by the name of “beyond worst-case analysis” [34]. In terms
of motivation, there are clear conceptual parallels between our paper and the work of Mitzenmacher
and Vadhan [31], who study hashing and identify hypotheses on the data-generating process, much
weaker than uniform randomness, under which random hashing using a 2-universal hash family has
provably good performance, although at a technical level our paper bears no relation to theirs.

The properties of permutation distributions that we identify in our work bear a resemblance
to almost k-wise independent permutations (e.g., [22]), but the (k, δ)-UIOP and (p, q, δ)-BIP are
much weaker, and consequently permutation distributions satisfying these properties are much more
prevalent than almost k-wise independent permutations.

Setting and Notations. We consider problems in which an algorithm selects one or more ele-
ments from a set U of n items. Items are presented sequentially, and an algorithm may only select
items at the time when they are presented. In the secretary problem the items are totally ordered
by value, and the algorithm is allowed to select only one element of the input sequence, with the
goal of selecting the item of maximum value. Algorithms for the secretary problem are assumed to
be comparison-based1, meaning their decision whether to select the item presented at time t must
be based only on the relative ordering (by value) of the first t elements that arrived. Algorithms
are evaluated according to their probability of correct selection, i.e., the probability of selecting the
item of maximum value.

We assume that the set U of items is [n] = {1, . . . , n}. The order in which items are presented
is then represented by a permutation π of [n], where π(i) denotes the position of item i in the input
sequence. Similarly, the ordering of items by value can be represented by a permutation σ of [n],
where σ(j) = i means that the jth largest item is i. Then, the input sequence observed by the
algorithm is completely described by the composition πσ.

2 Sufficient Properties of Non-Uniform Probability Distributions

In §1, we introduced two properties of non-uniform probability distributions which suffice to ensure
existence of a secretary algorithm with constant probability of correct selection. (In other words,
the two properties imply s-admissibility.) We begin by formally defining these two properties.

Definition 1. A distribution π over permutations of [n] satisfies the (k, δ)-uniform-induced-ordering
property, abbreviated (k, δ)-UIOP, if and only if, for every k distinct items x1, . . . , xk ∈ [n], if π is
a random sample from π then Pr [π(x1) < π(x2) < · · · < π(xk)] ≥ (1− δ) 1

k! .

1This assumption of comparison-based algorithms is standard in the literature on secretary problems. Samuels
[35] proved that when the input order is uniformly random, it is impossible to achieve probability of correct selection
1/e + ε for any constant ε > 0, even if the algorithm is allowed to observe the values.

3

The (k, δ)-uniform-induced-ordering property is a very natural assumption and it is rather easy
to show that it is fulfilled by a probability distribution. We will demonstrate this with a few
examples in §2.3. However, it is not clear how to analyze algorithms for secretary problems based
on this property. To this end, the more technical (p, q, δ)-block-independence property is more
helpful. We show this by analyzing the classic algorithm for the secretary problem in Section 2.1
and the k-uniform matroid secretary problem in Section 5. However, one of our main results
in Section 2.2 is that these two properties are in fact equivalent, in the limit as the parameters
k, p, q → ∞ and δ → 0.

Definition 2. Given a positive integer q ≤ n, partition [n] into q consecutive disjoint blocks of
size between ⌊n/q⌋ and ⌈n/q⌉ each, denoted by B1, . . . , Bq ⊆ [n]. A permutation distribution
π satisfies the (p, q, δ)-block-independence property, abbreviated (p, q, δ)-BIP, if for any distinct
x1, . . . , xp ∈ [n], and any b1 . . . , bp ∈ [q]

Pr





∧

j∈[p]
π(xi) ∈ Bbi



 ≥ (1− δ)

(

1

q

)p

,

Note that b1 . . . , bp do not necessarily have to be distinct. To simplify notation, given a permutation
π of [n], we define a function πB : U → [q] by setting πB(x) = i if and only if π(x) ∈ Bi for all
x ∈ U .

2.1 Secretary Algorithms and the (p, q, δ)-block-independence property

Next, we will analyze the standard threshold algorithm for the secretary problem under probability
distributions that only fulfill the (p, q, δ)-block-independence property rather than being uniform.
The algorithm only observes the first n

e items. Afterwards, it accepts the first item whose value
exceeds all values seen up to this point. Under a uniform distribution, this algorithm picks the best
items with probability at least 1

e − o(1). We show that already for small constant values of p and q
and rather large constant values of δ this algorithm has constant success probability. At the same
time, for large p and q and small δ, the probability converges to 1

e .

Theorem 1. Under a (p, q, δ)-block-independent probability distribution, the standard secretary

algorithm picks the best item with probability at least 1
e − e+1

q − δ −
(

1− 1
e

)p−1
.

Proof Sketch. Let T = ⌊ qe⌋ denote the index of the block in which the threshold is located. Fur-
thermore, let xj ∈ U be the jth best item. We condition on the event that x1 comes in block
with index i. To ensure that our algorithm picks this item, it suffices that x2 comes in blocks
1, . . . , T − 1. Alternatively, we also pick x1 if the x2 comes in blocks i + 1, . . . , q and x3 comes in
blocks 1, . . . , T − 1. Continuing this argument, we get

Pr [correct selection] ≥
q
∑

i=T+1

p
∑

j=2

Pr
[

πB(x1) = i, πB(x2), . . . , π
B(xj−1) > i, πB(xj) < T

]

.

Note that the (p, q, δ)-BIP implies the (p′, q, δ)-BIP for any p′ < p, simply by marginalizing over
the remaining indices in the tuple. This gives us:

Pr [correct selection] ≥
q
∑

i=T+1

p
∑

j=2

(1− δ)
1

q

(

q − i

q

)j−2 T − 1

q
,

and the lemma follows after manipulating the expression on the right side and applying some
standard bounds.

4

2.2 Relationship Between the Two Properties

We will show that the two properties defined in the preceding section are in some sense equivalent
in the limit as the parameters k, p, q → ∞ and δ → 0. (For k = 2, a distribution satisfying (k, δ)-
UIOP is not even necessarily s-admissible—this is an easy consequence of the lower bound in §3
and the fact that the (2, 0)-UIOP is achieved by a distribution with support size 2, that uniformly
randomizes between a single permutation and its reverse. Already for k = 3 and any constant
δ < 1, the (k, δ)-UIOP implies s-admissibility; this is shown in Appendix A.)

Our first result is relatively straightforward: Any probability distribution that fulfills the

(p, q, δ)-BIP also fulfills the (p, δ + q2

p)-UIOP. The (easy) proof is deferred to Appendix B.1.2.

Theorem 2. If a distribution over permutation fulfills the (p, q, δ)-BIP, then it also fulfills the

(p, δ + p2

q)-UIOP.

The other direction is far less obvious. Observe that the (k, δ)-uniform-induced-ordering prop-
erty works in a purely local sense: even for a single item x ∈ U , the distribution of its position π(x)
can be far from uniform. For example, the case k = 2 is even fulfilled by a two-point distribution
that only include one permutation and its reverse. Then π(x) can only attain two different values.
Nevertheless, we have the following result.

Theorem 3. If a distribution over permutation fulfills the (k, δ)-uniform-induced-ordering property,

then it also satisfies (p, q, δ)-block-independence property for p = o(k
1

5), q = O(k
1

5) as k goes to
infinity.

The proof applies the theory of approximation of functions, which addresses the question of
how well one can approximate arbitrary functions by polynomials. The main insight underlying
the proof is the following. If π satisfies the (k, δ)-UIOP, then for any k-tuple of distinct elements
x1, . . . , xk if one defines random variables Xi , π(xi)/n, then the expected value of any monomial
of total degree k/2 in the variables {Xi} approximates the expected value of that same monomial
under the distribution of a uniformly-random permutation. With this lemma in hand, proving
Theorem 3 becomes a matter of quantifying how well the indicator function of a (multi-dimensional)
rectangle can be approximated by low-degree polynomials. Approximation theory furnishes such
estimates readily. To make the proof sketch concrete, we start by some definitions and notations
from approximation theory; see, e.g., the textbook by Carothers [10].

Definition 3 ([10]). If f is any bounded function over [0, 1], we define the sequence of Bernstein
polynomials for f by

(Bd(f))(x) =
d
∑

k=0

f(k/d)

(

d

k

)

xk(1− x)d−k, 0 ≤ x ≤ 1. (1)

Remark 1. Bd(f) is a polynomial of degree at most d.

Definition 4 ([10]). The modulus of continuity of a bounded function f over [a, b] is defined by

ωf (δ) = sup{|f(x1)− f(x2)| : x1, x2 ∈ [a, b], |x1 − x2| ≤ δ} (2)

Remark 2. Bounded function f is continuous over interval [a, b] if and only if ωf (δ) = O(δ).
Moreover, f is uniformly continuous if and only if ωf (δ) = o(δ).

We are now ready to state our main ingredient, i.e. Bernstein’s approximation theorem, which
shows bounded functions with enough continuity are well approximated by Bernstein polynomials.

5

Theorem 4 ([10]). For any bounded function f over [0, 1] we have

‖f −Bd(f)‖∞ ≤ 3

2
ωf

(

1√
d

)

(3)

where for any bounded functions f1 and f2, ‖f1 − f2‖∞ , sup{|f1(x)− f2(x)| : x ∈ [0, 1]}.

Proof of Theorem 3. To prove our claim, we start by showing (k, δ)-uniform-induced-ordering prop-
erty forces the arrival time of items to have almost the same higher-order moments as uniform
independent random variables. More precisely, we have the following lemma (the proof is provided
in Appendix B.1.2).

Lemma 1. Suppose π is drawn from a permutation distribution satisfying the (k, δ)-uniform-
induced-ordering property, and {x1, . . . , xp} is an arbitrary set of p items. Let φ : [n] → {i/n :
i ∈ [n]} be a uniform random mapping, and random variables Xi , π(xi)/n for all i ∈ [p]. Then

for every ki ≤ k
2p we have E

[

∏p
i=1 X

ki
i

]

≥ (1− δ)E
[

∏p
i=1 φ(i)

ki
]

.

Given Lemma 1, roughly speaking the key idea for the rest of the proof is looking at probabilities
as the expectation of the indicator functions, and then trying to approximate the indicator functions
by polynomials. Now, to compute probabilities all we need are moments, which due to Lemma 1 are
almost equal to those of uniform independent random variables. Rigorously, we prove the following
probabilistic lemma using this idea. (The proof is provided in Appendix B.1.2).

Lemma 2. Let φ : [n] → {i/n : i ∈ [n]} be a uniform random mapping. Furthermore, let

X1,X2, . . . ,Xp be random variables over [0, 1] such that for every ki ≤ d we have E
[

∏p
i=1X

ki
i

]

≥
E
[

∏p
i=1 φ(i)

ki
]

(1 − δ). Then for any disjoint intervals {(ai, bi)}pi=1 of [0, 1] where ai and bi are

multiples of 1/n and |bi − ai| ≥ d−
1

4 , we have:

Pr

[

p
∧

i=1

(Xi ∈ [ai, bi])

]

≥
(

p
∏

i=1

(bi − ai)

)

(1− δ)− 7p

d1/4
(4)

Now, by combining Lemma 1 and Lemma 2, we check the (p, q, δ)-block-independence property.
Start by setting d = k

2p . By Lemma 2 the probability approximation error from what desired will

be O
(

p
d1/4

)

=O
(

p5/4

k1/4

)

. This error goes to zero as k → ∞ if we set p = o(k
1

5). Moreover, we need

|bi − ai| ≥ d−
1

4 . So, 1
q = Ω

(

1
d1/4

)

. As d = ω(k
4

5), if we set q = O(k
1

5) we are fine. This completes

the proof.

2.3 Constructions of Probability Distributions Implying the Properties

2.3.1 Randomized One-Dimensional Projections

In this section we present one natural construction leading to a distribution that satisfies the (k, δ)-
UIOP. The starting point for the construction is an n-tuple of vectors x1, . . . , xn ∈ R

d. If one
sorts these vectors according to a random one-dimensional projection (i.e., ranks the vectors in
increasing order of w · xi, for a random w drawn from a spherically symmetric distribution), when
does the resulting random ordering satisfy the (k, δ)-UIOP? Note that if any k of these vectors
comprise an orthonormal k-tuple and one ranks them in increasing order of w · xi, where w is
drawn from a spherically symmetric distribution, then a trivial symmetry argument shows that the

6

induced ordering of the k vectors is uniformly random. Intuitively, then, if the vectors x1, . . . , xn are
sufficiently “incoherent”, then any k-tuple of them should be nearly orthonormal and their induced
ordering when projected onto the 1-dimensional subspace spanned by w should be approximately
uniformly random. The present section is devoted to making this intuition quantitative. We begin
by recalling the definition of the restricted isometry property [9].

Definition 5. A matrixX satisfies the restricted isometry property (RIP) of order k with restricted
isometry constant δk if the inequalities

(1− δk)‖x‖2 ≤ ‖XTx‖2 ≤ (1 + δk)‖x‖2

hold for every submatrix XT composed of |T | ≤ k columns of X and every vector x ∈ R
|T |. Here

‖ · ‖ denotes the Euclidean norm.

Several random matrix distributions are known to give rise to matrices satisfying the RIP with
high probability. The simplest such distribution is a random d-by-n matrix with i.i.d. entries drawn
from the normal distribution N

(

0, 1d
)

. It is known [6, 9] that, with high probability, such a matrix

satisfies the RIP of order k with restricted isometry constant δ provided that d = Ω
(k logn

δ2

)

. Even
if the columns x1, . . . , xn of X are not random, if they are sufficiently “incoherent” unit vectors,
meaning that xi · xj = 1 if i = j and xi · xj < δk/k otherwise, then X satisfies the RIP. Using this
idea, we prove the following theorem (with proof provided in Appendix B.1.3).

