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Abstract

Consider the following Online Boolean Matrix-Vector Multiplication problem: We
are given an n × n matrix M and will receive n column-vectors of size n, denoted by
v1, . . . , vn, one by one. After seeing each vector vi, we have to output the product Mvi
before we can see the next vector. A naive algorithm can solve this problem using O(n3)
time in total, and its running time can be slightly improved to O(n3/ log2 n) [Williams
SODA’07].

We show that a conjecture that there is no truly subcubic (O(n3−ε)) time algorithm
for this problem can be used to exhibit the underlying polynomial time hardness shared
by many dynamic problems. For a number of problems, such as subgraph connectivity,
Pagh’s problem, d-failure connectivity, decremental single-source shortest paths, and
decremental transitive closure, this conjecture implies tight hardness results. Thus,
proving or disproving this conjecture will be very interesting as it will either imply
several tight unconditional lower bounds or break through a common barrier that blocks
progress with these problems. This conjecture might also be considered as strong evidence
against any further improvement for these problems since refuting it will imply a major
breakthrough for combinatorial Boolean matrix multiplication and other long-standing
problems if the term “combinatorial algorithms” is interpreted as “non-Strassen-like
algorithms” [Ballard et al. SPAA’11].

The conjecture also leads to hardness results for problems that were previously based
on diverse problems and conjectures – such as 3SUM, combinatorial Boolean matrix
multiplication, triangle detection, and multiphase – thus providing a uniform way to
prove polynomial hardness results for dynamic algorithms; some of the new proofs are
also simpler or even become trivial. The conjecture also leads to stronger and new,
non-trivial, hardness results, e.g., for the fully dynamic densest subgraph and diameter
problems.
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1 Introduction

Consider the following problem called Online Boolean Matrix-Vector Multiplication (OMv):
Initially, an algorithm is given an integer n and an n × n Boolean matrix M . Then, the
following protocol repeats for n rounds: At the ith round, it is given an n-dimensional column
vector, denoted by vi, and has to compute Mvi. It has to output the resulting column vector
before it can proceed to the next round. We want the algorithm to finish the computation
as quickly as possible.

This problem is a generalization of the classic Matrix-Vector Multiplication problem
(Mv), which is the special case with only one vector. The main question is whether we
can preprocess the matrix in order to make the multiplication with n sequentially given
vectors faster than n matrix-vector multiplications. This study dates back to as far as 1955
(e.g., [Mot55]), but most major theoretical work has focused on structured matrices; see,
e.g., [Pan01, Wil07] for more information. A naive algorithm can multiply the matrix with
each vector in O(n2) time, and thus requires O(n3) time in total. It was long known that
the matrix can be preprocessed in O(n2) time in order to compute Mvi in O(n2/ logn)
time, implying an O(n3/ logn) time algorithm for OMv; see, e.g., [Sav74, SU86] and a
recent extension in [LZ09]. More recently, Williams [Wil07] showed that the matrix can
be preprocessed in O(n2+ε) time in order to compute Mvi in O(n2/ε log2 n) time for any
0 < ε < 1/2, implying an O(n3/ log2 n) time algorithm for OMv. This is the current best
running time for OMv. In this light, it is natural to conjecture that this problem does not
admit a so-called truly subcubic time algorithm:

Conjecture 1.1 (OMv Conjecture). For any constant ε > 0, there is no O(n3−ε)-time
algorithm that solves OMv with an error probability of at most 1/3.

In fact, it can be argued that this conjecture is implied by the standard combinatorial
Boolean matrix multiplication (BMM) conjecture which states that there is no truly subcubic
(O(n3−ε)) time combinatorial algorithm for multiplying two n× n Boolean matrices if the
term “combinatorial algorithms” (which is not a well-defined term) is interpreted in a
certain way – in particular if it is interpreted as “non-Strassen-like algorithms”, as defined in
[BDH+12], which captures all known fast matrix multiplication algorithms; see Section 1.2
for further discussion. Thus, breaking Conjecture 1.1 is arguably at least as hard as making
a breakthrough for Boolean matrix multiplication and other long-standing open problems
(e.g., [DHZ00, VWW10, AVW14, RT13, HKN13]). This conjecture is also supported by an
algebraic lower bound [Blä14].

1.1 OMv-Hardness for Dynamic Algorithms

We show that the OMv conjecture can very well capture the underlying polynomial time
hardness shared by a large number of dynamic problems, leading to a unification, simplifica-
tion, and strengthening of previous results. By dynamic algorithm we mean an algorithm
that allows a change to the input. It usually allows three operations: (1) preprocessing, which
is called when the input is first received, (2) update, which is called for every input update,
and (3) query, which is used to request an answer to the problem. For example, in a typical
dynamic graph problem, say s-t shortest path, we will start with an empty graph at the
preprocessing step. Each update operation consists of an insertion or deletion of one edge.
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The algorithm has to answer a query by returning the distance between s and t at that time.
Corresponding to the three operations, we have preprocessing time, update time, and query
time. There are two types of bounds on the update time: worst-case bounds, which bound
the time that each individual update takes in the worst case, and amortized bounds which
bound the time taken by all updates and then averaging it over all updates. The bounds
on query time can be distinguished in the same way. We call a dynamic algorithm fully
dynamic if any of its updates can be undone (e.g., an edge insertion can later be undone by
an edge deletion); otherwise, we call it partially dynamic. We call a partially dynamic graph
algorithm decremental if it allows only edge deletions, and incremental if it allows only edge
insertions. For this type of algorithm, the update time is often analyzed in terms of total
update time, which is the total time needed to handle all insertions or deletions.

Previous hardness results for dynamic problems are often based on diverse conjectures,
such as those for 3SUM, combinatorial Boolean matrix multiplication (BMM), triangle
detection, all-pairs shortest paths, and multiphase (we provide their definitions in Appendix A
for completeness). This sometimes made hardness proofs quite intricate since there are many
conjectures to start from, which often yield different hardness results, and in some cases
none of these results are tight. Our approach results in stronger bounds which are tight for
some problems. Additionally, we show that a number of previous proofs can be unified as
they can now start from only one problem, that is OMv, and can be done in a much simpler
way (compare, e.g., the hardness proof for Pagh’s problem in this paper and in [AVW14]).
Thus proving the hardness of a problem via OMv should be a simpler task.

We next explain our main results and the differences to prior work: As shown in Figure 1,
we obtain more than 15 new tight1 hardness results2. (Details of these results are provided
in Tables 4 and 8 for tight results and Tables 5 to 7 for improved results. We also provide
a summary of the problem definitions in Tables 1 to 3.) (1) Generally speaking, for most
previous hardness results in [Pat10, AVW14, KPP16] that rely on various conjectures, except
those relying on the Strong Exponential Time Hypothesis (SETH), our OMv conjecture
implies hardness bounds on the amortized time per operation that are the same or better.
(2) We also obtain new results such as those for vertex color distance oracles (studied in
[HLW+11, Che12] and used to tackle the minimum Steiner tree problem [LOP+15]), restricted
top trees with edge query problem (used to tackle the minimum cut problem in [FKN+14]),
and the dynamic densest subgraph problem [BHN+15]. (3) Some minor improvement can in
fact immediately be obtained since our conjecture implies a very strong bound for Pǎtraşcu’s
multiphase problem [Pat10], giving improved bounds for many problems considered in
[Pat10]. We can, however, improve these bounds even more by avoiding a reduction via
the multiphase problem. (We discuss this further in Section 1.2.) The conjecture leads

1Our results are tight in one of the following ways: (1) the query time of the existing algorithms cannot
be improved without significantly increasing the update time, (2) the update time of the existing algorithms
cannot be improved without significantly increasing the query time, (3) the update and query time of the
existing algorithms cannot be improved simultaneously, and (4) the approximation guarantee cannot be
improved without significantly increasing both query and update time.

2For the s-t reachability problem, our result does not subsume the result based on the Boolean matrix
multiplication (BMM) conjecture because the latter result holds only for combinatorial algorithms, and it
is in fact larger than an upper bound provided by the non-combinatorial algorithm of Sankowski [San04]
(see Section 1.2 for a discussion). Also note that the result based on the triangle detection problem which is
not subsumed by our result holds only for a more restricted notion of amortization (see Section 1.2). This
explains the solid lines in Figure 1.
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Strong connectivity
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Fully dynamic problems

Partially dynamic problems
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Figure 1: Overview of our and previous hardness results. An arrow from a conjecture to a problem
indicates that there is a hardness result based on the conjecture. A thick blue arrow indicates that
the hardness result is tight, i.e., there is a matching upper bound. A dotted arrow means that the
result is subsumed in our paper. (Footnote 2 discusses results that are not subsumed.) Note that all
hardness results based on BMM hold only for combinatorial algorithms.
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to an improvement for all problems whose hardness was previously based on 3SUM. (4) A
few other improvements follow from converting previous hardness results that hold only for
combinatorial algorithms into hardness results that hold for any algorithm. We note that
removing the term “combinatorial” is an important task as there are algebraic algorithms
that can break through some bounds for combinatorial algorithms. (We discuss this more in
Section 1.2.) (5) Interestingly, all our hardness results hold even when we allow an arbitrary
polynomial preprocessing time. This type of results was obtained earlier only in [AVW14]
for hardness results based on SETH. (6) Since the OMv conjecture can replace all other
conjectures except SETH, these two conjectures together are sufficient to show that all
hardness results for dynamic problems known so far hold even for arbitrary polynomial
preprocessing time. (7) We also note that all our results hold for a very general type of
amortized running time; e.g., they hold even when there is a large (polynomial) number of
updates and, for graph problems, even when we start with an empty graph. No previous
hardness results, except those obtained via SETH, hold for this case.

We believe that the universality and simplicity of the OMv conjecture will be important
not only in proving tight hardness results for well-studied dynamic problems, but also in
developing faster algorithms; for example, as mentioned earlier it can be used to show the
limits of some specific approaches to attack the minimum Steiner tree and minimum cut
problems [LOP+15, FKN+14]. Below is a sample of our results. A list of all of them and
detailed proofs can be found in later sections.

Subgraph Connectivity. In this problem, introduced by Frigioni and Italiano [FI00], we
are given a graph G, and we have to maintain a subset S of nodes where the updates are
adding and removing a node of G to and from S, which can be viewed as turning nodes on
and off. The queries are to determine whether two nodes s and t are in the same connected
component in the subgraph induced by S. The best upper bound in terms of m is an
algorithm with Õ(m4/3) preprocessing time, Õ(m2/3) amortized update time and Õ(m1/3)
worst-case query time [CPR11]. There is also an algorithm with Õ(m6/5) preprocessing time,
Õ(m4/5) worst-case update time and Õ(m1/5) worst-case query time [Dua10]. An upper
bound in terms of n is an algorithm with Õ(m) preprocessing time, Õ(n) worst-case update
time, and O(1) worst-case query time3.

For hardness in terms of m, Abboud and Vassilevska Williams [AVW14] showed that the
3SUM conjecture can rule out algorithms with m4/3−ε preprocessing time, mα−ε amortized
update time and m2/3−α−ε amortized query time, for any constants 1/6 ≤ α ≤ 1/3 and
0 < ε < α. In this paper, we show that the OMv conjecture can rule out algorithms with
polynomial preprocessing time, mα−ε amortized update time and m1−α−ε amortized query
time4, for any 0 ≤ α ≤ 1. This matches the upper bound of [CPR11] when we set α = 2/3.

For hardness in terms of n, Pǎtraşcu [Pat10] showed that, assuming the hardness of his
multiphase problem, there is no algorithm with nδ−ε worst-case update time and query time,
for some constant 0 < δ ≤ 1. By assuming the combinatorial BMM conjecture, Abboud and

3This update time is achieved by using O(n) updates for dynamic connectivity data structure under edge
updates by [KKM13]. The query time needs only O(1) time because this data structure internally maintains
a spanning forest, so we can label vertices in each component in the spanning forest in time O(n) after each
update.

4We note the following detail: The 3SUM-hardness result of Abboud and Vassilevska Williams holds when
m ≤ n1.5 and our hardness result holds when m ≤ min{n1/α, n1/(1−α)}
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Vassilevska Williams [AVW14] could rule out combinatorial algorithms with n1−ε amortized
update time, and n2−ε query time. These two bounds cannot rule out some improvement
over [KKM13], e.g., a non-combinatorial algorithm with n1−ε amortized update time, and
O(1) amortized query time. In this paper, we show that the OMv conjecture can rule out
any algorithm with polynomial preprocessing time, n1−ε amortized update time and n2−ε

amortized query time. Thus, there is no algorithm that can improve the upper bound of
[KKM13] without significantly increasing the query time.

Decremental Shortest Paths. In the decremental single-source shortest paths problem,
we are given an unweighted undirected graph G and a source node s. Performing an update
means to delete an edge from the graph. A query will ask for the distance from s to some
node v. The best exact algorithm for this problem is due to the classic result of Even
and Shiloach [ES81] and requires O(m) preprocessing time, O(mn) total update time, and
O(1) query time. Very recently, Henzinger, Krinninger, and Nanongkai [HKN14a] showed a
(1+ε)-approximation algorithm with O(m1+o(1)) preprocessing time, O(m1+o(1)) total update
time, and O(1) query time. Roditty and Zwick [RZ11] showed that the combinatorial BMM
conjecture implies that there is no combinatorial exact algorithm with mn1−ε preprocessing
time and mn1−ε total update time if we need Õ(1) query time. This leaves the open problem
whether we can develop a faster exact algorithm for this problem using algebraic techniques
(e.g., by adapting Sankowski’s techniques [San04, San05a, San05b]). Our OMv conjecture
implies that this is not possible: there is no exact algorithm with polynomial preprocessing
and mn1−ε total update time if we need Õ(1) query time.

For the decremental all-pairs shortest paths problem on undirected graphs, (1 + ε)-
approximation algorithms with Õ(mn) total update time are also known in both unweighted
and weighted cases [RZ12, Ber13]. For combinatorial algorithms, this is tight even in the static
setting under the combinatorial BMM conjecture [DHZ00]. Since fast matrix multiplication
can be used to break this bound in the static setting when the graph is dense, the question
whether we can do the same in the dynamic setting was raised by Bernstein [Ber13]. In this
paper, we show that this is impossible under the OMv conjecture. (Our hardness result holds
for any algorithm with approximation ratio less than two.)

