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Abstract

Halfspaces or linear threshold functions are widely studied in complexity theory, learning
theory and algorithm design. In this work we study the natural problem of constructing pseu-
dorandom generators (PRGs) for halfspaces over the sphere, aka spherical caps, which besides
being interesting and basic geometric objects, also arise frequently in the analysis of various ran-
domized algorithms (e.g., randomized rounding). We give an explicit PRG which fools spherical
caps within error ǫ and has an almost optimal seed-length of O(log n+log(1/ǫ)·log log(1/ǫ)). For
an inverse-polynomially growing error ǫ, our generator has a seed-length optimal up to a factor
of O(log log (n)). The most efficient PRG previously known (due to Kane [34]) requires a seed-

length of Ω(log3/2 (n)) in this setting. We also obtain similar constructions to fool halfspaces
with respect to the Gaussian distribution.

Our construction and analysis are significantly different from previous works on PRGs for
halfspaces and build on the iterative dimension reduction ideas of [48, 12], the classical moment
problem from probability theory and explicit constructions of approximate orthogonal designs
based on the seminal work of Bourgain and Gamburd [9] on expansion in Lie groups.
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1 Introduction

A halfspace (a.k.a. a linear threshold function) is a function f : Rn → {−1, 1} of the form f(x) =
sign(

∑n
i=1 wixi−c) = sign(〈w, x〉−c). Here w1, w2, . . . , wn, c are reals and sign(z) = 1 for every z ≥ 0

and −1 otherwise. Halfspaces are a simple class of Boolean functions extensively studied in various
contexts in computer science beginning with threshold logic in switching circuits [15, 30, 44, 51, 55],
circuits with majority and linear threshold gates in complexity theory [22, 23, 26, 1, 2, 19] and voting
and social choice theory [56, 32, 18, 58]. In the recent years, they have been studied extensively in
learning theory where learning halfspaces (and functions of a few halfspaces) is arguably the central
problem and lies at the core of several important machine learning tools such as the perceptron
[53], support vector machines [59] and boosting [20].

In this paper, we study the problem of constructing explicit pseudorandom generators (PRGs)
for the class of halfspaces. Constructing PRGs for halfspaces (and more generally, polynomial
threshold functions (PTFs)) has been intensively studied in the recent years [8, 16, 17, 35, 36, 34,
37, 49]. In addition to being a natural problem in derandomization, efficient PRGs for halfspaces
have concrete applications such as derandomization of the Goemans Williamson algorithm for max
cut and deterministic estimation of accuracy of halfspace classifiers in machine learning. Before
proceeding, we define PRGs for halfspaces formally1:

Definition 1.1 (PRG for Halfspaces w.r.t. a distribution ν). A PRG for halfspaces with respect
to a distribution ν on R

n, with error ǫ, is a function G : {0, 1}r → R
n such that for every halfspace

h : Rn → {−1, 1},
∣

∣Ex∼ν[h(x)] − Ey∼{0,1}r [h(G(y))]
∣

∣ ≤ ǫ.

The parameter r is called the seed-length of the PRG. G is said to be explicit, if G(y) can be
computed in time polynomial in n.

Alternatively, G is said to “fool halfspaces with error ǫ w.r.t. ν” when it satisfies the definition
above. We will skip the explicit reference to ν when the distribution is clear from context. In this
work, we focus on the case when ν is one of two natural distributions: the uniform distribution on
the sphere S

n−1 ⊆ R
n and the n dimensional spherical Gaussian distribution N (0, 1)n. Halfspaces

are also referred to as spherical caps when seen as functions on S
n−1. A simple probabilistic

argument shows that there exist PRGs with seed-length r = 2 log (n) + 2 log (1/ǫ) +O(1) for both
these distributions.

The question of constructing explicit PRGs for spherical caps was first studied in computational
geometry in the form of discrepancy minimization for spherical caps (cf. [13]). This line of inquiry
led to the seminal work of Lubotzky, Philips and Sarnak ([45]) who used Ramanujan expanders to
construct a PRG for spherical caps over S2 (in our language) with a seed-length of 3 log(1/ǫ)+O(1).
More recently, Diakonikolas et al. [16] showed that bounded independence fools halfspaces w.r.t.
the uniform distribution on the Boolean hypercube, giving a PRG with seed-length O(log (n)/ǫ2).
Subsequently, Karnin, Rabani and Shpilka [39] developed a PRG for spherical caps with a seed-
length of O(log n+ log2(1/ǫ)). The best current result due to Kane [34] gives a PRG for spherical
caps with a seed-length of O(log (n) + log3/2 (1/ǫ)).

Despite the long line of works, the seed-length for the best PRGs for halfspaces remains off by
poly-logarithmic factors in n for low error regimes (i.e. ǫ ≈ 1/poly(n)). In this work, we resolve

1Henceforth, for a multi-set S, x ∼ S denotes a uniformly random element of S.
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this question for spherical caps and give a construction with seed-length optimal up to a factor of
O(log log (n)).

Theorem 1 (Main Theorem). There exists a PRG for halfspaces with seed-length O(log (n) +
log (1/ǫ) · log log (1/ǫ)) for error ǫ, on the uniform distribution on sphere S

n−1.

Our result extends to fool halfspaces with respect to Gaussian distributions as well.
As we describe next, our construction departs significantly from the previous work on con-

structing PRGs and introduces new ingredients which may be useful elsewhere. In particular, our
construction uses an iterative dimension reduction approach as in the works of [48, 12] and makes
use of explicit constructions of approximate orthogonal designs which are related to quantum ana-
logues of classical k-wise independence and expanders [5, 27, 28, 29, 25, 10]. The analysis of the
construction is motivated by the classical truncated moment problem from probability theory.

1.1 Outline of constructions

We now give a high-level description of our construction of the PRG and its analysis for spherical
caps. For simplicity, we focus on the case of ǫ = 1/poly(n) aiming to achieve a seed-length of
O(log (n) log log (n)). Consider a vector w ∈ R

n describing a half space sign(〈w, x〉 − c). Without

loss of generality, we can assume that the vector w is normalized so that ||w|| =
√

∑n
i=1w

2
i = 1. It

follows immediately from the definitions that to construct a PRG for spherical caps, it suffices to
construct a generator G : {0, 1}r → R

n such that

dcdf(〈w,G(y)〉, 〈w, x〉) < ǫ,

where y ∼ {0, 1}r and x ∼ S
n−1 and dcdf denotes the CDF or Kolmogorov distance between

real-valued random variables.
Let X be the random variable 〈w, x〉 for x ∼ S

n−1. We can think of X as obtained by projecting
w on to a uniformly random direction. or equivalently, a random one-dimensional subspace of Rn.
Our construction will exploit this geometric viewpoint by using the following trivial observation:

Fact 1.1. For any 1 ≤ m ≤ n, first picking a random m-dimensional subspace V ⊆ R
n and then

picking a random one-dimensional subspace of V gives the same distribution as picking a random
one-dimensional subspace in R

n.

We use the above observation by iteratively projecting the vector w into
√
n dimensions, and

then to n1/4 dimensions and so forth until we work in a space of dimension Θ(log n). Once we
are down to vectors of dimension Θ(log n), we use a direct approach to project down to a one-
dimensional subspace. We will ensure that each one of these projections can be carried out with
O(log(n/ǫ)) random bits and preserves the properties (including closeness in CDF distance) that
we want. Thus, the total randomness used by our generator will be O(log (n/ǫ) · log log (n)) random
bits.

To make the above outline concrete let us introduce a central definition2:

2The use of
√
n below is somewhat arbitrary and any n

c for c < 1 would suffice for us. We choose
√
n to reduce

the number of parameters.
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Definition 1.2 (Pseudorandom projections (PRP)). Let Q be a uniformly random projection3 from
R
n → R

√
n and x ∼ S

√
n. A distribution D on projections from R

n → R
√
n is an ǫ-pseudorandom

projection (PRP) if the following holds for all w ∈ R
n and P ∼ D:

dcdf(〈Pw, x〉, 〈Qw, x〉) ≤ ǫ.

The number of random bits required to sample a P distributed as D is the seed-length of the
PRP.

Roughly speaking, the above definition says that projecting any vector w to
√
n dimensions using

our PRPs and then projecting to a truly random one-dimensional subspace is indistinguishable from
using truly random projections.

Before describing our construction of PRPs let us note how they can be used for constructing
PRGs fo spherical caps. As described above, we use our PRPs O(log log n) times to project our
vector down to Θ(log2 (n)) dimensions. At this point, we invoke the PRG of Impagliazzo et al. [31]
for space bounded machines (that has a seed-length of O(log (d) · log (1/ǫ)) for fooling halfspaces
in d dimensions with error ǫ). To bound the error we just use a union bound to bound the errors
of all projection steps and use Fact 1.1.

