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Abstract

Efficiently learning mixture of Gaussians is a fundamental problem in statistics and learning
theory. Given samples coming from a random one out of k Gaussian distributions in Rn, the
learning problem asks to estimate the means and the covariance matrices of these Gaussians.
This learning problem arises in many areas ranging from the natural sciences to the social
sciences, and has also found many machine learning applications.

Unfortunately, learning mixture of Gaussians is an information theoretically hard problem:
in order to learn the parameters up to a reasonable accuracy, the number of samples required
is exponential in the number of Gaussian components in the worst case. In this work, we show
that provided we are in high enough dimensions, the class of Gaussian mixtures is learnable in
its most general form under a smoothed analysis framework, where the parameters are randomly
perturbed from an adversarial starting point.

In particular, given samples from a mixture of Gaussians with randomly perturbed parame-
ters, when n ≥ Ω(k2), we give an algorithm that learns the parameters with polynomial running
time and using polynomial number of samples.

The central algorithmic ideas consist of new ways to decompose the moment tensor of the
Gaussian mixture by exploiting its structural properties. The symmetries of this tensor are
derived from the combinatorial structure of higher order moments of Gaussian distributions
(sometimes referred to as Isserlis’ theorem or Wick’s theorem). We also develop new tools for
bounding smallest singular values of structured random matrices, which could be useful in other
smoothed analysis settings.
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1 Introduction

Learning mixtures of Gaussians is a fundamental problem in statistics and learning theory, whose
study dates back to Pearson (1894). Gaussian mixture models arise in numerous areas including
physics, biology and the social sciences (McLachlan and Peel (2004); Titterington et al. (1985)), as
well as in image processing (Reynolds and Rose (1995)) and speech (Permuter et al. (2003)).

In a Gaussian mixture model, there are k unknown n-dimensional multivariate Gaussian distri-
butions. Samples are generated by first picking one of the k Gaussians, then drawing a sample from
that Gaussian distribution. Given samples from the mixture distribution, our goal is to estimate
the means and covariance matrices of these underlying Gaussian distributions1.

This problem has a long history in theoretical computer science. The seminal work of Dasgupta
(1999) gave an algorithm for learning spherical Gaussian mixtures when the means are well sepa-
rated. Subsequent works (Dasgupta and Schulman (2000); Sanjeev and Kannan (2001); Vempala
and Wang (2004); Brubaker and Vempala (2008)) developed better algorithms in the well-separated
case, relaxing the spherical assumption and the amount of separation required.

When the means of the Gaussians are not separated, after several works (Belkin and Sinha
(2009); Kalai et al. (2010)), Belkin and Sinha (2010) and Moitra and Valiant (2010) independently
gave algorithms that run in polynomial time and with polynomial number of samples for a fixed
number of Gaussians. However, both running time and sample complexity depend super expo-
nentially on the number of components k2. Their algorithm is based on the method of moments
introduced by Pearson (1894): first estimate the O(k)-order moments of the distribution, then try
to find the parameters that agree with these moments. Moitra and Valiant (2010) also show that
the exponential dependency of the sample complexity on the number of components is necessary,
by constructing an example of two mixtures of Gaussians with very different parameters, yet with
exponentially small statistical distance.

Recently, Hsu and Kakade (2013) applied spectral methods to learning mixture of spherical
Gaussians. When n ≥ k + 1 and the means of the Gaussians are linearly independent, their
algorithm can learn the model in polynomial time and with polynomial number of samples. This
result suggests that the lower bound example in Moitra and Valiant (2010) is only a degenerate
case in high dimensional space. In fact, most (in general position) mixture of spherical Gaussians
are easy to learn. This result is also based on the method of moments, and only uses second and
third moments. Several follow-up works (Bhaskara et al. (2014); Anderson et al. (2013)) use higher
order moments to get better dependencies on n and k.

However, the algorithm in Hsu and Kakade (2013) as well as in the follow-ups all make strong
requirements on the covariance matrices. In particular, most of them only apply to learning mixture
of spherical Gaussians. For mixture of Gaussians with general covariance matrices, the best known
result is still Belkin and Sinha (2010) and Moitra and Valiant (2010), which algorithms are not
polynomial in the number of components k. This leads to the following natural question:

Question: Is it possible to learn most mixture of Gaussians in polynomial time using a polynomial
number of samples?

Our Results In this paper, we give an algorithm that learns most mixture of Gaussians in high
dimensional space (when n ≥ Ω(k2)), and the argument is formalized under the smoothed analysis
framework first proposed in Spielman and Teng (2004).

1 This is different from the problem of density estimation considered in Feldman et al. (2006); Chan et al. (2014)
2 In fact, it is in the order of O(eO(k)k) as shown in Theorem 11.3 in Valiant (2012).

1



In the smoothed analysis framework, the adversary first choose an arbitrary mixture of Gaus-
sians. Then the mean vectors and covariance matrices of this Gaussian mixture are randomly
perturbed by a small amount ρ 3. The samples are then generated from the Gaussian mixture
model with the perturbed parameters. The goal of the algorithm is to learn the perturbed param-
eters from the samples.

The smoothed analysis framework is a natural bridge between worst-case and average-case
analysis. On one hand, it is similar to worst-case analysis, as the adversary chooses the initial
instance, and the perturbation allowed is small. On the other hand, even with small perturbation,
we may hope that the instance be different enough from degenerate cases. A successful algorithm
in the smoothed analysis setting suggests that the bad instances must be very “sparse” in the
parameter space: they are highly unlikely in any small neighborhood of any instance. Recently,
the smoothed analysis framework has also motivated several research work (Kalai et al. (2009)
Bhaskara et al. (2014)) in analyzing learning algorithms.

In the smoothed analysis setting, we show that it is easy to learn most Gaussian mixtures:

Theorem 1.1. (informal statement of Theorem 3.4) In the smoothed analysis setting, when n ≥
Ω(k2), given samples from the perturbed n-dimensional Gaussian mixture model with k components,
there is an algorithm that learns the correct parameters up to accuracy ε with high probability, using
polynomial time and number of samples.

An important step in our algorithm is to learn Gaussian mixture models whose components
all have mean zero, which is also a problem of independent interest (Zoran and Weiss (2012)).
Intuitively this is also a “hard” case, as there is no separation in the means. Yet algebraically, this
case gives rise to a novel tensor decomposition algorithm. The ideas for solving this decomposition
problem are then generalized to tackle the most general case.

Theorem 1.2. (informal statement of Theorem 3.5) In the smoothed analysis setting, when n ≥
Ω(k2), given samples from the perturbed mixture of zero-mean n-dimensional Gaussian mixture
model with k components, there is an algorithm that learns the parameters up to accuracy ε with
high probability, using polynomial running time and number of samples.

Organization The main part of the paper will focus on learning mixtures of zero-mean Gaussians.
The proposed algorithm for this special case contains most of the new ideas and techniques. In
Section 2 we introduce the notations for matrices and tensors which are used to handle higher
order moments throughout the discussion. Then in Section 3 we introduce the smoothed analysis
model for learning mixture of Gaussians and discuss the moment structure of mixture of Gaussians,
then we formally state our main theorems. Section 4 outlines our algorithm for learning zero-mean
mixture of Gaussians. The details of the steps are presented in Section 5. The detailed proofs for
the correctness and the robustness are deferred to Appendix (Sections B to D). In Section 6 we
briefly discuss how the ideas for zero-mean case can be generalized to learning mixture of nonzero
Gaussians, for which the detailed algorithm and the proofs are deferred to Appendix F.

2 Notations

Vectors and Matrices In the vector space Rn, let 〈·, ·〉 denote the inner product of two vectors,
and ‖ · ‖ to denote the Euclidean norm.

3See Definition 3.2 in Section 3.1 for the details.
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For a tall matrix A ∈ Rm×n, let A[:,j] denote its j-th column vector, let A> denote its transpose,

A† = (A>A)−1A> denote the pseudoinverse, and let σk(A) denote its k-th singular value. Let In
be the identity matrix of dimension n× n. The spectral norm of a matrix is denoted as ‖ · ‖, and
the Frobenius norm is denoted as ‖ · ‖F . We use A � 0 for positive semidefinite matrix A.

In the discussion, we often need to convert between vectors and matrices. Let vec(A) ∈ Rmn
denote the vector obtained by stacking all the columns of A. For a vector x ∈ Rm2

, let mat(x) ∈
Rm×m denote the inverse mapping such that vec(mat(x)) = x.

We use [n] to denote the set {1, 2, ..., n} and [n]× [n] to denote the set {(i, j) : i, j ∈ [n]}. These
are often used as indices of matrices.

Symmetric matrices We use Rn×nsym to denote the space of all n× n symmetric matrices, which

subspace has dimension
(
n+1

2

)
. Since we will frequently use n×n and k×k symmetric matrices, we

denote their dimensions by the constants n2 =
(
n+1

2

)
and k2 =

(
k+1

2

)
. Similarly, we use Rn×···×nsym to

denote the symmetric k-dimensional multi-arrays (tensors), which subspace has dimension
(
n+k−1

k

)
.

If a k-th order tensor X ∈ Rn×···×nsym , then for any permutation π over [k], we have Xn1,...,nk =
Xnπ(1),...,nπ(k) .

Linear subspaces We represent a linear subspace S ∈ Rn of dimension d by a matrix S ∈ Rn×d,
whose columns of S form an (arbitrary) orthonormal basis of the subspace. The projection matrix
onto the subspace S is denoted by ProjS = SS>, and the projection onto the orthogonal subspace
S⊥ is denoted by ProjS⊥ = In − SS>. When we talk about the span of several matrices, we mean
the space spanned by their vectorization.

Tensors A tensor is a multi-dimensional array. Tensor notations are useful for handling higher
order moments. We use ⊗ to denote tensor product, suppose a, b, c ∈ Rn, T = a⊗ b⊗ c ∈ Rn×n×n
and Ti1,i2,i3 = ai1bi2ci3 . For a vector x ∈ Rn, let the t-fold tensor product x⊗t denote the t-th order
rank one tensor (x⊗t)i1,i2,...,it =

∏t
j=1 xij .

Every tensor defines a multilinear mapping. Consider a 3-rd order tensor X ∈ RnA×nB×nC . For
given dimension mA,mB,mC , it defines a multi-linear mapping X(·, ·, ·) : RnA×mA × RnB×mB ×
RnC×mC → RmA×mB×mC defined as below: (∀j1 ∈ [mA], j2 ∈ [mB], j3 ∈ [mC ])

[X(V1, V2, V3)]j1,j2,j3 =
∑

i1∈[nA],i2∈[nB ],i3∈[nC ]

Xi1,i2,i3 [V1]j1,i1 [V2]j2,i2 [V3]j3,i3 .

If X admits a decomposition X =
∑k

i=1A[:,i]⊗B[:,i]⊗C[:,i] for A ∈ RnA×k, B ∈ RnB×k, C ∈ RnC×k,
the multi-linear mapping has the form X(V1, V2, V3) =

∑k
i=1(V >1 A[:,i])⊗ (V >2 B[:,i])⊗ (V >3 C[:,i]).