Pagh’s Problem. In this problem, we want to maintain a family X of at most k sets
{Xi}1≤i≤k over [n]. An update is by adding the set Xi∩Xj to X. We have to answer a query
of the form “Does element j belong to set Xi?”. A trivial solution to this problem requires
O(kn) preprocessing time, O(n) worst-case update time and O(1) worst-case query time.
Previously, Abboud and Williams [AVW14] showed that, assuming the combinatorial BMM
conjecture, for any n ≤ k ≤ n2 there is no combinatorial algorithm with k3/2−ε preprocessing
time, k1/2−ε amortized update time, and k1/2−ε amortized query time. They also obtained
hardness for non-combinatorial algorithms but the bounds are weaker. Our OMv conjecture
implies that for any k = poly(n) there is no algorithm with poly(k, n) preprocessing time,
n1−ε update time, and k1−ε query time, matching the trivial upper bound. Note that our
hardness holds against all algorithms, including non-combinatorial algorithms. Also note
that while the previous proof in [AVW14] is rather complicated (it needs, e.g., a universal
hash function), our proof is almost trivial.
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Fully Dynamic Weighted Diameter Approximation. In this problem, we are give
a weighted undirected graph. An update operation adds or deletes a weighted edge. The
query asks for the diameter of the graph. For the unweighted case, Abboud and Vassilevska
Williams [AVW14] showed that the Strong Exponential Time Hypothesis (SETH) rules out
any (4/3 − ε)-approximation algorithm with polynomial preprocessing time, n2−ε update
and query time. Nothing was known for the weighted setting. In this paper, we show that
for the weighted case, OMv rules out any (2− ε)-approximation algorithm with polynomial
preprocessing time, n1/2−ε update time and n1−ε query time. This result is among a few
that require a rather non-trivial proof.

1.2 Discussions

OMv vs. Combinatorial BMM. The combinatorial BMM conjecture states that there
is no truly subcubic combinatorial algorithm for multiplying two n× n Boolean matrices.
There are two important points to discuss here. First, it can be easily observed that any
reduction from the OMv problem can be turned into a reduction from the combinatorial
BMM problem since, although we get two matrices at once in the BMM problem, we can
always pretend that we see one column of the second matrix at a time (this is the OMv
problem). This means that bounds obtained via the OMv conjecture will never be stronger
than bounds obtained via the combinatorial BMM conjecture. However, the latter bounds
will hold only for combinatorial algorithms, leaving the possibility of an improvement via
an algebraic algorithm. This possibility cannot be overlooked since there are examples
where an algebraic algorithm can break through the combinatorial hardness obtained by
assuming the combinatorial BMM conjecture. For example, it was shown in [AVW14] that
the combinatorial BMM conjecture implies that there is no combinatorial algorithm with
n3−ε preprocessing time, n2−ε update time, and n2−ε query time for the fully dynamic s-t
reachability and bipartite perfect matching problems. However, we can break these bounds
using Sankowski’s algebraic algorithm [San04, San07] which requires nω preprocessing time,
n1.449 worst-case update time, and O(1) worst case query time, where ω is the exponent of
the best known matrix multiplication algorithm (currently, ω < 2.3728639 [Gal14]).5

Second, it can be argued that the combinatorial BMM conjecture actually implies the OMv
conjecture, if the term “combinatorial algorithm” is interpreted in a certain way. Note that
while this term has been used very often (e.g., [DHZ00, VWW10, AVW14, RT13, HKN13]), it
is not a well-defined term. Usually it is vaguely used to refer as an algorithm that is different
from the “algebraic” approach originated by Strassen [Str69]; see, e.g., [BVW08, BW12,
BKM95]. One formal way to interpret this term is by using the term “Strassen-like algorithm”,
as defined by Ballard et al. [BDH+12]. Roughly speaking, a Strassen-like algorithm divides
both matrices into constant-size blocks and utilizes an algorithm for multiplying two blocks
in order to recursively multiply matrices of arbitrary size (see [BDH+12, Section 5.1] for
a detailed definition6). As pointed out in [BDH+12], this is the structure of all the fast

5Furthermore, the exponent 1.449 is the result of balancing the terms n1+ε and nω(1,ε,1)−ε, where ω(1, ε, 1)
is the exponent of the best known algorithm [Gal12] for multiplying an n× nε matrix with an nε × n matrix.
The value 1.449 is obtained by a linear interpolation of the values of ω(1, ε, 1) reported in [Gal12], which
upperbounds ω(1, ε, 1).

6Note that Ballard et al. also need to include a technical assumption in the Strassen-like algorithms that
they consider to prove their results (see [BDH+12, Section 5.1.1]). This assumption is irrelevant to us.
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matrix multiplication algorithms that were obtained since Strassen’s, including the recent
breakthroughs by Stothers [Sto10] and Vassilevska Williams [VW12]. Since OMv reveals one
column of the second matrix at a time, it naturally disallows an algorithm to utilize block
multiplications, and thus Strassen-like algorithms cannot be used to solve OMv.

We note that the OMv problem actually excludes even some combinatorial BMM algo-
rithms; e.g., the O(n3(log logn)2/ log2.25 n)-time algorithm of Bansal and Williams [BW12]
cannot be used to solve OMv. Finally, even if one wants to interpret the term “combinatorial
algorithm” differently and argue that the combinatorial BMM conjecture does not imply the
OMv conjecture, we believe that breaking the OMv conjecture will still be a breakthrough
since it will yield a fast matrix multiplication algorithm that is substantially different from
those using Strassen’s approach.

OMv vs. Multiphase. Pǎtraşcu [Pat10] introduced a dynamic version of set disjointness
called multiphase problem, which can be rephrased as a variation of the Matrix-Vector
multiplication problem as follows (see [Pat10] for the original definition). Let k, n, and τ
be some parameters. First, we are given a k × n Boolean matrix M and have O(nk · τ)
time to preprocess M . Second, we are given an n-dimensional vector v and have O(n · τ)
additional computation time. Finally, we are given an integer 1 ≤ i ≤ n and must output
(Mv)[i] in O(τ) time. Pǎtraşcu conjectured that if there are constants γ > 0 and δ > 0
such that k = nγ , then any solution to the multiphase problem in the Word RAM model
requires τ = nδ, and used this conjecture to prove polynomial time hardness for several
dynamic problems. How strong these hardness bounds are depends on how hard one believes
the multiphase problem to be. By a trivial reduction, the OMv conjecture implies that
the multiphase conjecture holds with δ = 1 when γ = 1. (We found it quite surprising
that viewing the multiphase problem as a matrix problem, instead of a set problem as
originally stated, can give an intuitive explanation for a possible value of δ.) This implies
the strongest bound possible for the multiphase problem. Moreover, while hardness based
on the multiphase problem can only hold for a worst-case time bound, it can be shown
that under a general condition we can make them hold for an amortized time bound too if
we instead assume the OMv conjecture (see Section 5.1 for details). Thus, with the OMv
conjecture it seems that we do not need the multiphase conjecture anymore. Note that, as
argued before, we can also conclude that the combinatorial BMM conjecture implies the
multiphase conjecture. To the best of our knowledge this is the first connection between
these conjectures.

OMv vs. 3SUM and SETH. As mentioned earlier, all previous hardness results that were
based on the 3SUM conjecture can be strengthened through the OMv conjecture. However,
we do not have a general mechanism that can always convert any hardness proof based on
3SUM into a proof based on OMv. Finding such a mechanism would be interesting.

Techniques for proving hardness for dynamic algorithms based on SETH were very
recently introduced in [AVW14]. Results from these techniques are the only ones that cannot
be obtained through OMv. SETH together with OMv seems to be enough to prove all the
hardness results known to date. It would be very interesting if the number of conjectures
one has to start with can be reduced to one.
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Remark On the Notion of Amortization. We emphasize that there are two different
ways to define the notion of amortized update time. First, we can define it as an amortized
update time when we start from an empty graph; equivalently, the update time has to be
amortized over all edges that ever appear. The second way is to allow the algorithm to
preprocess an arbitrary input graph and amortize the update time over all updates (not
counting the edges in the initial graph as updates); for example, one can start from a
graph with n2 edges and have only n updates. The first definition is more common in the
analysis of dynamic algorithms but it is harder to prove hardness results for it. Our hardness
results hold for this type of amortization; in fact, they hold even when there is a large
(polynomial) number of updates. Many previous hardness results hold only for the second
type of amortization, e.g., the results in [AVW14] that are not based on SETH and 3SUM.

1.3 Notation

All matrices and vectors in this paper are Boolean and Õ(·) hides logarithmic factors in O(·).
We will also use the following non-standard notation.

Definition 1.2 (˜̃o Notation). For any parameters n1, n2, n3, we say that a function f(n1, n2, n3) =
˜̃o(nc1

1 n
c2
2 n

c3
3 ) iff there exists some constant ε > 0 such that f = O(nc1−ε

1 nc2
2 n

c3
3 +nc1

1 n
c2−ε
2 nc3

3 +
nc1

1 n
c2
2 n

c3−ε
3 ). We use the analogous definition for functions with one or two parameters.

1.4 Organization

Instead of starting from OMv, our reductions will start from an intermediate problem called
OuMv. We describe this and prove necessary results in Section 2. In Section 3 we prove
hardness results for the amortized update time of fully dynamic algorithms and the worst-
case update time of partially dynamic algorithms. In Section 4 we prove hardness results
for the total update time of partially dynamic problems. In Section 5 we provide further
discussions.

2 Intermediate Problems

In this section we show that the OMv conjecture implies that OMv is hard even when there
is a polynomial preprocessing time and different dimension parameters (Section 2.1). Then
in Section 2.2, we present the problem whose hardness can be proved assuming the OMv
conjecture, namely the online vector-matrix-vector multiplication (OuMv) problem, which is
the key starting points for our reductions in later sections.

2.1 OMv with Polynomial Preprocessing Time and Arbitrary Dimensions

We first define a more general version of the OMv problem: (1) we allow the algorithm to
preprocess the matrix before the vectors arrive and (2) we allow the matrix to have arbitrary
dimensions with a promise that the size of minimum dimension is not too “small” compared
to the size of maximum dimension.

Definition 2.1 (γ-OMv). Let γ > 0 be a fixed constant. An algorithm for the γ-OMv problem
is given parameters n1, n2, n3 as input with a promise that n1 = bnγ2c. Next, it is given a
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Name and short name Input Update Query

Subgraph
Connectivity

st-
SubConn

A fixed undirected graph
G, and a subset S of its
vertices

Insert/remove a node
into/from S

Are s and t connected in
G[S] the subgraph induced

by S?
ss-

SubConn
For any v, are s and v
connected in G[S] the

subgraph induced by S?
ap-

SubConn
For any u, v, are u and v
connected in G[S] the

subgraph induced by S?

Reachability
st-Reach

A directed graph Edge
insertions/deletions

Is t reachable from s?
ss-Reach For any v, is v reachable

from s?
ap-Reach
(Transitive
Closure or

TC)

For any u, v, is v reachable
from u?

Shortest Path
(undirected)

st-SP An undirected unweighted
graph

Edge
insertions/deletions

Find the distance d(s, t).
ss-SP Find the distance d(s, v),

for any v.
ap-SP Find the distance d(u, v),

for any u, v.
Triangle Detection An undirected graph Edge

insertions/deletions
Is there a triangle in the

graph?
s-Triangle Detection Is there a triangle

containing s in the graph?

Table 1: Definitions of dynamic graph problems (1)

Name Input Update Query
Densest
Subgraph An undirected graph Edge insertions/deletions What is the density |E(S)|/|S|

of the densest subgraph S?
d-failure

connectivity
[DP10]

A fixed undirected graph
Roll back to original graph.
Then remove any d vertices

from the graph.
Is s connected to t, for any given

(s, t)?
Vertex color

distance oracle
[Che12,
LOP+15]

A fixed undirected graph Change the color of any
vertex Given s and color c, find the

shortest distance from s to any
c-colored vertex.

Diameter An undirected graph Edge insertions/deletions Find the diameter of the graph.
Strong

Connectivity A directed graph Edge insertions/deletions Is the graph strongly connected?

Table 2: Definitions of dynamic graph problems (2)
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Name Input Update Query
Pagh’s Problem A family X of sets

X1, X2, . . . , Xk ⊆ [n]
Given i, j, insert Xi ∩Xj

into X
Given index i and j ∈ [n], is

j ∈ Xi?
Langerman’s

Zero Prefix Sum An array A[1 . . . n] of
integers

Set A[i] = x for any i and
x

Is there a k s.t.
∑k

i=1 A[i] = 0?

Erickson’s
Problem A matrix of integers of size

n× n
Increment all values in a
specified row or column

Find the maximum value in the
matrix

Table 3: Definitions of dynamic non-graph problems

matrix M of size n1 × n2 that can be preprocessed. Let p(n1, n2) denote the preprocessing
time. After the preprocessing, an online sequence of vectors v1, . . . , vn3 is presented one after
the other and the task is to compute each Mvt before vt+1 arrives. Let c(n1, n2, n3) denote
the computation time over the whole sequence.

Note that the γ-OMv problem can be trivially solved with O(n1n2n3) total computing
time and without preprocessing time. Obviously, the OMv conjecture implies that this
running time is (almost) tight when n1 = n2 = n3 = n. Interestingly, it also implies that
this running time is tight for other values of n1, n2, and n3:

Theorem 2.2. For any constant γ > 0, Conjecture 1.1 implies that there is no algorithm
for γ-OMv with parameters n1, n2, n3 using preprocessing time p(n1, n2) = poly(n1, n2) and
computation time c(n1, n2, n3) = ˜̃o(n1n2n3) that has an error probability of at most 1/3.

The rest of this section is devoted to proving the above theorem. The proof proceeds in
two steps. First, we show that, assuming Conjecture 1.1, there is no algorithm for γ-OMv
when the preprocessing time is (n1n2)1+ε for any constant ε < 1/2 and the computation
time is ˜̃o(n1n2n3).

Lemma 2.3. For any constant γ > 0 and integer n, fix any n1, n2 where n1 = nγ2 ,
max{n1, n2} = n and n3 = n.7 Suppose there is an algorithm A for γ-OMv with parameters
n1, n2, n3 using preprocessing time p(n1, n2) and computation time c(n1, n2, n3) that has an
error probability of at most δ. Then there is an algorithm B for OMv with parameter n using
(no preprocessing time and) computation time Õ( n2

n1n2
p(n1, n2) + n2

n1n2
c(n1, n2, n) + n3

n2
) that

has an error probability of at most δ.

Proof. We will construct B by using A as a subroutine. We partition M into blocks
{Mx,y}1≤x≤n/n1,1≤y≤n/n2 where Mx,y is of size n1 × n2.8 We feed Mx,y to an instance Ix,y
of A and preprocess using n2

n1n2
p(n1, n2) time. For each vector vt, we partition it into blocks

{vty}1≤y≤n/n2 each of size n2. For each x, y, we compute Mx,yv
t
y using the instance Ix,y for

all t ≤ n. The total time for computing Mx,yv
t
y, for all x, y, t, is n2

n1n2
c(n1, n2, n). We keep

the error probability to remain at most δ by a standard application of the Chernoff bound:
7 Actually, we need n1 = bnγ2c but from now we will always omit it and assume that nγ2 is an integer. This

affects the running time of the statement by at most a constant factor.
8 Here we assume that n1 and n2 divides n and we will similarly assume this whenever we divide a matrix

into a blocks. This assumption can be removed easily: for each “boundary” blocks Mx,y where x = dn/n1e or
y = dn/n2e, we keep the size Mx,y to be n1 × n2 but it may overlap with other block. This will affect the
running time by at most a constant factor.
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repeat the above procedure for computing Mx,yv
t
y, for each x, y, t, O(log(n1n2n3)) many

times and take the most frequent answer.
Let ct = Mvt. We write ct as blocks {ctx}1≤x≤n/n1 each of size n1. Since ctx =

∨
yMx,yv

t
y

(bit-wise OR) for each x, t, we can compute ctx in time n
n2
n1 for each x, t (there are n

n2
many y’s and Mx,yv

t
y is a vector of size n1). The total time for this, over all x, t, is

n
n1
n× n

n2
n1 = n3

n2
.