In order to extend the construction above for halfspaces on the Gaussian distribution, we observe
that 〈w, g〉 for g ∼ N (0, 1)n is identically distributed as ||g||2 · 〈w, x〉 for x ∼ S

n−1 and ||g||2, the
length of the random (and independent of x) Gaussian vector g (equivalently, a χ-distributed
random variable with n degrees of freedom). If G is the PRG described above for spherical caps,
we obtain that χn,ǫ ·G is a PRG for halfspaces on the Gaussian distribution, where χn,ǫ is obtained
by discretization of a χ-distributed random variable with n degrees of freedom.

We next describe our construction of explicit PRPs.

1.2 Pseudorandom projections and the classical moment problem

Note that in our definition of the PRPs, the vector x is truly random over S
√
n; our analysis

will exploit this. At a high level, this helps us because even if our PRPs do not approximate
truly random projections very well, the extra randomness from x will be enough to mask these
imperfections sufficiently.

To describe the intuition more concretely, let us setup some notation. Fix a test vector w ∈ R
n

and D be our candidate PRP as in Definition 1.2 and P ∼ D. Let Q be a truly random projection
from R

n to R
√
n. Let X = 〈Qw, x〉 and Y = 〈Pw, x〉; our goal is to design D so that X,Y are

close in CDF distance. Our plan to bound dcdf(X,Y ) is to match the low order moments of X and
Y . This idea relates to the classical moment problem[3]: when do the moments of a (univariate)
random variable over a specified range uniquely identify the random variable? In our context, the
more relevant question is the truncated moment problem: given two real-valued random variables
with matching first k moments, how close (under various metrics) are the two random variables?

There is a rich history behind these two questions (see for example, [3], [42]). Unfortunately, the
results from the probability literature are quantitatively too weak for us: in most of these general
results one needs to match (1/ǫ)Ω(1) moments (see [40] and the discussion after Lemma 4.1) to get
error ǫ which we cannot afford as we aim for ǫ which is polynomially small.

Our main idea is to exploit the additional structure of the random variables X,Y . For example,
the random variable Y above has nicely behaved moments (i.e., not growing too fast) and also has

3See Definition 2.2 for a more precise formulation
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a smooth, well-behaved (read: bounded derivatives) probability density function (PDF). To exploit
this, let us be more concrete. Note that the distribution of random variables X,Y only depend on
the norms ‖Pw‖2, ‖Qw‖2 respectively (because of the rotational symmetry of x ∼ S

√
n). Thus, if

we let X ′ = ‖Qw‖2 and Y ′ = ‖Pw‖2, we can write X = X ′ · Z and Y = Y ′ · Z, where Z is the
random variable obtained by projecting x ∼ S

n−1 to a fixed direction (say e1).
It is not hard to see that Z has a smooth pdf and that X ′ has well-behaved moments (which

can be controlled by hypercontractivity). We show that whenever the random variables X ′, Z
satisfy these reasonable conditions, if, in addition, the first k (even order) moments of Y ′ match
the corresponding first k moments of X ′, then, X,Y are close within an error that is exponentially
small in k (the base of the exponent depending on the moments of X ′ and smoothness of Z). This
result fits into the general principle where matching moments with some additional structure can
be used to get much stronger quantitative guarantees on closeness of distributions; for example,
[14, 6] show similar stronger quantitative bounds for various mixture models.

The above arguments reduce the problem of designing PRPs to that of constructing a distri-
bution D over projections from R

n to R
√
n such that for P ∼ D, and any w ∈ R

n, the moments
of ‖Pw‖2 are approximately what they should be for a corresponding truly random projection. As
it turns out, such distributions have been studied in quantum computing [5, 27, 25, 29, 28, 10, 4]
under the label orthogonal designs4. We discuss them next.

1.3 Orthogonal designs

Orthogonal designs can be seen as generalizations of standard tools in pseudorandomness like k-wise
independence and almost k-wise independence to the “uniform” (Haar) distribution over rotation
matrices. Let SO(n) denote all orthogonal matrices in R

n×n and let H denote the Haar measure
on SO(n). By polynomials on SO(n), we mean functions that are polynomials in the entries of
matrices from SO(n).

Definition 1.3 (approximate orthogonal t-design). A distribution D on a finite subset of matrices
from SO(n) is said to be an ǫ-approximate t-design (in n dimensions) if for every polynomial
p : SO(n) → R of degree at most t such that ||p||1 = 1 (where ||p||1 denotes the sum of absolute
values of coefficients of p),

|ED[p]− EH[p]| ≤
ǫ

nt
.

We say that D is an explicit orthogonal design if there is a poly(n) time procedure to sample a
matrix according to D. The number of bits of randomness used to sample a matrix according to D
is called its seed-length.

It is not too hard to show using the definitions and the arguments outlined from the previous
section, that taking the matrix of first

√
n rows of an approximate orthogonal t-design one gets

a PRP with the same seed-length and error which is ǫ. If we think of fixing the error ǫ (the
dimension changes for us as we recurse), to get PRPs with an error of ǫ we need a t-design for
t ≈ O (log (1/ǫ)/ log (n)).

In particular, to get PRPs with nearly-optimal seed-length, it suffices to get approximate t-
designs with the near-optimal seed-length. The existence of finite orthogonal (or unitary) designs

4One usually looks at unitary designs in quantum computing, but we ignore this distinction for this high-level
discussion.
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follows from the general results of Seymour and Zaslavsky [54]. Harrow and Low [28] observe
that one can modify the argument of Ambainis et. al. [4] to show that there exist t-designs
with optimal (up to constants) parameters. Our application, however, requires efficient explicit
constructions of these objects and we use the work of Brandao et al. [10] who showed that a recent
breakthrough result of Bourgain and Gamburd [9] on expansion in Lie groups implies a construction
of approximate orthogonal designs for t ≤ Θ(n). This gives us orthogonal designs with optimal
seed-length (up to constant factors).5

1.4 Other related work

There is a vast body of work in probability on the generalized moment problems, beginning with
Stieltjes [57] with a first systematic study appearing in the work of Akhiezer [3] under the name of
classical moment problem. The ideas are extremely useful in applications in a number of different
areas (see the recent textbook of Lasserre [42] for a host of applications). For a survey of various
approaches to the moment problem, see the text by Landau [41].

The question of distance (in various metrics) between probability distributions that have (ap-
proximately) matching low-degree moments is also well studied, see, for example [33], where the
principle measure of distance used is the λ-metric. It is possible (see for example [38]) to convert
these bounds into the more standard CDF (or Levy) distance bounds using known results [21].

The idea of using stepwise projections in order to reduce the amount of randomness required in
each step was successfully employed in constructing almost optimal (with respect to randomness)
explicit Johnson-Lindenstrauss (JL) embeddings by Kane et. al. [48]. The analysis in [48] is also
based on matching the low-order moments of the lengths of the projections in each step. Their
argument, though, is different and simpler as a JL family needs to satisfy only a tail bound condition
and one can move from matching low-order moments to tail bounds under simple conditions on
the random variables. In contrast, the connection between matching low order moments and
CDF distance, as explained above, doesn’t hold in general and we crucially exploit the additional
smoothening effect of mixing with an independent well behaved random variable to obtain the low
errors we need.

Very recently, Gopalan, Kane and Meka [24] gave a PRG for halfspaces whose coefficients are
in {1, 0,−1} w.r.t the Boolean hypercube with a seed-length of O((log(n/ǫ)) · poly log(log(n/ǫ)));
this is incomparable to ours and their methods do not seem to apply in our setting. Their work
also uses the iterative dimension reduction approach as in [48] but the actual construction and its
analysis are very different from ours.

2 Preliminaries

We start with some notations:

1. For any vector V = (V1, V2, . . . , Vn) ∈ R
n, ‖V ‖ = ‖V ‖2 =

√

∑n
i=1 V

2
i denotes its Euclidean

norm. We will use the same notation for the norm (induced by the inner product) of elements
of any infinite dimensional Hilbert space.

5As some of the parameters important in our setting are not specified in [10] and we work over real matrices as
opposed to Hermitian ones in [10], we give an analysis of the construction of t-designs from the expansion results of
Bourgain and Gamburd [9] in Section 6.
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2. For any matrix of reals M , M † denotes its transpose, ‖M‖ its spectral norm (largest singular
value) and ‖M‖2 =

∑

i,j M
2
i,j , its Frobenius (or 2) norm.

3. N (0, 1)n denotes the spherical multivariate Gaussian distribution in n-dimensions or alterna-

tively, the product Gaussian measure on R
n with PDF at X ∈ R

n given by ( 1
2π )

−n/2e−
1
2
‖X‖22 .

4. χn (χ random variable with n-degrees of freedom) denotes the positive real-valued random
variable distributed as Y = ‖X‖2 where X ∼ N (0, 1)n.

5. The Gamma function Γ : R → R is defined at any t ∈ R by the integral Γ(t) =
∫∞
0 xt−1e−xdx

and equals (t− 1)! whenever t is a positive integer.

Definition 2.1 (CDF or Kolmogorov Distance). Let X and Y be random variables on some domain
D with cumulative distribution functions (CDFs) P1 and P2 respectively. The CDF distance between
X and Y is defined as dcdf(X,Y ) = supz∈D |P1(z) − P2(z)|.