Theorem 5. Let x1, . . . , xn be the columns of a matrix that satisfies the RIP of order k with
restricted isometry constant δk = δ

k . If w is drawn at random from a spherically symmetric distri-
bution and we use w to define a permutation of [n] by sorting its elements in order of increasing
w · xi, the resulting distribution over Sn satisfies the (k, δ)-UIOP.

2.3.2 Constructions with Low Entropy

This subsection presents two constructions showing that there exist permutation distributions with
entropy Θ(log log n) satisfying the (k, δ)-UIOP for arbitrarily large constant k and arbitrarily small
constant δ. The proof of the first result is an easy application of the probabilistic method (which is
in Appendix B.1.4). The proof of the second result uses Reed-Solomon codes to supply an explicit
construction.

Theorem 6. Fix some ξ ≥ 2(k+1)!
δ2

lnn. If S is a random ξ-element multiset of permutations
π : [n] → [n], then the uniform distribution over S fulfills the (k, δ)-UIOP with probability at least
1− 1

n .

Theorem 7. There is a distribution over permutations that has entropy O(log log n) and fulfills

the (k, δ)-uniform-induced-ordering property where δ = O(k2

log log logn).

To derive Theorem 7, we start by proving the following lemma.

Lemma 3. For large enough n ∈ N and some ℓ = Ω(log2 log log n), there is a distribution over
functions f : U → [ℓ] with entropy O(log log n) such that for any x, x′ ∈ U , x 6= x′, we have
Pr [f(x) = f(x′)] = O(1

log log logn).

Proof. We will define a function f , parameterized by α1, α2, and α3, as a composition of 8 functions,
which are mostly injective.

For i = 1, 2, 3, let Ki = log(i) n and qi be a prime power such that 2K2
i +1 ≥ qi ≥ K2

i +1 (Note
that for large enough n, we can always find a prime power between K2

i + 1 and 2K2
i + 1). Let αi

7

be drawn independently uniformly from [qi − 1]. This is the only randomization involved in the
construction. It has entropy log(q1 − 1) + log(q2 − 1) + log(q3 − 1).

Let Ci be a Reed-Solomon code of message length Ki and alphabet size qi. This yields block
length Ni = qi − 1 and distance di = Ni − Ki + 1 = qi − Ki. In other words, Ci is a function
Ci : Di → Ri with Di = [qi]

Ki and Ri = [qi]
Ni such that for any w,w′ ∈ Di with w 6= w′, we Ci(w)

and Ci(w
′) differ in at least di components.

Furthermore αi defines one position in each code-word Ri. Given αi, let hi : Ri → [qi], be the
projection of a code-word w of Ci to its αith component, i.e., hi(w) = wαi .

Finally, we observe that |Di+1| = q
Ki+1

i+1 ≥ 5Ki+1 ≥ 2(2Ki+1)2 + 1 ≥ qi. So there is an injective
mapping gi : [qi] → Di+1, mapping alphabet symbols of Ci to messages of Ci+1.

Overall, this defines a function f = h3 ◦C3 ◦ g2 ◦ h2 ◦C2 ◦ g1 ◦ h1 ◦C1, mapping values of D1 to
[q3].

Let fi = gi ◦ hi ◦ Ci ◦ fi−1.
Now let w,w′ ∈ D1, w 6= w′. Observe that all functions except for the hi are injective. Therefore

the event f(w) = f(w′) can only occur if hi(Ci(fi−1(w))) = hi(Ci(fi−1(w
′))) for some i. As Ci is a

Reed-Solomon code with distance di, Ci(fi−1(w)) and Ci(fi−1(w
′)) differ in at least di components.

Therefore, the probability that hi(Ci(fi−1(w))) 6= hi(Ci(fi−1(w
′))) is at least di

Ni
.

By union bound, the combined probability that this does not hold for one i is bounded by

Pr

[

3
∧

i=1

hi(Ci(fi−1(w))) = hi(Ci(fi−1(w
′)))

]

≤
3
∑

i=1

(

1− di
Ni

)

≤ 3

(

1− d3
N3

)

≤ 3

K3
.

Proof of Theorem 7. By the above lemma, there are constants c1, c2, c3 such that the following
condition is fulfilled. For some ℓ = c1 log

2 log n, there is a distribution over functions f : U → [ℓ]
with entropy c2 log log n such that for any x, x′ ∈ U , x 6= x′, we have Pr [f(x) = f(x′)] ≤ c3

log log logn .

Draw a permutation π′ : [ℓ] → [ℓ] uniformly at random and define the permutation π : U → [n]
by using π′ ◦ f and extending it to a full permutation arbitrarily.

Let x1, . . . , xk be distinct items from U . Conditioned on f(xi) 6= f(xj) for all i 6= j, we
have π(x1) < π(x2) < . . . < π(xk) with probability 1

k! . Furthermore, applying a union bound in
combination with the above lemma, the probability that there is some pair i 6= j, with f(xi) = f(xj)
is at most k2 c2

log log logn . Therefore, the overall probability that π(x1) < π(x2) < . . . < π(xk) is at

least (1− c2k2

log log logn)
1
k! .

The entropy of the distribution that determines π is c2 log log n+ log(ℓ!) = O(log log n).

3 Tight Bound on Entropy of Distribution

One of the consequences of the previous section is the fact that there are s-admissible—in fact,
even s-optimal—distributions with entropy O(log log n). In this section, we show that this bound
is actually tight. We show that every probability distribution of entropy o(log log n) is not s-
admissible. The crux of the proof lies in defining a notion of “semitone sequences”—sequences which
satisfy a property similar to, but weaker than, monotonicity—and showing that an adversary can
exploit the existence of long semitone sequences to force every algorithm to have a low probability
of success.

Theorem 8. A permutation distribution π of entropy H = o(log log n) cannot be s-admissible.

8

Here is the proof sketch. We use the fact for distributions of entropy H there is a subset of
the support of size k that is selected with probability at least 1− 8H

log(k−3) . It then suffices to show
that if the distribution’s support size is at most k, then any algorithm’s probability of success
against a worst-case adversary is at most k+1

logn . The theorem then follows by setting k =
√
log n.

To bound the algorithm’s probability of success, we introduce the notion of semitone sequences,
defined recursively as follows: an empty sequence is semitone with respect to any permutation
π, and a sequence (x1, . . . , xs) is semitone w.r.t. π if π(xs) ∈ {mini∈[s] π(xi),maxi∈[s] π(xi)} and
(x1, . . . , xs−1) is semitone w.r.t. π. We will show that given k arbitrary permutations of [n], there
is always a sequence of length logn

k+1 that is semitone with respect to all k permutations. Later on,
we show how an adversary can exploit this sequence to make any algorithm’s success probability
small. To make the above arguments concrete, we start by this lemma.

Lemma 4. Suppose Π = {π1, . . . , πk}, where each πi is a permutation over U . Then there exists a
sequence (x1, . . . , xs) that is semitone with respect to each πi and s > logn

k+1 .

Proof. For a fixed permutation πi and a fixed item y ∈ U , we define a function hyi : U \{y} → {0, 1}
that indicates whether πi maps x is to a higher than y or not. Formally,

hyi (x) =

{

0 if πi(x) < πi(y)
1 if πi(x) > πi(y)

.

Still keeping one item y ∈ U fixed, we now get a k-dimensional vector by concatenating the val-
ues for different πi. This way, we obtain a hash function hy : U\{y} → {0, 1}k, where hy(x) =
(

hy1(x), . . . , h
y
k(x)

)

.

Starting from U (0) = U , we now construct a sequence of nested subsets U (0) ⊇ U (1) ⊇ . . .
iteratively. At iteration t + 1, given set U (t) 6= ∅, we do the following. For an arbitrary element
xs−t of U (t), we hash each element of U (t)\{xs−t} to a value in {0, 1}k by using hxs−t . Now
U (t+1) ⊆ U (t)\{xs−t} is defined to be the set of occupants of the most occupied hash bucket in
{0, 1}k .

Note that if we place xs−t at the end of any semitone sequence in U (t+1) it will remain semitone
with respect to each πi. This in turn implies that for any t′ the sequence (x1, . . . , xt′) is semitone
with respect to all πi.

It now remains to bound the length of the sequence (x1, . . . , xs) we are able to generate.
We achieve length s if and only if U (s) is the first empty set. At iteration t of the above
construction, we have |U (t)| − 1 elements to hash and we have 2k hash buckets, so |U (t+1)| ≥
(|U (t)| − 1)2−k ≥ |U (t)|2−(k+1) and therefore |U (t)| ≥ 2−t(k+1)|U (0)| = 2−t(k+1)n. As |U (s)| < 1, this
implies 2−s(k+1)n < 1. So s > logn

k+1 .

We now turn to showing that an adversary can exploit a semitone sequence and force any
algorithm to only have 1

s probability of success. To show this we look at the performance of the
best deterministic algorithm against a particular distribution over assignment of values to items.

Lemma 5. Let V = {1, 2, . . . , s}. Assign values from V to items (x1, . . . , xs) at random by

value(xs) =

{

max(V) with probability 1/s

min(V) with probability 1− 1/s

and then assigning values from V\{value(xs)} to items (x1, . . . , xs−1) recursively. Assign a value 0
to all other items.

Consider an arbitrary algorithm following permutation π such that (x1, . . . , xs) is semitone with
respect to π. This algorithm selects the best item with probability at most 1

s .

9

Proof. Fixing some (deterministic) algorithm and permutation π, let At be the event that the
algorithm selects any item among x1, . . . , xt and let Bt be the event that the algorithm selects the
best item among x1, . . . , xt. We will show by induction that Pr [Bt] =

1
tPr [At]. This will imply

Pr [Bs] =
1
sPr [As] ≤ 1

s .
For t = 1 this statement trivially holds. Therefore, let us consider some t > 1. By induction

hypothesis, we have Pr [Bt−1] =
1

t−1Pr [At−1]. As (x1, . . . , xt) is semitone with respect to π, xt
either comes before or after all x1, . . . , xt−1. We distinguish these two cases.

Case 1: xt comes before all x1, . . . , xt−1. The algorithm can decide to accept xt (without
seeing the items x1, . . . , xt−1). In this case, we have At for sure. We only have Bt if xt gets
a higher value than x1, . . . , xt−1. By definition this happens with probability 1

t . So, we have
Pr [Bt] = 1

tPr [At]. The algorithm can also decide to reject xt. Then At if and only if At−1.
Furthermore, Bt if and only if Bt−1 and xt does not get the highest value among x1, . . . , xt. These
events are independent, so Pr [Bt] = (1 − 1

t)Pr [Bt−1]. Applying the induction hypothesis, we get
Pr [Bt] = (1− 1

t)Pr [Bt−1] =
t−1
t

1
t−1Pr [At−1] =

1
tPr [At].

Case 2: xt comes after all x1, . . . , xt−1. When the algorithm comes to xt, it may or may not have
selected an item so far. If it has already selected an item (At−1), then this element is the best among
x1, . . . , xt with probability Pr [Bt−1 | At−1] =

1
t−1 by induction hypothesis. Independent of these

events, xt is worse than the best items among x1, . . . , xt−1 with probability 1 − 1
t . Therefore, we

get Pr [Bt | At−1] =
1

t−1
t−1
t = 1

t . It remains the case that the algorithm selects item xt (At \At−1).

This item is the better than x1, . . . , xt−1 with probability 1
t . That is, Pr [Bt | At \ At−1] = 1

t .
In combination, we have Pr [Bt] = Pr [At−1]Pr [Bt | At−1] + Pr [At \ At−1]Pr [Bt | At \ At−1] =
Pr [At−1]

1
t +Pr [At \ At−1]

1
t =

1
tPr [At].

Now, to show Theorem 8, we first give a bound in terms of the support size of the distribution.
In fact. Lemmas 4 and 5 with Yao’s principle then imply that any algorithm’s probability of success
against a worst-case adversary is at most k+1

logn (details of the proof are in Appendix B.2). Later on,
we will show how this transfers to a bound on the entropy.

Lemma 6. If π : U → [n] is chosen from a distribution of support size at most k, then any
algorithm’s probability of success against a worst-case adversary is at most k+1

logn .

To get a bound on the entropy, we show that for a low-entropy distribution there is a small
subset of the support that is selected with high probability. More precisely, we have the following
technical lemma whose proof can be found in Appendix B.2.

Lemma 7. Let a be drawn from a finite set D by a distribution of entropy H. Then for any k ≥ 4
there is a set T ⊆ D, |T | ≤ k, such that Pr [a ∈ T] ≥ 1− 8H

log(k−3) .

Finally, Theorem 8 is proven as a combination of Lemma 6 and Lemma 7.

Proof of Theorem 8. Set k =
√
log n. Lemma 7 shows that there is a set of permutations Π of size

at least k that is chosen with probability at least 1 − 8H
log(k−3) . The distribution conditioned on π

being in Π has support size only k. Lemma 6 shows that if π is chosen by a distribution of support
size k, then the probability of success of any algorithm against a worst-case adversary is at most

10

k+1
logn . Therefore, we get

Pr [success] = Pr [π ∈ Π]Pr [success | π ∈ Π] +Pr [π 6∈ Π]Pr [success | π 6∈ Π]

≤ Pr [success | π ∈ Π] +Pr [π 6∈ Π]

≤ k + 1

log n
+

8H

log(k − 3)

= o(1) .