Corollary 2.4. For any constants γ > 0 and ε < 1/2, Conjecture 1.1 implies that there
is no algorithm for γ-OMv with parameters n1, n2, n3 using preprocessing time p(n1, n2) ≤
(n1n2)1+ε and computation time c(n1, n2, n3) = ˜̃o(n1n2n3) that has an error probability of at
most 1/3.

Proof. Suppose there is such an algorithm. Then by Lemma 2.3, we can solve OMv with
parameter n in time Õ( n2

n1n2
p(n1, n2) + n2

n1n2
c(n1, n2, n) + n3

n2
) with error probability at

most 1/3 where n1 = nγ2 and max{n1, n2} = n. We have n2

n1n2
p(n1, n2) ≤ n2(n1n2)ε ≤

n2+2ε = ˜̃o(n3), and n2

n1n2
c(n1, n2, n) + n3

n2
= ˜̃o(n3) where the last equality holds because

n1, n2 ≥ min{nγ , n1/γ}. The total time is ˜̃o(n3) and the error probability is at most 1/3
contradicting Conjecture 1.1.

For the second step, we show that the hardness of γ-OMv even when the preprocessing
time is p(n1, n2) = poly(n1, n2).

Lemma 2.5. For any constant γ > 0 and integers n1, n2, n3 where n1 = nγ2 , fix any k1, k2
where k1 ≤ n1, k2 ≤ n2, and k1 = kγ2 . Suppose there is an algorithm A for γ-OMv with
parameters k1, k2, n3, preprocessing time p(k1, k2) and computation time c(k1, k2, n3) that has
an error probability of at most δ. Then there is an algorithm B for γ-OMv with parameters
n1, n2, n3, preprocessing time Õ(n1n2

k1k2
p(k1, k2)) and computation time Õ(n1n2

k1k2
c(k1, k2, n3) +

n1n2n3
k2

) that has an error probability of at most δ.

Proof. We will construct B by using A as a subroutine. We partition M into blocks
{Mx,y}1≤x≤n1/k1,1≤y≤n2/k2 where Mx,y is of size k1 × k2. We feed Mx,y to an instance Ix,y
of A and then preprocess. This takes n1n2

k1k2
p(k1, k2) total preprocessing time.

Once the vector vt arrives, we partition it into blocks {vty}1≤y≤n2/k2 each of size k2. For
each x, y, we compute Mx,yv

t
y using the instance Ix,y. The total computation time, over all t,

for doing this will be n1n2
k1k2

c(k1, k2, n3). By repeating the procedure for a logarithmic number
of times as in Lemma 2.3, the error probability remains at most δ.

Let ct = Mvt. We write ct as blocks {ctx}1≤x≤n1/k1 each of size k1. Since ctx =
∨
yMx,yv

t
y

for each x, t, we can compute ctx in time n2
k2
k1 for each x, t. The total time for this, over all

x, t, is n1
k1
n3 × n2

k2
k1 = n1n2n3

k2
.

We conclude the proof of Theorem 2.2.

Proof of Theorem 2.2. We construct an algorithm B for γ-OMv with parameters n1, n2, n3
that contradicts Conjecture 1.1 by using an algorithm A from the statement of Theorem 2.2 as
a subroutine. That is, A is an algorithm for γ-OMv with parameters k1, k2, k3, preprocessing
time (k1k2)c for some constant c, and computation time ˜̃o(k1k2k3) with error probability
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1/3. Let ε < min{1/2, c} be a constant. We choose k1, k2 such that k1 = n
ε/c
1 , k2 = n

ε/c
2 and

k3 = n3.
Note that k1 ≤ n1, k2 ≤ n2 and k1 = kγ2 . So we can apply Lemma 2.5 and get B

which has error probability 1/3 and, ignoring polylogarithmic factors, uses preprocessing
time n1n2

k1k2
p(k1, k2) ≤ n1n2 · p(k1, k2) ≤ (n1n2)1+ε and computation time n1n2

k1k2
c(k1, k2, n3) +

n1n2n3
k2

= n1n2
n
ε/c
1 n

ε/c
2

˜̃o(nε/c1 n
ε/c
2 n3) + n1n2n3

n
ε/c
2

= ˜̃o(n1n2n3). This contradicts Conjecture 1.1 by
Corollary 2.4.

2.2 The Online Vector-Matrix-Vector Multiplication Problem (OuMv)
Although we base our results on the hardness of OMv, the starting point of most of our
reductions is a slightly different problem called online vector-matrix-vector multiplication
problem. In this problem, we multiply the matrix with two vectors, one from the left and
one from the right.

Definition 2.6 (γ-OuMv problem). Let γ > 0 be a fixed constant. An algorithm for the
γ-OuMv problem is given parameters n1, n2, n3 as its input with the promise that n1 =
bnγ2c. Next, it is given a matrix M of size n1 × n2 that can be preprocessed. Let p(n1, n2)
denote the preprocessing time. After the preprocessing, an online sequence of vector pairs
(u1, v1), . . . , (un3 , vn3) is presented one after the other and the task is to compute each
(ut)>Mvt before (ut+1, vt+1) arrives. Let c(n1, n2, n3) denote the computation time over the
whole sequence. The γ-uMv problem with parameters n1, n2 is the special case of γ-OuMv
where n3 = 1.

We also write OuMv and uMv to refer to, respectively, γ-OuMv and γ-uMv without
the promise. Our reductions will exploit the fact that the result of this multiplication is
either 0 or 1; thus using only 1 bit as opposed to n bits in OMv. Starting from OuMv
instead of OMv will thus give simpler reductions and better lower bounds on the query time.
Using a technique for finding “witnesses”, which will be defined below, when the result of a
vector-matrix-vector multiplication is 1, we can reduce the γ-OMv problem to the γ-OuMv
problem and establish the following hardness for γ-OuMv.

Theorem 2.7. For any constant γ > 0, Conjecture 1.1 implies that there is no algorithm
for γ-OuMv with parameters n1, n2, n3 using preprocessing time p(n1, n2) = poly(n1, n2) and
computation time c(n1, n2, n3) = ˜̃o(n1n2n3) that has an error probability of at most 1/3.

An γ-uMv algorithm with preprocessing time p(n1, n2) and computation time c(n1, n2)
implies an γ-OuMv algorithm with preprocessing time Õ(p(n1, n2)), computation time
Õ(n3c(n1, n2)) and the same error probability by a standard application of the Chernoff
bound as in the proof of Lemma 2.3. Therefore, we also get the following:

Corollary 2.8. For any constant γ > 0, Conjecture 1.1 implies that there is no algorithm
for γ-uMv with parameters n1, n2 using preprocessing time p(n1, n2) = poly(n1, n2) and
computation time c(n1, n2) = ˜̃o(n1n2) that has an error probability of at most 1/3.

The rest of this section is devoted to the proof of Theorem 2.7.
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Definition 2.9 (Witness of OuMv). We say that any index i is a witness for a pair of
vectors (ut, vt) in an instance I of OuMv if uti ∧ (Mvt)i = 1, i.e., the i-th entries of vectors
ut and Mvt are both one.

Observe that (ut)>Mvt = 1 if and only if there is a witness for (ut, vt). The problem
of listing all the witnesses of γ-OuMv is defined similarly as γ-OuMv except that for each
vector pair (ut, vt), we have to list all witnesses of (ut, vt) (i.e., output every index i such
that i is a witness) before (ut+1, vt+1) arrives. We first show a reduction from the problem
of listing all the witnesses of γ-OuMv to the γ-OuMv problem itself. The reduction is similar
to [VWW10, Lemma 3.2].

Lemma 2.10. Fix any constant γ > 0 and integers n1, n2 and n3. Suppose there is
an algorithm A for γ-OuMv with parameters n1, n2, n3 preprocessing time p(n1, n2) and
computation time c(n1, n2, n3) that has an error probability of at most δ. Then there is an
algorithm B for listing all witnesses of γ-OuMv with the same parameters using preprocessing
time Õ(p(n1, n2)) and computation time Õ((1 +

∑
t Õ(wt)/n3) · c(n1, n2, n3)) that has an

error probability of at most δ, where wt is the number of witnesses of (ut, vt).

Proof. We will show a reduction for deterministic algorithms. This reduction can be extended
to work for randomized algorithms as well by a standard application of the Chernoff bound
as in the proof of Lemma 2.3. We construct B using A as a subroutine. Let M be the input
matrix of B. We use A to preprocess M .

For any vector pair (u, v), we say the “query (u, v)” to A returns true if, by using A,
we get u>Mv = 1. For any a set of indices I of entries of u, let uI be the n1-dimensional
vector where (uI)i = (u)i for all i ∈ I and (uI)i = 0 otherwise. Suppose that I contains w
many witnesses of (u, v). We now describe a method to identify all witnesses of (u, v) in I
using 1 +O(w logn1) queries. Note that the witnesses of (u, v) contained in I are exactly
the witnesses of (uI , v). We check if w = 0 by querying (uI , v) one time. If w > 0, then we
identify an arbitrary witness of (uI , v) one by one using binary search. More precisely, if I is
of size one, then return the only index i ∈ I which must be a witness. Otherwise, let I0 ⊂ I
be a set of size b|I|/2c. If the query (uI0 , v) return true, then recurse on I0. Otherwise,
recurse on I \ I0. This takes O(logn1) queries because |I| ≤ n1. Once we find a witness
i ∈ I, we do the same procedure on I \ {i} until we find all w witnesses. Therefore, the total
number of queries for finding w many witnesses of (u, v) in I is 1 +O(w logn1).

Once (ut, vt) arrives, we list all witnesses of (ut, vt) using 1 +O(wt logn1) queries by the
above procedure where I = [n1]. The total number of queries is n3 +

∑
t Õ(wt). However,

A is an algorithm for γ-OuMv with parameters n1, n2, n3. So once there are n3 queries
to A, we need to roll back A to the state right after preprocessing. Hence, we need to
roll back n3+

∑
t
Õ(wt)

n3
= 1 +

∑
t Õ(wt)/n3 times. Therefore, the total computation time is

(1 +
∑
t Õ(wt)/n3)c(n1, n2, n3).

Next, using Lemma 2.10, we can show the reduction from γ-OMv to γ-OuMv.

Lemma 2.11. For any constant γ > 0 and integers n1, n2, n3 where n1 = nγ2 , fix k1, k2
and k3 such that k1k2 = n2, k1 = kγ2 and k3 = n3. Suppose there is an algorithm A for
γ-OuMv with parameters k1, k2, k3 and preprocessing time p(k1, k2) and computation time
c(k1, k2, k3) that has an error probability of at most δ. Then there is an algorithm B for

15



γ-OMv with parameters n1, n2, n3 using preprocessing time Õ(n1 · p(k1, k2)) and computation
time Õ(n1 · c(k1, k2, n3)) that has an error probability of at most δ.

Proof. Again, we show a reduction for deterministic algorithms. This can be extended to
work for randomized algorithms by a standard application of the Chernoff bound as in
the proof of Lemma 2.3. By plugging A into Lemma 2.10, we have an algorithm A′ for
listing all witnesses of γ-OuMv with parameters k1, k2, k3. We will formulate B using A′ as
a subroutine.

Let M be an input matrix M of B of size n1 × n2, we partition M into blocks
{Mx,y}1≤x≤n1/k1,1≤y≤n2/k2 each of size k1 × k2. For each x and y, let Ix,y be an in-
stance of A′ and we feed Mx,y into Ix,y to preprocess. The total preprocessing time is
n1n2
k1k2
· p(k1, k2) = n1 · p(k1, k2).

In the γ-OMv problem, for any t ≤ n3, once vt arrives, we need to compute bt = Mvt

before vt+1 arrives. To do so, we first partition vt into blocks {vty}1≤y≤n2/k2 each of size k2.
We write bt = {btx}1≤x≤n1/k1 as blocks each of size k1. Note that btx =

∨
yMx,yv

t
y (
∨

means
bit-wise OR).

To compute btx, the procedure iterates over all values for y from 1 to n2/k2. When y = 1,
we set utx,1 to be the all-ones vector. Let Wx,y,t be the set of witnesses (utx, vty). We feed
(utx,y, vty) to the instance Ix,y for listing the witnesses Wx,y,t. For all i ∈Wx,y,t, we now know
that (btx)i = 1. To find other indices i such that (btx)i = 1, we set utx,y+1 to be same as utx,y
except that (utx,y+1)i = 0 for all found witnesses i ∈Wx,y,t. Then we proceed with y ← y+ 1.
We repeat this until y = n2/k2. Then btx is completely computed. Once this procedure is
done for all x, bt is completely computed. We repeat until t = n3, and we are done.

Now, we denote wx,y =
∑
t |Wx,y,t|. By Lemma 2.10 the computation time of the instance

Ix,y is n3+Õ(wxy)
n3

c(k1, k2, n3). Summing over all x, y, we have a total running time of

∑
1≤x≤n1

k1
,1≤y≤n2

k2

n3 + Õ(wxy)
n3

c(k1, k2, n3) .

To conclude that the computation time is Õ(n1 · c(k1, k2, n3)), it is enough to show that∑
x,y wx,y ≤ n1n3. Note that for a fixed t, the witness sets Wx,y,t are disjoint for different

x and y as we set the entries in the ‘u’-vectors to 0 for witnesses that we already found.
Furthermore for every i ∈

⋃
yWx,y,t, we have (btx)i = 1. As the number of 1-entries of bt is at

most n1, we have
∑
x,y |Wx,y,t| ≤ n1. So

∑
x,y,t |Wx,y,t| ≤ n1n3. Hence

∑
x,y wx,y ≤ n1n3.

Now we are ready to prove the main theorem.

Proof of Theorem 2.7. We will construct an algorithm B for γ-OMv with parameters n1, n2, n3
that contradicts Conjecture 1.1 by using an algorithm A for γ-OuMv from the statement
of Theorem 2.7 as a subroutine. That is, A is an algorithm for γ-OuMv with param-
eters k1, k2, k3 using preprocessing time p(k1, k2) = poly(k1, k1) and computation time
c(k1, k2, k3) = ˜̃o(k1k2k3) that has an error probability of at most 1/3. We choose k1, k2 such
that k1k2 = n2, k1 = kγ2 and k3 = n3.

By Lemma 2.11, ignoring polylogarithmic factors, B has error probability 1/3 and uses
preprocessing time poly(n1, n2) and computation time n1 · c(k1, k2, n3) = n1 ˜̃o(k1k2n3) =
˜̃o(n1n2n3) which contradicts Conjecture 1.1 by Theorem 2.2.
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2.2.1 Interpreting OuMv as Graph Problems and a satisfiability problem

In this section, we show that OuMv can be viewed as graph problems and satisfiability problem,
namely edge query, independent set query and 2-CNF query, as stated in Theorem 2.12. This
section is independent from the rest and will not be used later. The edge query problem,
however, can be helpful when one wants to show a reduction from OuMv to graph problems.
For example, it is implicit in the reduction from OuMv to the subgraph connectivity problem.
Moreover, the independent set query problem was shown to have an O(n2n′/ log2 n) time
algorithm by Williams [Wil07] using his OMv algorithm. The 2-CNF query problem was
shown to be equivalent to the independent set query problem in [BW12]. So it is interesting
that these problem are equivalent to OuMv and thus cannot be solved much faster (i.e., in
˜̃o(n2n′) time) assuming the OMv conjecture.