2.1 Random rotation and projection matrices

SO(n) denotes the group (under matrix multiplication) of all real orthogonal n×n matrices. There
is a unique probability measure on SO(n) invariant under matrix multiplication (on the left or
right) by matrices in SO(n) and is called as the Haar distribution (see Section B.1.1 for a brief
overview).

S
n−1 ⊆ R denotes the sphere of radius 1 in n dimensions. The uniform distribution on S

n−1

is the unique probability distribution on S
n−1 invariant under the action of matrices from SO(n).

One can think of Sn−1 as the set of all one-dimensional subspaces of Rn corresponding to each
direction (unit vector) it contains. More generally, let Gn,t (the Grassmanian) denote the set of all
t dimensional subspaces of Rn. There exists a unique probability (Haar) measure H on Gn,t such
that given any subspace W ∈ Gn,t, H(W ) = H(O · W ) where O ∈ SO(n) is any rotation matrix.
By a uniformly random subspace of t dimensions, we mean an element of Gn,t drawn according to
the distribution with the PDF H.

To project any given vector w ∈ Rn on to a random subspace from Gn,t, we can draw a matrix
Q from SO(n) distributed according to the Haar measure on SO(n) and then select the sub matrix
formed by the first t rows of Q to obtain R. Then, Rw yields the required random projection. It
is a well known fact that the distribution so generated is identical to the Haar measure on Gn,t.

Definition 2.2 (Uniformly Random Projection Matrix). Let O be drawn from the Haar distribution
on SO(n). For any m ≤ n the uniformly random projection matrix from R

n to R
m is defined by

Qm,n ∈ R
m×n, the matrix obtained by taking the first m rows of O.

A standard and useful property of uniforly random projections is that one can perform them
stepwise: for any w ∈ R

n and m̃ ≤ m ≤ n let Qm,n and Qm̃,m be independent random projections
from Rn → R

m and R
m → R

m̃. Let Qm̃,n be a uniformly random projection from R
n → R

m̃.
Then, Qn,m̃ ·w ∈ R

m̃ and Qm̃,m ·Qm,n ·w ∈ R
m̃ are identically distributed. We refer the reader to

the lecture notes by Vershynin [60] for background on random projections and to the text [11] for
background on the orthogonal group.
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3 PRGs for spherical caps from pseudorandom projections

In this section, we describe our main result giving a PRG for fooling spherical caps over Sn−1 with
nearly optimal seed-length:

Theorem 2 (PRG for Spherical Caps). There exists a PRG for spherical caps on R
n with error

at most ǫ and a seed-length of O(log (n) + log log (1/ǫ) log(1/ǫ)).

We will prove the above result assuming we have constructions of appropriate PRPs as defined
in Definition 1.2; we show how to construct PRPs in the subsequent sections.

Theorem 3 (See Section 5). Fix any ǫ > 0. Then, for any m = Ω(log2 (1/ǫ)), there exists an
ǫ-PRP from R

m → R
√
m with a seed-length of O(log (m/ǫ)).

When working on small dimensions (m ∼ log (1/ǫ)), we will use the PRG for halfspaces based
on the construction for small-space machines due to Nisan [52] and Impagliazzo et. al. [31] as
observed in [50].

Fact 3.1. There exists a PRG GINW : {0, 1}s → S
m−1 that fools spherical caps in m dimensions

within error ǫ using a seed-length of s = O(log (m) · log (1/ǫ)).

We are now ready to prove Theorem 2. As described in the introduction, the basic idea is to
use the PRPs to iteratively reduce the dimension of the space and when the dimension is small
enough, we can apply Fact 3.1.

We now describe our generator construction. Fix ǫ′ = Θ(ǫ/ log log (1/ǫ)) > 0 and for i =
0, 1, 2, . . . , t−1 let ni = n1/2i . Set t = O(log log (1/ǫ′)) such that nt = max{nΘ((1/ log (1/ǫ′))),Θ(log2 (1/ǫ′))}.
Let Di denote a PRP from R

ni → R
ni+1 with error ǫ′ and let GINW : {0, 1}s → S

nt−1 be the gen-
erator given by Fact 3.1 with error ǫ′ and s = O(log (nt) · log (1/ǫ′)). Our generator for fooling
spherical caps is defined as follows:

• Sample Pi ∼ Di for each i < t and let Xt = GINW (y) for y ∼ {0, 1}s, all random draws being
independent of each other.

• Output
X0 = (P †

0P
†
1 · · ·P †

t−1Xt) ∈ S
n−1, (1)

Note that because Pi is a projection, the rows of Pi are orthonormal and as ‖Xt‖ = 1 it follows
that ‖X0‖ = 1 so that X0 ∈ S

n−1. The total seed-length of the generator is the number of bits
needed for each of the PRPs and GINW :

t−1
∑

i=1

O(log(ni/ǫ
′)) +O(log(nt) · log(1/ǫ′)) = O(log (n) + log log (1/ǫ) · log (1/ǫ)). (2)

We will show that the above generator fools spherical caps over Sn−1 with error O(log log (1/ǫ)·ǫ′) ≤
ǫ.

Proof of Theorem 2. We will show that the generator defined by Equation 1 fools spherical caps
w.r.t. the uniform distribution on S

n−1. The proof is a simple inductive application of the definition
of PRPs. We first set up some notation. For 0 ≤ i ≤ t, let Yi ∼ S

ni−1 andXi = (P †
i P

†
i+1 · · ·P

†
t−1Xt).

7



Let Qi ∈ R
ni+1×ni be a truly random projection from R

ni to a uniformly random ni+1-dimensional
subspace inside it. Fooling spherical caps is equivalent to showing that dcdf(〈w,X0〉, 〈w, Y0〉) is
small. We will show this by induction on 0 ≤ i ≤ t. For brevity, for real-valued random variables
Z,Z ′, we write Z ≈δ Z

′ if dcdf(Z,Z ′) ≤ δ.

Claim 3.1. For 0 ≤ i ≤ t, and all v ∈ R
ni,

dcdf(〈v,Xi〉, 〈v, Yi〉) ≤ (t− i+ 1)ǫ′.

Proof. For i = t, the statement in the claim follows from the definition of Xt and Fact 3.1. Suppose
the claim is true for i = j + 1 for some 0 ≤ j ≤ t − 1. Observe that Xj = P †

j Xj+1. Fix v ∈ R
nj .

Now,

〈v,Xj〉 = 〈v, P †
j Xj+1〉 = 〈Pjv,Xj+1〉 ≈(t−j)ǫ′ 〈Pjv, Yj+1〉 ≈′

ǫ 〈Qjv, Yj+1〉 = 〈v,Q†
jYj+1〉 = 〈v, Yj〉,

where the first ≈ follows from the inductive hypothesis (and the fact that Pj is independent of Xj+1)
and the second ≈ follows from the definition of PRP. Therefore, dcdf(〈v,Xj〉, 〈v, Yj〉) ≤ (t−j+1)ǫ′.
The claim now follows by induction.

Therefore, for any w ∈ R
n, dcdf(〈w,X0〉, 〈w, Y0〉) ≤ (t + 1)ǫ′ ≤ ǫ. Using the bound on the

seed-length from Equation 2, the theorem follows.

3.1 PRGs for halfspaces with respect to the Gaussian distribution

Next, we describe and analyze the PRG for Halfspaces w.r.t. the spherical Gaussian distribution on
R
n. The generator will just be an appropriate scalar multiple of the generator for fooling spherical

caps from Theorem 2.

Theorem 4 (PRGs for Halfspaces of Gaussians). Fix ǫ > 0. There exists a PRG for halfspaces
w.r.t. the spherical Gaussian distribution with error at most ǫ and seed-length s = O(log n +
log log (1/ǫ) · log(1/ǫ)).

To prove the theorem we shall use the following simple fact.

Lemma 3.1. For every n ≥ 1, and δ > 0, there exists a random variable χn,δ samplable efficiently
with O(log n+ log(1/δ)) bits that approximates the random variable χn:

dcdf(χn,δ, χn) ≤ δ.

Lemma 3.2. Let U, V1, V2 be independent random variables. Then, dcdf(U ·V1, U ·V2) ≤ dcdf(V1, V2).

Proof of Theorem 4. The theorem follows from the following black box reduction and Theorem 2.
Fix ǫ′ = ǫ/2 and let G : {0, 1}s → S

n−1 be the generator from previous subsection that ǫ′-fools
spherical caps w.r.t. the uniform distribution on S

n−1. Let χn,ǫ′ denote a ǫ′-approximating random
variable for χn from Lemma 3.1.

Our generator samples χn,ǫ′ and x ∼ {0, 1}s independently and outputs χn,ǫ · G(x). Let Y ∼
S
n−1. It is a standard fact that N (0, 1)n ≡ χn · Y (in law). Now, for any v ∈ R

nt,

dcdf(〈χn,ǫ′ ·G(x), v〉, 〈χn·Y, v〉) ≤ dcdf(〈χn,ǫ′ ·G(x), v〉, 〈χn·G(x), v〉)+dcdf(〈χn·G(x), v〉, 〈χn ·Y, v〉) ≤
dcdf(χn,ǫ′ , χn) + dcdf(〈G(x), v〉, 〈Y, v〉) ≤ 2ǫ′ = ǫ,

using Lemma 3.2. The theorem now follows.