In particular, the vector given by X(ei, ej , I) is the one-dimensional slice of the 3-way array,
with the index for the first dimension to be i and the second dimension to be j.
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Matrix Products We use � to denote column wise Katri-Rao product, and ⊗kr to denote
Kronecker product. As an example, for matrices A ∈ RmA×n, B ∈ RmB×n, C ∈ RmC×n:

A⊗B ⊗ C ∈ RmA×mB×mC , [A⊗B ⊗ C]j1,j2,j3 =
n∑
i=1

Aj1,iBj2,iCj3,i,

A�B ∈ RmAmB×n, [A�B][:,j] = A[:,j] ⊗kr B[:,j].

A⊗kr B ∈ RmAmB×n
2
, A⊗kr B =

 A1,1B · · · A1,nB
...

. . .
...

AmA,1B · · · AmA,nB

 ,
3 Main results

In this section, we first formally introduce the smoothed analysis framework for our problem and
state our main theorems. Then we will discuss the structure of the moments of Gaussian mixtures,
which is crucial for understanding our method of moments based algorithm.

3.1 Smoothed Analysis for Learning Mixture of Gaussians

Let Gn,k denote the class of Gaussian mixtures with k components in Rn. A distribution in this
family is specified by the following parameters: the mixing weights ωi, the mean vectors µ(i) and
the covariance matrices Σ(i), for i ∈ [k].

Gn,k :=

{
G = {(ωi, µ(i),Σ(i))}i∈[k] : ωi ∈ R+,

k∑
i=1

ωi = 1, µ(i) ∈ Rn, Σ(i) ∈ Rn×nsym , Σ(i) � 0

}
.

As an interesting special case of the general model, we also consider the mixture of “zero-mean”
Gaussians, which has µ(i) = 0 for all components i ∈ [k].

A sample x from a mixture of Gaussians is generated in two steps:

1. Sample h ∈ [k] from a multinomial distribution, with probability Pr[h = i] = ωi for i ∈ [k].

2. Sample x ∈ Rn from the h-th Gaussian distribution N (µ(h),Σ(h)).

The learning problem asks to estimate the parameters of the underlying mixture of Gaussians:

Definition 3.1 (Learning mixture of Gaussians). Given N samples x1, x2, ..., xN drawn i.i.d. from
a mixture of Gaussians G = {(ωi, µ(i),Σ(i))}i∈[k], an algorithm learns the mixture of Gaussians with

accuracy ε, if it outputs an estimation Ĝ = {(ω̂i, µ̂(i), Σ̂(i))}i∈[k] such that there exists a permutation

π on [k], and for all i ∈ [k], we have |ω̂i − ωπ(i)| ≤ ε, ‖µ̂(i) − µ(π(i))‖ ≤ ε and ‖Σ̂(i) − Σ(π(i))‖ ≤ ε.
In the worst case, learning mixture of Gaussians is a information theoretically hard problem

(Moitra and Valiant (2010)). There exists worst-case examples where the number of samples
required for learning the instance is at least exponential in the number of components k (McLachlan
and Peel (2004)). The non-convexity arises from the hidden variable h: without knowing h we
cannot determine which Gaussian component each sample comes from.

The smoothed analysis framework provides a way to circumvent the worst case instances, yet
still studying this problem in its most general form. The basic idea is that, with high probability
over the small random perturbation to any instance, the instance will not be a “worst-case” instance,
and actually has reasonably good condition for the algorithm.

Next, we show how the parameters of the mixture of Gaussians are perturbed in our setup.

4



Definition 3.2 (ρ-smooth mixture of Gaussian). For ρ < 1/n, a ρ-smooth n-dimensional k-
component mixture of Gaussians G̃ = {(ω̃i, µ̃(i), Σ̃(i))}i∈[k] ∈ Gn,k is generated as follows:

1. Choose an arbitrary (could be adversarial) instance G = {(ωi, µ(i),Σ(i))}i∈[k] ∈ Gn,k. Scale the

distribution such that 0 � Σ(i) � 1
2In and ‖µ(i)‖ ≤ 1

2 for all i ∈ [k].

2. Let ∆i ∈ Rn×nsym be a random symmetric matrix with zeros on the diagonals, and the upper-
triangular entries are independent random Gaussian variables N (0, ρ2). Let δi ∈ Rn be a
random Gaussian vector with independent Gaussian variables N (0, ρ2).

3. Set ω̃i = ωi, µ̃
(i) = µ(i) + δi, Σ̃(i) = Σ(i) + ∆i.

4. Choose the diagonal entries of Σ̃(i) arbitrarily, while ensuring the positive semi-definiteness of
the covariance matrix Σ̃(i), and the diagonal entries are upper bounded by 1. The perturbation
procedure fails if this step is infeasible4.

A ρ-smooth zero-mean mixture of Gaussians is generated using the same procedure, except that we
set µ̃(i) = µ(i) = 0, for all i ∈ [k].

Remark 3.3. When the original matrix is of low rank, a simple random perturbation may not lead
to a positive semidefinite matrix, which is why our procedure of perturbation is more restricted in
order to guarantee that the perturbed matrix is still a valid covariance matrix.

There could be other ways of locally perturbing the covariance matrix. Our procedure actually
gives more power to the adversary as it can change the diagonals after observing the perturbations
for other entries. Note that with high probability if we just let the new diagonal to be 5

√
nρ larger

than the original ones, the resulting matrix is still a valid covariance matrix. In other words, the
adversary can always keep the perturbation small if it wants to.

Instead of the worst-case problem in Definition 3.1, our algorithms work on the smoothed
instance. Here the model first gets perturbed to G̃ = {(ω̃i, µ̃(i), Σ̃(i))}i∈[k], the samples are drawn
according to the perturbed model, and the algorithm tries to learn the perturbed parameters. We
give a polynomial time algorithm in this case:

Theorem 3.4 (Main theorem). Consider a ρ-smooth mixture of Gaussians G̃ = {(ω̃i, µ̃(i), Σ̃(i))}i∈[k] ∈
Gn,k for which the number of components is at least 5 k ≥ C0 and the dimension n ≥ C1k

2, for some
fixed constants C0 and C1. Suppose that the mixing weights ω̃i ≥ ωo for all i ∈ [k]. Given N samples
drawn i.i.d. from G̃, there is an algorithm that learns the parameters of G̃ up to accuracy ε, with
high probability over the randomness in both the perturbation and the samples. Furthermore, the
running time and number of samples N required are both upper bounded by poly(n, k, 1/ωo, 1/ε, 1/ρ).

To better illustrate the algorithmic ideas for the general case, we first present an algorithm for
learning mixtures of zero-mean Gaussians. Note that this is not just a special case of the general
case, as with the smoothed analysis, the zero mean vectors are not perturbed.

Theorem 3.5 (Zero-mean). Consider a ρ-smooth mixture of zero-mean Gaussians G̃ = {(ω̃i, 0, Σ̃(i))}i∈[k] ∈
Gn,k for which the number of components is at least k ≥ C0 and the dimension n ≥ C1k

2, for some
fixed constants C0 and C1. Suppose that the mixing weights ω̃i ≥ ωo for all i ∈ [k]. Given N

4 Note that by standard random matrix theory, with high probability the 4-th step is feasible and the perturbation
procedure in Definition 3.2 succeeds. Also, with high probability we have ‖µ̃(i)‖ ≤ 1 and 0 � Σ̃(i) � In for all i ∈ [k].

5Note that the algorithms of Belkin and Sinha (2010) and Moitra and Valiant (2010) run in polynomial time for
fixed k.

5



samples drawn i.i.d. from G̃, there is an algorithm that learns the parameters of G̃ up to accuracy ε,
with high probability over the randomness in both the perturbation and the samples. Furthermore,
the running time and number of samples N are both upper bounded by poly(n, k, 1/ωo, 1/ε, 1/ρ).

Throughout the paper we always assume that n ≥ C1k
2 and ω̃i ≥ ωo.

3.2 Moment Structure of Mixture of Gaussians

Our algorithm is also based on the method of moments, and we only need to estimate the 3-rd,
the 4-th and the 6-th order moments. In this part we briefly discuss the structure of 4-th and 6-th
moments in the zero-mean case (3-rd moment is always 0 in the zero-mean case). These structures
are essential to the proposed algorithm. For more details, and discussions on the general case see
Appendix A.

The m-th order moments of the zero-mean Gaussian mixture model G ∈ Gn,k are given by the
following m-th order symmetric tensor Mm ∈ Rn×···×nsym :

[Mm]j1,...,jm := E [xj1 . . . xjm ] =

k∑
i=1

ωiE
[
y

(i)
j1
. . . y

(i)
jm

]
, ∀j1, . . . , jm ∈ [n],

where y(i) corresponds to the n-dimensional zero-mean Gaussian distribution N (0,Σ(i)). The mo-
ments for each Gaussian component are characterized by Isserlis’s theorem as below:

Theorem 3.6 (Isserlis’ Theorem). Let (y1, . . . , y2t) be a multivariate zero-mean Gaussian random
vector N (0,Σ), then

E[y1 . . . y2t] =
∑∏

Σu,v,

where the summation is taken over all distinct ways of partitioning y1, . . . , y2t into t pairs, which
correspond to all the perfect matchings in a complete graph.

Ideally, we would like to obtain the following quantities (recall n2 =
(
n+1

2

)
):

X4 =
k∑
i=1

ωivec(Σ(i))⊗2 ∈ Rn2×n2 , X6 =
k∑
i=1

ωivec(Σ(i))⊗3 ∈ Rn2×n2×n2 . (1)

Note that the entries in X4 and X6 are quadratic and cubic monomials of the covariance
matrices, respectively. If we have X4 and X6, the tensor decomposition algorithm in Anandkumar
et al. (2014) can be immediately applied to recover ωi’s and Σ(i)’s under mild conditions. It is easy
to verify that those conditions are indeed satisfied with high probability in the smoothed analysis
setting.

By Isserlis’s theorem, the entries of the moments M4 and M6 are indeed quadratic and cubic
functions of the covariance matrices, respectively. However, the structure of the true moments M4

and M6 have more symmetries, consider for example,

[M4]1,2,3,4 =

k∑
i=1

ωi(Σ
(i)
1,2Σ

(i)
3,4 + Σ

(i)
1,3Σ

(i)
2,4 + Σ

(i)
1,4Σ

(i)
2,3), while [X4](1,2),(3,4) =

k∑
i=1

ωiΣ
(i)
1,2Σ

(i)
3,4.

Note that due to symmetry, the number of distinct entries in M4 (
(
n+3

4

)
≈ n4/24) is much smaller

than the number of distinct entries in X4 (
(
n2+1

2

)
≈ n4/8). Similar observation can be made about

M6 and X6.
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Therefore, it is not immediate how to find the desired X4 and X6 based on M4 and M6. We
call the moments M4,M6 the folded moments as they have more symmetry, and the corresponding
X4, X6 the unfolded moments. One of the key steps in our algorithm is to unfold the true moments
M4,M6 to get X4, X6 by exploiting special structure of M4,M6.