Theorem 2.12. For any integers n and n′, consider the following problems.

• OuMv with parameters n1, n2 = Θ(n) and n3 = n′, preprocessing time p(n1, n2) and
computation time c(n1, n2, n3).

• Independent set (respectively vertex cover) query [BW12]: preprocess a graph G = (V,E),
when |V | = n, in time pind(n). Then given a sequence of sets S1, . . . , Sn

′ ⊆ V , decide
if St is an independent set (respectively a vertex cover) before St+1 arrives in total
time cind(n, n′).

• 2-CNF query [BW12]: preprocess a 2-CNF F on n variables in time pcnf (n). Then
given a sequence of assignments X1, . . . , Xn′ , decide if F (Xt) = 1 before Xt+1 arrives
in total time ccnf (n, n′).

• Edge query: preprocess a graph G = (V,E), when |V | = n, in time pedge(n). Then
given a sequence of set pairs (S1, T 1), . . . , (Sn′ , Tn′), decide if there is an edge (a, b) ∈
E(St, T t), before St+1 arrives in total time cedge(n, n′).

We have that p(n1, n2) = Θ(pind(n)) = Θ(pcnf (n)) = Θ(pedge(n)) and c(n1, n2, n3) =
Θ(cind(n, n′)) = Θ(ccnf (n, n′)) = Θ(cedge(n, n′)).

Another observation that might be useful in proving OMv hardness results is the following.

Theorem 2.13. In the OuMv problem, we can assume that the matrix M is symmetric, and
each vector pair (ut, vt) is such that either ut = vt or the supports of ut and vt are disjoint
(i.e., the inner product between ut and vt is 0).

The rest of this section is devoted to proving the above theorems. First, we need this
fact.

Proposition 2.14. Consider a Boolean matrix M ∈ {0, 1}n1×n2 and Boolean vectors u ∈
{0, 1}n1 and v ∈ {0, 1}n2. Let M ′ =

[
0 M
MT 0

]
, w = [ uv ], x = [ u0 ] and y = [ 0

v ] where
w, x, y ∈ {0, 1}n1+n2. Then u>Mv = w>M ′w = x>M ′y.

Proof. It is easy to verify that w>M ′w = w>
[
Mv
MTu

]
= (u>Mv) ∨ (v>M>u) = u>Mv.

Similarly, x>M ′y = x>
[
Mv

0
]

= u>Mv.
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Theorem 2.13 follows immediately from Proposition 2.14. Now we prove Theorem 2.12.

Proof of Theorem 2.12. Let AOMv,Aind and Aedge be the algorithms for OMv, independent
set query and edge query respectively.

(OuMv⇒ independent set query) Given an input graph G = (V,E) of Aind , preprocess
the adjacency matrix M of G using AOMv. Once St arrives, let vt be the indicator vector of
St (i.e., for all i ∈ V , (vt)i = 1 if i ∈ St, otherwise (vt)i = 0). Observe that (vt)>Mvt = 0 iff
St is independent. So we can use AOMv to answer the query of Aind .

(OuMv⇒ edge query) Given an input graph G of Aedge, preprocess the adjacency matrix
M of G using AOMv. Once (St, T t) arrives, let ut and vt be the indicator vectors of St and
T t respectively. Observe that (ut)>Mvt = 1 iff there is an edge (a, b) ∈ E(St, T t). So we
can use AOMv to answer the query of Aedge.

(independent set query ⇒ OuMv) Given an input matrix M of AOMv, let G the graph
defined by the adjacency matrix M ′ =

[
0 M
MT 0

]
. We preprocess G using Aind . Once (ut, vt)

arrives, let St be the set indicated by w =
[
ut

vt

]
(i.e., i ∈ St iff wi=1). We have that St is

independent iff (ut)>Mvt = w>M ′w = 0 by Proposition 2.14. So we can use Aind to answer
the query of AOMv.

(edge query ⇒ OuMv) Given an input matrix M of AOMv, let G be the graph defined by
the adjacency matrix M ′ =

[
0 M
MT 0

]
. We preprocess G using Aedge. Once (ut, vt) arrives,

let St, T t be the sets indicated by x =
[
ut
0
]
and y =

[ 0
vt
]
. There is an edge (a, b) ∈ E(St, T t)

iff (ut)>Mvt = x>M ′y = 1 by Proposition 2.14. So we can use Aedge to answer the query of
AOMv.

(independent set query ⇔ 2-CNF query) See [BW12, Section 2.3].

Note that we can use an OMv algorithm to solve the dominating set query problem,
defined in a similar way as independent set query problem. Indeed, let M be the adjacency
matrix of G, and v be an indicator vector of S. We have that Mv ∨ v (bit-wise OR) is the
all-one vector iff S is a dominating set. However, it is not clear if the reverse reduction
exists.

3 Hardness for Amortized Fully Dynamic and Worst-case
Partially Dynamic Problems

In this section, we give reductions from our intermediate problems to various dynamic
problems. In Section 3.1, we give conditional lower bounds for those graph problems whose
algorithms cannot have the update time u(m) = ˜̃o(

√
m) and the query time q(m) = ˜̃o(m)

simultaneously. In Section 3.2, we give the bounds for those problems that cannot have
the update time u(m) = ˜̃o(m1−δ) and the query time q(m) = ˜̃o(mδ) simultaneously, for any
constant 0 < δ < 1. In Sections 3.3 and 3.4, we give the lower bounds for the remaining
graph and non-graph problems, whose lower bound parameters of update/query time are in
a different form (see Figure 2). We devote Sections 3.5 and 3.6 to proving the lower bounds
for approximating the diameter of a weighted graph and the densest subgraph problem,
respectively, because their reductions are more involved.
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Figure 2: Horizontal and vertical axes represent the update and query time of dynamic algorithms
respectively. The shaded areas indicate the ranges of update/query time whose existence of dynamic
algorithm with such parameters would contradict Conjecture 1.1. Chart (a) and (b) are for problems
in Section 3.1 and Section 3.2 respectively. Chart (c) is for problems in Sections 3.3 to 3.6 where the
lower bound parameters are in many different forms.

Our hardness results, compared to previously known bounds, for fully dynamic problems
are summarized in Table 5 and Table 6. Our tight hardness results are summarized in
Table 4.

Given a matrix M ∈ {0, 1}n1×n2 , we denote by GM = ((L,R), E) the bipartite graph
where L = {l1, . . . , ln1}, R = {r1, . . . , rn2}, and E = {(rj , li) |Mij = 1}.

In this section, our proofs usually follow two simple steps. First, we show the reductions
in lemmas that given a dynamic algorithm A for some problem, one can solve uMv by running
the preprocessing step of A on some graph and then making some number of updates and
queries. Then, we conclude in corollaries that if either 1) A has low worst-case update/query
time, or 2) A has low amortized update/query time and A is fully dynamic, then this
contradicts Conjecture 1.1.

3.1 Lower Bounds for Graph Problems with High Query Time

To show hardness of the problems in this section, we reduce from uMv where n1 = n2 =
√
m.

The idea is that when u and v arrive, we make the update operations of the dynamic
algorithm A to “handle” both u and v. Then make only 1 query to A to answer 1-uMv.
Since the reduction is efficient in the number of queries, we get a high lower bound of query
time.

s-t Subgraph Connectivity (st-SubConn)

9implies the same bound for all reachablity problems (including transitive closure), strong connectivity,
bipartite perfect matching, size of maximum matching, minimum vertex cover, maximum independent set on
bipartite graph, size of st-maxflow on undirected unit capacity. See some reductions from [AVW14]

10implies all shortest path problems (ss-SP,ap-SP) with same approximation factor
11implies the same bound for st-Reach
12implies the same bound for ap-SubConn, ss-Reach, transitive closure.
13implies the same bound for ap-SP with same approximation factor.

19



Problems Upper Bounds Lower Bounds Remark
p(m,n) u(m,n) q(m,n) p(m,n) u(m,n) q(m,n)

ss-SubConn, ap-SubConn

m4/3 m2/3 m1/3 poly m2/3−ε m1/3−ε Upper:
[CPR11],

amortized only;
Lower: when
m = O(n3/2)

m6/5 m4/5 m1/5 poly m4/5−ε m1/5−ε Upper: [Dua10];
Lower: when
m = O(n5/4)

1 1 m poly m1/2−ε m1−ε Lower: when
m = O(n2)

m n 1 poly n1−ε n2−ε Upper:
[KKM13];
Lower:

m = Θ(n2)
st-SubConn, (unweighted)
st-SP, st-Reach, s-triangle

detection, strong
connectivity

1 1 m poly m1/2−ε m1−ε Lower: when
m = O(n2)

(unweighted) ss-SP,
ss-Reach

1 m 1 poly m1−ε mε′
Lower: when

m =
O(n1/(1−ε)),

ε′ < ε

1 1 m poly m1/2−ε m1−ε Lower: when
m = O(n2)

Erickson’s problem 1 n 1 poly n1−ε n1−ε Upper: binary
search tree

d-failure connectivity mn1/c d2c+4 d poly(n) poly(d) d1−ε Upper: [DP10]
3-approx vertex color

distance oracle
m
√
n

√
n 1 poly n1−ε n2−ε Upper:

[HLW+11,
Che12,

LOP+15];
Lower: when

(3− ε)-approx
Pagh’s problem over k sets

in a universe [n]
1 n 1 poly n1−ε k1−ε

Multiphase over k sets in a
universe [n]

1 τ ≤ max{k, n} poly τ ≥ min{k, n}1−ε

Table 4: Our tight results along with the matching upper bounds (or better upper bounds
when worse approximation ratio is allowed). The polylogarithmic factors are omitted. The
lower bounds state that there is no algorithm achieving stated preprocessing time, amortized
update time, and query time simultaneously, unless the OMv conjecture fails. The matching
upper bounds of update time are all worst-case time except the bound by [CPR11]. The
upper bounds without remark are the naive ones.
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Problems p(m,n) u(m,n) q(m,n) Conj. Reference Remark

st-SubConn
m4/3 mδ−ε m2/3−δ−ε 3SUM [AVW14] Choose any

δ ∈ [1/6, 1/3].
m ≤ O(n1.5)

m1+δ−ε mδ−ε m2δ−ε Triangle [AVW14] For some δ < 0.41
depending on the

conjecture
n3−ε n1−ε n2−ε BMM [AVW14] When m = Θ(n2)

st-Reach
m4/3 mδ−ε m2/3−δ−ε 3SUM [AVW14] Choose any

δ ∈ [1/6, 1/3].
m ≤ O(n1.5)

m1+δ−ε m2δ−ε m2δ−ε

(*)
Triangle [AVW14] Only lower bound for

amortized time over
O(n) updates; for
some δ < 0.41

depending on the
conjecture

n3−ε n2−ε n2−ε (*) BMM [AVW14] Only lower bound for
amortized time over

O(n) updates;
m = Θ(n2)

st-SubConn9, st-Reach,
unweighted (α, β)st-SP where

3α+ β < 5 10, Triangle
Detection, s-Triangle

Detection11, etc. (See footnotes)

poly(n) m1/2−ε m1−ε OMv Corollary 3.4 Choose any m ≤ n2

ss-SubConn12, unweighted
(α, β)ss-SP where 2α, β < 413,
unweighted (α, β)vertex color

distance oracle where α+ β < 3,
etc. (See footnotes)

poly(n) mδ−ε m1−δ−ε OMv Corollary 3.8 Choose any δ ∈ (0, 1),
and m ≤

min{n1/δ, n1/(1−δ)}

unweighted (3− ε)st-SP,
(2− ε)diameter on weighted
Graphs, Densest Subgraph of

size at least 5

poly(n) n1/2−ε n1−ε OMv Corollaries
3.10, 3.22
and 3.26

d-failure Connectivity
n2−ε (dn)1/2−ε d1/2−ε 3SUM [KPP16]

poly(n) (dn)1−ε d1−ε OMv Corollary 3.13 Choose any
δ ∈ (0, 1/2], d = mδ,
m = Θ(n1/(1−δ))

poly(n) d1/δ d1−ε OMv Corollary 3.12 Choose any
δ ∈ (0, 1/2], d = mδ,
m ≤ Θ(n1/(1−δ))

Table 5: Amortized lower bounds for fully dynamic graph problems and worst-case lower
bounds for partially dynamic graph problems. Bounds which are not subsumed are high-
lighted. Each row states that there is no algorithm achieving stated preprocessing time,
update time, and query time simultaneously, unless the conjecture fails. Except for (2− ε)-
approx diameter on weighted graphs, all the lower bounds also hold for the worst-case update
time of partially dynamic algorithms. Bounds marked with the asterisk (*) hold when the
update time is amortized over only O(n) updates. It is not clear how to get this parameter
for an update time amortized over any polynomially many updates like all our bounds.
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Problems p(m,n) u(m,n) q(m,n) Conj. Reference Remark

Langerman’s n1+δ−ε nδ/2−ε nδ/2−ε multi
phase

[Pat10] If τ ≥ nδ−ε, δ ∈ (0, 1)

poly(n) n1/2−ε n1/2−ε OMv Corollary 3.17

Pagh’s over k sets in a universe
[n]

k1+δ−ε kδ−ε kδ−ε Triangle [AVW14] n ≤ k ≤ n2, Choose
δ ∈ (1/3, 0.41)

depending on the
conjecture

k3/2−ε k1/2−ε k1/2−ε BMM [AVW14] n ≤ k ≤ n2

k1/3−ε k1/3−ε k1/3−ε 3SUM [AVW14] k = Θ(n1.5+ε′
)

poly(n) n1−ε k1−ε OMv Corollary 3.15 k ≤ poly(n)
Erickson over a matrix of size
n× n

n2+δ−ε nδ−ε nδ−ε multi
phase

[Pat10] If τ ≥ nδ−ε, δ ∈ (0, 1)

poly(n) n1−ε n2−ε OMv Corollary 3.19
Multiphase over k sets in a
universe [n]

n4−ε τ ≥ n1/2−ε 3SUM [Pat10] k = Θ(n5/2)
poly(k,n) τ ≥min{k,n}1−ε OMv Corollary 5.3

Table 6: Amortized lower bounds for fully dynamic non-graph problems. Bounds which are
not subsumed are highlighted. Each row states that there is no algorithm achieving stated
preprocessing time, update time, and query time simultaneously, unless the corresponding
conjecture fails. The lower bounds based on the multiphase problem are only for worst case
time and their parameters are implicit from [Pat10].

Lemma 3.1. Given a partially dynamic algorithm A for st-SubConn, one can solve 1-uMv
with parameters n1 and n2 by running the preprocessing step of A on a graph with O(m)
edges and Θ(

√
m) vertices, and then performing O(

√
m) turn-on operations (or O(

√
m)

turn-off operations) and 1 query, where m is such that n1 = n2 =
√
m.