The objective of the following two sections is to prove Theorem 3.
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4 From matching moments to CDF distance

In this section, we give quantitative bounds for the truncated moment problem in terms of the
CDF distance: given random variables that have approximately equal low order moments, we
derive strong upper bounds on the CDF distance between them. Our bounds are stronger (and
crucial to obtaining near optimal seed-lengths for our generators) than those obtained from the
general results in probability (see for e.g. [33], [41]) but require stronger analytic properties of the
random variables. The results from this section will be used to analyze our construction of PRPs
in the next section.

Let Z be a real-valued random variable with mean 0 and CDF F : R → [0, 1]. Our goal here
is to show that if X,Y are two non-negative random variables with approximately equal first k
moments, then the mixtures X · Z and Y · Z are close in CDF distance. We will show that if F is
sufficiently smooth and Z satisfies reasonable tail bounds, then the cdf distance between X ·Z and
Y ·Z is exponentially small in k. We first formally define (approximate) moment matching random
variables.

Definition 4.1 (Moment-Matching Random Variables). Random variables X and Y are said to
be (k, ǫ)-approximate moment matching if for every polynomial p of degree at most k,

|E[p(X)] − E[p(Y )]| ≤ ǫ · ‖p‖1, (3)

where ‖p‖1 is the sum of absolute values of the coefficients of p.

We are now ready to describe the main technical result of this section:

Lemma 4.1. Let Z be a mean 0, symmetric random variable with an infinitely differentiable
CDF F : R → [0, 1]. Let X,Y be two non-negative (2k, ǫ)-approximate moment matching random

variables for even k. Let µ2 = E[X] ≥ 1 and µi = E[
∣

∣X − µ2
∣

∣

i
] for every i > 1. Then, for all

δ ≤ 1/2,

dcdf(
√
X · Z,

√
Y · Z) ≤ δ + 2Θ(k)∆k · (

µk

µ2k
+

√
µ2k

µ2k
+ ǫ),

where ∆k = max

(

1, kΘ(k)
(

F−1(1− δ)
)k
(

maxℓ≤k sup2
√

2/3≤ z
F−1(1−δ)

≤2
√
2
|F (ℓ)(z)|}

))

.

It is instructive to compare the error bounds above with the following estimate (due to Klebanov
and Mkrtchyan) of CDF distance between random variables that have identical low order moments
(the statement for approximately equal low order moment is similar but more cumbersome).

Fact 4.1 (Klebanov and Mkrtchyan [40], Theorem 1 and Remark 2). Let F, f and G, g be the
CDFs and PDFs of real-valued random variables X and Y . Suppose f is bounded and that X,Y
have identical finite first 2m moments given by µ1, µ2, . . . , µ2k < ∞ such that µ2 = 1. Let βk =
∑k

i=1 µ
1/2i
2i . Then, for a universal constant C,

dcdf(X,Y ) ≤ C sup
t∈R

f(t)β
−1/4
k−1 .

9



We can get a sense of how large k must be to obtain an error smaller than a given ǫ using
Fact 4.1: consider the example of X = ‖Qw‖2 where Q is a uniformly random projection matrix

from R
n → R

√
n. In this case, after scaling X to make µ2 = 1, we have that µ

1/t
t = tΩ(1) (follows

from an argument similar to the proof of Lemma 5.3). Thus, to obtain an error of ǫ, Fact 4.1
would require matching moments of X and Y of order up to (1/ǫ)Ω(1). In contrast, in Section 5,
in the proof of Theorem 3 using Lemma 4.1, we will show that for n = Ω(log (1/ǫ)), approximately
matching only a constant number of moments of X and Y will be enough to give us a CDF distance
bound of at most ǫ.

We now move on to the proof of Lemma 4.1. We first collect a few simple facts from elementary
analysis that will be useful in our proof of Lemma 4.1. We give proofs for these results in Section A
of the Appendix. First we note a bound on the magnitude of derivatives of compositions of infinitely
differentiable functions:

Fact 4.2. Let g, h : R → R be infinitely differentiable functions. Then,

|(g ◦ h)(k)(x)| ≤ (k!)2 ·
(

max
ℓ≤k

|g(ℓ)(h(x))|
)

·
(

max
ℓ≤k

|h(ℓ)(x)|
)k

.

We will also need the following bound on the derivatives of 1/
√
1 + x when x > −1/2:

Fact 4.3. For h : (−1,∞) → R be defined by h(x) = 1/
√
1 + x. Then, |h(k)(x)| ≤ k! for −1/2 < x.

Finally, we write the CDF of a product of two random random variables as a convenient ex-
pression:

Fact 4.4. Let F : R → [0, 1] be the CDF of a random variable Z. For a positive random variable
V independent of Z, the CDF G of V · Z at any t ∈ R is given by:

G(t) = EV [F (t/V )].

We are now ready to prove Lemma 4.1.

Proof of Lemma 4.1. Fix t ∈ R. Using Fact 4.4, the lemma amounts to obtaining an upper bound
on

sup
t

∣

∣

∣
EX [F (t/

√
X)]− EY [F (t/

√
Y )]
∣

∣

∣
.

Ideally, we’d like to show that for every t, F (t/
√
A) is well approximated by a low-degree polynomial

(in A). We can then invoke the approximate moment matching property of the pair X,Y to bound
the difference in the expectations of F (t/

√
X) and F (t/

√
Y ). This, however turns out to be too

strong. Instead, we will show that F is well approximated by low-degree polynomials whenever
X,Y do not deviate too far from their expectations. Towards this goal, we first set some notation:

1. ν2
def
= E[Y ].

2. X̂
def
= X−µ2

µ2 , Ŷ
def
= Y−µ2

µ2 .

3. g = gt : (−1,∞) → R by g(z)
def
= F ( t

µ(
√
1+z)

).
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Now, E[X̂k] ≤ µk

µ2k and thus, the statement of the theorem is trivial if µk

µ2k ≥ 1. Thus, suppose

otherwise, in which case E[X̂ℓ] ≤ 1 for any ℓ ≤ 2k.
Now, F ( t√

X
) = F ( t

µ·
√

(1+X̂)
) = g(X̂) and similarly, F ( t√

Y
) = F ( t

µ·
√

(1+Ŷ )
) = g(Ŷ ). Next, we

describe the approximating polynomial for g at 0, which will be obtained by truncating the Taylor
expansion of g. To bound the error of approximation, we will need to bound the derivatives of g.
This can be done whenever x > −1/2.

For every x : |x| < 1/2, we now apply Fact 4.2 to functions F (x) and t
µ
√
1+x

and use Fact 4.3

to write:

max
ℓ≤k

sup
|x|<1/2

|g(ℓ)(x)| ≤ (k!)3 ·
(

t

µ

)k

·
(

max
ℓ≤k

sup
− 1

2
≤x≤ 1

2

∣

∣

∣

∣

∣

F (ℓ)

(

t

µ ·
√

(1 + x)

)∣

∣

∣

∣

∣

)

def
= ζ(t).

Let Pk : R → R be the degree k− 1 polynomial obtained by truncating the Taylor expansion of
g at 0. Thus, each coefficient of Pk is at most ζ(t) for z > −1/2. Thus, using the error term of the
Taylor expansion, we have:

|g(z) − Pk(z)| < kζ(t) · |z|k. (4)

We can now write the CDF distance between
√
X · Z and

√
Y · Z as:

∣

∣

∣

∣

E[F (
t√
X

)]− E[F (
t√
Y
)]

∣

∣

∣

∣

=
∣

∣

∣
E[g(X̂)]− E[g(Ŷ )]

∣

∣

∣
≤

∣

∣

∣
E[g(X̂)]− E[Pk(X̂)]

∣

∣

∣
+
∣

∣

∣
E[Pk(X̂)]− E[Pk(Ŷ )]

∣

∣

∣
+
∣

∣

∣
E[Pk(Ŷ )]− E[g(Ŷ )]

∣

∣

∣
. (5)

We will bound each term in the right-side individually. We first use the fact that X and Y are 2k
moment matching to bound the middle term:

∣

∣

∣E[Pk(X̂)]− E[Pk(Ŷ )]
∣

∣

∣ ≤ ǫ · ‖P‖1 ≤ kζ(t)ǫ. (6)

Next, we bound the first term of (5). Let 1(GX) be the 0-1 indicator of the event |X̂ | < 1/2
and set 1(¬GX) = 1− 1(GX). Then,

|E[g(X̂)]− E[Pk(X̂)]| ≤ E

[∣

∣

∣g(X̂)− Pk(X̂)
∣

∣

∣

]

(7)

= E

[∣

∣

∣
g(X̂)− Pk(X̂)

∣

∣

∣
· 1(GX)