In some cases, it is easier to restrict our attention to the entries in M4 with indices corresponding
to distinct variables. In particular, we define

M4 = [[M4]j1,j2,j3,j4 : 1 ≤ j1 < j2 < j3 < j4 ≤ n] ∈ Rn4 , (2)

where n4 =
(
n
4

)
is the number of 4-tuples with indices corresponding to distinct variables. We

define M6 ∈ Rn6 similarly where n6 =
(
n
6

)
. We will see that these entries are nice as they are

linear projections of the desired unfolded moments X4 and X6 (Lemma 3.7 below), also such
projections satisfy certain “symmetric off-diagonal” properties which are convenient for the proof
(see Definition C.3 in Section C).

Lemma 3.7. For a zero-mean Gaussian mixture model, there exist two fixed and known linear
mappings F4 : Rn2×n2 → Rn4 and F6 : Rn2×n2×n2 → Rn6 such that:

M4 =
√

3F4(X4), M6 =
√

15F6(X6). (3)

Moreover F4 is a projection from a
(
n2+1

2

)
-dimensional subspace to a n4-dimensional subspace, and

F6 is a projection from a
(
n2+2

3

)
-dimensional subspace to a n6-dimensional subspace.

4 Algorithm Outline for Learning Mixture of Zero-Mean Gaus-
sians

In this section, we present our algorithm for learning zero-mean Gaussian mixture model. The
algorithmic ideas and the analysis are at the core of this paper. Later we show that it is relatively
easy to generalize the basic ideas and the techniques to handle the general case.

For simplicity we state our algorithm using the exact moments M̃4 and M̃6, while in implemen-
tation the empirical moments M̂4 and M̂6 obtained with the samples are used. In later sections,
we verify the correctness of the algorithm and show that it is robust: the algorithm learns the
parameters up to arbitrary accuracy using polynomial number of samples.

Step 1. Span Finding: Find the span of covariance matrices .

(a) For a set of indices H ⊂ [n] of size |H| = √n, find the span:

S = span
{

Σ̃
(i)
[:,j] : i ∈ [k], j ∈ H

}
⊂ Rn. (4)

(b) Find the span of the covariance matrices with the columns projected onto S⊥, namely,

US = span
{

vec(ProjS⊥Σ̃(i)) : i ∈ [k]
}
⊂ Rn

2
. (5)

(c) For two disjoint sets of indices H1 and H2, repeat Step 1 (a) and Step 1 (b) to obtain U1 and
U2, namely the span of covariance matrices projected onto two subspaces S⊥1 and S⊥2 . Merge
U1 and U2 to obtain the span of covariance matrices U :

U = span
{

Σ̃(i) : i ∈ [k]
}
⊂ Rn2 . (6)

7



Step 2. Unfolding: Recover the unfolded moments X̃4, X̃6.

Given the folded moments M̃4, M̃6 as defined in (2), and given the subspace U ∈ Rn2×k from Step
1, let Ỹ4 ∈ Rk×ksym and Ỹ6 ∈ Rk×k×ksym be the unknowns, solve the following systems of linear equations.

M̃4 =
√

3F4(UỸ4U
>), M̃6 =

√
15F6(Ỹ6(U>, U>, U>)). (7)

The unfolded moments X̃4, X̃6 are then given by X̃4 = UỸ4U
>, X̃6 = Ỹ6(U>, U>, U>).

Step 3. Tensor Decomposition: learn ω̃i and Σ̃(i) from Ỹ4 and Ỹ6.
Given U , and given Ỹ4 and Ỹ6 which are relate to the parameters as follows:

Ỹ4 =

k∑
i=1

ω̃i(U
>Σ̃(i))⊗2, Ỹ6 =

k∑
i=1

ω̃i(U
>Σ̃(i))⊗3,

we apply tensor decomposition techniques to recover Σ̃(i)’s and ω̃i’s.

5 Implementing the Steps for Mixture of Zero-Mean Gaussians

In this part we show how to accomplish each step of the algorithm outlined in Section 4 and sketch
the proof ideas.

For each step, we first explain the detailed algorithm, and list the deterministic conditions on
the underlying parameters as well as on the exact moments for the step to work correctly. Then we
show that these deterministic conditions are satisfied with high probability over the ρ-perturbation
of the parameters in the smoothed analysis setting. In order to analyze the sample complexity, we
further show that when we are given the empirical moments which are close to the exact moments,
the output of the step is also close to that in the exact case.

In particular we show the correctness and the stability of each step in the algorithm with two
main lemmas: the first lemma shows that with high probability over the random perturbation of
the covariance matrices, the exact moments satisfy the deterministic conditions that ensure the
correctness of each step; the second lemma shows that when the algorithm for each step works
correctly, it is actually stable even when the moments are estimated from finite samples and have
only inverse polynomial accuracy to the exact moments.

The detailed proofs are deferred to Section B to D in the appendix.

Step 1: Span Finding. Given the 4-th order moments M̃4, Step 1 finds the span of covariance
matrices U as defined in (6). Note that by definition of the unfolded moments X̃4 in (1), the
subspace U coincides with the column span of the matrix X̃4.

By Lemma 3.7, we know that the entries in M̃4 are linear mappings of entries in X̃4. Since the
matrix X̃4 is of low rank (k � n2), this corresponds to the matrix sensing problem first studied
in Recht et al. (2010). In general, matrix sensing problems can be hard even when we have many
linear observations (Hardt et al. (2014b)). Previous works (Recht et al. (2010); Hardt et al. (2014a);
Jain et al. (2013)) showed that if the linear mapping satisfy matrix RIP property, one can uniquely

recover X̃4 from M̃4.
However, properties like RIP do not hold in our setting where the linear mapping is determined

by Isserlis’ Theorem. We can construct two different mixtures of Gaussians with different unfolded
moments X̃4, but the same folded moment M̃4 (see Section A.3). Therefore the existing matrix
recovery algorithm cannot be applied, and we need to develop new tools by exploiting the special
moment structure of Gaussian mixtures.
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Step 1 (a). Find the Span of a Subset of Columns of the Covariance Matrices. The

key observation for this step is that if we hit M̃4 with three basis vectors, we get a vector that lies
in the span of the columns of the covariance matrices:

Claim 5.1. For a mixture of zero-mean Gaussians G = {(ωi, 0,Σ(i))}i∈[k] ∈ Gn,k, the one-dimensional
slices of the 4-th order moments M4 are given by:

M4(ej1 , ej2 , ej3 , I) =
k∑
i=1

ωi

(
Σ

(i)
j1,j2

Σ
(i)
[:,j3] + Σ

(i)
j1,j3

Σ
(i)
[:,j2] + Σ

(i)
j2,j3

Σ
(i)
[:,j1]

)
, ∀j1, j2, j3 ∈ [n]. (8)

In particular, if we pick the indices j1, j2, j3 in the index set H, the vector M4(ej1 , ej2 , ej3 , I)

lies in the desired span S =
{

Σ
(i)
[:,j] : i ∈ [k], j ∈ H

}
.

We shall partition the setH into three disjoint subsetsH(i) of equal size
√
n/3, and pick ji ∈ H(i)

for i = 1, 2, 3. In this way, we have (|H|/3)3 = Ω(n1.5) such one-dimensional slices of M4, which all
lie in the desired subspace S. Moreover, the dimension of the subspace S is at most k|H| � n1.5.
Therefore, with the ρ-perturbed parameters Σ̃(i)’s, we can expect that with high probability the
slices of M̃4 span the entire subspace S.

Condition 5.2 (Deterministic condition for Step 1 (a)). Let Q̃S ∈ Rn×(|H|/3)3 be the matrix whose

columns are the vectors M̃4(ej1 , ej2 , ej3 , I) for ji ∈ H(i). If the matrix Q̃S achieves its maximal

column rank k|H|, we can find the desired span S defined in (4) by the column span of matrix Q̃S.

We first show that this deterministic condition is satisfied with high probability by bounding
the k|H|-th singular value of Q̃S with smoothed analysis.

Lemma 5.3 (Correctness). Given the exact 4-th order moments M̃4, for any index set H of size
|H| = √n, With high probability, the k|H|-th singular value of Q̃S is at least Ω(ωoρ

2n).

The proof idea involves writing the matrix Q̃S as a product of three matrices, and using the
results on spectral properties of random matrices Rudelson and Vershynin (2009) to show that with
high probability the smallest singular value of each factor is lower bounded.

Since this step only involves the singular value decomposition of the matrix Q̃S , we then use
the standard matrix perturbation theory to show that this step is stable:

Lemma 5.4 (Stability). Given the empirical estimator of the 4-th order moments M̂4 = M̃4 +E4,
suppose that the entries of E4 have absolute value at most δ. Let the columns of matrix S̃ ∈ Rn×k|H|
be the left singular vector of Q̃S, and let Ŝ be the corresponding matrix obtained with M̂4. When
δ is inverse polynomially small, the distance between the two projections ‖Proj

Ŝ
− Proj

S̃
‖ is upper

bounded by O
(
n1.25δ/σk|H|(Q̃S)

)
.

Remark 5.5. Note that we need the high dimension assumption (n � k) to guarantee the cor-
rectness of this step: in order to span the subspace S, the number of distinct vectors should be
equal or larger than the dimension of the subspace, namely |H|3 ≥ k|H|; and the subspace should be
non-trivial, namely k|H| < n. These two inequalities suggest that we need n ≥ Ω(k1.5). However,
we used the stronger assumption n ≥ Ω(k2) to obtain the lower bound of the smallest singular value
in the proof.
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Step 1 (b). Find the Span of Projected Covariance Matrices. In this step, we continue
to use the structural properties of the 4-th order moments. In particular, we look at the two-
dimensional slices of M4 obtained by hitting it with two basis vectors:

Claim 5.6. For a mixture of zero-mean Gaussians G = {(ωi, 0,Σ(i))}i∈[k] ∈ Gn,k, the two-dimensional
slices of the 4-th order moments M4 are given by:

M4(ej1 , ej2 , I, I) =
k∑
i=1

ωi

(
Σ

(i)
j1,j2

Σ(i) + Σ
(i)
[:,j1](Σ

(i)
[:,j2])

> + Σ
(i)
[:,j2](Σ

(i)
[:,j1])

>
)
, ∀j1, j2 ∈ [n]. (9)

Note that if we take the indices j1 and j2 in the index set H, the slice M4(ej1 , ej2 , I, I) is
almost in the span of the covariance matrices, except 2k additive rank-one terms in the form of

Σ
(i)
[:,j1](Σ

(i)
[:,j2])

>. These rank-one terms can be eliminated by projecting the slice to the subspace S⊥
obtained in Step 1 (a), namely,

vec(ProjS⊥M4(ej1 , ej2 , I, I)) =

k∑
i=1

ωiΣ
(i)
j1,j2

vec(ProjS⊥Σ(i)), ∀j1, j2 ∈ H,

and this projected two-dimensional slice lies in the desired span US as defined in (5). Moreover,
there are

(|H|+1
2

)
= Ω(n) such projected two-dimensional slices, while the dimension of the desired

span US is at most k.