Proof. We only prove the decremental case, because the incremental case is symmetric. Given
M , we construct the bipartite graph GM and add to it vertices s, t, and edges (t, li), (rj , s)
for all rj ∈ R, li ∈ L. Thus, the total number of edges is at most n1n2 + n1 + n2 = O(m).
In the beginning, every vertex is “turned on”, i.e., included in the set S of the st-SubConn
algorithm

Once u and v arrive, we turn off li iff ui = 0 and turn off rj iff vj = 0. We have u>Mv = 1
iff s is connected to t. In total, we need to do at most n1 + n2 = O(

√
m) updates and 1

query.

Distinguishing between 3 and 5 for s-t distance (st-SP (3 vs. 5))

Lemma 3.2. Given a partially dynamic algorithm A for (α, β)-approximate st-SP with
3α+β < 5, one can solve 1-uMv with parameters n1 and n2 by running the preprocessing step
of A on a graph with O(m) edges and Θ(

√
m) vertices, and then making O(

√
m) insertions

(or O(
√
m) deletions) and 1 query, where m is such that n1 = n2 =

√
m.

Proof. We only prove the decremental case, because the incremental case is symmetric. Given
M , we construct the bipartite graph GM and add to it vertices s, t, and edges (t, li), (rj , s)
for all rj ∈ R, li ∈ L. Thus, the total number of edges is at most n1n2 + n1 + n2 = O(m).

Once u and v arrive, we delete (t, li) iff ui = 0 and delete (rj , s) iff vj = 0. If u>Mv = 1,
then d(s, t) = 3, otherwise d(s, t) ≥ 5. In total, we need to do at most n1 + n2 = O(

√
m)

updates and 1 query.
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Triangle Detection and Triangle Detection at vertex s

Lemma 3.3. Given a partially dynamic algorithm A for (s-)triangle detection, one can solve
1-uMv with parameters n1 and n2 by running the preprocessing step of A on a graph with
O(m) edges and Θ(

√
m) vertices, and then making O(

√
m) insertions (or O(

√
m) deletions)

and 1 query, where m is such that n1 = n2 =
√
m.

Proof. We only prove the decremental case. Given M , we construct the bipartite graph GM
and add to it a vertex s and edges (s, li), (rj , s) for all rj ∈ R, li ∈ L. Thus, the total number
of edges is at most n1n2 + n1 + n2 = O(m).

Once u and v arrive, we delete (s, li) iff ui = 0 and delete (rj , s) iff vj = 0. We have
u>Mv = 1 iff there is a triangle in a graph iff there is a triangle incident to s. In total, we
need to do n1 + n2 = O(

√
m) updates and 1 query.

Corollary 3.4. For any n and m ≤ n2, unless Conjecture 1.1 fails, there is no partially
dynamic algorithm A for the problems in the list below for graphs with n vertices and m
edges with preprocessing time p(m) = poly(m), worst update time u(m) = ˜̃o(

√
m) and query

time q(m) = ˜̃o(m) that has an error probability of at most 1/3. Moreover, this is true also
for fully dynamic algorithms with amortized update time. The problems are:
• st-SubConn
• st-SP (3 vs. 5)
• (s-)triangle detection

Proof. Suppose there is such a partially dynamic algorithm A. That is, on a graph with n0
vertices and m0 = O(n2

0) edges, A has worst-case update time u(m0) = ˜̃o(√m0) and query
time q(m0) = ˜̃o(m0). We will construct an algorithm B for 1-uMv with parameters n1 and
n2 which contradicts Conjecture 1.1. Using Lemmas 3.1 to 3.3, by running A on a graph
with n0 = Θ(

√
m) vertices and m0 = O(m) edges where m is such that n1 = n2 =

√
m

(note that, indeed, m0 = O(n2
0)), B has preprocessing time poly(m) and computation time

O(
√
mu(m) + q(m)) = ˜̃o(m) which contradicts Conjecture 1.1 by Corollary 2.8.
Next, suppose that A is fully dynamic and only guarantees an amortized bound. We

will construct an algorithm C for 1-OuMv with parameters n1, n2, and n3 which again
contradicts Conjecture 1.1 by running A on the same graph as for solving 1-uMv while the
number of updates and queries needed is multiplied by O(n3). This can be done because A
is fully dynamic. So, for each vector pair (u, v) for C, if A makes k updates to the graph,
then A can undo these updates with another k updates so that the updated graph is the
same as right after the preprocessing. Recall that, by the notion of amortization, if there
are t updates, then A takes O((t+m0) · u(m0)) time where m0 is a number of edges ever
appearing in the graph. By choosing n3 =

√
m, we have that C has preprocessing time

poly(m) and computation time O((
√
mn3 +m)u(m)+n3q(m)) = ˜̃o(m

√
m) which contradicts

Conjecture 1.1 by Theorem 2.7.

Note that st-SubConn is reducible to the following problems in a way that preserves the
parameters of the lower bounds (see [AVW14] for the first three reductions):
• st-Reach,
• Strong connectivity,
• Bipartite perfect matching,
• Size of bipartite maximum matching (and, hence, vertex cover),
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• st-maxflow in undirected and unit capacity graph (see [Mąd11, Theorem 3.6.1]).
Therefore, these problems have the same lower bound.

3.2 Lower Bounds for Graph Problems with a Trade-off

To show hardness of the problems in this section, we reduce from uMv where n1 = mδ and
n2 = m1−δ for any constant δ ∈ (0, 1). When u and v arrive, we make m1−δ updates of the
dynamic algorithm A to handle only v. Then make mδ queries to A to find the value of
uMv. Since the choice of δ is free, we get a trade-off lower bound between update time and
query time.

Through out this subsection, δ ∈ (0, 1) is any constant.

Single Source Subgraph Connectivity (ss-Subconn)

Lemma 3.5. Given a partially dynamic algorithm A for ss-SubConn, after polynomial
preprocessing time, one can solve (1−δ

δ )-uMv with parameters n1 and n2 by running the
preprocessing step of A on a graph with Θ(m1−δ +mδ) nodes and O(m) edges, then making
O(m1−δ) insertions (or O(m1−δ) deletions) and O(mδ) queries, where m is such that mδ = n1
(so m1−δ = n2).

Proof. We only prove the decremental case because the incremental case is symmetric. Given
M , we construct the bipartite graph GM , with an additional vertex s and edges (rj , s) for
all j ≤ n2. Thus, the total number of edges is n1n2 + n2 = O(m). In the beginning, every
node is turned on. Once u and v arrive, we turn off rj iff vj = 0. If u>Mv = 1, then s is
connected to li for some i where ui = 1. Otherwise, s is not connected to li for all i where
ui = 1. We distinguish these two cases by querying, for every 1 ≤ i ≤ n2, whether s and li
are connected. In total, we need to do n2 = m1−δ updates and n1 = mδ queries.

Distinguishing between 2 and 4 for distances from s (ss-SP (2 vs. 4))

Lemma 3.6. Given a partially dynamic algorithm A for (α, β)-approximate ss-SP with
2α+β < 4, one can solve (1−δ

δ )-uMv with parameters n1 and n2 by running the preprocessing
step of A on a graph with O(m) edges and O(mδ +m1−δ) vertices, and then making O(m1−δ)
insertions (or O(m1−δ) deletions) and O(mδ) queries, where m is such that mδ = n1 (so
m1−δ = n2).

Proof. We only prove the decremental case. Given M , we construct the bipartite graph GM
and add to it a vertex s and edges (rj , s) for all rj ∈ R. Thus, the total number of edges
n1n2 + n2 = O(m).

Once u and v arrive, we disconnect s from rj iff vj = 0. We have that if u>Mv = 1, then
d(s, li) = 2 for some i where ui = 1 , otherwise d(s, li) ≥ 4 for all i where ui = 1. In total,
we need to do n2 = O(m1−δ) updates and n1 = O(mδ) queries.

Vertex-color Distance Oracle (1 vs. 3) Vertex-color distance oracles are studied in
[HLW+11, Che12]. Given a graph G, one can change the color of any vertex and must
handle the query that, for any vertex u and color c, return d(u, c) the distance from u to the
nearest vertex with color c. Chechik [Che12] showed, for any integer k ≥ 2, a dynamic oracle
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with update time Õ(n1/k) and query time O(k) which (4k − 5) approximates the distance.
Lacki et al. [LOP+15] extended the result when k = 2 by handling additional operations and
used it as a subroutine to get an algorithm for dynamic (6 + ε)-approximate Steiner tree.

Lemma 3.7. Given a dynamic algorithm A for (α, β)-approximate vertex-color distance
oracle with α+ β < 3, one can solve (1−δ

δ )-uMv with parameters n1 and n2 by running the
preprocessing step of A on a graph with O(m) edges and O(mδ +m1−δ) vertices, and then
making O(m1−δ) vertex-color changes and O(mδ) queries, where m is such that mδ = n1
(so m1−δ = n2).

Proof. Given M , we construct the bipartite graph GM . Set the color of li for all li ∈ L to c.
The colors of the other vertices (i.e., those in R) are set to c′ 6= c.

Once u and v arrive, we set the color of li to c′ 6= c iff ui = 0. If u>Mv = 1, then
d(rj , c) = 1 for some j where vj = 1. Otherwise, d(rj , c) ≥ 3 for all j where vj = 1. In total,
we need to do n1 = O(mδ) updates and n2 = O(m1−δ) queries.

Corollary 3.8. For any n, m ≤ O(min{n1/δ, n1/(1−δ)}), and constant δ ∈ (0, 1), unless
Conjecture 1.1 fails, there is no partially dynamic algorithm A for the problems in the list
below for graphs with n vertices and at most m edges with preprocessing time p(m) = poly(m),
worst-case update time u(m) = ˜̃o(mδ), and query time q(m) = ˜̃o(m1−δ) that has an error
probability of at most 1/3. Moreover, this is true also for fully dynamic algorithms with
amortized update time. The problems are:
• ss-SubConn
• ss-SP (2 vs. 4)
• Vertex-color Distance Oracle (1 vs. 3)

Proof. Suppose there is such a partially dynamic algorithm A. That is, on a graph with
n0 vertices and m0 = O(min{n1/δ

0 , n
1/(1−δ)
0 }) edges, A has worst-case update time u(m0) =

˜̃o(mδ
0) and query time q(m0) = ˜̃o(m1−δ

0 ). We will give an algorithm B for (1−δ
δ )-uMv with

parameters n1 and n2 which contradicts Conjecture 1.1. Using Lemmas 3.5 to 3.7, by running
A on a graph with n0 = Θ(mδ + m1−δ) vertices and m0 = O(m) edges, where m is such
that mδ = n1 and so m1−δ = n2 (note that, indeed, m0 = O(min{n1/δ

0 , n
1/(1−δ)
0 }) ), B has

preprocessing time poly(m) and computation time O(m1−δu(m) +mδq(m)) = ˜̃o(m) which
contradicts Conjecture 1.1 by Corollary 2.8.

The argument for fully dynamic algorithm is similar as in the proof of Corollary 3.4.

These results show that improving the approximation ratio of 3 of vertex-color distance
oracle will cost too much; i.e., we will need Ω(n) update or query time in a dense graph
assuming Conjecture 1.1 by setting δ = 1/2 and m = n2. In particular, one cannot improve
the approximation ratio of dynamic Steiner tree with sub-linear update time by improving
the approximation ratio of vertex-color distance oracle.

3.3 Lower Bounds for Graph Problems with other Parameters

(3 − ε)-approximate s-t Shortest Path ((3 − ε)st-SP) By subdividing edges, we can
get a weaker lower bound, but better approximation factor, for distance related problems.
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Lemma 3.9. Given a partially dynamic algorithm A for (3 − ε)-approximate st-SP, one
can solve uMv with parameters n1 and n2 by running the preprocessing step of A on a graph
with O(n) vertices and then making O(

√
n) insertions (or O(

√
n) deletions) and 1 query,

where n is such that n1 = n2 =
√
n.

Proof. We only prove the decremental case, because the incremental case is symmetric.
Given M , we construct the bipartite graph GM and add to it vertices s, t, and edges
(t, li), (rj , s) for all rj ∈ R, li ∈ L. Furthermore we replace each edge e in GM by a path Pe
of length 4

ε . Thus, the total number of vertices is at most O(n1n2/ε) = O(n/ε).
Once u and v arrive, we delete (t, li) iff ui = 0 and delete (rj , s) iff vj = 0. If u>Mv = 1,

then d(s, t) = 2 + 4
ε , otherwise d(s, t) ≥ 2 + 3 · 4

ε . One can verify that 2+3· 4
ε

2+ 4
ε

> 3− ε for any
ε > 0. In total, we need to do n1 + n2 = O(

√
n) updates and 1 query.

Corollary 3.10. Unless Conjecture 1.1 fails, there is no partially dynamic algorithm for
(3− ε) st-SP on a graph with n vertices with preprocessing time p(n) = poly(n), worst-case
update time u(n) = ˜̃o(

√
n), and query time q(n) = ˜̃o(n) that has an error probability of at

most 1/3. Moreover, this is true also for fully dynamic algorithm with amortized update
time.

d-failure Connectivity d-failure connectivity problem is a “1-batch-update” version of
dynamic subgraph connectivity. The update, for turning off up to d vertices, comes in one
batch. Then one can query whether two nodes s and t are connected. We want the update
time u(d) for a batch of size d and the query time q(d) to depend mainly on d.

Lemma 3.11. Let δ ∈ (0, 1/2] be a fixed constant. Given an algorithm A for d-failure
connectivity, one can solve ( δ

1−δ )-uMv with parameters n1 and n2 by running the preprocessing
step of A on a graph with O(m) edges and Θ(m1−δ) vertices, then making 1 batch of O(mδ)
updates and O(m1−δ) queries, where m is such that m1−δ = n1 (so mδ = n2).

Proof. Given M , we construct the bipartite graph GM and add to it a vertex s and edges
(rj , s) for all rj ∈ R. There are n1n2 = O(m) edges and n1 +n2 = Θ(mδ +m1−δ) = Θ(m1−δ)
vertices.

Once u and v arrive, we turn off all rj where vj = 0 in one batch of O(mδ) updates.
u>Mv = 1 iff, for some i, ui = 1, s is connected to ui. This can be checked using at most
m1−δ queries.

Corollary 3.12. For any n, m = O(n1/(1−δ)), and constant δ ∈ (0, 1/2], unless Conjec-
ture 1.1 fails, there is no algorithm for d-failure connectivity for a graph with n vertices and
at most m edges with preprocessing time p(n) = poly(n), update time u(d) = ˜̃o(d1/δ), and
query time q(d) = ˜̃o(d) that has an error probability of at most 1/3, when d = mδ.

Proof. Suppose there is such an algorithm A. By Lemma 3.11, we can solve ( δ
1−δ )-uMv with

parameters n1 = m1−δ and n2 = mδ by running A in time O(u(mδ) +m1−δq(mδ)) = ˜̃o(m).
This contradicts Conjecture 1.1 by Corollary 2.8.