]

+ E

[∣

∣

∣
g(X̂)− Pk(X̂)

∣

∣

∣
· 1(¬GX)

]

When 1(GX) = 1, we can use Equation 4 to bound the first term (recall that k is even):

≤ E

[

kζ(t) · X̂k
]

+ E

[∣

∣

∣
g(X̂)− Pk(X̂)

∣

∣

∣
· 1(¬GX)

]

(8)

Applying Cauchy-Schwartz to the second term:

≤ E

[

kζ(t) · X̂k
]

+ E

[

∣

∣

∣
g(X̂)− Pk(X̂)

∣

∣

∣

2
]1/2

· E[1(¬GX)]1/2

≤ kζ(t) · µk

µ2k
+ 2

(

1 + E[Pk(X̂)2]1/2
)

· E[1(¬(GX))]1/2. (9)
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Next, we bound the last two terms of (9). Using the bound on coefficients of Pk and the upper
bound of 1 on the moments of X̂:

E[Pk(X̂)2]1/2 ≤ ζ(t) ·
(

k−1
∑

ℓ=0

E[X̂2ℓ]1/2

)

≤ kζ(t). (10)

By Markov’s inequality applied to X̂2k,

E[1(¬GX)] = Pr[|X̂ | ≥ 1/2] ≤ 22k · µ2k

µ4k
. (11)

Combining the above bounds we get,

E

[∣

∣

∣
g(X̂)− Pk(X̂)

∣

∣

∣

]

≤ kζ(t)
µk

µ2k
+ (1 + kζ(t))2k+1

√
µ2k

µ2k
.

We now argue similarly for the case of Y . Let 1(GY ) be 0-1 indicator of the event |Ŷ | < 1/2
and 1(¬GY ) = 1 − 1(GY ). Now, E[Ŷ k] ≤ E[X̂k] + 2ǫ ≤ µk

µ2k + 2ǫ. Next, as above, an application

of Markov’s inequality combined with the observation that X,Y are moment matching (and thus
E[(Y − µ2)2k] ≤ E[(X − µ2)2k] + 2ǫµ4k) yields

E[1(¬GY )] ≤ 22k · E[(Y − µ2)2k]

µ4k
≤ 22k

µ2k

µ4k
+ 22k+1ǫ.

Thus, arguing as in the case of (9), we obtain:

E

[∣

∣

∣g(Ŷ )− Pk(Ŷ )
∣

∣

∣

]

≤ kζ(t)
µk

µ2k
+ 2kζ(t)ǫ+ 2k(1 + kζ(t)) ·

√
µ2k

µ2k
+ (1 + kζ(t))2k+2ǫ.

Thus, from (5), we finally have:

∣

∣

∣
E[F (t/

√
X)]− E[F (t/

√
Y )]
∣

∣

∣
≤ 2k

(

ζ(t)
µk

µ2k

)

+ (1 + kζ(t))2k+1

√
µ2k

µ2k
+ ǫ · 23kζ(t). (12)

When t ≥ 2µF−1(1− δ), it is easy to bound the CDF distance:

E[F (t/
√
X)] ≥ E[F (t/

√
X)|1GX

= 1] · Pr[1(GX) = 1]

≥ F (t/2µ) · (1− Pr[1(¬GX) = 1]) ≥ 1− δ − Pr[1(¬GX) = 1]

≥ 1− δ − 22k
µ2k

µ4k
.

Similarly, in this case:

E[F (t/
√
Y )] ≥ 1− δ − 22k

µ2k

µ4k
− 22k+1ǫ.

Thus, when t ≥ 2µF−1(1− δ),

∣

∣

∣
E[F (t/

√
X)]− E[F (t/

√
Y )]
∣

∣

∣
≤ δ + 22k+1 ·

√
µ2k

µ4k
+ 22k+1ǫ.

On the other hand, when t ≤ 2µF−1(1 − δ) (and |x| ≤ 1/2) yields t
µ
√
1+x

∈ [2
√

2
3 , 2

√
2] and

thus: ζ(t) ≤ ∆k. We can now use (12) setting ζ(t) ≤ ∆k to obtain the lemma.
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5 PRPs from approximate orthogonal designs

In this section, we show how to construct PRPs from approximate orthogonal designs and thus
proving Theorem 3, which we first restate here.

Theorem 5 (Theorem 3 restated). Fix any ǫ > 0. Then, for any m = Ω(log2 (1/ǫ)), there exists
an ǫ-PRP from R

m → R
√
m with a seed-length of O(log (m/ǫ)).

For this, we shall assume the existence of a good explicit approximate orthogonal design, a
proof of which is provided in the next section:

Lemma 5.1 ([10]; see Section 6). There exists an efficiently samplable ǫ-approximate orthogonal
t-design with seed-length O(t log (n) + log (1/ǫ)).

We first describe the idea behind the proof of Theorem 3. Let D be an ǫ approximate orthogonal
2k-design in m dimensions and denote

√
m by m̃. For every P ′ ∼ D, we define P ∈ R

m̃×m to be
the matrix obtained by taking the first m̃ rows of P ′. Let the resulting distribution on matrices in
R
m̃×m be denoted by Dm̃. We will show that Dm̃ is a β-PRP where β depends on the parameters

k and ǫ. Suppose Q is the uniformly random projection from R
m → R

m̃, w ∈ R
m satisfies ‖w‖ = 1

and v ∼ S
m̃−1. Then, to show that P is an PRP, we must show that dcdf(〈Pw, v〉, 〈Qw, v〉) is small.

Let Y = ‖Pw‖2. The random variable 〈Pw, v〉 has the same distribution as
√
Y · 〈w′, v〉 for

w′:‖w′‖ = 1 and v ∼ S
m̃−1 independent of Y . Thus, the random variable of our interest is a mixture√

Y · Z where Z is distributed as 〈w′, v〉. Similarly, 〈Qw, v〉 is distributed as a mixture
√
X · Z

where X = ‖Qw‖2.
Thus, if we show that a) Z has an infinitely differentiable CDF with a reasonably bounded tail

and derivatives b)X has sufficiently slow growing moments and c) X,Y are approximately moment
matching, then we can apply the result from the previous section to show that the CDF distance
between

√
X · Z and

√
Y · Z is small. In the following, we implement this plan and show that the

X,Y,Z defined above indeed satisfy the conditions required to complete the proof of Theorem 3.
We first record the required properties of Z:

Lemma 5.2. Let Z be the random variable distributed as 〈w, v〉 for v ∼ S
m−1 and any fixed

w:‖w‖ = 1 as above. Let f, F be the PDF and CDF of Z, respectively. Then,

1. Sharp Tail: F−1(1− δ) < 1/10 for δ = 0.995
√
m.

2. Bounds on the Derivatives: For any 0 < x < 1 : |f (q)(x)| ≤ c · 10q · q!/|x|q, where

c = 1√
π
· Γ(m/2)

Γ(m−1
2

)
.

Next, we bound the moments of X:

Lemma 5.3 (Moments of X). Fix any w ∈ R
m such that ‖w‖ = 1 and define random variables

X = ‖Qw‖2 and Y = ‖Pw‖2 where Q is the uniformly random projection from R
m → R

m̃ for
m̃ =

√
m and P ∼ D. Then, for any p ≤ m̃/20,

E[
|X − E[X]|p

E[X]p
] ≤ pO(p) · m̃−4p/5.

We can now complete the proof of Theorem 3 using Lemma 4.1, Lemma 5.2 and Lemma 5.3.
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Proof of Theorem 3. Let k < m̃/80 be such that (m̃/k)−Θ(k) < ǫ. Since m = Ω(log2 (1/ǫ)), such
a k exists. Let D be an ǫ-approximate 4k-orthogonal design in m dimensions and Dm̃ be the
distribution over matrices in R

m̃×m obtained by taking the submatrix of first m̃ rows of a random
draw from D. Let Q be a uniformly random projection matrix obtained by taking the first m̃ rows
of a Haar distributed matrix from SO(m).

We claim that the map: w ∈ R
m → Pw ∈ R

m̃ where P ∼ Dm̃ is an ǫ-PRP. We set X = ‖Qw‖2,
Y = ‖Pw‖2 and Z distributed as 〈w, v〉 for v ∼ S

m̃−1. Observe that by our construction of P
and Q above, each of X,Y can be seen as polynomial of degree 2 on SO(m). Thus, Xt and Y t

are are polynomials on SO(m) of degree at most 2k for any t ≤ k. It is easy to observe (using
that

∑

i w
2
i = 1) that the absolute value of the coefficients of the coefficients of these polynomials

is at most m2k. Further, since D is an ǫ-approximate 4k-design, we must have, for any univariate
polynomial p of at most k and sum of absolute value of its coefficients ||p||1 = 1:

|E[p(X)]− E[p(Y )]| ≤ ǫ

m4k
·m2k ≤ ǫ ·m−2k.