Condition 5.7 (Deterministic condition for Step 1 (b)). Let Q̃US ∈ Rn2×|H|(|H|+1)/2 be a matrix

whose (j1, j2)-th column for is equal to the projected two-dimensional slice vec(ProjS⊥M̃4(ej1 , ej2 , I, I)),

for j1 ≤ j2 and j1, j2 ∈ H. If the matrix Q̃US achieves its maximal column rank k, the desired span

US defined in (5) is given by the column span of the matrix Q̃US .

We show that this deterministic condition is satisfied by bounding the k-th singular value of
Q̃US in the smoothed analysis setting:

Lemma 5.8 (Correctness). Given the exact 4-th order moments M̃4, with high probability, the k-th
singular value of Q̃US is at least Ω(ωoρ

2n1.5).

Similar to Lemma 5.3, the proof is based on writing the matrix QUS as a product of three
matrices, then bound their k-th singular values using random matrix theory. The stability analysis
also relies on the matrix perturbation theory.

Lemma 5.9 (Stability). Given the empirical 4-th order moments M̂4 = M̃4 +E4, assume that the
absolute value of entries of E4 are at most δ2. Also, given the output Proj

Ŝ⊥ from Step 1 (a), and
assume that ‖Proj

Ŝ⊥ − Proj
S̃⊥‖ ≤ δ1. When δ1 and δ2 are inverse polynomially small, we have

‖Proj
ÛS
− Proj

ŨS
‖ ≤ O

(
n2.5 (δ2 + 2δ1) /σk(Q̃US )

)
.

Step 1 (c). Merge U1,U2 to get the span of covariance matrices U . Note that for a given
index set H, the span US obtained in Step 1 (b) only gives partial information about the span of
the covariance matrices. The idea of getting the span of the full covariance matrices is to obtain
two sets of such partial information and then merge them.

In order to achieve that, we repeat Step 1 (a) and Step 1 (b) for two disjoint sets H1 and H2,
each of size

√
n. The two subspace S1 and S2 thus correspond to the span of two disjoint sets of

covariance matrix columns. Therefore, we can hope that U1 and U2, the span of covariance matrices
projected to S⊥1 and S⊥2 contain enough information to recover the full span U .

In particular, we prove the following claim:

10



Condition 5.10 (Deterministic condition for Step 1 (c)). Let the columns of two (unknown) ma-
trices V1 ∈ Rn×k and V2 ∈ Rn×k form two basis of the same k-dimensional (unknown) subspace
U ⊂ Rn, and let U denote an arbitrary orthonormal basis of U . Given two s-dimensional subspaces
S1 and S2, denote S3 = S⊥1 ∪ S⊥2 . Given two projections of U onto the two subspaces S>1 and S>2 :
U1 = ProjS⊥1

V1 and U2 = ProjS⊥2
V2. If σ2s([S1, S2]) > 0 and σk(ProjS3

U) > 0, there is an algorithm
for finding U robustly.

The main idea in the proof is that since s is not too large, the two subspaces S⊥1 and S⊥2 have a

large intersection. Using this intersection we can “align” the two basis V1 and V2 and obtain V †1 V2,
and then it is easy to merge the two projections of the same matrix (instead of a subspace).

Moreover, we show that when applying this result to the projected span of covariance ma-
trices, we have s = k|H| ≤ n/3, and the two deterministic conditions σ2s([S1, S2]) > 0 and
σk(ProjS3

V1) > 0 are indeed satisfied with high probability over the parameter perturbation. The
detailed smoothed analysis (Lemma B.13 and B.14) and the stability analysis (Lemma B.11) are
provided in Section B.3 in the appendix.

Step 2. Unfold the moments to get X̃4 and X̃6. We show that given the span of covariance
matrices U obtained from Step 1, finding the unfolded moments X̃4, X̃6 is reduced to solving two
systems of linear equations.

Recall that the challenge of recovering X̃4 and X̃6 is that the two linear mappings F4 and F6

defined in (3) are not linearly invertible. The key idea of this step is to make use of the span U to
reduce the number of variables. Note that given the basis U ∈ Rn2×k of the span of the covariance
matrices, we can represent each vectorized covariance matrix as Σ̃(i) = Uσ̃(i). Now Let Ỹ4 ∈ Rk×ksym

and Ỹ4 ∈ Rk×k×ksym denote the unfolded moments in this new coordinate system:

Ỹ4 :=
k∑
i=1

ω̃iσ̃
(i)⊗2, Ỹ6 =

k∑
i=1

ω̃iσ̃
(i) ⊗3 .

Note that once we know Ỹ4 and Ỹ6, the unfolded moments X̃4 and X̃6 are given by X̃4 = UỸ4U
>

and X̃6 = Ỹ6(U>, U>, U>). Therefore, after changing the variable, we need to solve the two linear
equation systems given in (7) with the variables Ỹ4 and Ỹ6.

This change of variable significantly reduces the number of unknown variables. Note that the
number of distinct entries in Ỹ4 and Ỹ6 are k2 =

(
k+1

2

)
and k3 =

(
k+2

3

)
, respectively. Since k2 ≤ n4

and k3 ≤ n6, we can expect that the linear mapping from Ỹ4 to M̃4 and the one from Ỹ6 to M̃6 are
linearly invertible. This argument is formalized below.

Condition 5.11 (Deterministic condition for Step 2). Rewrite the two systems of linear equations
in (7) in their canonical form and let H̃4 ∈ Rn4×k2 and H̃6 ∈ Rn6×k3 denote the coefficient matrices.
We can obtain the unfolded moments X̃4 and X̃6 if the coefficient matrices have full column rank.

We show with smoothed analysis that the smallest singular value of the two coefficient matrices
are lower bounded with high probability:

Lemma 5.12 (Correctness). With high probability over the parameter random perturbation, the
k2-th singular value of the coefficient matrix H̃4 is at least Ω(ρ2n/k), and the k3-th singular value
of the coefficient matrix H̃6 is at least Ω(ρ3(n/k)1.5).

To prove this lemma we rewrite the coefficient matrix as product of two matrices and bound
their smallest singular values separately. One of the two matrices corresponds to a projection of
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Figure 1: Flow of the algorithm for learning mixture of zero-mean Gaussians.

the Kronecker product Σ̃ ⊗kr Σ̃. In the smoothed analysis setting, this matrix is not necessarily
incoherent. In order to provide a lower bound to its smallest singular value, we further apply a
carefully designed projection to it, and then we use the concentration bounds for Gaussian chaoses
to show that after the projection its columns are incoherent, finally we apply Gershgorin’s Theorem
to bound the smallest singular value 6.

When implementing this step with the empirical moments, we solve two least squares problems
instead of solving the system of linear equations. Again using results in matrix perturbation theory
and using the lower bound of the smallest singular values of the two coefficient matrices, we show
the stability of the solution to the least squares problems:

Lemma 5.13 (Stability). Given the empirical moments M̂4 = M̃4 + E4, M̂6 = M̃6 + E6, and
suppose that the absolute value of entries of E4 and E6 are at most δ1. Let Û , the output of Step 1,
be the estimation for the span of the covariance matrices, and suppose that ‖Û − Ũ‖ ≤ δ2. Let Ŷ4

and Ŷ6 be the least squares solution respectively. When δ1 and δ2 are inverse polynomially small,
we have ‖Ỹ4 − Ŷ4‖F ≤ O(

√
n4(δ1 + δ2/σmin(H̃4)) and ‖Ỹ6 − Ŷ6‖F ≤ O(

√
n6(δ1 + δ2/σmin(H̃6)).

Step 3. Tensor Decomposition.

Claim 5.14. Given Ỹ4, Ỹ6 and Ũ , the symmetric tensor decomposition algorithm can correctly and
robustly find the mixing weights ω̃i’s and the vectors σ̃i’s, up to some unknown permutation over
[k], with high probability over both the randomized algorithm and the parameter perturbation.

The algorithm and its analysis mostly follow the algorithm of symmetric tensor decomposition
in Anandkumar et al. (2014), and the details are provided in Section D in the appendix.

Proof Sketch for the Main Theorem of Zero-mean Case. Theorem 3.5 follows from the
previous smoothed analysis and stability analysis lemmas for each step.

First, exploiting the randomness of parameter perturbation, the smoothed analysis lemmas
show that the deterministic conditions, which guarantee the correctness of each step, are satisfied
with high probability. Then using concentration bounds of Gaussian variables, we show that with
high probability over the random samples, the empirical moments M̂4 and M̂6 are entrywise δ-close
to the exact moments M̃4 and M̃6. In order to achieve ε accuracy in the parameter estimation, we
choose δ to be inverse polynomially small, and therefore the number of samples required will be
polynomial in the relevant parameters. The stability lemmas show how the errors propagate only
“polynomially” through the steps of the algorithm, which is visualized in Figure 1.

A more detailed illustration is provided in Section E in the appendix.

6Note that the idea of unfolding using system of linear equations also appeared in the work of Jain and Oh (2014).
However, in order to show the system of linear equations in their setup is robust, i.e., the coefficient matrix has full
rank, they heavily rely on the incoherence assumption, which we do not impose in the smoothed analysis setting.
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Figure 2: Flow of the algorithm for learning mixtures of general Gaussians.

6 Algorithm Outline for Learning Mixture of General Gaussians

In this section, we briefly discuss the algorithm for learning mixture of general Gaussians. Figure 2
shows the inputs and outputs of each step in this algorithm. Many steps share similar ideas to
those of the algorithm for the zero-mean case in previous sections. We only highlight the basic
ideas and defer the details to Section F in the appendix.

Step 1. Find Z̃ = span{µ̃(i) : i ∈ [k]} and Σ̃o = span{Proj
Z̃⊥Σ̃(i)Proj

Z̃⊥ : i ∈ [k]}. Similar
to Step 1 in the zero-mean case, this step makes use of the structure of the 4-th order moments
M̃4, and is achieved in three small steps:

(a) For a subset H ⊂ [n] of size |H| = √n, find the span:

S = span
{
µ̃(i), Σ̃

(i)
[:,j] : i ∈ [k], j ∈ H

}
⊂ Rn. (10)

(b) Find the span of the covariance matrices with the columns projected onto S⊥, namely,

US = span
{

vec(ProjS⊥Σ̃(i)) : i ∈ [k]
}
⊂ Rn

2
. (11)

(c) For disjoint subsets H1 and H2, repeat Step 1 (a) and Step 1 (b) to obtain U1 and U2, the
span of the covariance matrices projected onto the subspaces S⊥1 and S⊥2 . The intersection

of the two subspaces U1 and U2 gives the span of the mean vectors Z̃ = span
{
µ̃(i), i ∈ [k]

}
.

Merge the two subspaces U1 and U2 to obtain the span of the covariance matrices projected

to the subspace orthogonal to Z̃, namely Σ̃o = span
{

Proj
Z̃⊥Σ̃(i)Proj

Z̃⊥ : i ∈ [k]
}

.