Corollary 3.12 implies that Duan and Pettie’s result [DP10] with preprocessing time
Õ(d1−2/cmn1/c−1/(c log(2d))), update time Õ(d2c+4) and query time O(d), for any integer
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c ≥ 1, is tight in the sense that we cannot improve the query time significantly as long as
we want to have update time polynomial in d (because we can choose δ to be any possible
constant close to zero). However, improving the update time does not contradict the OMv
conjecture.

With the same argument we also get the following lower bound.

Corollary 3.13. For any n, m = Θ(n1/(1−δ)), and constant δ ∈ (0, 1/2], unless Conjec-
ture 1.1 fails, there is no algorithm for d-failure connectivity for a graph with n vertices and
at most m edges with preprocessing time p(n) = poly(n), update time u(n, d) = ˜̃o(dn), and
query time q(d) = ˜̃o(d) that has an error probability of at most 1/3, when d = mδ.

3.4 Lower Bounds for Non-graph Problems

In this section, we mimic the reductions from [Pat10] to show hardness of non-graph
problems. However, our results imply amortized lower bounds while the results in [Pat10]
are for worst-case lower bounds.

Pagh’s problem.

Lemma 3.14. Given an algorithm A for Pagh’s problem (cf. Table 3), for any constant
γ > 0, one can solve γ-uMv with parameters k and n by running the preprocessing step of A
on k initial sets in the universe [n] using poly(k, n) preprocessing time, k updates (adding k
more sets into the family) and n queries.

Proof. Given a matrix M , let M̄ be the matrix defined by M̄i,j = 1−Mi,j for all i and j.
Let Mi be the i-th row of M and treat it as a subset of [n] i.e., j ∈ Mi iff Mi,j = 1. We
similarly treat the i-th row M̄i of M̄ as a set. Note that u>Mej = 1 iff j ∈

⋃
i:ui=1Mi iff

j /∈
⋂
i:ui=1 M̄i. Thus, at the beginning, we compute M̄i for each i ≤ k. Once u and v arrive,

we compute
⋂
ui=1 M̄i using k updates. There is a j with vj = 1 such that j /∈

⋂
ui=1 M̄i iff

u>Mv = 1. We need n queries to check if such a j exists.

Corollary 3.15. For any constant γ > 0, Conjecture 1.1 implies that there is no dynamic
algorithm A for Pagh’s problem maintaining k sets over the universe [n] where k = nγ,
with poly(k, n) preprocessing time, u(k, n) = ˜̃o(n) amortized update time, and q(k, n) = ˜̃o(k)
query time that has an error probability of at most 1/3.

Proof. Recall that, by the notion of amortization, if A initially maintains k sets, then
the total update time of A is O((t + k) · u(t + k, n)). By Lemma 3.14, we can solve uMv
with parameters k and n by running A and making k updates and n queries in time
O(2k · u(2k, n) + n · q(2k, n)) = ˜̃o(nk). This contradicts Conjecture 1.1 by Corollary 2.8.

Langerman’s Zero Prefix Sum problem

Lemma 3.16. Given an algorithm A for Langerman’s problem (cf. Table 3), one can
solve 1-uMv with parameters n1 and n2 by running the preprocessing step of A on an array
of size O(n), and then making O(

√
n) updates and O(

√
n) queries where n is such that

n1 = n2 =
√
n

27



2(n2 − j) + 1 0 1 1 2 0 · · · 2 0 −2n2
0 1 1 2 0 · · · 1 1 −2n2
−2n2 2 0 2 0 · · · 1 1 0
−2n2 1 1 2 0 · · · 2 0 0

0 2 0 1 1 · · · 2 0 −2n2

Figure 3: The array in the reduction from uMv to Langerman’s zero prefix sum problem

Proof. Given a matrix M , we construct an array R of size 1 +n1 · (2n2 + 2) = O(n). For con-
venience, we will imagine that R is arranged as a two-dimensional array {Ri,j}i∈[n1],j∈[2n2+2]
(Ri,2n2+2 is before Ri+1,1) with one additional entry R0 at the beginning.

For all i ≤ n1, we set Ri,1 = 0 and Ri,2n2+2 = −2n2. For each entry of Mi,j , if Mi,j = 1,
then we set Ri,2j = 1 and Ri,2j+1 = 1. If Mi,j = 0, then we set Ri,2j = 2 and Ri,2j+1 = 0.
Note that

∑
j Ri,j = 0 for all i, so the rows of R are “independent”.

Once u and v arrive, we swap the values of Ri,1 and Ri,2n2+2 for all i where ui = 1 by
setting Ri,1 = −2n2 and Ri,2n2+2 = 0. For each j where vj = 1, we set R0 = 2(n2 − j) + 1
and query for a zero prefix sum. See Figure 3. In total, we need to do O(n1 + n2) = O(

√
n)

updates and O(n2) = O(
√
n) queries.

To show correctness, we claim that a zero prefix sum exists iff u>Mej = 1 where ej has
1 at only the j-th entry. First, the prefix sums cannot reach zero at row i of R if ui = 0,
because in that row i, each number is positive except Ri,2n2+2 = −2n2 which just resets the
sum within the row to zero. Second, for each row i where ui = 1, the prefix sum from R0 to
Ri,1 is −2j + 1. Then each pair of entries in the row increments the sum by 2. The prefix
sum reaches zero iff Mi,j = 1. If Mi,j = 0, then Ri,2j = 2 so the prefix sums to Ri,2j−1 and
Ri,2j are −1 and 1, respectively. The prefix sum then stays positive until row i finishes. If
Mi,j = 1, then Ri,2j = 1 and the prefix sum from R0 to Ri,2j is exactly 0.

Corollary 3.17. Conjecture 1.1 implies that there is no algorithm for Langerman’s problem
on an array of size n with preprocessing time p(n) = poly(n), amortized update time
u(n) = ˜̃o(

√
n), and query time q(m) = ˜̃o(

√
n) that has an error probability of at most 1/3.

Proof. Suppose there is such an algorithm A. By Lemma 3.16 and by “resetting” the array
when the new vector pair arrives, one can solve OuMv with parameters n1 =

√
n, n2 =

√
n,

and n3 =
√
n in time O(n · u(n) + n · q(n)) = ˜̃o(n

√
n). This contradicts Conjecture 1.1

by Theorem 2.7. Note that by the choice of n3 =
√
n as the third parameter of OuMv we

perform Θ(n) updates to A, which allows use to use the amortized update time u(n) of A in
this argument.

Erickson’s problem

Lemma 3.18. Given an algorithm A for Erickson’s problem (cf. Table 3), one can solve
1-OuMv with parameters n1,n2, and n3 by running the preprocessing step of A on a matrix
of size n × n and then making O(n · n3) updates and n3 queries, where n is such that
n1 = n2 = n.

Proof. Given a Boolean matrix M , A runs on the same matrix but treats it as an integer
matrix. Once ut and vt arrive, we increment the row i iff uti = 1 and increment the column j
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iff vtj = 1. Before ut+1 and vt+1 arrive, we increment the remaining rows i where uti = 0 and
remaining column where vtj = 0. Therefore, we have that (ut)>Mvt = 1 iff the maximum
value in the matrix is 2t+ 1.

Corollary 3.19. Unless Conjecture 1.1 fails, there is no algorithm for Erickson’s problem
on a matrix of size n × n with preprocessing time p(n) = poly(n), amortized update time
u(n) = ˜̃o(n), and query time q(n) = ˜̃o(n2) that has an error probability of at most 1/3.

Proof. Otherwise, we can solve 1-OuMv with parameters n1 = n, n2 = n, and n3 using poly-
nomial preprocessing time and ˜̃o(n1n2n3) computation time which contradicts Conjecture 1.1
by Theorem 2.7.

3.5 (2 − ε) Approximate Diameter on Weighted Graphs

We show that, for any ε > 0, it is OMv-hard to maintain a (2 − ε)-approximation of the
diameter in a weighted graph under both insertions and deletions with ˜̃o(

√
n) update time

and ˜̃o(n) query time, even if the edge weights are only 0 and 1. This reduction is inspired by
a lower bound in distributed computation [FHW12]. It is different from previous reductions
in that we can show the hardness for this problem only in the fully dynamic setting and not
in the partially dynamic setting.

Lemma 3.20. For any γ > 0, Given a fully dynamic algorithm A for (2− ε)-approximate
diameter on a {0, 1}-weighted undirected graph, one can solve γ-uMv with parameters n1
and n2 by running the preprocessing step of A on a graph with O(n1

√
n2) vertices, and then

making n2 +O(n1
√
n2) updates and n1 queries to A.

Proof. First, let us define an undirected graph Hv, called vector graph, from a vector v of size
n2. A vector graph Hv = (Bv ∪ Cv) has two halves, called upper and lower halves denoted
by Bv and Cv respectively. Bv and Cv are both cliques of size √n2. Let {bvx}1≤x≤√n2
and {cvx}1≤x≤√n2 be the vertices of Bv and Cv respectively. We include an edge (bvx, cvy) iff
v(x−1)√n2+y = 0. The weight of all edges in Hv is 1.

Given a matrix M of size n1 × n2, let Mi be the i-th row of M . We construct a vector
graph HMi for each 1 ≤ i ≤ n1, and another vector graph Hv where v is the zero vector.
There are two special vertices a and z. Connect a to all vertices in Hv with weight one.
Connect z to a and all vertices in HMi with weight zero, for every 1 ≤ i ≤ n1.

Once (u, v) arrives, we update Hv to be the vector graph of v in n2 updates. Then we
work in stages i, for each i where ui = 1. Before going to the next stage, we undo all the
updates. In stage i, 1) disconnect z from each vertex in HMi , 2) connect a to each vertex
in HMi with weight one, and 3) add 0-weight matching edges (bMi

x , bvx) and (cMi
y , cvy) for all

x, y ≤ √n2. All three steps need O(√n2) updates. Let G(Mi, v) denote the resulting graph
(see Figure 4 for example). We query the diameter of G(Mi, v) and will use the result to
solve γ-uMv. After finishing all stages, there are n2 +O(n1

√
n2) updates and n1 queries in

total.
If there is some stage i where the diameter of the graph G(Mi, v) is 2, then report

u>Mv = 1. Otherwise report 0. The following claim justifies this answer.

Claim 3.21. The diameter of G(Mi, v) is 1 if M>i v = 0. Otherwise, the diameter is 2.
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𝐻𝑀𝑖𝑧 𝐻𝑣

𝑎𝐻𝑀1

𝐻𝑀𝑛1

Figure 4: An example of G(Mi, v) from the proof of Lemma 3.20. Dashed lines are edges of
weight zero. Other lines are edges of weight one.

Proof. First, every edge incident to z has weight 0. So we can treat all the adjacent vertices
of z, which are exactly a and those in HMi′ where i′ 6= i, as a single vertex. Therefore, we
just have to analyze the distance among vertices in HMi , Hv and the vertex a.

Note that a is connected to all vertices in HMi and Hv by 1-weight edges. The distance
between vertices among the upper halves BMi and Bv is at most 1, because BMi and Bv

are cliques and there are matching edges of weight zero. Similarly, for the lower halves CMi

and Cv. Now, we are left with analyzing the distance between a vertex in the upper halves
and another vertex in the lower ones. There are two cases.

If M>i v = 0, then for each x, y ≤ √n2, there is either an edge (bMi
x , cMi

y ) or an edge
(bvx, cvy). So given any bMi

x and cMi
y , there is either a path (bMi

x , bvx, c
v
y, c

Mi
y ) or a path (bMi

x , cMi
y )

both of weight 1. Since d(bMi
x , cMi

y ) = 1, the distance among bMi
x , bvx, c

Mi
y , cvy is at most 1.

Since this is true for any x, y, the diameter of the graph is 1.
If M>i v = 1, then there are some x, y such that neither the edge (bMi

x , cMi
y ) nor the edge

(bvx, cvy) exists. To show that d(bMi
x , cMi

y ) ≥ 2, it is enough to show that d(bMi
x , cMi

y ) > 1
because every non-zero edge weight is 1. The set of vertices with distance 1 from bMi

x includes
exactly the neighbors of bMi

x in HMi and their “matching” neighbors in Hv, the neighbors of
bvx in Hv and their “matching” neighbors in HMi , and the vertex a, which combines z and all
vertices in HMi′ where i′ 6= i. But this set does not include cMi

y . Therefore d(bMi
x , cMi

y ) ≥ 2
and we are done.

Corollary 3.22. Assuming Conjecture 1.1, there is no fully dynamic algorithm for (2− ε)-
approximate diameter on {0, 1}-weighted graphs with n vertices with preprocessing time
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p(n) = poly(n), amortized update time u(n) = ˜̃o(
√
n), and query time q(n) = ˜̃o(n) that has

an error probability of at most 1/3.

Proof. Suppose such a fully dynamic algorithm A exists. By Lemma 3.20 and by “undoing”
the operations as in the proof of Corollary 3.4, we can solve 2-OuMv with parameters
n1 =

√
n, n2 = n, and n3 = n by running A on a graph with Θ(n1

√
n2) = Θ(n) vertices, and

then making O(n2 + n1
√
n2) × n3 = O(n2) updates and n1n3 = O(n

√
n) queries in total.

The computation time is O(n2u(n) + n
√
nq(n)) = ˜̃o(n2√n), contradicting Conjecture 1.1 by

Theorem 2.7. Note that we choose n3 = n
√
n to make sure that the number of updates is at

least the number of edges in the graph, so that we can use the amortized time bound.

3.6 Densest Subgraph Problem

In this section, we show a non-trivial reduction from 1-uMv to the densest subgraph problem
and hence show the hardness of this problem.

Theorem 3.23. Given a partially dynamic A for maintaining the density of the densest sub-
graph, one can solve 1-uMv with parameters n1 = n and n2 = n by running the preprocessing
step of A on a graph with Θ(n3) vertices, and then making Θ(n) updates and 1 query.

Problem definition We are given an undirected input graph G = (V,E) with vertices V
and edges E. For every subset of vertices S ⊆ V , let G(S) = (S,E(S)) denote the subgraph
of G induced by the vertices in S, i.e., we have E(S) = {(u, v) ∈ E | u, v ∈ S}. The density
of any subset of vertices S ⊆ V is defined as ρ(S) = |E(S)|/|S|. For the reduction described
in the following let M be a Boolean matrix of size n× n and set k = 6n.

Preprocessing. We construct the graph G as follows:

• Bit graphs for M . For each bit mi,j of M , construct a graph Bi,j consisting of k
vertices. There are two special vertices in Bi,j , called special vertex 1 and special
vertex 2. If the bit mi,j is set, connect the nodes in Bi,j by a path of k − 1 edges in
Bi,j from special vertex 1 to special vertex 2. If the bit mi,j is not set, insert no edges
into Bi,j .

• Row graph for M. For each row i of M , construct a graph Ri consisting of 3 vertices.
One of these vertices is special. Add an edge from the special vertex of Ri to special
vertex 1 of Bi,j for all 1 ≤ j ≤ n.

• Column graph for M . For each column j of M , construct a graph Cj consisting of 3
vertices. One of these vertices is special. Add an edge from the special vertex of Cj to
special vertex 2 of Bi,j for all 1 ≤ i ≤ n.

Observe that G has O(n3) vertices.

Revealing u and v We execute the following O(n) edge operations and one query.