We use Lemma 5.3 and Lemma 5.2 to obtain the estimates of all parameters required to apply
Lemma 4.1 to X and Y above now. Let F and f be the CDF and PDF of Z respectively. For X, Y
and Z above, we have, ∆k = kΘ(k) and µk/µ

2k,
√
µ2k/µ

2k ≤ m−Θ(k). We set δ = 0.995
√
m and note

that F−1(1 − δ) < 1/10. It is easy to verify that with this setting of the parameters, Lemma 4.1
gives an error bound of ǫ for appropriate setting of constants hidden in the Θs.

Next, we verify the seed-length used for the construction above: observe that the k chosen
above can be written as max{Θ(1),Θ(log (1/ǫ)/ log (m))}. Thus, the required seed-length is given
by: O(k log (m) + log (1/ǫ)) = O(log (m/ǫ)) as promised.

In the remaining part of this section, we prove Lemma 5.2 and Lemma 5.3.

Proof of Lemma 5.2. Because of rotation invariance of v ∼ S
m̃−1, Z is identically distributed as

the first coordinate of v: v1. The PDF f : [−1, 1] → [0, 1] of Z at any t is given by (we give a proof
in the Section A.2 of the Appendix):

f(t) = cm̃ · (1− t2)
m̃−3

2

where cm̃ = 1√
π
· Γ(m̃/2)

Γ( m̃−1
2

)
. From the expression for f , it is easy to verify that for δ = 0.995

√
m,

F−1(1− δ) < 1/10.
To bound the derivatives of f , we will need the following standard theorem from complex

analysis (due to Cauchy):

Fact 5.1 (Cauchy’s Estimate). Let η : C → C be a holomorphic function on D(z, r), the closed
disk of radius r centered at z ∈ C, and let M = maxy:|z−y|=r |F (y)|. Then,

|η(k)(z)| ≤ k!

rk
·M.

We can now estimate the derivatives of f . We first extend f to all of the complex plane to

obtain f̃ . Then, f̃(z) = cm̃ · (1− z2)
m̃−3

2 is a polynomial in z and thus holomorphic everywhere and
in particular, on every closed disk in the complex plane. The complex derivatives of f̃ at any point
x on the real line are equal to the derivatives of f at x. Thus, we can apply Cauchy’s estimate to
produce an upper bound on the derivatives.
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Consider the disk D(x, r) of radius r = x/10 centered at a (real) x in the complex plane. We
need to estimate the maximum absolute value of f̃ over the boundary of D(x, r). Parametrize
the boundary of D(x, r) as z = x + rcos(θ) + irsin(θ) for θ ∈ [0, 2π]. We can write |1 − z2| =
1 − 2Re(z2) + |z|4. Now, Re(z2) = (x+ rcos(θ))2 − r2sin2(θ) ≥ 0.8x2. On the other hand, |z|4 =
(x+ rcos(θ))2 + r2sin2(θ))2 ≤ (x + r)4 ≤ 1.21x4. Thus, −2Re(z2) + ‖z‖4 ≤ −1.6x2 + 1.21x4 ≤ 0.
Thus, |1− z2| ≤ 1 for every z on the boundary of D(x, r). Hence, the maximum absolute value of
f̃ on D(x, r) is at most cm̃. Applying Cauchy’s estimate to f̃ now gives:

|f (q)(x)| ≤ cm̃ · 10q · q!/|x|q.

Before moving on to prove Lemma 5.3, we collect three facts useful in the proof:
We will need the following Marcinkiewicz-Zygmund inequality for moments and the standard

gaussian concentration:

Fact 5.2 (Marcinkiewicz-Zygmund [47] (see also [46])). Let S1, S2, . . . , Sq be a sequence of inde-
pendent, zero mean random variables. Then:

E[|
q
∑

i=1

Si|p] ≤ pO(p) · qp/2−1
q
∑

i=1

E[|Si|p].

The following concentration bound is standard for Gaussian random vectors.

Fact 5.3 (Gaussian Concentration [43] (see also Corollary 2.3 on Page 6 of [7]) ). Let g ∈ R
m be

a vector with each coordinate distributed independently as N (0, 1). Then, for any 0 < ξ < 1:

Pr[‖g‖2 −m| > ξ ·m] ≤ 2e−ξ2·m/4.

Proof of Lemma 5.3. Due to the rotation invariance of the uniformly random projection Q, X =
‖Qw‖2 has the same distribution as the Euclidean norm of the vector formed by the first m̃ =

√
m

coordinates of v ∼ S
m−1. Thus, E[X] = m̃/m = 1/

√
m. Recall that v has the same distribution as

the random variable g/‖g‖ where g ∈ R
m has each coordinate distributed N (0, 1). Let 1G be the

15



indicator of the event that m(1− ξ) ≤ ‖g‖2 ≤ (1 + ξ)m and ¬1G, its negation. Then, we have:

E[|X − E[X]|p] = E[|
m̃
∑

i=1

v2i − m̃/m|p] = E[
|∑m̃

i=1 g
2
i − ‖g‖2 · m̃

m |p
‖g‖2p ]

= E[
|∑m̃

i=1 g
2
i − ‖g‖2 · m̃

m |p
‖g‖2p · 1G] + E[

|∑m̃
i=1 g

2
i − ‖g‖2 · m̃

m |2p
‖g‖2p · ¬1G].

Estimating first term using the bound on ‖g‖2
and applying Cauchy-Schwartz to the second term,

≤ (
1

1− ξ
)p · E





2p
(∣

∣

∣

∑m̃
i=1 g

2
i − m̃

∣

∣

∣

p
+ ξp · m̃p

)

mp



+ E[¬1G]
1/2 ·



E





∣

∣

∣

∣

∣

m̃
∑

i=1

v2i − m̃/m

∣

∣

∣

∣

∣

2p








1/2

.

Using that E[v2i ] = 1/m for each i

≤ (
2

m(1− ξ)
)p · (ξpm̃p + E[|

m̃
∑

i=1

(g2i − 1)|2p]) + 2pe−ξ2m/8 · (m̃
m
)p.

The first term is easy to estimate using Fact 5.2 (the same result can also be obtained from
Bernstein-like inequalities for exponential random variables [61]). We have:

E[|
m̃
∑

i=1

(g2i − 1)|p] ≤ pO(p) · m̃p/2 · E[|g2i − 1|p] = pO(p) · m̃p/2.

Choosing ξ = 1/m1/5 and noting that p < m̃/20, we can now obtain: E[|X − E[X]|p]/(E[X])p ≤
pO(p) ·m−2p/5 = pO(p) · m̃−4p/5.

6 Constructing approximte orthogonal designs

In this section, we give a proof of a construction of approximate orthogonal designs, proving
Lemma 5.1, based on a recent result of Bourgain and Gamburd [9]. This also follows from the
work Brandao et. al. [10] (Page 17, Equation B2) except for some technicalities and concrete quan-
titative bounds which we need and work out next. We first provide some background before
stating the result of [9] (see the text by Bump [11] for a detailed exposition).

Bourgain and Gamburd[9] show that there exist Cayley graph expanders on SU(n). This also
implies that there exist Cayley graph expanders with the same parameters on the group SO(n) (see
Appendix B). In this section, we use the construction for SO(n) to obtain approximate orthogonal
t-designs. We provide the necessary background and the deferred proofs from this section in
Appendix B.

We briefly recall Cayley graphs on finite groups before working on SO(n). A Cayley graph on
a group G is defined by a set of generators (inverse closed) g1, g2, . . . gk. The vertex set is given by
the elements of the group G and there is an edge between h, h′ iff h = gih

′ for some generator gi.
One can define a Cayley graph on an infinite group similarly and in the following, we adopt the

linear operator view.
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Let L2(SO(n)) = {ρ : SO(n) → R |
∫

H
ρ2 < ∞} be the linear space of square integrable functions

on SO(n) with respect to the Haar measure H. For any g ∈ SO(n), let Tg : L2(SO(n)) → L2(SO(n))
be the linear operator on SO(n) defined so that ρ → Tg · ρ, where (Tg · ρ)(y) = ρ(y · g).

Next, we define Hecke (or averaging) operators on L2(SO(n)) that correspond to the finite
dimensional normalized adjacency matrices described above. We say a set Gen = {g1, g2, . . . , gk}
is inverse closed if for every g ∈ Gen, g−1 ∈ G.

Definition 6.1 (Hecke Operators). For some universal constant k > 0, an averaging operator
(also known as Hecke operator) with an inverse closed set of generators g1, g2, . . . , gk ∈ G is a

linear operator T : L2(G) → L2(G) defined by T
def
= 1

k

∑k
i=1 Tgi.

It is easy to verify that a Hecke operator T on L2(SO(n)) is bounded and compact and thus
has a spectrum. Thus we can look at the gap between the first and second eigenvalues of T to talk
of the expansion of the associated graph. This is encapsulated in the following definition:

Definition 6.2 (Hecke Operators with Spectral Gap). A Hecke operator on L2(G) for a com-
pact Lie group G is said to have a spectral gap, if for every ρ ∈ L2(G) such that ‖ρ‖2 = 1 and
Eg∼H[ρ(g)] =

∫

H
ρdg = 0, ‖T ρ‖2 ≤ λ < 1− δ for a universal constant δ > 0.