Step 2. Find the Covariance Matrices in the Subspace Z̃⊥ and the Mixing Weights
ω̃i’s. The key observation of this step is that when the samples are projected to the subspace
orthogonal to all the mean vectors, they are equivalent to samples from a mixture of zero-mean

Gaussians with covariance matrices Σ̃
(i)
o = Proj

Z̃⊥Σ̃(i)Proj
Z̃⊥ and with the same mixing weights

ω̃i’s. Therefore, projecting the samples to Z̃⊥, the subspace orthogonal to the mean vectors, and

use the algorithm for the zero-mean case, we can obtain Σ̃
(i)
o ’s, the covariance matrices projected

to this subspace, as well as the mixing weights ω̃i’s.

Step 3. Find the means With simple algebra, this step extracts the projected covariance

matrices Σ̃
(i)
o ’s from the 3-rd order moments M̃3, the mixing weights ω̃i and the projected covariance

matrices Σ̃
(i)
o ’s obtained in Step 2.
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Step 4. Find the full covariance matrices In Step 2, we obtained Σ̃
(i)
o , the covariance

matrices projected to the subspace orthogonal to all the means. Note that they are equal to
matrices (Σ̃(i) + µ̃(i)(µ̃(i))>) projected to the same subspace. We claim that if we can find the
span of these matrices ((Σ̃(i) + µ̃(i)(µ̃(i))>)’s), we can get each matrix (Σ̃(i) + µ̃(i)(µ̃(i))>), and then
subtracting the known rank-one component to find the covariance matrix Σ̃(i). This is similar to
the idea of merging two projections of the same subspace in Step 1 (c) for the zero-mean case.

The idea of finding the desired span is to construct a 4-th order tensor:

M̃ ′4 = M̃4 + 2
k∑
i=1

ω̃i(µ̃
(i)⊗4),

which corresponds to the 4-th order moments of a mixture of zero-mean Gaussians with covariance
matrices Σ̃(i) + µ̃(i)(µ̃(i))> and the same mixing weights ω̃i’s. Then we can then use Step 1 of the
algorithm for the zero-mean case to obtain the span of the new covariance matrices, i.e. span{Σ̃(i)+
µ̃(i)(µ̃(i))> : i ∈ [k]}.

7 Conclusion

In this paper we give the first efficient algorithm for learning mixture of general Gaussians in the
smoothed analysis setting. In the algorithm we developed new ways of extracting information from
lower-order moment structure. This suggests that although the method of moments often involves
solving systems of polynomial equations that are intractable in general, for natural models there is
still hope of utilizing their special structure to obtain algebraic solution.

Smoothed analysis is a very useful way of avoiding degenerate examples in analyzing algorithms.
In the analysis, we proved several new results for bounding the smallest singular values of structured
random matrices. We believe the lemmas and techniques can be useful in more general settings.

Our algorithm uses only up to 6-th order moments. We conjecture that using higher order
moments can reduce the number of dimension required to n ≥ Ω(k1+ε), or maybe even n ≥ Ω(kε).
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A Moment Structures

In this section we characterize the structure of the 3-rd, 4-th and 6-th moments of Gaussians
mixtures.

As described in Section 3.2, the m-th order moments of the Gaussian mixture model are given
by the following m-th order symmetric tensor M ∈ Rn×···×nsym :

[Mm]j1,...,jm := E [xj1 . . . xjm ] =

k∑
i=1

ωiE
[
y

(i)
j1
. . . y

(i)
jm

]
, ∀j1, . . . , jm ∈ [n],

where y(i) corresponds to the n-dimensional Gaussian distribution N (µ(i),Σ(i)).
Gaussian distribution is a highly symmetric distribution, and in the zero-mean case the higher

moments are well-understood by Isserlis’ Theorem:

Theorem A.1 (Isserlis). Let y = (y1, . . . , y2t) be a multivariate Gaussian random vector with mean
zero and covariance Σ, then

E[y1 . . . y2t] =
∑∏

Σu,v,

E[y1 . . . y2t−1] = 0,

where the summation is taken over all distinct ways of partitioning y1, . . . , y2t into t pairs, which
correspond to all the perfect matchings in a complete graph. Thus there are (2t− 1)!! terms in the
sum, and each summand is a product of t terms.

The non-zero mean case is a direct corollary using Isserlis’ Theorem and linearity of expectation.

Corollary A.2. Let y = (y1, . . . , yt) be a multivariate Gaussian random vector with mean µ and
covariance Σ, then

E[y1 . . . yt] =
∑∏

Σu,v

∏
µw.

where the summation is taken over all distinct ways of partitioning y1, . . . , yt into p pairs of (u, v)
and s singletons of (w), where p ≥ 0, s ≥ 0 and 2p+ s = t.

As an example, E[y1y2y3] = µ1µ2µ3 + µ1Σ2,3 + µ2Σ1,3 + µ3Σ1,2.

A.1 Proof of Lemma 3.7

We shall first prove Lemma 3.7 in Section 3.2. Recall that this lemma shows that for mixture of
zero-mean Gaussians, the 4-th moments M4 and the 6-th moments M6 with distinct indices can
be viewed as a linear projection of the unfolded moment X4 and X6 defined in (1).

Proof. (of Lemma 3.7)
By Isserlis Theorem A.1, the mapping

√
3F4 is characterized by: (∀1 ≤ j1 < j2 < j3 < j4 ≤ n)

[M4]j1,j2,j3,j4 =

k∑
i=1

ωi(Σ
(i)
j1,j2

Σ
(i)
j3,j4

+ Σ
(i)
j1,j3

Σ
(i)
j2,j4

+ Σ
(i)
j1,j4

Σ
(i)
j2,j3

)

= [X4](j1,j2),(j3,j4) + [X4](j1,j3),(j2,j4) + [X4](j1,j4),(j2,j3).
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Therefore, with the normalization constant
√

3, the (j1, j2, j3, j4)-th mapping of F4 is a projection
of the three elements in X4. Similarly, we have for

√
15F6: (∀1 ≤ j1 < j2 < · · · < j6 ≤ n)

[M6]j1,j2,j3,j4,j5,j6

=[X6](j1,j2),(j3,j4),(j5,j6) + [X6](j1,j3,(j2,j4),(j5,j6) + [X6](j1,j4),(j2,j3),(j5,j6) + [X6](j1,j5),(j2,j3),(j4,j6)

+ [X6](j1,j2),(j5,j3),(j4,j6) + [X6](j1,j3),(j2,j5),(j4,j6) + [X6](j1,j2),(j4,j5),(j3,j6) + [X6](j1,j4),(j2,j5),(j3,j6)

+ [X6](j1,j5),(j2,j4),(j3,j6) + [X6](j1,j3),(j4,j5),(j2,j6) + [X6](j1,j4),(j3,j5),(j2,j6) + [X6](j1,j5),(j3,j2),(j2,j6)

+ [X6](j2,j3),(j4,j5),(j1,j6) + [X6](j2,j4),(j3,j5),(j1,j6) + [X6](j2,j5),(j3,j4),(j1,j6).

Thus with the normalization constant
√

15, the mapping F6 is a linear projection.

A.2 Slices of Moments

Next we shall characterize the slices of the moments of mixture of Gaussians.
For mixture of zero-mean Gaussians, a one-dimensional slice of the 4th moment tensor is a

vector in the span of corresponding columns of the covariance matrices:

Claim A.3 (Claim 5.1 restated). For a mixture of zero-mean Gaussians, the one-dimensional slices
of the 4-th moments M4 are given by:

M4(ej1 , ej2 , ej3 , I) =
k∑
i=1

ωi

(
Σ

(i)
j1,j2

Σ
(i)
[:,j3] + Σ

(i)
j1,j3

Σ
(i)
[:,j2] + Σ

(i)
j2,j3

Σ
(i)
[:,j1]

)
, ∀j1, j2, j3 ∈ [n].

Proof. By the definition of multilinear map, M4(ej1 , ej2 , ej3 , I) is a vector whose p-th entry is equal
to M4(ej1 , ej2 , ej3 , ep). We can compute this entry by Isserlis’ Theorem:

M4(ej1 , ej2 , ej3 , ep) =

k∑
i=1

ωi

(
Σ

(i)
j1,j2

Σ
(i)
[p,j3] + Σ

(i)
j1,j3

Σ
(i)
[p,j2] + Σ

(i)
j2,j3

Σ
(i)
[p,j1]

)
,

this directly implies the claim.

For mixture of zero-mean Gaussians, a two-dimensional slice of the 4th moment M4 is a matrix,
and it is a linear combination of the covariance matrices with some additive rank one matrices:

Claim A.4 (Claim 5.6 restated). For a mixture of zero-mean Gaussians, the two-dimensional slices
of the 4-th moment M4 are given by:

M4(ej1 , ej2 , I, I) =

k∑
i=1

ωi

(
Σ

(i)
j1,j2

Σ(i) + Σ
(i)
[:,j1](Σ

(i)
[:,j2])

> + Σ
(i)
[:,j2](Σ

(i)
[:,j1])

>
)
, ∀j1, j2 ∈ [n].

Proof. Again this follows from Isserlis’ theorem. By definition of multilinear map this is a matrix
whose (p, q)-th entry is equal to

M4(ej1 , ej2 , ep, eq) =
k∑
i=1

ωi

(
Σ

(i)
j1,j2

Σ
(i)
[p,q] + Σ

(i)
j1,p

Σ
(i)
[q,j2] + Σ

(i)
j2,p

Σ
(i)
[q,j1]

)
,

and this directly implies the claim.

19



Similarly, for mixture of general Gaussians, we prove the following claims:

Claim A.5 (Claim F.1 restated). For a mixture of general Gaussians, the (j1, j2, j3)-th one-
dimensional slice of M4 is given by:

M4(ej1 , ej2 , ej3 , I) =
n∑
i=1

ωi

(
µ

(i)
j1
µ

(i)
j2
µ

(i)
j3
µ(i) +

∑
π∈

{
(j1,j2,j3),
(j2,j3,j1),
(j3,j1,j2)

}
(

Σ(i)
π1,π2Σ

(i)
[:,π3] + µ(i)

π1µ
(i)
π2Σ

(i)
[:,π3] + Σ(i)

π1,π2µ
(i)
π3µ

(i)
))

.

Proof. This is very similar to Claim 5.1 and follows from the corollary of Isserlis’s theorem (Corol-
lary A.2). There are 10 ways to partition the indices {j1, j2, j3, j4} into pairs and singletons:
((j1), (j2), (j3), (j4)), ((j1, j2), (j3), (j4)), ((j1, j3), (j2), (j4)), ((j1, j4), (j2), (j3)), ((j2, j3), (j1), (j4)),
((j2, j4), (j1), (j3)), ((j3, j4), (j1), (j2)), ((j1, j2), (j3, j4)), ((j1, j3), (j2, j4)), ((j1, j4), (j2, j3)). From
this enumeration, we can specify each element in the vector of the one-dimensional slice.