4 Easy Distributions Are Hard to Characterize

Which distributions are s-admissible, meaning that they allow an algorithm to achieve constant
probability of correct selection in the secretary problem? The results in §2 and §3 inspire hope
that the (k, δ)-UIOP, the (p, q, δ)-BIP, or something very similar, is both necessary and sufficient
for s-admissibility. Unfortunately, in this section we show that in some sense, it is hopeless to
try formulating a comprehensible condition that is both necessary and sufficient. We construct a
family of distributions π with associated algorithms alg having constant success probability when
the items are randomly ordered according to π, but the complicated and unnatural structure of
the distribution and algorithm underscore the pointlessness of precisely characterizing s-admissible
distributions. In more objective terms, we construct a π which is s-admissible, yet for any algorithm
whose stopping rule is computable by circuits of size less than 2n/ log(n), the probability of correct
selection is o(1).

Throughout this section (and its corresponding appendix) we will summarize the adversary’s
assignment of values to items by a permutation σ; the jth largest value is assigned to item σ(j). If σ
is any probability distribution over such permutations, we will let V π(alg, σ) denote the probability
that alg makes a correct selection when the adversary samples the value-to-item assignment from
σ, and nature independently samples the item-to-time-slot assignment from π. We will also let

V π(∗, σ) = max
alg

V π(alg, σ)

V π(alg, ∗) = min
σ

V π(alg, σ)

V π = min
σ

max
alg

V π(alg, σ).

Thus, for example, the property that π is s-admissible is expressed by the formula V π = Ω(1).
As a preview of the techniques underlying our construction, it is instructive to first consider

a game against nature in which there is no adversary, and the algorithm is simply trying to pick
out the maximum element when items numbered in order of decreasing value arrive in the random
order specified by π. This amounts to determining V π(∗, ι), where ι is the distribution that assigns
probability 1 to the identity permutation. Our construction is based on the following intuition. In
the secretary problem with uniformly random arrival order, the arrival order of items that arrived
before time t is uncorrelated with the order in which items arrive after time t, and so the ordering
of past elements is irrelevant to the question of whether to stop at time t. However, there is a great
deal of entropy in the ordering of elements that arrived before time t; it encodes Θ(t log t) bits of
information. We will construct a distribution π in which this information contained in the ordering
of the elements that arrived before time t = n/2 fully encodes the time when the maximum element
will arrive after time t, but in an “encrypted” way that cannot be decoded by polynomial-sized

11

circuits. We will make use of the well-known fact that a random function is hard on average for
circuits of subexponential size.

Lemma 8. If g : {0, 1}n → [k] is a random function, then with high probability there is no circuit
of size s(n) = 2n/(8kn) that outputs the function value correctly on more than 2

k fraction of inputs.

The simple proof of Lemma 8 is included in the appendix, for reference.

Theorem 9. There exists a family of distributions π ∈ ∆(Sn) such that V π(∗, ι) = 1, but for
any algorithm alg whose stopping rule can be computed by circuits of size s(n) = 2n/8, we have
V π(alg, ι) = O(1/n).

Proof. Assume for convenience that n is divisible by 4. Fix a function g : {0, 1}n/4 → [n/2] such
that no circuit of size s(n) = 2

n
4 /(n2) outputs the value of g correctly on more than 4

n fraction of
inputs. The existence of such functions is ensured by Lemma 8. We use g to define a permutation
distribution π as follows. For any binary string x ∈ {0, 1}n/4, define a permutation π(x) by
performing the following sequence of operations. First, rearrange the items in order of increasing
value by mapping item i to position n− i+ 1 for each i. Next, for i = 1, . . . , n4 , swap the items in
positions i and i + n

4 if and only if xi = 1. Finally, swap the items in positions n and n
2 + g(x).

(Note that this places the maximum-value item in position n
2 +g(x).) The permutation distribution

π is the uniform distribution over {π(x) | x ∈ {0, 1}n/4}.
It is easy to design an algorithm which always selects the item of maximum value when the

input sequence π is sampled from π. The algorithm first decodes the unique binary string x such
that π = π(x), by comparing the items arriving at times i and i+ n

4 for each i and setting the bit xi
according to the outcome of this comparison. Having decoded x, we then compute g(x) and select
the item that arrives at time n

2 + g(x). By construction, when π is drawn from π this is always the
element of maximum value.

Finally, if alg is any secretary algorithm we can attempt use alg to guess the value of g(x) for
any input x ∈ {0, 1}n/4 by the following simulation procedure. First, define a permutation π′(x)
by performing the same sequence of operations as in π(x) except for the final step of swapping the
items in positions n and n/2+g(x); note that this means that π′(x), unlike π(x), can be constructed
from input x by a circuit of polynomial size. Now simulate alg on the input sequence π′(x), observe
the time t when it selects an item, and output t − n

2 . The circuit complexity of this simulation
procedure is at most poly(n) times the circuit complexity of the stopping rule implemented by alg,
and the fraction of inputs x on which it guesses g(x) correctly is precisely V π(alg, ι). (To verify
this last statement, note that alg makes its selection at time t = n

2 + g(x) when observing input
sequence π(x) if and only if if also makes its selection at time t when observing input sequence
π′(x), because the two input sequences are indistinguishable to comparison-based algorithms at
that time.) Hence, if V π(alg, ι) > 4

n then the stopping rule of alg cannot be implemented by

circuits of size 2n/8.

Our main theorem in this section derives essentially the same result for the standard game-
against-adversary interpretation of the secretary problem, rather than the game-against-nature
interpretation adopted in Theorem 9.

Theorem 10. For any function κ(n) such that limn→∞ κ(n) = 0 while limn→∞
n·κ(n)
logn = ∞, there

exists a family of distributions π ∈ ∆(Sn) such that V π = Ω(1), but any algorithm alg whose
stopping rule can be computed by circuits of size s(n) = 2nκ(n)/4 satisfies V π(alg, ∗) = O(κ(n)).

The full proof is provided in Appendix B.3. Here we sketch the main ideas.

12

Proof sketch. As in Theorem 9, the algorithm and “nature” (i.e., the process sampling the input
order) will work in concert with each other to bring about a correct selection, using a form of
coordination that is information-theoretically easy but computationally hard. The difficulty lies
in the fact that the adversary is simultaneously working to thwart their efforts. If nature, for
example, wishes to use the first half of the input sequence to “encrypt” the position where item 1
will be located in the second half of the sequence, then the adversary is free to assign the maximum
value to item 2 and a random value to item 1, rendering the encrypted information useless to the
algorithm.

Thus, our construction of the permutation distribution π and algorithm alg will be guided by
two goals. First, we must “tie the adversary’s hands” by ensuring that alg has constant prob-
ability of correct selection unless the adversary’s permutation, σ, is in some sense “close” to the
identity permutation. Second, we must ensure that alg has constant probability of correct selec-
tion whenever σ is close to the identity, not only when it is equal to the identity as in Theorem 9.
To accomplish the second goal we modify the construction in Theorem 9 so that the first half of
the input sequence encodes the binary string x using an error-correcting code. To accomplish the
first goal we define π to be a convex combination of two distributions: the “encrypting” distribu-
tion described earlier, and an “adversary-coercing” distribution designed to make it easy for the
algorithm to select the maximum-value element unless the adversary’s permutation σ is close to
the identity in an appropriate sense.

5 Extensions Beyond Classic Secretary Problem

We look at two generalizations of the classic secretary problem in this section, namely the multiple-
choice secretary problem, studied in [25], and the online weighted bipartite matching problem, studied
extensively in [26, 23], under our non-uniform permutation distributions. We give a positive result
showing that a natural variant of the algorithm in [25] achieves a (1−o(1))-competitive ratio under
our pseudo-random properties defined in §2, while for the latter we show the algorithm proposed
by [26] fails to achieve any constant competitive ratio under our pseudo-random properties.

Multiple-choice secretary problem We consider multiple-choice secretary problem (a.k.a. k-
uniform matroid secretary problem). In this setting not only a single secretary has to be selected but
up to k. An algorithm observes items with non-negative values based on the ordering π : U → [n]
and chooses at most k items in an online fashion. The goal is to maximize the sum of values of
selected items. We consider distributions over permutations π that fulfill the (p, q, δ)-BIP, for some
p ≥ k. We show that a slight adaptation of the algorithm in [25] achieves competitive ratio 1−o(1),
for large enough values of k and q and small enough δ.

The algorithm is defined recursively. We denote by ALG(n′, k′, q′) the call of the algorithm
that operates on the prefix of length n′ of the input. It is allowed to choose k′ items and expects
q′ number of blocks. For k′ = 1, ALG(n′, k′, q′) is simply the standard secretary algorithm that
we analyzed in Section 2.1. For k′ > 1, the algorithm first draws a random number τ(q′) from a

binomial distribution Binom(q′, 12) and then executes ALG(τ(q
′)

q′ n′, ⌊k′/2⌋, τ(q′)). After round τ(q′)
q′ n′

(we assume n′ is always a multiplier of q′), the algorithm accepts every item whose value is greater

than the ⌊k′/2⌋-highest item arrived during rounds 1, . . . , τ(q
′)

q′ n′, until k′ items are selected by the

algorithm or until round n′. Output is the union of all items returned by the recursive call and all
items algorithm picked after the threshold round. We now have the following theorem, which is
proved in Appendix 5.

13

Theorem 11. Suppose π is drawn from a permutation distribution that satisfies (p, q, δ)-BIP for
some p ≥ k and δ ≤ 1

k
1
2

. Then for all permutations σ, ALG(U , k, q) is (1−O(1

k
1
3

)− ǫ)-competitive

for the k-uniform matroid secretary problem, where ǫ can be arbitrary small for large enough value
of q and small enough value of δ.

Online weighted bipartite matching Next, we consider online weighted bipartite matching,
where the vertices on the offline side of a bipartite graph are given in advance and the vertices
on the online side arrive online in a random order (not necessarily uniform). Whenever a vertex
arrives, its adjacent edges with the corresponding weights are revealed and the online algorithm has
to decide which of these edges should be included in the matching. The objective is to maximize
the weight of the matching selected by online algorithm. A celebrated result of Korula and Pál
[26] shows the existence of a constant competitive online algorithm under uniform random order
of arrival; nevertheless, this algorithm does not achieve any constant competitive ratio under our
non-uniform assumptions for permutation distributions.

Theorem 12. For every k and δ, there is an instance and a probability distribution that fulfills the
(k, δ)-uniform-induced-ordering property such that the competitive ratio of the Korula-Pál algorithm

is at least Ω
(

δ2

(k+1)!
n

lnn

)

.

6 Conclusion

In this paper we have studied how secretary algorithms perform when the arrival order satisfies
relaxations of the uniform-random-order hypothesis. We presented a pair of closely-related proper-
ties (the (k, δ)-UIOP and the (p, q, δ)-BIP) that ensure that the standard secretary algorithm has
constant probability of correct selection, and we derived some results on the minimum amount of
entropy and the minimum circuit complexity necessary to achieve constant probability of correct
selection in secretary problems with non-uniform arrival order.

We believe this work represents a first step toward obtaining a deeper understanding of the
amount and type of randomness required to obtain strong performance guarantees for online al-
gorithms. The next step is to expand this study beyond the setting of secretary problems. A
very promising domain for future investigation is online packing LP and its generalization, online
convex programming. Our positive result on the uniform matroid secrerary problem constitutes a
first step toward obtaining a general positive result confirming that existing algorithms such as the
algorithms of [24] and [1] preserve their performance guarantees when the input ordering satisfies
(k, δ)-UIOP or some other relaxation of the uniform randomness assumption.

14

References

[1] Agrawal, S. and Devanur, N. (2015). Fast algorithms for online stochastic convex programming.
In Proc. 25th Annual ACM-SIAM Symposium on Discrete Algorithms.

[2] Agrawal, S., Wang, Z., and Ye, Y. (2014). A dynamic near-optimal algorithm for online linear
programming. Operations Research, 62:867–890.

[3] Arora, S. and Barak, B. (2009). Computational complexity: A modern approach. Cambridge
University Press.

[4] Babaioff, M., Immorlica, N., Kempe, D., and Kleinberg, R. (2007a). A knapsack secretary
problem with applications. In Proc. 2007 Workshop on Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques (APPROX), pages 16–28. Springer.

[5] Babaioff, M., Immorlica, N., and Kleinberg, R. (2007b). Matroids, secretary problems, and
online mechanisms. In Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
434–443.

[6] Baraniuk, R., Davenport, M., DeVore, R., and Wakin, M. (2008). A simple proof of the
restricted isometry property for random matrices. Constructive Approximation, 28(3):253–263.

[7] Bateni, M., Hajiaghayi, M., and Zadimoghaddam, M. (2013). Submodular secretary problem
and extensions. ACM Transactions on Algorithms (TALG), 9(4):32.

[8] Borchardt, C. W. (1860). Uber eine Interpolationsformel für eine art symmetrischer functionen
und über deren anwendung. Math. Abh. der Akademie der Wissenschaften zu Berlin, pages 1–20.

[9] Candes, E. J. and Tao, T. (2005). Decoding by linear programming. IEEE Trans. Information
Theory, 51(12):4203–4215.

[10] Carothers, N. L. (2009). A short course on approximation theory.
http://personal.bgsu.edu/∼carother/Approx.html. Manuscript.

[11] Cayley, A. (1889). A theorem on trees. Quarterly J. Math, 23:376–378.

[12] Devanur, N. and Hayes, T. P. (2009). The AdWords problem: Online keyword matching with
budgeted bidders under random permutations. In Proc. 10th ACM Conference on Electronic
Commerce, pages 71–78.

[13] Devanur, N. R., Jain, K., Sivan, B., and Wilkens, C. A. (2011). Near optimal online algo-
rithms and fast approximation algorithms for resource allocation problems. In Proc. 12th ACM
Conference on Electronic Commerce, pages 29–38. ACM.