We can now describe the (consequence of) result of Bourgain-Gamburd [9] that we need in the
language of Hecke operators:

Corollary 6.1 (See Corollary B.1). For a universal constant k > 0, there is an explicit Hecke
operator T with k generators on L2(SO(n)) with a spectral gap 1− λ bounded away from 0.

We now show how to obtain orthogonal t-designs using the above corollary. The idea itself
is standard (see for example [45]) and we again use the intuition for finite graphs to motivate it:
imagine running a random walk on the Cayley graph for a few (∼ log (1/ǫ)) steps. In the finite
dimensional world, we expect that the resulting distribution on the vertices of the graph to be
“close” to (∼ ǫ) uniform.

In our setting, recall that our aim is to construct an object that fools the Haar (“uniform”)
distribution on SO(n). If we start a “random walk” on a Cayley graph with generators g1, g2, . . . , gk
on SO(n) from some fixed point, we expect the resulting distribution to be close to “uniform” on
SO(n) after a few steps. This argument can be formalized to yield ǫ-approximate orthogonal
1-designs, i.e. those that fool all linear functions in the entries of the matrices drawn according to
the Haar distribution on SO(n). To fool higher degree polynomials, we first take the tensor powers
of the generators of the “Cayley graph” on SO(n). The entries of g⊗t

i , the t-wise tensor (Kronecker)
product of gi with itself, are all monomials of degree at most t in the entries of gi. Thus if we start
with the Cayley graph with the generators given by the tth tensor powers of gi, and argue similarly
as above, we should hope to get approximate orthogonal t-designs.

We now show how to formalize this argument starting from the Hecke operator T given by
Bourgain and Gamburd [9]. Suppose g1, g2, . . . , gk are generators of the Hecke operator T as in
the above corollary. Then, the constant function 1 : SO(n) → R, 1(g) = 1 for every g ∈ SO(n) is
an eigenfunction of T with eigenvalue 1. In particular, the operator T ′ defined by

T
′ρ

def
= T ρ− Eg∼H[ρ(g)],

has a spectrum and all its eigenvalues are at most λ.
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Define

S
def
= 1/k ·

k
∑

i=1

g⊗t
i − Eg∼H[g

⊗t].

Then, S ∈ R
nt×nt

. We show that the spectral norm of S, ‖S‖ ≤ λ.

Lemma 6.1. Let T be a Hecke operator on L2(SO(n)) with generators g1, g2, . . . , gk with second

largest eigenvalue λ. For any positive integer t ∈ N, let S =
(

1
2k ·∑k

i=1 g
⊗t
i − Eg∼H[g

⊗t]
)

∈ R
nt×nt

.

Then,
‖S‖ ≤ λ.

Proof. Let v ∈ R
nt
, ||v|| = 1, be an eigenvector of S with eigenvalue θ. We will show that there is

an eigenfunction γ ∈ L2(SO(n)), γ : SO(n) → R of T ′ with the corresponding eigenvalue θ. Since
‖T ′‖ ≤ λ, we will have the result of the lemma.

Define γ(g) = 〈g⊗t · v, e1〉 where e1 ∈ R
nt

with the first coordinate 1 and 0 otherwise. It is easy
to observe that γ ∈ L2(SO(n)). We now verify that γ is an eigenfunction of T ′.

For any h ∈ SO(n),

T
′ · γ(h) = 1

2k
·

k
∑

i=1

(Tgi · γ)(h)− Eg∼H[γ(g)]

=
1

2k
·

k
∑

i=1

γ(h · gi)− Eg∼H[γ(h · g)]

=
1

2k
·

k
∑

i=1

〈h⊗t · g⊗t
i · v, e1〉 − 〈h⊗t · Eg∼H[g

⊗t] · v, e1〉

= 〈h⊗t · 1

2k
·

k
∑

i=1

g⊗t
i · v, e1〉 − 〈h⊗t · Eg∼H[g

⊗t] · v, e1〉

= 〈h⊗t · S · v, e1〉 = θ · 〈h⊗t · v, e1〉 = θ · γ(h),

where we use (h · g)⊗t = h⊗t · g⊗t (which can be proven using induction and the mixed product
property of the Kronecker product).

We can now use the result above to derive the main theorem of this section.

Proof of Lemma 5.1. Let T be a Hecke operator on L2(SO(n)) with the second largest eigenvalue
at most λ. Then, as above, T ′ : L2(SO(n)) → L2(SO(n)) defined by T ′f(g) = T f(g) − Eg∼H[f ]
satisfies ‖T ′‖ ≤ λ. Further, for any positive integer q, ‖T ′q‖ ≤ λq. We will choose q appropriately
later.

Let g1, g2, . . . , gk be the generators T q and let D be a uniform draw from {g1, g2, . . . , gk}. We
will show that D is an ǫ-approximate orthogonal t-design.

From Lemma 6.1 applied to T q, we know that S = 1/k·∑k
i=1 g

⊗t
i −Eg∼H[g

⊗t] satisfies ‖S‖ ≤ λq.
We must show that for every polynomial p : SO(n) → R of degree at most t with ‖p‖1 = 1,

|Eg∼H[p(g)] − Eg∼D[p(g)]| ≤
ǫ

nt
,
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for some q = t log (n) + log (1/ǫ). Observe that it is enough to show this statement for monomials.
Let M : SO(n) → R be any monomial of degree d ≤ t (i.e. M(g) is a product of at most t

entries of the matrix g for any g ∈ SO(n)). Then, M(g) is an entry of the matrix g⊗d. Thus,

|Eg∼D[M(g)] − Eg∼H[M(g)]| ≤
∥

∥

∥

∥

∥

1

k

k
∑

i=1

gi
⊗d − Eg∼H[g

⊗d]

∥

∥

∥

∥

∥

≤ λq.

Thus, choosing q = Θ(t log (n) + log (1/ǫ)) is enough. Thus, D is an ǫ-approximate orthogonal
t-design.
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A Deferred proofs

A.1 Proofs of facts from Section 4

Fact A.1 ( Fact 4.2 restated). Let g, h : R → R be infinitely differentiable functions. Then,

|(g ◦ h)(k)(x)| ≤ (k!)2 ·
(

max
ℓ≤k

|g(ℓ)(h(x))|
)

·
(

max
ℓ≤k

|h(ℓ)(x)|
)k

.

Proof. The result follows from using the following Faa di Bruno’s formula ([62]) for derivatives of
composition of functions (whenever all the derivatives in the expression exist):

dm

dtm
g(h(t)) =

∑ m!

b1!b2! . . . bm!
g(

∑m
i=1 bi)(h(t))Πm

i=1

(

h(i)

i!

)bi

,

where the sum is over non-negative integers b1, b2, . . . , bm such that
∑m

i=1 ibi = m.

Fact A.2 ( Fact 4.3 restated). For h : (−1,∞) → R be defined by h(x) = 1/
√
1 + x. Then,

|h(k)(x)| ≤ k! for −1/2 < x.

Proof.

h(k)(x) =
−1

2
· −3

2
· · · −(2k − 1)

2

(

1

1 + x

)−(2k+1)/2

.

One can upper bound the expression on the RHS in absolute value by k! for x > −1/2.

Fact A.3 ( Fact 4.4 restated). Let F : R → [0, 1] be the CDF of a random variable Z. For a
non-negative random variable V independent of Z, the CDF G of V · Z at any t ∈ R is given by:

G(t) = EX [F (t/V )].

Proof. Let η be the PDF of V . We have:

Pr[V · Z ≤ t] =

∫ ∞

0
Pr[Z ≤ t/x] · η(x)dx =

∫ ∞

0
F [t/x]η(x)dx = EV [F (t/V )].

Lemma A.1 ( Lemma 3.2 restated). Let U, V1, V2 be independent random variables. Then, dcdf(U ·
V1, U · V2) ≤ dcdf(V1, V2).

Proof. We can write the CDF of U · V1 as:

FUV1(t) = Pr[UV1 ≤ t] =

∫ ∞

0
FV1(t/u)fU (u)du+

∫ 0

−∞
(1− FV1(t/u)fU (u)du.

Similarly, the CDF of U · V2 can be written as :

FUV2(t) =

∫ ∞

0
FV2(t/u)fU (u)du+

∫ 0

−∞
(1− FV2(t/u)fU (u)du.

Thus, dcdf(U · V1, U · V2) ≤
∫∞
0 dcdf(V1, V2)fU (u)du+

∫ 0
−∞ dcdf(V1, V2)fU (u)du = dcdf(V1, V2).
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A.2 Proofs from Section 5

Recall that for the Gamma function Γ, Γ(1/2) =
√
π. The surface area of unit sphere S

n−1 is
2πn/2

Γ(n/2) . We now obtain the PDF of the distribution of < w, v > for v ∼ S
n−1. We now compute the

PDF of 〈w, v〉 for v ∼ S
n−1.