Claim A.6 (Claim F.4 restated). For a mixture of general Gaussians, let the matrix M3(1) ∈ Rn×n2

be the matricization of M3 along the first dimension. The j-th row of M3(1) is given by:

[M3(1)][j,:] =
k∑
i=1

ωi

(
µ

(i)
j vec(Σ(i)) + µ

(i)
j µ

(i) � µ(i) + Σ
(i)
[:,j] � µ

(i) + µ(i) � Σ
(i)
[:,j]

)>
.

Proof. Note that [M3(1)][j,:] =
[
vec(E[xjxx

>])
]

= vec(E[xjx� x]). Again following the corollary of

Isserlis’s theorem (Corollary A.2, there are 4 ways to partition the indices {j1, j2, j3} into pairs and
singletons: ((j1), (j2, j3)), ((j1), (j2), (j3)), ((j1, j2), (j3)), ((j2), (j1, j3), and they correspond to the
four terms in the summation.)

A.3 Two mixtures with same M4 but different X4

Since M4 gives linear observations on the symmetric low rank matrix X4, it is natural to wonder
whether we can use matrix completion techniques to recover X4 from M4. Here we show this is
impossible by giving a counter example: there are two mixture of Gaussians that generates the
same 4th moment M4, but has different X4 (even the span of Σ(i)’s are different).

By ((a, b), (c, d)) we denote a 5× 5 matrix A which has 2’s on diagonals, and the only nonzero
off-diagonal entries are Aa,b = Ab,a = Ac,d = Ad,c = 1. For example, ((1, 2), (4, 5)) will be the
following matrix: 

2 1
1 2

2
2 1
1 2

 ,

where all the missing entries are 0’s. Now we construct two mixtures of 3 Gaussians, all with mean 0
and weight 1/3. The covariance matrices are ((1, 2), (4, 5)), ((1, 3), (2, 5)), ((1, 4), (3, 5)) for the first
mixture and ((1, 2), (3, 5)), ((1, 3), (4, 5)), ((1, 4), (2, 5)) for the second mixture. These are clearly

different mixtures with different span of Σ(i)’s: in the first mixture, Σ
(i)
1,2 = Σ

(i)
4,5 for all matrices,

but this is not true for the second mixture.
These two mixture of Gaussians have the same 4th moment M4. This can be checked by using

Isserlis’ theorem to compute the moments. Intuitively, this is true because all the pairs (1, i)
and (i, 5) appeared exactly twice in the covariance matrices for both mixtures; also, every 4-tuple
(1, i, j, 5) appeared exactly once in the covariance matrices for both mixtures.
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B Step 1: Span Finding

Recall that in Step 1 of the algorithm for learning mixture of zero-mean Gaussians, we find the
span of the covariance matrices in three small steps. In this section, we prove the correctness and
the robustness of each step with smoothed analysis.

For completeness we restate each substep and highlight the key properties we need, followed by
the detailed proofs.

B.1 Step 1(a). Finding S, the span of a subset of columns of Σ̃(i)’s.

Input: 4-th order moments M4, set of indices H.

Output: span{Σ(i)
j : i ∈ [k], j ∈ H}, represented by an orthonormal matrix S ∈ Rn×|H|k.

Let Q be a matrix of dimension n× |H|3 whose columns are all of M4(ei1 , ei2 , ei3 , I), for
i1, i2, i3 ∈ H.

Compute the SVD of Q: Q = UDV >.

Return: The first k|H| left singular vectors S = [U[:,1], . . . , U[:,k|H|]].

Algorithm 1: FindColumnSpan

In Step 1 (a), for any set H of size
√
n, we want to show that the one-dimensional slices of

M4 span the entire subspace S = span
{

Σ̃
(i)
[:,j] : i ∈ [k], j ∈ H

}
, which is the span of a subset of the

columns in the covariance matrices.
Recall that in Claim 5.1 we showed:

M̃4(ej1 , ej2 , ej3 , I) =

k∑
i=1

ω̃i

(
Σ̃

(i)
j1,j2

Σ̃
(i)
[:,j3] + Σ̃

(i)
j1,j3

Σ̃
(i)
[:,j2] + Σ̃

(i)
j2,j3

Σ̃
(i)
[:,j1]

)
, ∀j1, j2, j3 ∈ [n].

This in particular means when j1, j2, j3 ∈ H, the vector M̃4(ej1 , ej2 , ej3 , I) is in S. We need to
show that the columns of the matrix Q indeed span the entire subspace S.

It is sufficient to show that a subset of the column span the entire subspace. Form a three-way
even partition of the set H, i.e., |H(1)| = |H(2)| = |H(3)| = |H|/3 =

√
n/3, and only consider the

one-dimensional slices of M̃4 corresponding to the indices ji ∈ H(i) for i = 1, 2, 3. In particular, we
define matrix Q̃S with these one-dimensional slices of M̃4:

Q̃S =
[[

[M̃4(ej1 , ej2 , ej3 , I) : j3 ∈ H(3)] : j2 ∈ H(2)
]

: j1 ∈ H(1)
]
∈ Rn×(|H|/3)3 . (12)

Define matrix P̃S with the corresponding columns of the covariance matrices, forming a basis
(although not orthogonal) of the desired subspace S:

P̃S =
[[

[Σ̃
(i)
[:,j] : i ∈ [k]] : j ∈ H(l)

]
: l = 1, 2, 3

]
=
[
Σ̃[:,H(1)], Σ̃[:,H(2)], Σ̃[:,H(3)]

]
∈ Rn×k|H|. (13)

In the following two lemmas, we show that with high probability over the random perturbation,
the column span of Q̃S is exactly equal to the column span of P̃S , and robustly so.

Lemma B.1 (Lemma 5.3 restated). Given M̃4, the exact 4-th order moment of the ρ-smooth
mixture of zero-mean Gaussians, for any subset H ∈ [n] with cardinality |H| =

√
n, let Q̃S be the

matrix defined as in (12) with the one-dimensional slices of M̃4. For any ε > 0, and for some
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Figure 3: Structure of the matrix BS

absolute constant C1, C2, C3 > 0, with probability at least 1 − (C1ε)
C2n, the k|H|-th singular value

of Q̃S is bounded below by:

σk|H|(Q̃S) ≥ C3ωoε
2ρ2n. (14)

In order to prove this lemma, we first write Q̃S as the product of three matrices.

Claim B.2 (Structural). Under the same assumptions of Lemma B.1, the matrix Q̃S can be written
as

Q̃S = P̃S
(
Dω̃ ⊗kr I|H|

)
(B̃S)>, (15)

where P̃S ∈ Rn×k|H| as defined in Equation (13 has columns equal to the columns in Σ̃
(i)
[:,H]; the

diagonal matrix in the middle is the Kronecker product of two diagonal matrices and depends only
on the mixing weights ω̃i’s.

With the observation that the columns of P̃S form a basis of the subspace S, and each column
of Q̃S is a linear combination of the columns in P̃S , the rows of B̃S ∈ R(|H|/3)3×k|H| can be viewed
as the coefficients for the linear combinations, and has some special structures. In particular, it

consists of three blocks: B̃S =
[
B̃(1), B̃(2), B̃(3)

]
. The first tall matrix B̃(1) ∈ R(|H|/3)3×k(|H|/3),

corresponding to the coefficient of the linear combinations on the subset of basis Σ̃[:,H(1)]. By the

indexing order of the columns in Q̃S , the matrix B̃(1) is block diagonal with identical blocks equal
to Σ̃H(2),H(3) , defined as follows:

Σ̃H(2),H(3) =
[
[Σ̃

(i)
j1,j2

: j1 ∈ H(2), j2 ∈ H(3)]> : i ∈ [k]
]
∈ R(|H|/3)2×k.
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With some fixed and known row permutation π(2) and π(3), the matrix B̃(2) and B̃(3) can be made
block diagonal with identical blocks equal to Σ̃H(1),H(3) and Σ̃H(1),H(2) , respectively. Note that the

three parts B̃(1), B̃(2), B̃(3) do not have any common entry, nor do they involve any diagonal entry
of the covariance matrices, therefore the three parts are independent when the covariances are
randomly perturbed in the smoothed analysis.

It is easier to understand the structure by picture, see Figure 3. The rows of the matrix should
be indexed by (j1, j2, j3) ∈ H(1) × H(2) × H(3), which can also be interpreted as a cube (in the
right). The block structure in the first part B̃(1) correspond to a slice in H(2) ×H(3) direction (for
each block, the element in H(1) is fixed, the elements in H(2) and H(3) take all possible values).
Similarly for B̃(2) and B̃(3) (as shown in figure).

Proof. (of Claim B.2 ) The proof of this claim is using Claim 5.1, the definition of matrices and the
rule of matrix multiplication. Consider the column in Q̃S corresponding to the index (j1, j2, j3) for
j1 ∈ H(1), j2 ∈ H(2), j3 ∈ H(3), and the row of B̃S together with the mixing wights specifies how this
column is formed as a linear combination of 3k columns of P̃S . By the structure of M4 in Claim 5.1,

the (j1, j2, j3)-th row of B̃(1) has exactly k entries corresponding to Σ̃
(i)
j2,j3

for i ∈ [k], these entries
are multiplied by ω̃i in the middle (diagonal) matrix. Therefore, these directly correspond to the k
terms in Claim 5.1. Similarly the entries in B̃(2) and B̃(3) correspond to the other 2k terms.

Using Claim B.2, we need to bound the smallest singular value for each of the matrices in order
to bound the k|H|-th singular value of Q̃S , this is deferred to the end of this part. The most
important tool is a corollary (Lemma G.16) of the random matrix result proved in Rudelson and
Vershynin (2009), which gives a lowerbound on the smallest singular value of perturbed rectangular
matrices.

By Lemma B.1, we know Q̃S has exactly rank k|H|, and is robust in the sense that its k|H|-
th singular value is large (polynomial in the amount of perturbation ρ). By standard matrix
perturbation theory, if we get Q̂S close to Q̃S up to a high accuracy (inverse polynomial in the
relevant parameters), the top k|H| singular vectors will span a subspace that is very close to the
span of Q̃S . We formalize this in the following lemma.

Lemma B.3 (Lemma 5.4 restated). Given the empirical estimator of the 4-th order moments

M̂4 = M̃4 +E4. and suppose that the absolute value of entries of E4 are at most δ. Let the columns
of matrix S̃ ∈ Rn×k|H| be the left singular vector of Q̃S, and let Ŝ be the corresponding matrix
obtained with M̂4. Conditioned on the high probability event σk|H|(Q̃S) > 0, for some absolute
constant C we have:

‖Proj
Ŝ
− Proj

S̃
‖ ≤ Cn1.25

σk|H|(Q̃S)
δ. (16)

Proof. Note that the columns of S are the leading left singular vectors of QS . We apply the
standard matrix perturbation bound of singular vectors. Recall that S is defined to be the first
k|H| left singular vector of QS , and we have

‖Q̂S − Q̃S‖ ≤ ‖Q̂S − Q̃S‖F ≤
√
n(|H|/3)3δ2.

Therefore by Wedin’s Theorem (in particular the corollary Lemma G.5), we can conclude (16).