• For each i where ui = 1, turn the row graph Ri into a triangle by inserting O(n) edges.
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• For each j where vj = 1, turn the column graph Ci into a triangle by inserting O(n)
edges.

• Then ask for the size of the densest subgraph.

This describes the reduction of Theorem 3.23. Note that we only need a partially dynamic
algorithm. Before proving the correctness of this reduction below, we observe the following
easy lemma.

Lemma 3.24. For all numbers a, b, c, d, and r we have:

1. If a
b ≥ r and c

d ≥ r, then
a+c
b+d ≥ r.

2. If a
b ≥ r and c

d ≤ r, then
a−c
b−d ≥ r.

Theorem 3.25. There exists a subset S ⊆ V with density ρ(S) ≥ k+7
k+6 if and only if

u>Mv = 1.

Proof. Assume first that u>Mv = 1. So there are indices i and j such that uiMi,jvj = 1.
Consider the subgraph consisting of the union of Ri, Bi,j and Cj . It consists of k+ 6 vertices
and k + 7 edges, i.e., it has density k+7

k+6 .
Now assume that u>Mv = 0 and let S ⊆ V . To show that ρ(S) ≤ k+7

k+6 we will make the
following assumptions:

(1) For every i and j, either the full bit graph Bi,j together with two edges leaving the bit
graph is contained in S or no node of Bi,j is contained in S.

(2) For every row i of a set bit (i.e., where ui = 1), either the full row graph Ri is contained
in G(S) or no node of Ri is contained in G(S)

(3) For every row i of an unset bit (i.e., where ui = 0), either the special node of the row
graph Ri is contained in S or no node of Ri is contained in G(S)

(4) For every column j of a set bit (i.e., where vj = 1), either the full column graph Rj is
contained in G(S) or no node of Cj is contained in G(S)

(5) For every column j of an unset bit (i.e., where vj = 0), either the special node of the
column graph Cj is contained in S or no node of Cj is contained in G(S)

These assumptions can be made without loss of generality as we argue in the following.
(1) Suppose S contains some subset U of nodes of Bi,j and either U does not contain all

nodes of Bi,j or one of the special nodes of Bi,j is not contained in S. Then by removing U
from S we remove some q ≤ k nodes and at most q edges from G(S). Thus, we are removing
a piece of density at most 1. If ρ(S) ≥ k+7

k+6 ≥ 1, then removing U from S will not decrease
ρ(S) by Part 2 of Lemma 3.24 (using r = k+7

k+6 , ρ(S) = a
b , c ≤ q, and d = q). Therefore we

may assume without loss of generality that S does not contain U .
(2) If only one of the nodes of Ri is contained in S, then by adding the two other nodes

we add 2 nodes and 3 edges to G(S). As 3
2 >

k+7
k+6 , doing so will not decrease the density of

S to below k+7
k+6 by Part 1 of Lemma 3.24 (using r = k+7

k+6 , ρ(S) = a
b , c = 3, and d = 2) and

thus we may assume without loss of generality that all the nodes of Ri are contained in S.
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Similarly, if only two of the nodes of Ri are contained in S, then by adding the third node
we add 1 node and 2 edges to G(S). Again, by Lemma 3.24, we may assume without loss of
generality that all three nodes of Ri are contained in S.

(3) There are no edges incident to the non-special nodes of Ri. By removing the non-
special nodes of Ri from S we only increase ρ(S). Thus, we may assume without loss of
generality, that only the special node is contained in S.

(4) and (5) follow the same arguments as (2) and (3).
Using these assumptions we conclude that G(S) has the following structure: it contains

some full bit graphs (i.e., paths) of set bits, each with two outgoing edges, some full row or
column graphs (i.e., triangles) of set bits, and some special nodes of row or column graphs
of unset bits. In the rest of this proof we will use the following notation: x denotes the
number of bit graphs contained in S, y denotes the number of row or column graphs of
set bits contained in S, and z denotes the number of row or column graphs of unset bits
contained in C. Thus, G(S) has the density

ρ(S) = 3y + (k + 1)x
3y + z + kx

.

The inequality ρ(S) < k+7
k+6 , which we want to prove, is now equivalent to

6x < (k + 7)z + 3y .

Consider some bit graph contained in G(S). As argued above, this graph has one edge going
to a row graph and one edge going to a column graph. As u>Mv = 0 at least one of those
edges must go to a row or column graph of an unset bit. In this way we assign at most n
bit graphs to every unset row or column bit and it follows that x ≤ nz. As we have defined
k = 6n we obtain

6x ≤ 6nz = kz < (k + 7)z + 3y

as desired.

This complete the proof of Theorem 3.23.

Corollary 3.26. Unless Conjecture 1.1 fails, there is no partially dynamic algorithm A for
maintaining the density of the densest subgraph on a graph with n vertices with polynomial
preprocessing time, worst-case update time u(n) = ˜̃o(n1/3), and query time q(n) = ˜̃o(n2/3)
that has an error probability of at most 1/3. Moreover, this is true also for fully dynamic
algorithms with amortized update time.

Proof. Suppose that such a partially dynamic algorithm A exists. By Theorem 3.23 and
by scaling down the parameter from n to n1/3, we can solve 1-uMv with parameters n1/3

and n1/3, by running A on a graph with Θ(n) vertices, in time O(n1/3u(n) + q(n)) = ˜̃o(n2/3)
contradicting Conjecture 1.1 by Corollary 2.8.

If A is fully dynamic, the argument is similar as in the proof of Corollary 3.4.
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Problems p(m,n) u(m,n) q(m,n) Conj. Reference Remark

Bipartite Max Matching m4/3−ε m4/3−ε m1/3−ε 3SUM [KPP16] m = Θ(n); only for
incremental case.14

poly m3/2−ε m1−ε OMv Corollary 4.4 m = Θ(n)
unweighted st-SP poly m3/2−ε m1−ε OMv Corollary 4.2 m = O(n2)

unweighted ss-SP
poly m3/2−ε m1−ε OMv Corollary 4.2 m = O(n2)

(mn)1−ε (mn)1−ε mδ′−ε BMM [RZ11]

Choose any δ′ ∈ (0, 1/2],
m = Θ(n1/(1−δ′))

poly (mn)1−ε mδ′−ε OMv Corollary 4.8
unweighted (α, β)ap-SP,
2α+ β < 4

(mn)1−ε (mn)1−ε mδ′−ε BMM [DHZ00]

poly (mn)1−ε mδ′−ε OMv Corollary 4.8

Transitive Closure (mn)1−ε (mn)1−ε mδ′−ε BMM [DHZ00]
poly (mn)1−ε mδ′−ε OMv Corollary 4.8

Table 7: Lower bounds for total update time of partially dynamic problems. Bounds which
are not subsumed are highlighted. Each row states that there is no algorithm achieving
stated preprocessing time, total update time, and query time simultaneously, unless the
conjecture fails. Lower bounds based on BMM apply to only combinatorial algorithms.

4 Hardness for Total Update Time of Partially Dynamic Prob-
lems

Our lower bounds, compared to previously known bounds, for the total update time of
partially dynamic problems are summarized in Table 7. Tight results are summarized in
Table 8

Given a matrix M ∈ {0, 1}n1×n2 , we denote a bipartite graph GM = ((L,R), E) where
L = {l1, . . . , ln1}, R = {r1, . . . , rn2}, and E = {(rj , li) |Mij = 1}.

In this section, our proofs again follow two simple steps as in Section 3. First, we show
the reductions in lemmas that given a partially dynamic algorithm A for some problem, one
can solve OuMv by running the preprocessing step of A on some graph and then making
some number of updates and queries. Then, we conclude in corollaries that if A has low
total update update time and query time then this contradicts Conjecture 1.1.

In the proofs of the lemmas of this section, we only usually show the reduction from
OuMv to the decremental algorithm, because it is symmetric in the incremental setting.

s-t Shortest Path (st-SP)

Lemma 4.1. Given an incremental (respectively decremental) dynamic algorithm A for st-SP,
one can solve 1-OuMv with parameters n1, n2, and n3 by running the preprocessing step of A
on a graph with Θ(

√
m) vertices and O(m) edges which is initially empty (respectively initially

has Θ(m) edges), and then making
√
m queries, where m is such that n1 = n2 = n3 =

√
m.

Proof. Given an input matrix M of 1-OuMv, we construct a bipartite graph GM , and also
two paths P and Q with n3 vertices each. Let P = (p1, p2, . . . , pn3) where p1 = s, and

14Kopelowitz, Pettie, and Porat [KPP16] show a higher lower bound for the amortized update time of
incremental algorithms. But they allow reverting the insertion which is not allowed in our setting.
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Problem Upper Bounds Lower Bounds Problem Remark
p(m,n) u(m,n) q(m,n) p(m,n) u(m,n) q(m,n)

dec. unweighted
Exact ss-SP

m mn 1
poly mn1−ε

mδ′−ε dec. unweighted
Exact ss-SP

Upper: [ES81]

dec. unweighted
(1 + ε) ss-SP

m1+o(1) m1+o(1) 1 Upper:
[HKN14a]

dec. unweighted
(1 + ε, 0) ap-SP

mn mn 1
poly mn1−ε

mδ′−ε
dec. (α, β)
ap-SP,
2α+ β < 4

Upper: [HKN13,
RZ12, Ber13]

dec. unweighted
(1 + ε, 2) ap-SP

n5/2 n5/2 1 Upper:
[HKN13]

dec. unweighted
(2 + ε, 0) ap-SP

n5/2 n5/2 1

dec. Transitive
Closure

mn mn 1 poly mn1−ε mδ′−ε dec. transitive
closure

Upper: [Lac13]

Table 8: Our tight results along with the matching upper bounds (or better upper bounds
when worse approximation ratio is allowed). The polylogarithmic factors are omitted. The
lower bounds state that there is no algorithm achieving stated preprocessing time, total
update time, and query time simultaneously, unless the conjecture fails. The table shows
that one cannot improve the approximation factor of decremental (1 + ε) ss-SP/(1 + ε, 2)
ap-SP/(2 + ε, 0) ap-SP without scarifying fast running time. All lower bounds hold, for any
δ′ ∈ (0, 1/2], when m = Θ(n1/(1−δ′)). ε > 0 is any constant.

Q = (q1, q2, . . . , qn3) where q1 = s′. Add the edge (pt, li) and (qt, rj) for all i ≤ n1, j ≤ n2
and t ≤ n3. There are Θ(n1 + n2 + n3) = Θ(

√
m) vertices and O(n1n2 + n3) = O(m) edges.

Once ut and vt arrive, we disconnect pt from li iff uti = 0, and disconnect qt from rj iff
vtj = 0. We have that if (ut)>Mvt = 1, then d(s, s′) = 2t + 1, otherwise d(s, s′) ≥ 2t + 2.
This is because, before ut+1 and vt+1 arrive, we disconnect pt from li for all i ≤ n1 and
disconnect qt from rj for all j ≤ n2. So for each t, we need 1 query, and hence n3 =

√
m

queries in total.

Corollary 4.2. For any n and m = O(n2), Conjecture 1.1 implies that there is no partially
dynamic st-SP algorithm A on a graph with n vertices and at most m edges with polynomial
preprocessing time, total update time ˜̃o(m3/2), and query time ˜̃o(m) that has an error
probability of at most 1/3.

Proof. Suppose there is such an algorithm A. By Lemma 4.1, we construct an algorithm
B for 1-OuMv with parameters n1 =

√
m, n2 =

√
m, and n3 =

√
m by running A on a

graph with n0 = Θ(
√
m) vertices and m0 = O(m) edges. Note that m0 = O(n2

0). Since
A uses polynomial preprocessing time, total update time ˜̃o(m3/2) and total query time
O(
√
mq(m)) = ˜̃o(m3/2) B has polynomial preprocessing time and ˜̃o(m3/2) computation time

contradicting Conjecture 1.1 by Theorem 2.7.

Note that, when m = Θ(n2), Corollary 4.2 implies that there is no algorithm with ˜̃o(n3)
total update time and ˜̃o(n2) query time. There is a matching upper bound of total update
time O(mn) = O(n3) due to [ES81].

Bipartite Maximum Matching
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Lemma 4.3. Given an incremental (respectively decremental) dynamic algorithm for bipar-
tite maximum matching, one can solve 1-OuMv with parameters n1, n2, and n3 by running A
on a graph with Θ(m) vertices and Θ(m) edges which is initially empty (respectively initially
has Θ(m) edges), and then making

√
m queries, where m is such that n1 = n2 = n3 =

√
m.

Proof. Given an input matrixM of 1-OuMv, we perform the following preprocessing. First, we
construct a bipartite graph GM which has O(n1n2) = O(m) edges. There are also additional
sets of vertices 1) L′ = {l′1, . . . , l′n1} and R′ = {r′1, . . . , r′n2}, 2) Xt = {xt,1, . . . , xt,n1} and
X ′t = {x′t,1, . . . , x′t,n1} for all t ≤ n3, and 3) Yt = {yt,1, . . . , yt,n1} and Y ′t = {y′t,1, . . . , y′t,n1} for
all t ≤ n3. These are all vertices in the graph, so there are Θ(n1 +n2 +n1n3 +n2n3) = Θ(m)
vertices in total. Next, we add edges (li, l′i), (rj , r′j), (xt,i, x′t,i) and (yt,j , y′t,j) for each
i ≤ n1, j ≤ n2, t ≤ n3. These edges form a perfect matching of size Θ(m). Finally, we add
edges (xt,i, li) and (yt,j , rj) for each i ≤ n1, j ≤ n2, t ≤ n3. These Θ(m)-many edges do not
change the size of matching. In total, there are Θ(m) edges.

Once (ut, vt) arrives, we delete the edge (xt,i, x′t,i) for each ui = 1 and the edge (yt,j , y′t,j)
for each vj = 1. Let dt be the number of edges we delete in this way. Observe that
(ut)>Mvt = 1 iff there is an edge (li, rj) for some i, j where ui = 1, vj = 1 iff there is
an augmenting path from xt,i to yt,j for some i, j. So if (ut)>Mvt = 1, then the size of
maximum matching is decreased by at most dt− 1 Otherwise, the size of maximum matching
is decreased by dt. Before (ut+1, vt+1) arrives, we delete all edges (xt,i, li) and (yt,j , lj) for
each i ≤ n1, j ≤ n2. Therefore, the graph now has a perfect matching again. So for each t,
we need 1 query, and hence n3 =

√
m queries in total.

Corollary 4.4. For any n and m = O(n), Conjecture 1.1 implies that there is no partially
dynamic algorithm for bipartite maximum matching on a graph with n vertices and at most
m edges with preprocessing time p(n) = poly(n), total update time u(m,n) = ˜̃o(m3/2), and
query time q(m) = ˜̃o(m) that has an error probability of at most 1/3.

Proof. Same argument as Corollary 4.2.

Note that the hardness proof in Corollary 4.4 applies only to sparse graphs.

Single Source Shortest Path (ss-SP)

Lemma 4.5. Given an incremental (respectively decremental) dynamic algorithm A for
ss-SP, one can solve ( δ

1−δ )-OuMv with parameters n1, n2, and n3 by running A on a graph
with Θ(mδ+m1−δ) vertices and Θ(m) edges which is initially empty (respectively initially has
Θ(m) edges), and then making m2(1−δ) queries, where m is such that n1 = m1−δ, n2 = mδ

and n3 = m1−δ.