Fact A.4. Let x = 〈w, v〉 for v distributed uniformly over S
n−1 and w ∈ R

n, fixed, with ‖w‖ = 1.
Then, x is supported on [−1, 1] with the PDF:

f(x) =
1√
π
· Γ(n/2)
Γ(n−1

2 )
· (1− x2)

n−3
2 .

Proof. Since the distribution of x is invariant under any rotation of both the vectors, we can assume
that w has 1 in its first coordinate and 0 otherwise. Thus, 〈w, v〉 = v1. We can now calculate the
CDF F of x by F (x) = Pr[v1 ≤ x].

Let Lx ⊆ S
n−1 be defined by Lx = {z ∈ S

n−1 | z1 ≤ x}. Let |Lx| denote the surface area of Lx.
Then, F (x) = |Lx|/|Sn−1|.

Let t ∈ [−1, x]. Then, {z ∈ Lx | z1 = t} defines a sphere of radius
√
1− t2 in n− 2 dimensions.

Using the Jacobian of the area measure 1/
√
1− t2, we can write |Lx| as the integral:

|Lx| =
∫ x

−1

2π
n−1
2

Γ(n−1
2 )

· (1− t2)
n−3
2 dt.

Thus,

F (x) = |Lx|/|Sn−1| = 1/
√
π ·
∫ x

−1

Γ(n2 )

Γ(n−1
2 )

(1− t2)
n−3
2 dt.

Now,

f(x) = F ′(x) =
Γ(n2 )

Γ(n−1
2 )

(1− x2)
n−3
2 .

B Hecke operators with spectral gap on SO(n)

In this section, we show that there exist Hecke operators on the group L2(SO(n)) with a uniform
spectral gap. This result follows almost immediately from the work of Bourgain and Gamburd [9],
who show the existence of such operators on L2(SU(n)). For completeness, we give a straightforward
argument that uses only a few standard facts from the theory of Lie groups.

We state a few standard preliminary results (without proof) below. This material can be found
in any standard textbook on Lie groups such as Bump [11].

B.1 Preliminaries

A topological group G is a group with an underlying topology on it such that the group operation
· : G × G → G is a continuous map (with respect to the induced product topology on G × G).
Lie groups are topological groups where the group operation is smooth, that is, it has derivatives
of all orders. Well known matrix groups, such as the General Linear group GLn(R): i.e. the
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group of invertible n× n matrices on R and its subgroups, SLn(R): the subgroup of matrices with
determinant 1 and SO(n): the subgroup of orthogonal matrices (referred to as the rotation group
of the n-sphere) are all Lie groups. Similarly, the corresponding groups on the complex field C:
GLn(C), SLn(C) and SU(n) are also Lie groups.

By viewing C as a two dimensional vector space over R, we observe that SO(n) is a subgroup
of SU(n). On the other hand, by observing that C-linear maps on C

n ≃ R
2n are strict subsets of

R-linear maps on R
2n (under the vector space transformation from C to R), we observe that SU(n)

is a subgroup of SO(2n).
Under the standard Euclidean topology, SU(n) and SO(n) are compact subgroups of GL2n(R).

They are also closed, as is evident from the fact that SU(n) and SO(n) both can be defined as
subgroups of matrices with certain polynomial equality constraints on their entries and are thus
inverse images of closed sets under a continuous map.

B.1.1 Haar measure and linear operators on L2(G)

For compact Lie groups G such as SU(n) and SO(n), there exists a probability measure, known
as the Haar measure, H (we also use dg to denote infinitesimal on G with respect to H), on G
that is invariant under (right or left) multiplication by any group element (this is written as the
property of being (right or left) G-invariant). When both the right and left G-invariant probability
measures coincide, G is said to be unimodular. It is a well known fact that both SU(n) and SO(n)
are unimodular groups.

We can use the Haar measure to define integrals and (Hermitian) inner products of any two
functions p, q : G → C:

〈p, q〉 =
∫

H

p · q̄dg = EH[p · q̄],

where q̄ denotes the complex conjugate of q. Similarly, we can define the ℓ2 norm of a function

f ∈ L2(G) by setting ‖ρ‖ =
√

∫

H
f · f̄dg = 〈f, f〉.

We can now define the linear space of square integrable functions on G: L2(G) = {f : G →
C | Eg∼H[f(g) · f̄(g)] < ∞}. This is a Hilbert space under the inner product defined above
and forms, what is known as the regular representation of the group G under the (left or right)
shift action. That is, for every g ∈ G, one can define a linear operator on L2(G), Tg such that
(Tgf)(h) = f(h · g) for every h ∈ G. Further, G as a group is homomorphic to the group of all such
linear maps {Tg | g ∈ G} under composition.

B.1.2 Push forward Haar measure on coset space of closed subgroups

Let G be a unimodular Lie group with a Haar measure HG and let H be a closed unimodular
subgroup of G with the Haar measure HH defined on it. One can relate integrals of functions on
either groups by constructing a G-invariant (probability) measure HG/H on the coset space G/H.
The existence of such a measure for compact unimodular Lie groups (a push forward measure) is
a non-trivial but well known fact.

Let f ∈ L2(G). Then, we have:

∫

HG

fdg =

∫

HG/H

∫

HH

f(h · ġ)dhdġ,
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where we use ġ to refer to the canonical element of the coset from G/H with ġ in it.
This, in particular lets us define a measure preserving embedding of L2(H) into L2(G). Let

ρ ∈ L2(H) with ‖ρ‖2 = 1. Choose canonical elements from G for every coset of H in G. If g
belongs to the coset represented by the element ġ ∈ G, then, g = h · ġ for a unique element h ∈ H.
We define ρ̃ : G → C by ρ̃(g) = ρ(h) in this case. Observe that the construction is well defined as
any two cosets of a subgroup inside a group are either disjoint or equal. We have thus created a
map f → f̃ . It is easy to verify that the map is measure preserving using the relationship between
the integrals on H and G given above:

∫

HG

ρ̃dg =

∫

HG/H

∫

HH

ρ̃(h · ġ)dhdġ =

∫

HG/H

∫

HH

f(h)dhdġ =

∫

HH

ρ(h)dh.

In particular, ‖ρ̃‖ = ‖ρ‖ and thus, the map defined above takes every ρ ∈ L2(H) into a
ρ̃ ∈ L2(G).

B.2 Existence of Hecke operators with spectral gap on SO(n)

We are now ready to describe the existence of Hecke operators with spectral gap on SO(n). Bourgain
and Gamburd [9] show the following:

Theorem 6 (Bourgain-Gamburd). For a universal constant k > 0, there is a Hecke operator with
a spectral gap T on L2(SU(n)) with k generators.

Using the standard machinery developed in the preliminaries above the same result can be
shown to hold for SO(n):

Corollary B.1 (Hecke Operators with Spectral Gap on SO(n)). For a universal constant k > 0,
there is a Hecke operator with a spectral gap T on L2(SO(n)) with k generators.

Proof. Recall that we see both G = SU(n) and H = SO(n) as real Lie groups by thinking of C as a
two dimensional vector space over R. Let T be the Hecke operator on L2(G) with an inverse closed
set of generators g1, g2, . . . , gk ∈ SU(n) with a spectral gap given by the theorem above. That is,
T = 1

k

∑k
i=1 Tgi .

The idea of the proof is the following: We want to define an operator Th corresponding to Tg

for any generator (or its inverse) g. We then want to argue that T̃ : L2(H) → L2(H) defined by
T̃ = 1

k

∑k
i=1 Thi

where hi correspond to gi also has a spectral gap. To do this, we will use the
embedding E of L2(H) into L2(G) defined above and if ρ → ρ̃ is the embedding, then, we will
show that T̃ ρ̃ corresponds to T ′ρ in it. The spectral gap property for T̃ will then follow from the
spectral gap of T .

We first define T̃ . Fix the canonical elements for every coset of H in G. Thus, g = h · ġ
whenever g belongs to the coset represented by ġ. Let hg ∈ H be defined by hg = g · ġ−1. Set
T̃ = 1

kThgi
.

As before, let ρ ∈ L2(H) such that ||ρ||2 = 1 and
∫

HH
ρ(h)dh = 0. Define ρ̃ ∈ L2(G) by

ρ̃(g) = ρ(g · ġ−1). Then from the discussion above, we know that ||ρ̃||2 = 1 and
∫

HG
ρ̃(g)dg = 0.

Further, observe that Tgρ̃ = E(Thgρ).
Define GenG = {g1, g2, . . . , gk} as the (inverse closed) set of generators of T and let GenH =

{hg | g ∈ GenG} be the corresponding set of generators for T̃ as defined above.
We have:
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λ2 ≥
∫

HG

(T ρ̃)2(g)dg =
1

2k

∑

g∈GenG

∫

HG/H

∫

HH

(Tgρ̃)
2(h · ġ)dhdġ

=
1

2k

∑

hg∈GenH

∫

HH

(Thgρ)
2(h)dh = ||T̃ ρ||22.

This completes the proof that T̃ is a Hecke operator on L2(H) with a spectral gap.
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