Next, we prove Lemma B.1.
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Proof of Lemma B.1 We first use Claim B.2 to write Q̃S = P̃S
(
Dω̃ ⊗kr I|H|

)
(B̃S)>, note that

the matrix (Dω̃ ⊗kr I|H|) has dimension k|H| × k|H|, therefore we just need to show with high
probability each of the three factor matrix has large k|H|-th singular value, and that implies a
bound on the k|H|-th singular value of Q̃S by union bound. The smallest singular value of P̃S and
B̃S are bounded below by the following two Claims.

Claim B.4. With high probability σk|H|(P̃S) ≥ Ω(ρ
√
n).

Proof. This claim is easy as P̃S ∈ Rn×k|H| is a tall matrix with n ≥ 5k|H| rows. In particular, let
P̃ ′S be the block of P̃S with rows restricted to HC = [n]\H. Note that P̃ ′S is a linear projection

of PS , and by basic property of singular values in Lemma G.11, the k|H| singular values of P̃ ′S
provide lower bounds for the corresponding ones of P̃S . We only consider the restricted rows so
that P̃ ′S does not involve any diagonal elements of the covariance matrices, which are not randomly
perturbed in our smoothed analysis framework.

Now P̃ ′S is a randomly perturbed rectangular matrix, whose smallest singular value can be lower
bounded using Lemma G.16, and we conclude that with probability at least 1− (Cε)0.25n,

σk|H|(P̃S) ≥ ερ√n.

Next, we bound the smallest singular value of B̃S .

Claim B.5. With high probability σk|H|(B̃S) ≥ Ω(ρ
√
n).

Proof. We make use of the special structure of the three blocks of B̃S to lower bound its smallest
singular value.

First, we prove that the block diagonal matrix B̃(1) has large singular values, even after pro-
jecting to the orthogonal subspace of the column span of B̃(2) and B̃(3). This idea appeared several
times in our proof and is abstracted in Lemma G.12. Apply the lemma and we have:

σk|H|(B̃S) ≥ min

{
σk(2|H|/3)([B̃

(2), B̃(3)]), σk(Proj
([B̃(2),B̃(3)]{j}×H(2)×H(3) )⊥Σ̃H(2),H(3)) : j ∈ H(1)

}
(17)

≥ min

{
σk(2|H|/3)([B̃

(2), B̃(3)]), σk(Proj
([B̃(2),B̃(3)]{j}×H(2)×H(3) )⊥ProjΣ⊥

H(2),H(3)
Σ̃H(2),H(3)) : j ∈ H(1)

}
,

where the j-th block of [B̃(2), B̃(3)] has dimension (|H|/3)2 × 2k|H|/3. Since

(|H|/3)2 − k − 2k|H|/3 = Ω(n/9− k − 2kn0.5/3) ≥ Ω(n),

this means for each block, even after projection it has more than 3k rows. Note that by definition
the three blocks B̃(1), B̃(2) and B̃(3) are independent and do not involve any diagonal elements
of the covariance matrices, so each block after the two projections is again a rectangular random
matrix. We can apply Lemma G.15, for any j, for some absolute constant C1, C2, C3 (not fixed
throughout the discussion), with probability at least 1−(C1ε)

C2n over the randomness of Σ̃H(2),H(3) ,
we have:

σk(Proj
([B̃(2),B̃(3)]{j}×H(2)×H(3) )⊥ProjΣ⊥

H(2),H(3)
Σ̃H(2),H(3)) ≥ ερ

√
C3n. (18)
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Now we can take a union bound over the blocks and conclude that with high probability, the
smallest singular value of each block is large.

In order to bound σk(2|H|/3)([B̃
(2), B̃(3)]), we use the same strategy. Note that B̃(2) also has a

block structure that corresponds to the H(1)×H(3) faces (see Figure 3). Again check the condition
on dimension (|H|/3)2 − k − k|H|/3 ≥ Ω(n) > 3k, we can apply Lemma G.12 again to show that
for any j, with probability at least 1− (C1ε)

C2n over the randomness of Σ̃H(1),H(3) , we have:

σk(2|H|/3)([B̃
(2), B̃(3)]) ≥ min{σk(|H|/3)(B̃

(3)), σk(Proj
([B̃(3)]H(1)×{j}×H(3) )⊥ProjΣ⊥

H(1),H(3)
Σ̃H(1),H(3)) : j ∈ H(2)}.

(19)

Again by Lemma G.15, for any j, with probability at least 1 − (C1ε)
C2n over the randomness of

Σ̃H(1),H(3) , we have:

σk(Proj
([B̃(3)]H(1)×{j}×H(3) )⊥ProjΣ⊥

H(1),H(3)
Σ̃H(1),H(3)) ≥ ερ

√
C3n. (20)

Finally, for B̃(3) it is a block diagonal structure with blocks correspond to H(1)×H(2) faces (see
Figure 3). Each block is a perturbed rectangular matrix, therefore we apply Lemma G.15 to have
that with high probability over the randomness of Σ̃H(1),H(2) ,

σk(|H|/3)(B̃
(3)) ≥ σk(Σ̃H(1),H(2)) ≥ ερ

√
n. (21)

Now plug in the lower bounds in (18) (20) (21) into the inequalities in (17) and (19). By union
bound we conclude that with high probability:

σk|H|(B̃S) ≥ ερ
√
C3n.

Finally, the diagonal matrix in the middle is given by the Kronecker product of I|H| and Dω̃.
Recall that Dω̃ is the diagonal matrix with the mixing weights ω̃i’s on its diagonal. By property
of Kronecker product and the assumption on the mixing weights, the smallest diagonal element of
Dω̃ ⊗kr I|H| is at least ω0. Therefore σk|H|(Dω̃ ⊗kr I|H|) ≥ ω0.

We have shown that the smallest singular value of all the three factor matrices are large with
high probability. Therefore, apply union bound, we conclude that with probability at least 1 −
exp(−Ω(n)),

σk|H|(Q̃S) ≥ σk|H|(P̃S)σk|H|(Dω̃ ⊗kr I|H|)σk|H|(B̃S) ≥ O(ωoρ
2n).

B.2 Step 1 (b). Finding US, the span of Σ̃(i)’s with columns projected to S⊥.

In Step 1 (b), given the subset of indices H and the subspace S obtained in Step 1 (a), we want to

show that the projected two-dimensional slices of M̃4 span the subspace US defined in (5), which
is the span of the covariance matrices with the columns projected the subspace S⊥:

US = span
{

vec(ProjS⊥Σ̃(i)) : i ∈ [k]
}
⊂ Rn

2
.

Recall that in Claim 5.6, we characterized the two dimensional slices of the 4-th moments M4

of mixture of zero-mean Gaussians as below:

M̃4(ej1 , ej2 , I, I) =
k∑
i=1

ω̃i

(
Σ̃

(i)
j1,j2

Σ̃(i) + Σ̃
(i)
[:,j1](Σ̃

(i)
[:,j2])

> + Σ̃
(i)
[:,j2](Σ̃

(i)
[:,j1])

>
)
, ∀j1, j2 ∈ [n]. (22)

25



Input: 4-th order moments M4, set of indices H, subspace S ⊂ Rn
Output: span{vec(ProjS⊥Σ(i)) : i ∈ [k]}, represented by an orthonormal matrix
US ∈ Rn2×k.

Let Q be a matrix whose columns are vec(ProjS⊥M4(ei, ej , I, I)) for all i, j ∈ H, i 6= j.
Compute the SVD of Q: Q = UDV >.

Return: The first k left singular vectors US = [U[:,1], . . . , U[:,k]].

Algorithm 2: FindProjectedSigmaSpan

For notational convenience, we let J denote the set J = {(j1, j2) : j1 ≤ j2, j1, j2 ∈ H}, and
note that the cardinality is |J | =

(|H|+1
2

)
= (n+

√
n)/2. First, we define the matrix Q̃US ∈ Rn2×|J |

whose columns are the vectorized two-dimensional slices of M̃4 with the columns projected to the
subspace S⊥:

Q̃US =
[
vec(ProjS⊥M̃4(ej1 , ej2 , I, I)) : (j1, j2) ∈ J

]
. (23)

Similarly we define Q̃U0 ∈ Rn2×|J | with the slices without the projection:

Q̃U0 =
[
vec(M̃4(ej1 , ej2 , I, I)) : (j1, j2) ∈ J

]
.

Observe the structure in (22) and we see the columns of Q̃U0 is “almost” in the span of covariance
matrices, except for some additive rank one terms. Note that all the rank one terms lie in the
subspace S obtained from Step 1 (a), and they vanish if we project the slice to the orthogonal

subspace S⊥. In particular, ProjS⊥Σ̃
(i)
[:,j] = 0 for all j ∈ S. Let the columns of the matrix P̃US ∈

Rn2×k be the vectorized and projected covariance matrices as below:

P̃US =
[
vec(ProjS⊥Σ̃(i)) : i ∈ [k]

]
. (24)

In the following claim, we show that the columns of Q̃US indeed lie in the column span of P̃US :

Claim B.6. Given S obtained in Step 1(a), the span of Σ̃
(i)
[:,j] for j ∈ H and for all i, then for

j1, j2 ∈ H, we have:

ProjS⊥M̃4(ej1 , ej2 , I, I) =
k∑
i=1

ω̃iΣ̃
(i)
j1,j2

ProjS⊥Σ̃(i), ∀j1, j2 ∈ [n].

Similar as in Step 1(a), in the next lemma we show that the columns of Q̃US indeed span the

entire column span of P̃US . Since the dimension of the column span of P̃US is no larger than k, it

is enough to the k-th singular value of Q̃US :

Lemma B.7 (Lemma 5.8 restated). Given M̃4, the exact 4-th order moment of the ρ-smooth

mixture of Gaussians , define the matrix Q̃US as in (23) with the two-dimensional slices of M̃4. For
any ε > 0, and for some absolute constant C1, C2, C3 > 0, with probability at least 1 − 2(C1ε)

C2n,
the k-th singular value of Q̃US is bounded below by:

σk(Q̃US ) ≥ C3ωo(ερ)2n1.5.
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Similar as before, we first examine the structure of the matrix Q̃US :

Claim B.8 (Structural). Under the same assumption as Lemma B.7, we can write Q̃US in the
following matrix product form:

Q̃US = P̃USDω̃Σ̃>J . (25)

The columns of the matrix P̃US ∈ Rn2×k are the vectorized and projected covariance matrices as
defined in (24); Dω̃ is the diagonal matrix with the mixing weights ω̃i on its diagonal; and the
matrix Σ̃J is defined as:

Σ̃J =
[
vec[Σ̃

(i)
(j1,j2) : (j1, j2) ∈ J ] : i ∈ [k]

]
∈ R|J |×k.

Proof. This claim follows from Claim B.6, and the rule of matrix product. The coefficients ω̃iΣ̃
(i)
j1,j2

for the linear combinations of vec(ProjS⊥Σ̃(i)) are given by the columns of the product Dω̃Σ̃>J . The

coefficients are then multiplied by P̃US to select the correct columns.

To prove Lemma B.7, similar to the proof ideas of Lemma B.1, we lower bound the k-th singular
value of all the three factors.