[14] Dimitrov, N. B. and Plaxton, C. G. (2012). Competitive weighted matching in transversal
matroids. Algorithmica, 62(1-2):333–348.

[15] Dynkin, E. B. (1963). The optimum choice of the instant for stopping a Markov process. Sov.
Math. Dokl., 4.

[16] Feldman, J., Henzinger, M., Korula, N., Mirrokni, V. S., and Stein, C. (2010). Online stochastic
packing applied to display ad allocation. In Algorithms–ESA 2010, pages 182–194. Springer.

15

[17] Feldman, M., Naor, J. S., and Schwartz, R. (2011). Improved competitive ratios for submod-
ular secretary problems. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 218–229. Springer.

[18] Feldman, M., Svensson, O., and Zenklusen, R. (2015). A simple O(log log(rank))-competitive
algorithm for the matroid secretary problem. In Proc. 25th Annual ACM-SIAM Symposium on
Discrete Algorithms.

[19] Göbel, O., Hoefer, M., Kesselheim, T., Schleiden, T., and Vöcking, B. (2014). Online inde-
pendent set beyond the worst-case: Secretaries, prophets, and periods. In Automata, Languages,
and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July
8-11, 2014, Proceedings, Part II, pages 508–519.

[20] Hajiaghayi, M. T., Kleinberg, R., and Parkes, D. C. (2004). Adaptive limited-supply online
auctions. In Proc. 5th ACM conference on Electronic commerce, pages 71–80. ACM Press.

[21] Jaillet, P., Soto, J. A., and Zenklusen, R. (2013). Advances on matroid secretary problems:
Free order model and laminar case. In Integer Programming and Combinatorial Optimization,
pages 254–265. Springer.

[22] Kaplan, E., Naor, M., and Reingold, O. (2009). Derandomized constructions of k-wise (almost)
independent permutations. Algorithmica, 55(1):113–133.

[23] Kesselheim, T., Radke, K., Tönnis, A., and Vöcking, B. (2013). An optimal online algorithm
for weighted bipartite matching and extensions to combinatorial auctions. In Algorithms–ESA
2013, pages 589–600. Springer.

[24] Kesselheim, T., Radke, K., Tönnis, A., and Vöcking, B. (2014). Primal beats dual on online
packing LPs in the random-order model. In Proc. ACM Symposium on Theory of Computing,
pages 303–312.

[25] Kleinberg, R. D. (2005). A multiple-choice secretary algorithm with applications to online
auctions. In Proc. 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 630–
631.

[26] Korula, N. and Pál, M. (2009). Algorithms for secretary problems on graphs and hypergraphs.
In ICALP (2), pages 508–520.

[27] Lachish, O. (2014). O(log log rank) competitive-ratio for the matroid secretary problem (the
known cardinality variant). In Proc. 55th Annual IEEE Symposium on Foundations of Computer
Science (FOCS).

[28] Lindley, D. V. (1961). Dynamic programming and decision theory. Applied Statistics, 10:39–51.

[29] Meyerson, A. (2001). Online facility location. In Proc. 42nd Annual Symposium on Foundations
of Computer Science, pages 426–431.

[30] Meyerson, A., Munagala, K., and Plotkin, S. A. (2001). Designing networks incrementally. In
Proc. 42nd Annual Symposium on Foundations of Computer Science, pages 406–415.

[31] Mitzenmacher, M. and Vadhan, S. (2008). Why simple hash functions work: exploiting the
entropy in a data stream. In Proc. 19th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 746–755. Society for Industrial and Applied Mathematics.

16

[32] Molinaro, M. and Ravi, R. (2015). The geometry of online packing linear programs. Math. of
Operations Research. to appear.

[33] Motwani, R. and Raghavan, P. (1995). Randomized Algorithms. Cambridge University Press.

[34] Roughgarden, T. and Trevisan, L. (2011). Workshop on beyond worst-case analysis. Stanford
University, September 2011. http://theory.stanford.edu/∼tim/bwca/bwca.html.

[35] Samuels, S. M. (1981). Minimax stopping rules when the underlying distribution is uniform.
J. Amer. Statist. Assoc., 76:188–197.

A A secretary algorithm for (3, δ)-induced-ordering property

Theorem 13. If a probability distribution fulfills the (3, δ)-induced-ordering property, there is an

algorithm for the secretary problem that selects the best item with probability (1−δ)2

6(1+δ) .

Proof. Consider the following algorithm: First we draw a threshold τ uniformly at random. Then
we observe all items until round τ . After round τ , we accept the first item that is better than all
items seen so far.

To analyze this algorithms let x1, x2, . . . , xn be the items in order of decreasing value. To select
x1 it suffices that x2 comes until round τ and x1 comes after round τ . For i ≥ 3, let Yi be a 0/1
random variable indicating if π(x2) < π(xi) < π(x1).

Conditioned on
∑n

i=3 Yi = a and π(x2) < π(x1), the probability that x2 comes until round τ
and x1 comes after round τ is exactly a+1

n because there are a items coming between x2 and x1,
giving a+ 1 positive outcomes for τ .

We have E [Yi] ≥ (1−δ) 1
3! =

1−δ
6 . As Yi = 1 implies π(x2) < π(x1), we get E [Yi | π(x2) < π(x1)] ≥

1−δ
6Pr[π(x2)<π(x1)]

= 1−δ
6(1−Pr[π(x2)>π(x1)])

≥ 1−δ
6(1− 1−δ

2
)
= 1−δ

3(1+δ) .

Overall, we get

Pr [select x1 | π(x2) < π(x1)] ≥
n−3
∑

a=0

Pr

[

n
∑

i=3

Yi = a

∣

∣

∣

∣

∣

π(x2) < π(x1)

]

a+ 1

n

=
1

n

(

1 +

n−3
∑

a=0

aPr

[

n
∑

i=3

Yi = a

∣

∣

∣

∣

∣

π(x2) < π(x1)

])

=
1

n

(

1 +E

[

n
∑

i=3

Yi

∣

∣

∣

∣

∣

π(x2) < π(x1)

])

≥ 1

n

(

1 +E

[

n
∑

i=3

Yi

∣

∣

∣

∣

∣

π(x2) < π(x1)

])

≥ 1

n
+

n− 3

n

1− δ

3(1 + δ)

≥ 1− δ

3(1 + δ)
.

Multiplying with Pr [π(x2) < π(x1)] ≥ 1−δ
2 , we get

Pr [select x1] ≥
(1− δ)2

6(1 + δ)
.

17

B Deferred proofs

B.1 Proofs deferred from §2

In this section we restate some of the results from §2 and provide complete proofs.

B.1.1 Full Proof of Theorem 1

The (p, q, δ)-block-independence property only makes statements about p-tuples. We will need the
bound also for smaller tuples. Indeed, using a simple counting argument we can show that this is
already implicit in the definition.

Lemma 9. If a distribution over permutations is (p, q, δ)-block-independent, then it is also (p′, q, δ)-
block-independent for any p′ < p.

Proof. Given x1, . . . , xp′ ∈ U and b1 . . . , bp′ ∈ [q], fill up the first tuple with arbitrary distinct
entries xp′+1, . . . , xp ∈ U . The event

∧

j∈[p′] π
B(xi) = bi can now be expressed as the union of all

events
∧

j∈[p] π
B(xi) = bi over all tuples (bp′+1 . . . , bp) ∈ [q]p−p′ . Note that these events are pairwise

disjoint. Therefore, the probability of their union is the sum of their probabilities, i.e.,

Pr





∧

j∈[p′]
πB(ai) = bi



 = Pr







∨

(bp′+1,...,bp)∈[q]p−p′

∧

j∈[p]
πB(xi) = bi







=
∑

(bp′+1,...,bp)∈[q]p−p′

Pr





∧

j∈[p]
πB(xi) = bi



 .

Using (p, q, δ)-block-independence and |[q]p−p′ | = qp−p′, we get

Pr





∧

j∈[p′]
πB(xi) = bi



 ≥
∑

(bp′+1,...,bp)∈[q]p−p′

(1− δ)

(

1

q

)p

= qp−p′(1− δ)

(

1

q

)p

= (1− δ)

(

1

q

)p′

.

Proof of Theorem 1. Let T = ⌊ qe⌋ denote the index of the block in which the threshold is located.
Furthermore, let xj ∈ U be the jth best item. We condition on the event that x1 comes in block
with index i. To ensure that our algorithm picks this item, it suffices that x2 comes in blocks
1, . . . , T − 1. Alternatively, we also pick x1 if the x2 comes in blocks i + 1, . . . , q and x3 comes in
blocks 1, . . . , T − 1. Continuing this argument, we get

Pr [correct selection] ≥
q
∑

i=T+1

p
∑

j=2

Pr
[

πB(x1) = i, πB(x2), . . . , π
B(xj−1) > i, πB(xj) < T

]

.

18

We can now use Lemma 9 and apply (j, q, δ)-block-independence for j ≤ p. This gives us

Pr [correct selection] ≥
q
∑

i=T+1

p
∑

j=2

(1− δ)
1

q

(

q − i

q

)j−2 T − 1

q
.

We now reorder the sums and use the formula for finite geometric series. This gives us

Pr [correct selection] ≥ (1− δ)
T − 1

q

q
∑

i=T+1

1

q





p
∑

j=2

(

q − i

q

)j−2




= (1− δ)
T − 1

q

q
∑

i=T+1

1

q

1−
(

q−i
q

)p−1

i
q

= (1− δ)
T − 1

q

q
∑

i=T+1

1

i

(

1−
(

q − i

q

)p−1
)

≥ (1− δ)
T − 1

q

(

1−
(

q − T

q

)p−1
)

q
∑

i=T+1

1

i
.

We now apply the following bounds

T − 1

q
≥ 1

e
− 2

q
,

q − T

q
≤ 1− 1

e
, and

q
∑

i=T+1

1

i
≥
∫ q+1

T+1

1

x
dx = ln

(

q + 1

T + 1

)

≥ ln

(

q + 1
q
e + 1

)

= 1−ln

(

q + e

q + 1

)

≥ 1−
(

q + e

q + 1
− 1

)

= 1− e− 1

q + 1
.

In combination, they imply

Pr [correct selection] ≥
(

1

e
− 2

q

)

(1− δ)

(

1−
(

1− 1

e

)p−1
)

(

1− e− 1

q + 1

)

≥
(

1

e
− e + 1

q

)

(1− δ)

(

1−
(

1− 1

e

)p−1
)

≥ 1

e
− e + 1

q
− δ −

(

1− 1

e

)p−1

.

B.1.2 Relation between the two properties

Proof of Theorem 3. Note that it is safe to assume p ≤ q as the statement is trivially fulfilled
otherwise. Consider p distinct items x1, . . . , xp ∈ U . To have π(x1) < π(x2) < . . . < π(xp), it
suffices that these elements are mapped to different blocks and with an increasing sequence of
indices. There are

(q
p

)

such sequences. So, overall the probability is at least

(

q

p

)

(1− δ)

(

1

q

)p

≥ (q − p)p

p!
(1− δ)

(

1

q

)p

≥
(

1− p

q

)p

(1− δ)
1

p!
≥
(

1− δ
p2

q

)

1

q!
.

19

Proof of Lemma 1. We first define random variables Ii,j , Iπ(i)≤π(j) and Ĩi,j , Iφ(i)≤φ(j) for all

i, j ∈ [n]. Note that for all i ∈ [p], Xi = π(xi)/n =
∑n

j=1
Ii,j

n . This implies that

E

[

p
∏

i=1

Xki
i

]

= E





p
∏

i=1

(

∑n
j=1 Ii,j

n

)ki


 =

E

[

∏p
i=1

(

∑n
j=1 Ii,j

)ki
]

n(
∑p

i=1
ki)

(5)

By expanding the numerator due to linearity of expectation, we will have a sum of expectation of
algebraic terms in the numerator, where each algebraic term multiplication of at most k

2p ×p = k/2
indicators Ii,j. There are at most 2×k/2 = k particular items involved in these indicator functions.

Now, lets look at one of the terms, e.g. E
[

∏k/2
l=1 Iil,jl

]

in which k items {xs1 , . . . , xsk} are involved.

The product
∏k

l=1 Iil,jl forces the induced ordering of elements {xs1 , . . . , xsk} be in a particular
subset S ⊆ Sk.

Hence, E
[

∏k/2
l=1 Iil,jl

]

= Pr [induced ordering by π over {xs1 , . . . , xsk} will be in S]. Now as π

satisfies the (k, δ)-uniform-induced-ordering property, we have

E





k/2
∏

l=1

Iil,jl



 = Pr [induced ordering by π over {xs1 , . . . , xsk} will be in S]

≥ (1− δ)Pr [induced ordering by φ over {xs1 , . . . , xsk} will be in S]

= (1− δ)E





k/2
∏

l=1

Ĩil,jl



 (6)

From (6) one can conclude that

E

[

p
∏

i=1

Xki
i

]

≥ (1− δ)E





p
∏

i=1

(

∑n
j=1 Ĩi,j

n

)ki


 = (1− δ)E

[

p
∏

i=1

(

nφ(i)

n

)ki
]

= (1− δ)E

[

p
∏

i=1

φ(i)ki

]

(7)

which completes the proof.

Proof of Lemma2. We define continuous functions fi : [0, 1] → R for i ∈ [p] by

fi(x) =























0 for x < ai or x > bi
x−ai
γ for ai ≤ x ≤ ai + γ

−x−bi
γ for bi − γ ≤ x ≤ bi

1 for ai + γ ≤ x ≤ bi − γ

where |bi − ai| ≥ 2γ. Note that all of these functions are continuous and satisfy condition of
Theorem 4 for ωfi(x) =

x
γ .