Proof. Given an input matrix M of ( δ
1−δ )-OuMv, we construct the bipartite graph GM , and

also a path Q = (q1, q2, . . . , qn3) where q1 = s. Add the edge (qt, rj) for all j ≤ n2, t ≤ n3.
There are Θ(n1 + n2 + n3) = Θ(mδ +m1−δ) vertices and Θ(n1n2 + n2n3) = Θ(m) edges.

Once ut and vt arrive, we disconnect qt from rj iff vtj = 0. We have that if (ut)>Mvt = 1,
then d(s, li) = t + 1 for some i where ui = 1, otherwise d(s, li) ≥ t + 2 for all i where
ui = 1. So n1 queries are enough to distinguish these two cases. Before ut+1 and vt+1

arrive, we disconnect qt from rj for all j ≤ n2. So for each t, we need n1 queries, and hence
n1n3 = m2(1−δ) queries in total.
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Distinguishing Distance among Vertices between 2 and 4 (ap-SP (2 vs. 4))

Lemma 4.6. Given an incremental (respectively decremental) dynamic algorithm A for
(α, β)-approximate ap-SP with 2α+ β < 4, one can solve ( δ

1−δ )-OuMv with parameters n1,
n2, and n3 by running A on a graph with Θ(mδ + m1−δ) vertices and Θ(m) edges which
is initially empty (respectively initially has Θ(m) edges), and then making m2(1−δ) queries,
where m is such that n1 = m1−δ, n2 = mδ and n3 = m1−δ.

Proof. Given an input matrix M of ( δ
1−δ )-OuMv, we construct a bipartite graph GM , and

another set of vertices Q = {q1, . . . , qn3}. Add the edge (qt, rj) for all j ≤ n2, t ≤ n3. There
are Θ(n1 + n2 + n3) = Θ(mδ +m1−δ) vertices and Θ(n1n2 + n2n3) = Θ(m) edges.

Once ut and vt arrive, we disconnect qt from rj iff vtj = 0. We have that if (ut)>Mvt = 1,
then d(qt, li) = 2 for some i where ui = 1, otherwise d(s, li) ≥ 4 for all i where ui = 1. So for
each t, we need n1 queries, and hence n1n3 = m2(1−δ) queries in total.

Transitive Closure

Lemma 4.7. Given an incremental (respectively decremental) dynamic algorithm A for
transitive closure, one can solve ( δ

1−δ )-OuMv with parameters n1, n2, and n3 by running A
on a graph with Θ(mδ +m1−δ) vertices and Θ(m) edges which is initially empty (respectively
initially has Θ(m) edges), and then making m2(1−δ) queries, where m is such that n1 =
m1−δ, n2 = mδ and n3 = m1−δ.

Proof. Given an input matrix M of ( δ
1−δ )-OuMv, we construct a directed graph GM where

the edges are directed from R to L, and another set of vertices Q = {q1, . . . , qn3}. Add the
directed edge (qt, rj) for all j ≤ n2, t ≤ n3. There are Θ(n1 + n2 + n3) = Θ(mδ + m1−δ)
vertices and Θ(n1n2 + n2n3) = Θ(m) edges.

Once ut and vt arrive, we disconnect qt from rj iff vtj = 0. We have that (ut)>Mvt = 1
iff qt can reach li for some i where ui = 1. So for each t, we need n1 queries, and hence
n1n3 = m2(1−δ) queries in total.

Corollary 4.8. For any n, m = Θ(n1/(1−δ)}) and constant δ ∈ (0, 1/2], Conjecture 1.1
implies that there is no partially dynamic algorithm for the problems listed below for a graph
with n vertices and at most m edges with preprocessing time p(m) = poly(m), total update
time u(m) = ˜̃o(mn), and query time q(m) = ˜̃o(mδ) per query that has an error probability of
at most 1/3. The problems are:
• ss-SP
• ap-SP (2 vs. 4)
• Transitive Closure

Proof. Suppose there is such an algorithm A for any problem in the list. By Lemmas 4.5
to 4.7, we construct an algorithm B for ( δ

1−δ )-OuMv with parameters n1 = m1−δ, n2 = mδ,
and n3 = m1−δ by running A on a graph with n0 = Θ(mδ +m1−δ) = Θ(m1−δ) vertices and
m0 = Θ(m) edges. Note that m0 = Θ(n1/(1−δ)

0 ). Since A uses polynomial preprocessing time,
total update time ˜̃o(mn) = ˜̃o(m2−δ) and total query time O(m2(1−δ)q(m)) = ˜̃o(m2−δ), B has
polynomial preprocessing time and ˜̃o(m2−δ) computation time contradicting Conjecture 1.1
by Theorem 2.7.
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5 Further Discussions

5.1 Multiphase Problem

The multiphase problem is introduced in [Pat10] as a problem which can easily provide
hardness for various dynamic problems. Though, the lower bounds obtained are always
worst-case time lower bounds.

In this section, we first prove that the OMv conjecture implies a tight lower bound for
this problem. Then, we show a general approach for getting amortized lower bounds using
the known reductions from the multiphase problem.

Definition 5.1 (Multiphase Problem). The multiphase problem with parameters n1, n2 is a
problem with 3 phases. Phase 1: Preprocess a Boolean matrix M of size n1 × n2 in time
O(n1n2τ). Phase 2: Get an n2-dimensional vector v and spend time O(n2τ). Phase 3:
Given an index i, answer if (Mv)i = 1 in time O(τ). We call τ the update time.

We note that the equivalent problem definition described in [Pat10] uses a family of sets
and a set instead of a matrix and a vector. Assuming that there is no truly subquadratic
3SUM algorithm, Pǎtraşcu [Pat10] showed that one cannot solve multiphase with parameters
n1, n2 when n1 = n2.5

2 and τ = ˜̃o(√n2). Based on OMv, we can easily prove a better a lower
bound for τ .

Lemma 5.2. For any γ > 0, given an algorithm for multiphase problem with parameters
n1, n2 and τ update time, one can solve γ-OMv with parameters n1, n2, n3 in time O((n1n2 +
n2n3 + n1n3)τ).

Proof. Given a matrix M of n1 × n2, we run Phase 1 of the multiphase algorithm in time
O(n1n2τ). For every vt, 1 ≤ t ≤ n3, we run n3 many instances of Phase 2 in time n3×O(n2τ).
To compute Mvt, we run n1n3 many instances of Phase 3 in time n1n3 ×O(τ).

Corollary 5.3. For any n1, n2, Conjecture 1.1 implies that there is no algorithm A for the
multiphase problem with parameters n1, n2 such that τ = ˜̃o(min{n1, n2}).

Proof. Suppose there is such an algorithm A. Then, by Lemma 5.2 and setting n3 =
min{n1, n2}, one can solve γ-OMv with parameters n1, n2, n3 in time O(n1n2 + n2n3 +
n1n3)× ˜̃o(min{n1, n2}). Assume w.l.o.g. that n1 ≤ n2 then we get the expression O(n1n2 +
n2

1)× ˜̃o(n1) = ˜̃o(n2
1n2) = ˜̃o(n1n2n3), which contradicts Conjecture 1.1 by Theorem 2.2.

5.1.1 Converting Worst-case Bounds to Amortized Bounds

In the following, let A be a fully dynamic algorithm that maintains some object G, e.g., a
graph, a matrix, an array etc. Similar to Lemma 5.2, by running many instances of phase 2
and 3 of the multiphase algorithm, we have the following.

Lemma 5.4. For any constant γ > 0, suppose that one can solve the multiphase problem
with parameters n1, n2 by running A on G of size s(n1, n2) using p(n1, n2) preprocessing
time, and then making ki updates/queries on phase i, for i ∈ 2, 3. Then one can solve γ-OMv
problems with parameters n1, n2, n3 by running A on G using p(n1, n2) preprocessing time,
and then using O(k2n3 + k3n1n3) updates/queries.
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Corollary 5.5. Suppose that one can solve the multiphase problem with parameters n1, n2,
where n1 = nγ2 , by running A on G of size s(n1, n2) using poly(n1, n2) preprocessing time,
and then using ki updates/queries on phase i, for i ∈ 2, 3. Then Conjecture 1.1 implies that
A cannot maintain an object G of size s(n1, n2) with polynomial preprocessing time and
˜̃o(min{n1n2

k2
, n2
k3
}) amortized update and query time.

Proof. Suppose that A has such an amortized update/query time. Then, by Lemma 5.4,
one can solve γ-OMv with parameters n1, n2, n3 using poly(n1, n2) preprocessing time, and
computation time ˜̃o(min{n1n2

k2
, n2
k3
} × O(k2n3 + k3n1n3) = ˜̃o(n1n2n3). This contradicts

Conjecture 1.1 by Theorem 2.2.

Example. It is shown in [Pat10] that, given a fully dynamic algorithm A for subgraph
connectivity that runs on a graph with O(n1 + n2) vertices, the multiphase problem with
parameters n1, n2 can be solved using k2 = n2 operations in phase 2 and k3 = 1 operations
in phase 3. By Corollary 5.5 and by setting n1 = n2 = n, the amortized cost of A on a graph
with Θ(n) vertices cannot be ˜̃o(n) unless the OMv conjecture fails. Note however that this
lower bound is subsumed by the one we give in Corollary 3.4.

5.2 Open Problems

Of course it is very interesting to settle the OMv conjecture. Besides this, there are still
many problems for which this work does not provide tight lower bounds, and it is interesting
to prove such lower bounds based on the OMv or other reasonable conjectures.

Minimum Cut. Thorup and Karger [Tho00] presented a (2 + o(1))-approximation algo-
rithm with polylogarithmic amortized update time. Thorup [Tho07] showed that in Õ(

√
n)

worst-case update time the minimum cut can be maintained exactly when the minimum cut
size is small and (1 + ε)-approximately otherwise. Improving this result using amortization
is mentioned as a major open problem in [Tho07]. Very recently Fakcharoenphol et al.
[FKN+14] showed some related hardness results (e.g., for some subroutine used in Thorup’s
algorithm). However, currently there is no evidence that the minimum cut cannot be
maintained in polylogarithmic update time. In fact, it is not even known if polylogarithmic
update time is possible or impossible for a key subroutine in Thorup’s algorithm called
min-tree cut, where we are given edge updates on a graph and its spanning tree and have to
maintain the minimum cut among the cuts obtained by removing one edge from the spanning
tree. We believe that understanding this subroutine is an important step in understanding
the dynamic minimum cut problem.

Approximation Algorithms for Non-Distance Problems. In this paper we provide
hardness results for several approximation algorithms for distance-related problems. However,
we could not extend the techniques to non-distance graph problems in undirected graphs
such as approximating maximum matching, minimum cut, maximum flow, and maximum
densest subgraph.

Total Update Time for Partially Dynamic Algorithms. While there are many
hardness results in the partially dynamic setting in this and previous work, quite a few
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problems are still open. Of particular interest are problems that are known to be easy when
one type of updates is allowed but become challenging when the other type of updates is
allowed. For example, the single-source reachability problem can be solved in O(m) total
update time in the incremental setting [Ita86] but the best time in the decremental setting is
still larger than mn0.9 (e.g., [HKN14b, HKN15]). This is also the case for the minimum cut
problem where the incremental setting can be (1 + ε)-approximated in Õ(m) total update
time [RH97] while the current best decremental (1 + ε)-approximation algorithm requires
Õ(m+n

√
n) total update time [Tho07], and the topological ordering problem which is trivial

in the decremental setting but challenging otherwise (e.g., [HKM+12, BFG09]). Since known
hardness techniques – including those presented in this paper – usually work for both the
incremental and the decremental setting, proving non-trivial hardness results for the above
problems seems to be challenging.

Worst-Case Update Time. While there are fully dynamic algorithms with polylogarith-
mic amortized update time for many problems, not much is known for worst-case update
time. The only exception that we are aware of is the connectivity problem (due to the recent
breakthrough of Kapron et al. [KKM13]). Other basic graph problems, such as minimum
spanning tree, 2-edge connectivity, biconnectivity, maximum matching, and densest subgraph
are not known to have polylogarithmic worst-case update time. A polynomial hardness
result for worst-case update time for these problems based on a natural assumption will
be very interesting. The challenge in obtaining this is that such a result must hold only
for the worst-case update time and not for the amortized one. Such results were published
previously (e.g., those in [AVW14, Pat10, KPP16]), but most of these results are now known
to hold for amortized update time as well assuming OMv and SETH (some exceptions are
those for partially dynamic problems).

Deterministic Algorithms. Derandomizing the current best randomized algorithms is
an important question for many problems, e.g., approximate decremental single-source and
all-pairs shortest paths [Ber13, HKN14a] and worst-case connectivity and spanning tree
[KKM13]. This is important since deterministic algorithms do not have to limit the power of
the adversary generating the sequence of updates and queries. Proving that derandomization
is impossible for some problems will be very interesting. The challenge is that such hardness
results must hold only for deterministic algorithm and not for randomized algorithms.

Trade-off between Query and Update Time In this paper we present hardness results
with a trade-off between query and update time for several problems. Are these hardness
results tight? This seems to be a non-trivial question since not much is known about the
upper bounds for these problems. A problem for which it is particularly interesting to study
this question is the subgraph connectivity problem, since it is the starting point of many
reductions that lead to hardness results with a trade-off. In this paper, we show that for any
0 < α < 1 getting an O(mα) update time requires a query time of Ω(m1−α). This matches
two known upper bounds in [Dua10, CPR11] when α = 4/5 and α = 2/3. It is reasonable to
conjecture that there is a matching upper bound for all 0 < α < 1; however, it is not clear if
this is true or not.
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Appendix
A Conjectures (from [AVW14])

Conjecture A.1 (No truly subquadratic 3SUM (3SUM)). In the Word RAM model with
words of O(logn) bits, any algorithm requires n2−o(1) time in expectation to determine whether
a set S ⊂ {−n3, . . . , n3} of |S| = n integers contains three distinct elements a, b, c ∈ S with
a+ b = c.

Conjecture A.2 (No truly subcubic APSP (APSP)). There is a constant c, such that in
the Word RAM model with words of O(logn) bits, any algorithm requires n3−o(1) time in
expectation to compute the distances between every pair of vertices in an n node graph with
edge weights in {1, ..., nc}.

Conjecture A.3 (Strong Exponential Time Hypothesis (SETH)). For every ε > 0, there
exists a k, such that SAT on k-CNF formulas on n variables cannot be solved in O∗(2(1−ε)n)
time, where O∗(·) hides polynomial factor.

Conjecture A.4 (No almost linear time triangle (Triangle)). There is a constant δ >
0, such that in the Word RAM model with words of O(logn) bits, any algorithm requires
m1+δ−o(1) time in expectation to detect whether an m edge graph contains a triangle.

Conjecture A.5 (No truly subcubic combinatorial BMM (BMM)). In the Word RAM
model with words of O(logn) bits, any combinatorial algorithm requires n3−o(1) time in
expectation to compute the Boolean product of two n× n matrices.
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