Observe that fi is point-wise smaller than the indicator function 1[ai,bi] that has value 1 between
ai and bi and 0 otherwise. Therefore, we have Pr [

∧p
i=1 (Xi ∈ [ai, bi])] = E

[
∏p

i=1 1[ai,bi](Xi)
]

≥
E [
∏p

i=1 fi(Xi)].
By Theorem 4, for every i there is a polynomial function gi : [0, 1] → R of degree d such that

‖fi − gi‖∞ ≤ 3
2ωfi(

1√
d
) ≤ 3

2γ
√
d
. We now have gi(φ(i)) ≥ fi(φ(i))− 3

2γ
√
d
≥ 1[ai+γ,bi−γ](φ(i))− 3

2γ
√
d

20

and therefore

E

[

p
∏

i=1

gi(φ(i))

]

≥ E

[

p
∏

i=1

(

1[ai+γ,bi−γ](φ(i)) −
3

2γ
√
d

)

]

≥
p
∏

i=1

Pr [φ(i) ∈ [ai + γ, bi − γ]]− 3p

2γ
√
d

=

p
∏

i=1

(bi − ai − 2γ)− 3p

2γ
√
d
≥

p
∏

i=1

(bi − ai)− (2pγ +
3p

2γ
√
d
)
(1)

≥
p
∏

i=1

(bi − ai)−
4p

d1/4

(8)

where to get inequality (1) we set γ = 1
2d

− 1

4 . Furthermore, as gi is a polynomial function of

degree at most d and E
[

∏p
i=1 X

ki
i

]

≥ E
[

∏p
i=1 φ(i)

ki
]

(1 − δ) for all ki ≤ d, we get by linearity

of expectation E [
∏p

i=1 g(Xi)] ≥ (1 − δ)E [
∏p

i=1 gi(φ(i))]. Now we use gi(x) ≤ fi(x) +
3

2γ
√
d
= 3

d1/4
,

giving us

E

[

p
∏

i=1

fi(Xi)

]

≥ E

[

p
∏

i=1

(gi(Xi)−
3

d1/4
)

]

≥ E

[

p
∏

i=1

gi(Xi)

]

− 3p

d1/4
≥ (1− δ)E

[

p
∏

i=1

gi(φ(i))

]

− 3p

d1/4

≥ (1− δ)

(

p
∏

i=1

[bi − ai]−
4p

d1/4

)

− 3p

d1/4
≥ (1− δ)

(

p
∏

i=1

[bi − ai]

)

− 7p

d1/4
(9)

Overall, we get Pr [
∧p

i=1 (Xi ∈ [ai, bi])] ≥ (1− δ) (
∏p

i=1(bi − ai))− 7p
d1/4

, as desired.

B.1.3 Full proof of Theorem 5

Proof. For any k-tuple of indices (i1, . . . , ik) we must show that each of the k! possible orderings of
(w ·i1), . . . , (w ·ik) has probability at least 1−δ

k! . By symmetry it suffices to show that the probability

of the event {w · x1 < w · x2 < · · · < w · xk} is at least 1−δ
k! . This event is unchanged by rescaling

w, so we are free to substitute whatever spherically-symmetric distribution we wish. Henceforth
assume w is sampled from the multivariate normal distribution N (0, 1), whose density function is
(2π)−d/2 exp

(

1
2‖w‖2

)

.
Let Xk denote the matrix whose k columns are the vectors x1, . . . , xk and let A = X⊺

k denote
its transpose. Scaling x1, . . . , xk by a common scalar, if necessary, we are free to assume that
det(X⊺

kXk) = 1. The RIP implies that the ratio of the largest and smallest right singular values of

Xk is at most 1+δk
1−δk

, and since their product is 1 this means that the smallest singular value is at

least 1−δk
1+δk

.

Now let C = {z ∈ R
k | z1 < z2 < · · · < zk}. The event {w · x1 < w · x2 < · · · < w · xk} can be

expressed more succinctly as {Aw ∈ C}, and its probability is

Pr [Aw ∈ C] =
∫

w∈A−1(C)
(2π)−d/2 exp

(

− 1
2‖w‖2

)

dw.

The matrix A is not square, hence not invertible; the notation A−1(C) merely means the inverse-
image of C under the linear transformation R

d → R
k represented by A. The Moore-Penrose

pseudoinverse of A is the matrix Xk(X
⊺
kXk)

−1, which we denote henceforth by A+. We can write
any w ∈ A−1(C) uniquely as z+A+y, where y ∈ C, z ∈ ker(A), and z is orthogonal to A+y. By our
scaling assumption, the product of the singular values of A+ equals 1, which justifies the second

21

line in the following calculation

Pr [Aw ∈ C] =
∫

w∈A−1(C)
(2π)−d/2 exp

(

− 1
2‖w‖2

)

dw

=

∫

y∈C

∫

z∈ker(A)
(2π)−d/2 exp

(

− 1
2‖z‖2 − 1

2‖A+y‖2
)

dz dy

=

(∫

y∈C
(2π)−k/2 exp

(

− 1
2‖A+y‖2

)

dy

)

(

∫

z∈ker(A)
(2π)−(d−k)/2 exp

(

− 1
2‖z‖2

)

dz

)

=

(
∫

y∈C
(2π)−k/2 exp

(

− 1
2‖A+y‖2

)

dy

)

.

We can rewrite the right side as an integral in spherical coordinates. Let dω denote the volume
element of the unit sphere Sk−1 ⊂ R

k and let S = C ∩ Sk−1. Then writing y = ru, where r ≥ 0
and u is a unit vector, we have

Pr [Aw ∈ C] =
∫

u∈S

∫ ∞

r=0
(2π)−k/2 exp

(

− 1
2r

2‖A+u‖2
)

rk−1 dr dω(u)

=

∫

u∈S
(2π)−k/2‖A+u‖−k

∫ ∞

s=0
exp

(

− 1
2s

2
)

sk−1 ds dω(u).

The singular values of A+ are the multiplicative inverses of the singular values of Xk, hence the
largest singular value of A+ is at most 1+δk

1−δk
. In other words, ‖A+u‖ ≤ 1+δk

1−δk
for any unit vector u.

Plugging this bound into the integral above, we find that

Pr [Aw ∈ C] ≥
(

1−δk
1+δk

)k
∫

u∈S
(2π)−k/2

∫ ∞

s=0
exp

(

− 1
2s

2
)

sk−1 ds dω(u) =
1

k!

(

1−δk
1+δk

)k
,

where the last equation is derived by observing that the integral is equal to the Gaussian measure

of C. Finally, by our choice of δk, we have
(

1−δk
1+δk

)k
> 1− δ, which concludes the proof.

B.1.4 Full proof of Theorem 6

. We show this claim using the probabilistic method. Permutation πi : U → [n] is drawn uni-
formly at random from the set of all permutations with replacement. We claim that the set
S = {π1, . . . , πξ} fulfills the stated condition with probability at least 1− 1

n .
Fix k distinct items x1, . . . , xk ∈ U . Let Yi = 1 if πi(x1) < πi(x2) < . . . < πi(xk). As πi is

drawn uniformly from the set of all permutations, we have Pr [Yi = 1] = 1
k! . That is, we have

E
[

∑ξ
i=1 Yi

]

= ξ
k! . As the random variables Yi are independent, we can apply a Chernoff bound.

This gives us

Pr

[

ξ
∑

i=1

Yi ≤ (1− δ)
ξ

k!

]

≤ exp

(

−δ2

2

ξ

k!

)

= nk+1 .

Note that if
∑ξ

i=1 Yi ≤ (1 − δ) ξ
k! then the respective sequence x1, . . . , xk ∈ U has probability at

least (1− δ) 1
k! when drawing one permutation at random from S.

There are fewer than nk possible sequences. Therefore, applying a union bound, with probability
at least 1− 1

n the bound is fulfilled for all sequences simultaneously and therefore S fulfills the stated
condition.

22

B.2 Proofs deferred from §3

In this section we provide complete proofs of some of the results in §3.

Proof of Lemma 6. Let Π, |Π| ≤ k, be the support of the distribution π is drawn from. Lemma 4
shows that there is a sequence (x1, . . . , xs) of length s = logn

k+1 that is semitone with respect to any
permutation in π.

It only remains to apply Yao’s principle: Instead of considering the performance of a random π
against a deterministic adversary, we consider the performance of a fixed π against a randomized
adversary. Lemma ?? shows that there is a distribution over instances such that no π ∈ Π has
success probability better than 1

s = logn
k+1 .

Proof of Lemma 7. Set α = H
log(k−3) and β = α

k−3 . Note that for α ≥ 1
8 , the statement becomes

trivial. Therefore, we can assume without loss of generality that α < 1
8 . This implies log(α) < 0.

Therefore, we get
H

− log β
=

α log(k − 3)

log(k − 3)− log(α)
≤ α .

Let a1, . . . , ak be the elements of D such that pai ≥ β for all i and pa1 ≥ pa2 ≥ . . . ≥ pak .
Furthermore, partition D \ {a1, . . . , ak} into S1, . . . , Sℓ such that pSi ∈ [β, 2β) for i < ℓ, pSℓ

< 2β
Observe that pa3 ≤ 1

e because probabilities sum up to at most 1. Therefore, for i ≥ 3, we have
−pai log(pai) ≥ −β log β by monotonicity. Furthermore, for all j < ℓ, we have −pSj log(pSj) ≥
−β log β. In combination, this gives us

H ≥
k
∑

i=3

−pai log(pai) +
ℓ−1
∑

j=1

−pSi log(pSi) ≥ (k + ℓ− 3)(−β log β) .

For k and ℓ, this implies

k ≤ H

−β log β
+ 3 ≤ α

β
+ 3 ≤ k and ℓ ≤ H

−β log β
+ 3 ≤ α

β
+ 3 .

In conclusion, we have
ℓ
∑

j=1

pSj ≤ 2βℓ ≤ 2α+ 6β ≤ 8α .

B.3 Proofs deferred from §4

In this section we restate some of the results from §4 and provide complete proofs.

Lemma 10. If g : {0, 1}n → [k] is a random function, then with high probability there is no circuit
of size s(n) = 2n/(8kn) that outputs the function value correctly on more than 2

k fraction of inputs.

Proof. The proof closely parallels the proof of the corresponding statement for worst-case hardness
rather than hardness-on-average, which is presented, for example, in the textbook by Arora and
Barak [3]. The number of Boolean circuits of size s is bounded by s3s. For any one of these circuits,
C, the expected number of inputs x such that C(x) = g(x) is 1

k ·2n. Since the events {C(x) = g(x)}
are mutually independent as x varies over {0, 1}n, the Chernoff bound (e.g., [33]) implies that the
probability of more than 2

k · 2n of these events taking place is less than exp
(

− 1
3k · 2n

)

. The union

23

bound now implies that the probability there exists a circuit C of size s that correctly computes g
on more than 2

k fraction of inputs is bounded above by exp
(

3s ln(s)− 1
3k · 2n

)

. When s = 2n/(8kn)
this yields the stated high-probability bound.

In the sequel we will need a version of the lemma above in which the circuit, rather than being
constructed from the usual Boolean gates, is constructed from t different types of gates, each having
m binary inputs and one binary output.

Lemma 11. Suppose we are given t types of gates, each computing a specific function from {0, 1}m
to {0, 1}. If g : {0, 1}n → [k] is a random function, then with high probability there is no circuit
of size s(n) ≤ 2n/(8k · max{mn, ln(t)}) that outputs the function value correctly on more than 2

k
fraction of inputs.

Proof. The proof is the same except that the number of circuits, rather than being bounded by
s3s, is now bounded by (tsm)s = exp(s ln t+ms ln s). The stated high-probability bound continues
to hold if ms ln s < 1

8k · 2n and s ln t < 1
8k · 2n. The assumption s(n) ≤ 2n/(8k ·max{mn, ln(t)})

justifies these two inequalities and completes the proof.

B.3.1 Proof of Theorem 10

Similar to the proof of Theorem 9, our plan for proving Theorem 10 is to construct a distribution
over arrival orderings, π, in which the first half of the input sequence attempts to encode the
position where the maximum-value item occurs in the second half of the permutation. What
makes the proof more difficult is that the adversary chooses the ordering of items by value (as
represented by a permutation σ ∈ Sn), and this ordering could potentially be chosen to thwart the
decoding process. In our construction we will make a distinction between decodable orderings—
whose properties will guarantee that our decoding algorithm succeeds in finding the maximum-value
item—and non-decodable orderings, which may lead the decoding algorithm to make an error. We
will then design a separate algorithm that succeeds with constant probability when the adversary’s
ordering is non-decodable.

We will assume throughout the proof that n is divisible by 8, for convenience. Recall, also,
that the theorem statement declares κ(n) to be any function of n such that limn→∞ κ(n) = 0

while limn→∞
n·κ(n)
logn = ∞. For convenience we adopt the notation [a, b] to denote the subset of [n]

consisting of integers in the range from a to b, inclusive; analogously, we may refer to subsets of [n]
using open or half-open interval notation.

Definition 6. A total ordering of [n] is decodable if it satisfies the following properties.

1. The maximal element of the ordering is n.

2. When the elements of the set (n4 ,
n
2] are written in decreasing order with respect to the total

ordering, the of the first n · κ(n) elements that belong to (3n8 , n
2] is at least

39
40 .

Our proof will involve the construction of three distributions over permutations, and three
corresponding algorithms.

• an “encrypting” distribution πe that hides item n in the second half of the permutation while
arranging the first half of the permutation to form a “clue” that reveals the location of item
n, but does so in a way that cannot be decrypted by small circuits;

• a first “adversary-coercing” distribution πc,1 that forces the adversary to make item n the
most valuable item;

24

• a second “adversary-coercing” distribution πc,2 that forces the adversary to satisfy the second
property in the definition of a decodable ordering.

Corresponding to these three distributions we will define algorithms alge,algc,1,algc,2 such that:

• alge has constant probability of correct selection when the adversary chooses a decodable
ordering;

• algc,1 has constant probability of correct selection when the adversary chooses an ordering
that violates the first property of decodable orderings;

• algc,2 has constant probability of correct selection when the adversary chooses an ordering
that satisfies the first property of decodable orderings but violates the second.

Combining these three statements, one can easily conclude that when nature samples the arrival
order using the permutation distribution π = 1

3 (πe + πc,1 + πc,2), and when the algorithm alg is
the one that randomizes among the three algorithms {alge,algc,1,algc,2} with equal probability,
then alg has constant probability of correct selection no matter how the adversary orders items
by value.

We begin with the construction of the distribution πc,1 and algorithm algc,1. The following
describes the procedure of drawing a random sample from πc,1.

Algorithm 1 Sampling procedure for πc,1

1: Sample an
(

n
2

)

-element set L ⊂ [n− 1] uniformly at random.
2: Let R = [n− 1] \ L.
3: Let π′ by the permutation that lists the elements of L in increasing order, followed by the

elements of R increasing order, followed by n.
4: Choose a uniformly random i ∈

[

1, n
2

]

and let τi be the transposition that swaps elements n
and i. (If i = n then τi is the identity permutation.)

5: Let π = τi ◦ π′.

Define algc,1 to be an algorithm that observes the first n
2 elements, sets a threshold equal to

the maximum of the observed elements, and selects the next element whose value exceeds this
threshold. In the following lemma and for the remainder of this section, ρ denotes the permutation
that lists the items in order of increasing value, i.e., ρ(i) = n− i.

Lemma 12. If the adversary’s ordering σ assigns the maximum value to any item other than n,
then V πc,1(algc,1, σ) >

1
4 . On the other hand, V πc,1(∗, ρ) = 2

n .

Proof. Suppose that σ assigns the maximum value to item i 6= n, and suppose that item j receives
the second-largest value among items in [n− 1]. In the sampling procedure for πc,1, the event that
j ∈ L and i ∈ R has probability

n/2

n− 1
· (n/2) − 1

n− 2
>

1

4
,

and when this event happens the algorithm algc,1 is guaranteed to select item i.
To prove the second part of the lemma, suppose the adversary assigns values to items in in-

creasing order and observe that this guarantees that the first n/2 items in the permutation π′

(defined in Step 3 of the sampling procedure) are listed in increasing order of value, and that the
first n/2 items in π are the same except that the value at index i is replaced by the maximum value.
Now consider any algorithm and let t denote the time when it makes its selection when facing a

25

monotonically increasing sequence of n values. If t > n/2, then the algorithm assuredly makes an
incorrect selection when facing the input sequence πρ. If t ≤ n/2, then the algorithm makes a
correct selection if and only if t matches the random index i chosen in the sampling procedure for
π, an event with probability 2/n.

We next present the construction of πc,2.

Algorithm 2 Sampling procedure for πc,2

1: With probability 1
2 , reverse the order of the first n

4 items in the list.
2: Initialize I = ∅.
3: for i = 1, . . . , n4 do

4: With probability 1
nκ(n) :

5: Swap the items in positions i and i+ n
4 .

6: Add i to the set I.
7: If i > n

8 then add i into the set I+.
8: end for

9: Let π′ denote the permutation of items defined at this point in the procedure.
10: if I+ is non-empty then

11: Choose a uniformly random index i ∈ I+

12: else

13: Choose a uniformly random index i ∈
(

n
8 ,

n
4

]

.
14: end if

15: Let τi be the transposition that swaps elements n and i.
16: Let π = τi ◦ π′.

Define algc,2 to be an algorithm that observes the first n
8 elements, sets a threshold equal to

the maximum of the observed elements, and selects the next element whose value exceeds this
threshold.

Lemma 13. If the adversary’s ordering σ assigns the maximum value to item n but violates Prop-
erty 2 in the definition of a decodable ordering, then V πc,2(algc,2, σ) > 1

250 . On the other hand,
V πc,1(∗, ρ) = O(κ(n)).

Proof. First suppose that σ assigns the maximum value to item n but violates Property 2 in the
definition of a decodable ordering. To prove that V πc,2(algc,2, σ) >

1
250 , note first that algc,2 is

guaranteed to make a correct selection if the permutation π′ (defined in step 9 of the sampling
procedure) has the property that the highest-value item found among the first n/4 positions in π′

belongs to one of the first n
8 positions. Recalling the set I defined in the sampling procedure, let

J =
[

1, n4
]

\ I and let K =
{

i + n
4 | i ∈ I

}

. Note that J ∪K is the set of items found among the
first n/4 positions in π′. Let j, k denote the highest-value elements of J and K, respectively. (If
K is empty then k is undefined.) Step 1 of the sampling procedure ensures that with probability
1
2 , item j belongs to one of the first n

8 positions, and this event is independent of the event that K
is non-empty and k belongs to one of the first n

8 positions. To complete the proof, we now bound
the probability of that event from below by 1

100 .
Let i1, i2, . . . , in/4 denote a listing of the elements of the set

(

n
4 ,

n
2

]

in decreasing order of value.

For 1 ≤ ℓ ≤ n
4 , the probability that k = iℓ is

(

1− 1
nκ(n)

)ℓ−1 1
nκ(n) . Let L denote the set of ℓ ≤ nκ(n)

such that iℓ ≤ 3n
8 . By our hypothesis that σ violates Property 2 in the definition of a decodable

26

ordering, we know that |L|
nκ(n) > 1

40 . If k = iℓ for any ℓ ∈ L, then k belongs to one of the first n
8

positions in π′. The probability of this event is

∑

ℓ∈L
Pr [k = iℓ] =

∑

ℓ∈L

(

1− 1

nκ(n)

)ℓ−1 1

nκ(n)
≥ 1

nκ(n)

∑

ℓ∈L

(

1− 1

nκ(n)

)nκ(n)−1

≥ |L|
nκ(n)

·1
e
>

1

100
,

as desired.
The second half of the lemma asserts that V πc,1(∗, ρ) = O(κ(n)), where ρ denotes the permu-

tation that lists the items in order of increasing value. To prove this, first recall the set I+ defined
in the sampling procedure; note that |I+| is equal to the number of successes in n

8 i.i.d. Bernoulli
trials with success probability 1

nκ(n) . Hence E [|I+|] = 1
8κ(n) and, by the Chernoff Bound,

Pr
[

|I+| < 1
16κ(n)

]

< exp

(

− 1

128κ(n)

)

< 128κ(n).

Conditional on the event that |I+| ≥ 1
16κ(n) , the conclusion of the proof is similar to the conclusion

of the proof of Lemma 12. Consider any algorithm and let t denote the time when it makes its
selection when the items are presented in the order π′. Also, let s denote the time when item n
is presented in the order π. The first s items in π and π′ have exactly the same relative ordering
by value since, by construction, s ∈ I+ and hence the element that arrives at time s in π′ has
the maximum value observed so far. Hence, the algorithm makes a correct selection only when
t = s. However, if t 6∈ I+ then this event does not happen, and if t ∈ I+ the event t = s happens
only if s is the random index i selected in Step 11, an event whose probability is 1/|I+|, which is
at most 16κ(n) since we are conditioning on |I+| ≥ 1

16κ(n) . Combining our bounds for the cases

|I+| < 1
16κ(n) and |I+| ≥ 1

16κ(n) , we find that for any algorithm alg,

PCS(alg, πρ) ≤ Pr
[

|I+| < 1
16κ(n)

]

+Pr
[

|I+| ≥ 1
16κ(n)

]

·Pr
[

correct selection
∣

∣

∣
|I+| ≥ 1

16κ(n)

]

≤ Pr
[

|I+| < 1
16κ(n)

]

+Pr
[

correct selection
∣

∣

∣
|I+| ≥ 1

16κ(n)

]

< 128κ(n) + 16κ(n),

as desired.

Finally, we present the construction of the permutation distribution πe. A crucial ingredient is
a coding-theoretic construction that may be of independent interest.

Definition 7. We say that a function A : {0, 1}k → {0, 1}n has half-unique-decoding radius r if at
least half of the inputs x ∈ {0, 1}k satisfy the property that for all x′ 6= x, the Hamming distance
from A(x) to A(x′) is greater than 2r.

Codes with half-unique-decoding radius r are useful because they allow a receiver to decode
messages with probability at least 1

2 , in a model with random messages and adversarial noise. The
following easy lemma substantiates this interpretation. Here and subsequently, we use ‖y − y′‖ to
denote the Hamming distance between strings y, y′.

Lemma 14. Suppose that:

• a uniformly random string x ∈ {0, 1}k is encoded using a function A whose half-unique-
decoding radius is r,

27

• an adversary is allowed to corrupt any r bits of the resulting codeword, and

• a decoding algorithm receives the corrupted string ŷ, finds the nearest codeword (breaking ties
arbitrarily), and applies the function A−1 to produce an estimate x̂ of the original message.

The Pr [x̂ = x] ≥ 1
2 regardless of the adversary’s policy for corrupting the transmitted codeword.

Proof. Let y = A(x). The constraint on the adversary implies that ‖y − ŷ‖ ≤ r. The definition of
half-unique-decoding radius implies that, with probability at least 1

2 over the random choice of x,
the nearest codeword to y is at Hamming distance greater than 2r. By the triangle inequality, this
event implies that y is the unique nearest codeword to ŷ, in which case the decoder succeeds.

The particular coding construction that our proof requires is a code with the property that,
roughly speaking, all of its low-dimensional projections have large half-unique-decoding radius. The
following definition and lemma make this notion precise.

Definition 8. For S ⊆ [n], let projS : {0, 1}n → {0, 1}|S| denote the function that projects a
vector onto the coordinates indexed by S. In other words, letting (i1, i2, . . . , is) denote a sequence
containing each element of S once, we define projS(y) = (yi1 , yi2 , . . . , yis). For any function A :
{0, 1}k → {0, 1}n, we introduce the notation AS to denote the composition projS ·A : X → {0, 1}|S|.

Lemma 15. For all sufficiently large m, if 2m ≤ n < m
2 · 22m−4

, there exists a function A :
{0, 1}m → {0, 1}n such that for every set S ⊆ [n] of cardinality 2m, the function AS has half-
unique-decoding radius m

10 .

Proof. We prove existence of A using the probabilistic method, by showing that a uniformly random
function A : {0, 1}m → {0, 1}n has the property with positive probability. To do so, we need to
estimate the probability, for a given set S, that AS fails to have half-unique-decoding radius m

10 .
Define a graph GS with vertex set {0, 1}m by drawing an edge between every two vertices

x, x′ such that ‖AS(x) − AS(x
′)‖ ≤ m

5 . The event that AS has half-unique-decoding radius m
10

corresponds precisely to the event that GS has at least 2m−1 isolated vertices. When this event
does not happen, the number of connected components in GS is at most 2m − 2m−2, so a spanning
forest of GS has at least 2m−2 edges.

Our plan is to bound—for every set S ⊆ [n] of size 2m and every forest F with 2m−2 edges—the
probability that GS contains all the edges of F . Summing over S and F we will find the sum is less
than 1, which implies, by the union bound, that with positive probability over the random choice of
A no such pair (S,F) exists. By the arguments in the preceding paragraph, it follows that when no
such pair (S,F) exists the half-unique-decoding radius of AS is m

10 for every S of size 2m, yielding
the lemma.

To begin, let us fix x, x′ ∈ {0, 1}m and S ⊆ [n] with |S| = 2m, and let us estimate the
probability that ‖AS(x)−AS(x

′)‖ ≤ m
5 . The strings AS(x) and AS(x

′) are independent uniformly-
random binary strings of length 2m. The number of binary strings within Hamming distance m

5

of AS(x) is bounded above by 2(1+o(1))·H(1/10)·2m , where H(p) denotes the binary entropy function
−p log2(p)− (1 − p) log2(1− p). Using the fact that 2H(1

10) < 0.95 we can conclude that for large

enough m, fewer than 2(0.95)m binary strings belong to the Hamming ball of radius m
5 around AS(x).

Hence the probability that AS(x
′) is one of these strings is less than 2−m/20. If F is the edge set of

a forest on vertex set {0, 1}m, then the random variables AS(x)−AS(x
′) are mutually independent

as (x, x′) ranges over the edges of F . Consequently the probability that all the edges of F are

contained in GS is less than
(

2−m/20
)|F |

.

28

Let N = 2m. The number of spanning trees of an N -element vertex set is NN−2 [8, 11] and
the number of forests with N/4 edges contained in any one such tree is

(N
N/4

)

. Thus, the number

of pairs (S,F) where S ⊆ [n] has 2m elements and F is the edge set of a forest with vertex set
{0, 1}m is bounded above by

(n
2m

)(N
N/4

)

NN−2. Applying the union bound, we conclude that the
probability of failure for our construction is bounded above by

(

n

2m

)(

N

N/4

)

NN−2
(

2−m/20
)N/4

<
(

2n
m

)2m
2NNN

(

2−m/20
)N/4

,

where we have used the inequalities
(n
k

)

≤
(

4n
k

)k
(valid for all 0 ≤ k ≤ n) and

(N
N/4

)

≤ 2N (valid

for all N). The base-2 logarithm of the probability of failure is bounded above by

2m[1 + log(n)− log(m)] +N
[

1 + log(N)− m
80

]

.

(All logs are base 2.) Substituting N = 2m−2 and rearranging terms, we find that this expression
is negative (i.e., the probability of failure is strictly less than 1) when

log(n) < log(m)− 1 +
2m−3

m

[

79m

80
− 1

]

< log(m)− 1 + 2m−4,

provided m > 2. This inequality is satisfied when n < m
2 · 22m−4

, which completes the proof.

We now continue with the construction of the permutation distribution πe. Let m =
⌊

1
2nκ(n)

⌋

.

By Lemma 15 there exists a function A : {0, 1}m → {0, 1}n/8 such that for all S ⊆ [n] with
|S| = 2m, the half-unique-decoding radius of AS is m

10 . Let us choose one such function A for
the remainder of the construction. Define an A-augmented circuit to be a circuit constructed from
the usual and, or, not gates along with n/8 additional types of gates that take an m-bit input
x and output one of the bits of A(x). By Lemma 11 there exists a function g : {0, 1}m →

[

n
2

]

such that no A-augmented circuit of size s(n) < 2m/(4m2n) computes the value of g correctly
on more than 4

n fraction of inputs. Let us choose one such function and denote it by g for the
remainder of the construction. (To justify the application of Lemma 15, note that our assumption
that nκ(n)/ log(n) → ∞ implies n

8 < 22
m−4

for all sufficiently large n.) Armed with the functions
g and A we are ready to present the construction of πe.

Algorithm 3 Sampling procedure for πe

1: Sample x ∈ {0, 1}m uniformly at random.
2: Let y = A(x) ∈ {0, 1}n/8.
3: for i = 1, . . . , n8 do

4: if yi = 1 then

5: Swap the items in positions 3n
8 + i and n

4 + i.
6: else

7: Leave the permutation unchanged.
8: end if

9: end for

10: Swap the items in positions n and n
2 + g(x).

The corresponding algorithm alge works as follows.

29

Algorithm 4 Algorithm alge

1: Observe the first n
2 elements of the input sequence.

2: Let J denote the set of items with arrival times in the interval
(

n
4 ,

n
2

]

, i.e. J = π−1
(

n
4 ,

n
2

]

.
3: Let j1, . . . , jn/4 denote a listing of the elements of J in order of decreasing value.
4: for ℓ = 1, . . . , 2m do

5: if π(jℓ) ≤ 3n
8 then

6: Set ŷℓ = 1 and iℓ = π(jℓ)− n
4 .

7: else

8: Set ŷℓ = 0 and iℓ = π(jℓ)− 3n
8 .

9: end if

10: end for

11: Set S = (i1, i2, . . . , i2m).
12: Find the x ∈ {0, 1}m that minimizes ‖AS(x)− ŷ‖, breaking ties arbitrarily.
13: Select the item that arrives at time t = n

2 + g(x).

Lemma 16. If the adversary’s ordering σ is a decodable ordering, then V πe(alge, σ) ≥ 1
2 . On

the other hand, for any algorithm algp whose stopping rule can be computed by circuits of size
s(n) = 2nκ(n)/4, we have V πc,1(∗, ρ) ≤ 4/n.

Proof. Note that a permutation π sampled from πe always maps the set
(

n
4 ,

n
2

]

to itself, though it
may permute the elements of that set. Consequently, when one runs alge on an input sequence
ordered using π in the support of πe, it sets J =

(

n
4 ,

n
2

]

. The definition of a decodable permutation
now implies that the fraction of items in {j1, . . . , j2m} that belong to

(

3n
8 , n

2

]

is at least 39
40 ; let

us call the remaining items in {j1, . . . , j2m} “misplaced”. For each jℓ that is not misplaced, alge

correctly deduces the corresponding value yℓ unless item jℓ − n
8 also belongs to {j1, . . . , j2m} (in

which case it is a misplaced item). Hence each misplaced item contributes to potentially two errors,
meaning that at most 1

20 fraction of the bits in ŷ differ from the corresponding bit in A(x). These
strings have length 2m, so we have shown their Hamming distance is at most m

10 . Lemma 14 now
ensures that with probability at least 1

2 , alge decodes the appropriate value of x. When this
happens, it correctly selects item n from the second half of the input sequence. Our assumption
that σ is decodable means that item n is the item with maximum value, which completes the proof
that V πe(alge, σ) ≥ 1

2 .
To prove the second statement in the lemma, we can use algp to guess the value of g(x) for

any input x ∈ {0, 1}m by the following simulation procedure. First, define a permutation π′(x) by
running Algorithm 3 with random string x, omitting the final step of swapping the items in positions
n and n/2 + g(x); note that this means that π′(x), unlike π(x), can be constructed from input x
by an A-augmented circuit of polynomial size. Now simulate alg on the input sequence π′(x),
observe the time t when it selects an item, and output t− n

2 . The A-augmented circuit complexity
of this simulation procedure is at most poly(n) times the A-augmented circuit complexity of the
stopping rule implemented by alg, and the fraction of inputs x on which it guesses V π(x) correctly
is precisely V π(alg, ι). (To verify this last statement, note that alg makes its selection at time
t = n

2 + g(x) when observing input sequence π(x) if and only if if also makes its selection at time
t when observing input sequence π′(x), because the two input sequences are indistinguishable to
comparison-based algorithms at that time.) Hence, if V π(alg, ι) > 4

n then the stopping rule of

alg cannot be implemented by circuits of size 2m/2 = 2nκ(n)/4.

30

B.4 Proofs deferred from §5

B.4.1 Full proof of Theorem 11§??

We start by proving the following lemmas which turn out to be critical for the analysis of ALG(U , k, q)
under non-uniform permutation distributions. In fact, these lemmas capture the fact that if mem-
bership random variables of different items for the random set S (and Sc) are almost pairwise
independent (rather than mutually independent), then we still preserve enough of probabilistic
properties that are needed in the analysis of algorithm proposed by [25].

Lemma 17. Suppose π is drawn from a permutation distribution satisfying (p, q, δ)-BIP for p ≥ 2
and S , {x ∈ U : ρ(x) ≤ τ(q)} where τ(q) is independently drawn from Binom(q, 1/2). Then for
any T ⊆ U such that δ ≤ 1√

|T |
we have

1. E [|T ∩ S|] ∈ [(1− δ)|T |/2, (1 + δ)|T |/2]
2. E [val(T ∩ S)] ∈ [(1− δ)val(T)/2, (1 + δ)val(T)/2]

3. Pr [|T ∩ S| ≥ |T |/2 + α] ≤ |T |
2α2

Proof. For x ∈ U , let Yx be a 0/1 variable indicating if x ∈ S. We have

E [Yx] =
∑

i=1

qPr [x is in block i]Pr [τb ≥ i]

≥ (1− δ)
1

q

∑

i=1

qPr [τb ≥ i]

= (1− δ)
1

q
E [τb]

= (1− δ)
1

q

q

2

=
1− δ

2
.

Analogously, we get E [Yx] ≤ 1+δ
2 .

Claims 1 and 2 now follow from linearity of expectation, e.g., E [|T ∩ S|] = E
[
∑

x∈T Yx

]

≥
1−δ
2 |T |.
To show Claim 3, we use that for x 6= x′, we have E [YxYx′] ≤ 1+δ

4 . This implies E
[

|T ∩ S|2
]

=

E [
∑

x Yx] +E
[

∑

x 6=x′ YxYx′

]

≤ E [|T ∩ S|] + |T |(|T | − 1)1+δ
4 ≤ E [|T ∩ S|].

By Markov’s inequality, we get

Pr [|T ∩ S| ≥ |T |/2 + α] ≤ Pr
[

(|T ∩ S| − |T |/2)2 ≥ α2
]

≤ 1

α2
E
[

(|T ∩ S| − |T |/2)2
]

.

Using linearity of expectation and the bounds obtained so far, we get

E
[

(|T ∩ S| − |T |/2)2
]

= E
[

(|T ∩ S|)2
]

− |T |E [|T ∩ S|] +
(|T |

2

)2

≤ 1 + δ

2
|T |2 − 1 + δ

4
|T | − (|T | − 1)E [|T ∩ S|]

≤ 1 + δ

2
|T |2 − 1 + δ

4
|T | − (|T | − 1)

1− δ

2
|T |

≤ δ|T |2 + 1− 3δ

4
|T | ≤ |T |

2
.

31

where the last inequality is true because of δ ≤ 1√
|T |

.

Lemma 18. Suppose π is drawn from a permutation distribution satisfying (p, q, δ)-BIP for some
p ≥ 2 and S is as defined in Lemma 17. Let Y1 be the (possibly negative) random variable such that
(k/2)th item in the sorted-by-value list of items in S is the (k + Y1)

th in the sorted-by-value list of
items in U . Then E [|Y1|] = O(

√
k).

Proof. We have E [|Y1|] =
∑∞

i=1 Pr [|Y1| ≥ i] =
∑∞

i=1 Pr [Y1 ≥ i] +
∑∞

i=1Pr [Y1 ≤ −i]. Now we
bound each of the terms separately. For a fixed i, look at the event Y1 ≤ −i. This event is
equivalent to the event that the number of items in S among k − i highest-valued items is at least
k/2. Let us define r , k − i. Furthermore, let Tr be the set of the r-highest valued items. Using
Lemma 17 we have:

Pr [Y1 ≤ −i] = Pr [|Tr ∩ S| ≥ r/2 + i/2] ≤ 2(k − i)

i2
(10)

So we have

∞
∑

i=1

Pr [Y1 ≤ −i] ≤
⌈
√
k⌉

∑

i=1

1 +

k
∑

i=⌈
√
k⌉+1

2(k − i)

i2
≤ 1 +

√
k + 2k

∞
∑

i=⌈
√
k⌉+1

1

i2

≤ 1 +
√
k + 2k

∫ ∞
√
k

1

x2
dx = 3

√
k + 1 = O(

√
k) (11)

Now, let’s consider the event Y1 ≥ i. This event implies that number of items of Sc among the
k highest valued items is at least k/2 + i. Again, using Lemma 17 we have:

Pr [Y1 ≥ i] ≤ Pr [|Tk ∩ Sc| ≥ k/2 + i] ≤ k

2i2
(12)

and hence we have

∞
∑

i=1

Pr [Y1 ≥ i] ≤
⌈
√
k⌉

∑

i=1

1 +

∞
∑

i=⌈
√
k⌉+1

k

2i2
≤ 1 +

√
k +

k

2

∞
∑

i=⌈
√
k⌉+1

1

i2

≤ 1 +
√
k +

k

2

∫ ∞
√
k

1

x2
dx =

3

2

√
k + 1 = O(

√
k) (13)

which completes the proof.

Now we start proving the theorem. Basically, we prove for any fixed k there exists a function

ǫ(k, q, δ), non-increasing w.r.t. q, such that ALG(U , k, q) is
(

1−O(1

k
1
3

)− ǫ(k, q, δ)
)

-competitive,

and ǫ goes to 0 as q → ∞ and δ → 0 for a fixed k. First without loss of generality we modify
values so that if the value is among k highest it remains the same, otherwise it is set to 0. This
doesn’t change sum of the values of the k highest items, and just weakly decreases the values of
items picked by any algorithm. Now, run the algorithm with modified values. Let A be the set
of items picked by ALG(U , k, q) and O be the subset of k highest value items under σ. Define

S , {x ∈ U : π(x) ≤ τ(q)
q n} to be the set sampled before threshold and Sc , U\S be its

complement. Suppose v0 is the value of the k
2

th
highest valued item in S (if |S| < k

2 , set v0 = 0).
Moreover, define the value function val(.) to be the sum of values of the input set of items under σ.

32

Fixing σ, we prove the claim by induction over k. The case k = 1 is exactly the case of a single
secretary, which is analyzed in §2.1. For general k, we first run ALG(U ∩ S, k/2, τ(q)) to give us
A ∩ S. Note that the ordering of arrivals of items in S satisfies (p, τ(q), δ)-BIP. So, by induction
hypothesis and conditioned on set S we have

E [val(A ∩ S)|S] ≥ E

[

val([O ∩ S]k/2)

(

1−O(
1

k
1

3

)− ǫ(k/2, τ, δ)

)

|S
]

(14)

We can lower-bound the right-hand side further as follows.

E

[

val([O ∩ S]k/2)

(

1−O(
1

k
1

3

)− ǫ(k/2, τ, δ)

)

|S
]

≥

E
[

val([O ∩ S]k/2)|S
]

− val(O)

(

O(
1

k
1

3

) +E [ǫ(k/2, τ, δ)|S]
)

, (15)

and by taking expectation with respect to S we have

E [val(A ∩ S)] ≥ E
[

val([O ∩ S]k/2)
]

− val(O)

(

O(
1

k
1

3

) +E [ǫ(k/2, τ, δ)]

)

(16)

Now suppose I {.} is the indicator function. One can easily decompose ǫ(k/2, τ, δ) as follows.

ǫ(k/2, τ, δ) = ǫ(k/2, τ, δ)I {τ ≥ q/4}+ ǫ(k/2, τ, δ)I {τ < q/4} ≤ ǫ(k/2, q/4, δ) + I {τ < q/4} (17)

where the last inequality is true because ǫ(k/2, τ, δ) is non-increasing w.r.t. τ . Now by taking
expectations from both hand sides of (17), we have:

E [ǫ(k/2, τ, δ)] ≤ ǫ(k/2, q/4, δ) +Pr [τ < q/4]

= ǫ(k/2, q/4, δ) +Pr [τ < q/2(1− 1/2)] ≤ ǫ(k/2, q/4, δ) + e−
q
16 (18)

where in the last inequality we used Chernoff bound, as τ is drawn from Binom(q, 1/2). Now, fix
ε′. For a given ε′ we have

E
[

val([O ∩ S]k/2)
]

= E [val(O ∩ S)I {|O ∩ S| < k/2}] +E
[

val([O ∩ S]k/2)I {|O ∩ S| ≥ k/2}
]

≥ E [val(O ∩ S)I {|O ∩ S| < k/2}] +E

[

k/2

|O ∩ S|val(O ∩ S)I {|O ∩ S| ≥ k/2}
]

≥ E [val(O ∩ S)I {|O ∩ S| < k/2}] + 1

1 + ε′
E

[

val(O ∩ S)I

{

k

2
(1 + ε′) ≥ |O ∩ S| ≥ k/2

}]

(19)

Also, we have:

1

1 + ε′
E

[

val(O ∩ S)I

{

k

2
(1 + ε′) ≥ |O ∩ S| ≥ k/2

}]

=
1

1 + ε′
E [val(O ∩ S)I {|O ∩ S| ≥ k/2}]− 1

1 + ε′
E

[

val(O ∩ S)I

{

|O ∩ S| ≥ k

2
(1 + ε′)

}]

≥ 1

1 + ε′
E [val(O ∩ S)I {|O ∩ S| ≥ k/2}]− val(O)Pr

[

|O ∩ S| ≥ k

2
(1 + ε′)

]

(1)

≥ 1

1 + ε′
E [val(O ∩ S)I {|O ∩ S| ≥ k/2}]− 1

kε′2
val(O) (20)

33

in which (1) is true because of Lemma 17. Combining (19) with (20) we have:

E
[

val([O ∩ S]k/2)
]

≥ 1

1 + ε′
E [val(O ∩ S)]− 1

kε′2
val(O) ≥ E [val(O ∩ S)]− (ε′+

1

kε′2
)val(O). (21)

Finally, by combining (16), (18) and (21) and setting ε′ = 1

k
1
3

, we have

E [val(A ∩ S)] ≥ E [val(O ∩ S)]− val(O)

(

O(
1

k
1

3

) + e−
q
16 + ǫ(k/2, q/4, δ)

)

(22)

Next, we try to lower-bound E [val(A ∩ Sc)] by E [val(O ∩ Sc)]. Lets define random variable
Q , |A ∩ Sc| to be number of items algorithm picked from Sc. We have E [val(A ∩ Sc)] =
∑k/2

x=0E [val(A ∩ Sc)I {Q = x}]. Now we look at each term E [val(A ∩ Sc)I {Q = x}], and we try to
lower-bound it with E [val(O ∩ Sc)I {Q = x}] for different values of x. Consider two cases:

Case 1, when x < k
2 : In this case v0 > 0 and all items in S with value more than v0 are in O.

We know the number of items in Sc that have value at least v0 is x. If we look at items in O ∩ Sc,
all items in A ∩ Sc are also in O ∩ Sc and in addition we have at most k − (k/2 + x) = k/2 − x
items in O ∩ Sc, all of which have value at most v0. Hence, as the value of any item in A ∩ Sc is
at least v0, the followings hold deterministically :

val(O ∩ Sc)− val(A ∩ Sc) = val({x ∈ O ∩ Sc : vσ−1(x) ≤ v0})

≤ |O ∩ Sc| − |A ∩ Sc|
|A ∩ Sc| val(A ∩ Sc) ≤ (

k

2x
− 1)val(A ∩ Sc) (23)

which implies val(A ∩ Sc) ≥ 2x
k val(O ∩ Sc) when x < k/2. So for x < k/2,

E [val(A ∩ Sc)I {Q = x}] ≥ E

[

2Q

k
val(O ∩ S)I {Q = x}

]

(24)

Case 2, when x = k
2 : In this case either v0 > 0, which implies at least there are k/2 items in O∩S.

As algorithm also picks k/2 items and so A ∩ Sc = O ∩ Sc for which we are done. Otherwise,
suppose v0 = 0. We know the permutation distribution generating π satisfies the (p, q, δ)-BIP some

p ≥ k, and hence it satisfies (k, q, δ)-BIP. So, based on Theorem 2 it also satisfies (k, δ+ k2

q)-UIOP.
Roughly speaking, if you look at any subset of elements with cardinality at most k, their induced
ordering is almost uniformly distributed (within an error of δ+ k2

q). We know in this case algorithm

picks k
2 items (all of them in O ∩ Sc), and in fact it picks the first k

2 elements of O ∩ Sc in the

ordering of elements in O ∩ Sc induced by the permutation π. Suppose X , |O ∩ Sc| − k/2. Then

E

[

val(A ∩ Sc)I

{

Q =
k

2

}]

≥ E

[

val(first k/2 elements of O ∩ Sc in the ordering π)I

{

Q =
k

2

}]

= E

[

val(O ∩ Sc)I

{

Q =
k

2

}]

−E

[

val(last X elements of O ∩ Sc in the ordering π)I

{

Q =
k

2

}]

≥ E

[

val(O ∩ Sc)I

{

Q =
k

2

}]

−E [val(last X elements of O ∩ Sc in the ordering π)] (25)

34

For a fixed set S, we have (k, δ + k2

q)-UIOP for elements in O ∩ Sc (this is an order oblivious
fact), and hence the induced ordering of the elements in O ∩ Sc is almost uniform. So, we have

E [val(last X elements of O ∩ Sc in the ordering π)|S] ≤ (1 + δ +
k2

q
)E

[

val(O ∩ Sc)
X

|O ∩ Sc| |S
]

≤ (1 + δ +
k2

q
)val(O)E

[|O ∩ Sc| − k/2

|O ∩ Sc| |S
]

(26)

Now by taking expectation w.r.t. S and combining it with (25) we have

E

[

val(A ∩ Sc)I

{

Q =
k

2

}]

≥ E

[

val(O ∩ Sc)I

{

Q =
k

2

}]

− (1+ δ+
k2

q
)val(O)E

[|O ∩ Sc| − k/2

|O ∩ Sc|

]

(27)
Moreover, one can use Lemma 17 to find an upper-bound on the error term in (26). Fix any ε′,
Now we have

|O ∩ Sc| − k/2

|O ∩ Sc| =
|O ∩ Sc| − k/2

|O ∩ Sc| I
{

|O ∩ Sc| < k/2 + ε′
}

+
|O ∩ Sc| − k/2

|O ∩ Sc| I
{

|O ∩ Sc| ≥ k/2 + ε′
}

(28)

By taking expectation from both sides of (28), setting ε′ = k
1

3 and using Lemma 17 we have

E

[|O ∩ Sc| − k/2

|O ∩ Sc|

]

≤ ε′

k/2 + ε′
+Pr

[

|O ∩ Sc| ≥ k/2 + ε′
]

≤ ε′

k/2
+

k

2ε′
≤ 3

k
1

3

. (29)

By combining (29) and (26) we have (note that δ ≤ 1)

E [val(A ∩ Sc)I {Q = k/2}] ≥ E

[

2Q

k
val(O ∩ Sc)I {Q = k/2}

]

− val(O)(
6

k
1

3

+
3k

5

3

q
) (30)

As we desired.
Now, by combining the above cases with each other we have

E [val(A ∩ Sc)] ≥ E

[

2Q

k
val(O ∩ Sc)

]

− val(O)(
6

k
1

3

+
3k

5

3

q
)

≥ E [val(O ∩ Sc)]− val(O)

(

6

k
1

3

+
3k

5

3

q
+E

[

k/2−Q

k/2

]

)

(31)

Finally, by combining equations (22) and (31) we have

E [val(A)] ≥ val(O)

(

1−E

[

k/2 −Q

k/2

]

−O(
1

k
1

3

)− 3k
5

3

q
− e

−q
16 + ǫ(k/2, q/4, δ)

)

(32)

As it can be seen, the question of finding the competitive ratio of 1− o(1) boils down to upper-
bounding E [k/2 −Q]. To do so, we define random variable Y1 such that (k/2)th item in sorted-
by-value list of items in S will be the (k + Y1)

th item in U . Now we claim that Q ≥ k/2 − |Y1|.
The proof is easy. If v0 = 0 then algorithm picks k/2 items from Sc and we are done. Otherwise,
there are k+Y1− k/2 = k/2+Y1 items in Sc such that their values is at least v0. By a simple case
analysis, if Y1 ≤ 0 then algorithm picks all of those, and hence Q ≥ k/2+Y1 = k/2−|Y1|. If Y1 ≥ 0

35

then algorithm picks k/2 items which is ≥ k/2−|Y1| we are again down. So E [k/2−Q] ≤ E [|Y1|].
Lemma 18 shows that E [|Y1|] = O(

√
k), and hence E

[

k/2−Q
k/2

]

≤ O(1/
√
k). Hence, we have

E [val(A)] ≥ val(O)

(

1−O(
1

k
1

3

)− 3k
5

3

q
− e

−q
16 − ǫ(k/2, q/4, δ)

)

≥ val(O)

(

1−O(
1

k
1

3

)− ǫ(k, q, δ)

)

(33)

which completes the proof, as ǫ can be arbitrary small for large enough q and small enough δ .

B.4.2 Full proof of Theorem 12

We define a randomized construction that defines an input and a probability distribution simulta-
neously. By the probabilistic method this implies the statement.

Our bipartite graph has n vertices on the online and the offline side each. For each pair (j, i), we

add the connecting edge with probability 1
2 − 8

√

lnn
n independently. In case j and i are connected,

the edge weight is set to w(j, i) = 1 − ǫ(j + i) for ǫ = 1
n2 . This way, the expected weight of the

optimal solution is Ω(n).

To define the distribution over permutations πi : U → [n], we draw for the first ξ = 2(k+1)!
δ2

log n
offline vertices i ∈ R one permutation uniformly at random from the set of all permutations in
which the neighbors of node i come last. Afterwards, we draw one of these permutations π1, . . . , πξ
at random. We claim that this way, the probability distribution fulfills the (k, δ)-uniform-induced-
ordering property.

Fix k distinct items x1, . . . , xk ∈ U . Note that we can ignore the fact that in any permutation
neighbors come last as all x1, . . . , xk have the same probability of corresponding to a neighbor.
Therefore, we can steadily follow the argument from Theorem 6. Let Yi = 1 if πi(x1) < πi(x2) <
. . . < πi(xk). As πi is drawn uniformly from the set of all permutations, we have Pr [Yi = 1] = 1

k! .

That is, we have E
[

∑ξ
i=1 Yi

]

= ξ
k! . As the random variables Yi are independent, we can apply a

Chernoff bound. This gives us

Pr

[

ξ
∑

i=1

Yi ≤ (1− δ)
ξ

k!

]

≤ exp

(

−δ2

2

ξ

k!

)

= nk+1 .

Note that if
∑ξ

i=1 Yi ≤ (1 − δ) ξ
k! then the respective sequence x1, . . . , xk ∈ U has probability at

least (1− δ) 1
k! when drawing one permutation from π1, . . . , πξ.

There are fewer than nk possible sequences. Therefore, applying a union bound, with probability
at least 1− 1

n the bound is fulfilled for all sequences simultaneously and therefore S fulfills the stated
condition.

It now remains to show that the Korula-Pál algorithm has a poor performance on this type of
instance. The algorithm draws a transition point τ ∼ Binom(n, 12), before which it only observes
the input and after which it starts a greedy allocation based on the vertices seen until round τ and
the current vertex. It is important to remark that for the tentative allocation the other vertices
seen between round τ and the current round are ignored. Only after a tentative edge has been
selected, their allocation is taken into consideration in order to check whether the matching would
still be feasible.

Let πi be the chosen permutation. That is, the neighbors of i come last. Let i have n − A
neighbors. We now claim that with high probability no neighbor of i comes before τ , i.e., A < τ .

36

Furthermore, after τ essentially only neighbors of i arrive. This has the consequence that almost
all vertices are tentatively matched to i. However, only the first such edge is feasible.

Using Chernoff bounds, we get

Pr
[

τ <
n

2
− 2

√
n lnn

]

= Pr

[

n− τ >
n

2

(

1 + 4

√

lnn

n

)]

≤ exp

(

−1

3
16

ln n

n

n

2

)

<
1

n
.

Pr
[

A >
n

2
− 2

√
n lnn

]

≤ Pr

[

R >

(

1 + 4

√

lnn

n

)

(n

2
− 8

√
n lnn

)

]

<
1

n
.

In case A < τ , the value of the solution is upper-bounded by j because every node is tentatively
matched to a vertex of index at most i. As i ≤ τ , this gives a value bounded by ξ = 2(k+1)!

δ2
lnn.

37

	1 Introduction
	2 Sufficient Properties of Non-Uniform Probability Distributions
	2.1 Secretary Algorithms and the (p,q,)-block-independence property
	2.2 Relationship Between the Two Properties
	2.3 Constructions of Probability Distributions Implying the Properties
	2.3.1 Randomized One-Dimensional Projections
	2.3.2 Constructions with Low Entropy

	3 Tight Bound on Entropy of Distribution
	4 Easy Distributions Are Hard to Characterize
	5 Extensions Beyond Classic Secretary Problem
	6 Conclusion
	A A secretary algorithm for (3,)-induced-ordering property
	B Deferred proofs
	B.1 Proofs deferred from §2
	B.1.1 Full Proof of Theorem 1
	B.1.2 Relation between the two properties
	B.1.3 Full proof of Theorem 5
	B.1.4 Full proof of Theorem 6

	B.2 Proofs deferred from §3
	B.3 Proofs deferred from §4
	B.3.1 Proof of Theorem 10

	B.4 Proofs deferred from §5
	B.4.1 Full proof of Theorem 11§??
	B.4.2 Full proof of Theorem 12