Proof of Lemma B.7 By the structural Claim B.8, we know the matrix Q̃US can be written as

a product of the three matrices as Q̃US = P̃USDω̃Σ̃>J .
We lower bound the k-th singular value of each of the three factors. It is easy for the last two

matrices. Note that by assumption σk(Dω̃) ≥ ωo, and since Σ̃>J is just a perturbed rectangular

matrix, we can apply Lemma G.15 and with high probability we have σk(Σ̃J) ≥ Ω(ρ
√
n).

The first matrix P̃US is more subtle. Let us define the projection DS⊥ = ProjS⊥⊗krIn ∈ Rn2×n2
.

This is just a way of saying “apply the projection ProjS⊥ to all columns” and then vectorize the
matrix. In particular, for any matrix A we have DS⊥vec(A) = vec(ProjS⊥A), therefore by definition
of P̃US we can write P̃US = DS⊥Σ̃.

However, we cannot apply the same trick to directly bound the smallest singular value of DS⊥

and ProjD
S⊥

Σ̃ separately. The problem here is thatDS⊥ and Σ̃ are not independent, as the subspace

S obtained in Step 1(a) also depends on the perturbation on Σ̃, therefore ProjD
S⊥

Σ̃ is not simply
a projected perturbed matrix. Instead, we show that even conditioned on the part of randomness
that is common in S and Σ̃, Σ̃ still has sufficient randomness due to the high dimensions, and we
can still extract a tall random matrix out of it. This is elaborated in the following claim:

Claim B.9. Under the assumptions of Lemma B.7, with high probability the matrix P̃US = DS⊥Σ̃
has smallest singular value at least Ω(ρn).

Let L be the set of the (j1, j2)-th entries of Σ̃(i) for all i and one of j1, j2 is in the set H. By Step
1(a), the subspace S ′ = span(S, ej : j ∈ H) is only dependent on the entries in L. Here we need
to include the span of ej ’s for j ∈ H because the diagonal entries can depend on the other random
perturbations. By adding the span of the vector ej ’s for j ∈ H the subspace remains invariant no
matter how the diagonal entries change.

Let Z = span(Σ, S′ ⊗kr In), and recall that the columns of Σ are the factorization of the
unperturbed covariance matrices. The subspace Z has dimension no larger than |H|(k+ 1)n+ k ≤
n2/10, and depends on the randomness of L.

Let Σ̃ = Σ+E where E is the random perturbation matrix. Now we condition on the randomness
in L. By definition the subspace Z is deterministic conditional on L. However, even if we only

27



consider entries of E\L there are still at least
(
n−k|H|

2

)
≥ n2/4 independent random variables. We

shall show the randomness is enough to guarantee that the smallest singular value of ProjDS⊥
Σ̃ is

lower bounded with high probability conditioned on L:

σk(P̃US ) = σk(DS⊥Σ̃)

≥ σk(ProjZ⊥Σ̃)

= σk(ProjZ⊥Σ + ProjZ⊥E)

= σk(ProjZ⊥E).

Here we used the fact that projection to a subspace cannot increase the singular values (Lemma G.11).
Conditioned on the randomness of entries in L, E\L still has at least n2/4 random directions,

while the dimension of the deterministic subspace Z is at most n2/10. Therefore we can apply
Lemma G.15 again to argue that conditionally, for every ε > 0, with probability at least 1−(C1ε)

C2n2

we have:

σk(P̃US ) ≥ ερ
√
C3n2.

In summary, apply union bound and we can conclude that with probability at least 1−(C1ε)
C2n,

σk(Q̃US ) = σk(P̃US )σk(Dω̃)σk(Σ̃J) ≥ C3ωo(ερ)2n1.5.

Next, we again use matrix perturbation bounds to prove the robustness of this step, which
depends on the singular value decomposition of the matrix Q̃US .

Lemma B.10 (Lemma 5.13 restated). Given the empirical 4-th order moments M̂4 = M̃4 + E4,
and given the output Proj

Ŝ⊥ from Step 1 (a). Suppose that ‖Proj
Ŝ⊥ − Proj

S̃⊥‖ ≤ δ1, and suppose

that the absolute value of entries of E4 are at most δ2 for δ2 ≤ ‖Q̃US‖F /
√
n3. Conditioned on the

high probability event σk(Q̃US ) > 0, we have:

‖Proj
ÛS
− Proj

ŨS
‖ ≤ n2.5 (1 + 2δ1/δ2)

σk(Q̃US )
δ2. (26)

Proof of Lemma B.10 Note that the columns of US are the leading left singular vectors of Q̃US .
We want to apply the perturbation bound of singular vectors.

Similar to the proof of Lemma B.3, we first need to bound the spectral distance between Q̂US
and Q̃US . In fact we will even bound the Frobenius norm difference:

‖Q̂US − Q̃US‖F = ‖D̂S⊥Q̂U0 − D̃S⊥Q̃U0‖F
= ‖D̃S⊥(Q̂U0 − Q̃U0) + (D̂S⊥ − D̃S⊥)Q̃U0 + (D̂S⊥ − D̃S⊥)(Q̂U0 − Q̃U0)‖F
≤ ‖D̃S⊥‖F ‖Q̂U0 − Q̃U0‖F + 2‖D̂S⊥ − D̃S⊥‖F ‖Q̃U0‖F
≤
√
n2‖D̃S⊥‖2‖Q̂U0 − Q̃U0‖F + 2

√
n‖Proj

Ŝ⊥ − Proj
S̃⊥‖F ‖Q̃U0‖F

≤ n
√
n2|J |δ2

2 + 2
√
n
√
n2|J |‖Proj

Ŝ⊥ − Proj
S̃⊥‖F

≤ n2 |H|√
2

(1 + 2‖Proj
Ŝ⊥ − Proj

S̃⊥‖2/δ2)δ2,

where we used the assumption ‖Σ̃(i)‖ ≤ 1 to bound ‖Q̃U0‖F , used the upperbound on ‖Q̂U0 −
Q̃U0‖F to bound the term ‖(D̂S⊥ − D̃S⊥)(Q̂U0 − Q̃U0)‖F ≤ ‖(D̂S⊥ − D̃S⊥)‖F δ2

√
n2|J | ≤ ‖(D̂S⊥ −

D̃S⊥)‖F ‖Q̃U0‖F , and used the fact that Frobenius norm is sub-multiplicative. Apply Wedin’s
Theorem (in particular the corollary Lemma G.5), we can conclude (26).
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S1

S2

(S1 ∪ S2)
⊥

U1 U2

Figure 4: Step 1(c): Merging two subspaces.

B.3 Step 1 (c). Finding U by Merging the Two Projected Span

Input: two subspaces S1, S2 ∈ Rn×ks, two subspaces U1, U2 ∈ Rn2×k (the span of covariance
matrices projected to the corresponding S⊥1 , S

⊥
2 ).

Output: span{Σ(i) : i ∈ [k]}, represented by an orthonormal matrix U ∈ Rn2×k.

Let A be the first 2ks left singular vectors of [S1, S2].
Let S3 be the first (n− 2ks) left singular vectors of I −AA>.
Let Q = [In2 ,Proj(S3⊗krIn)ProjU1

]>U2, compute the SVD of Q.

Return: matrix U , whose columns are the first k left singular vectors Q.

Algorithm 3: MergeProjections

Pick two disjoint sets of indices H1,H2, and repeat Step 1 (a) and Step 1 (b) on each of them
to get S̃⊥j and Ũj for j = 1, 2. In Step 1 (c), we merge the two span Ũ1 and Ũ2 to get U .

If we are given two projections ProjS⊥1
U and ProjS⊥2

U of a matrix U , and if the union of the

two subspaces S⊥1 and S⊥2 have full rank, namely dim(S1 ∪ S2) = n, then we can recover U by:

U =

[
ProjS⊥1
ProjS⊥2

]† [
ProjS⊥1

U

ProjS⊥2
U

]
.

However, it is slightly different if we are given two projections of a subspace U , since a subspace
can be equivalently represented by different orthonormal basis up to linear transformation.

In particular, in our setting for j = 1, 2, we can write Ũj = (ProjS⊥j
⊗kr In)Σ̃Wj for some fixed

but unknown full rank matrix Wj (which makes the columns of matrix Σ̃Wj an orthonormal basis

of U). Recall that we define Σ̃ ≡ [vec(Σ̃(i)) : i ∈ [k]], and DS⊥j
≡ ProjS⊥j

⊗kr In for j = 1, 2.

The following Lemma shows that we can still robustly recover the subspace U if the two pro-
jections have sufficiently large overlapping. The basic idea is to use the overlapping part to align
the two basis of the subspace which the two projections act on.

Lemma B.11 (Robustly merging two projections of an unknown subspace). This is the detailed
statement of Condition 5.10.

Let the columns of two fixed but unknown matrices V1 ∈ Rn×k and V2 ∈ Rn×k form two basis
(not necessarily orthonormal) of the same k-dimensional fixed but unknown subspace U in Rn.

For two s-dimensional known subspaces S1 and S2, Let the columns of A be the first 2s singular
vectors of [S1, S2], and let the columns of S3 correspond to the first (n − 2s) singular vectors of
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(In − ProjA), therefore S3 ⊂ (S1 ∪ S2)⊥. Suppose that σk(ProjS3
U) > 0 and that σ2s([S1, S2]) > 0.

Define matrices U1 = ProjS⊥1
V1 and U2 = ProjS⊥2

V2 and we know that U>1 U1 = U>2 U2 = Ik.

We are given Ŝ1, Ŝ2 and Û1, Û2, and suppose that for j = 1, 2, we have ‖Ŝj − Sj‖F ≤ δs and

‖Ûj − Uj‖F ≤ δu, for δs ≤ 1, δu ≤ 1.

Let the columns of Â be the first 2s singular vectors of [Ŝ1, Ŝ2], and let the columns of Ŝ3 be the
first (n− 2s) singular vectors of (In − Proj

Â
). Define matrix Û ∈ Rn×2k to be:

Û =
[
Û2, Û1(Ŝ>3 Û1)†(Ŝ>3 Û2)

]
(27)

If σk(ProjS3
U) > 0 and σ2s([S1, S2]) > 0, then for some absolute constant C we have:

‖Proj
Û
− ProjU‖ ≤

C
√
k(δu + δs/σ2s([S1, S2]))

σk(ProjS3
U)2σ2s([S1, S2])3

.

Proof. The proof will proceed in two steps, we first show that if we are given the exact inputs,
namely δs = δu = 0, then the column span of Û defined in (27) is identical to the desired subspace
U . Then we give a stability result using matrix perturbation bounds.
1. Solving the problem using exact inputs.

Given the exact inputs S1, S2, U1, U2, first we show that under the conditions σ2s([S1, S2]) > 0
and σk(ProjS3

U) > 0, then the column span of the matrix
[
U2, U1(S>3 U1)†(S>3 U2)

]
is indeed

identical to U = span(V1) = span(V2).

Claim B.12. Under the same assumptions of Lemma B.11, given a matrix V ∈ Rk×k such that
V = V †1 V2, let ProjU0

be the projection to the column span of U0 = [U2, U1V ], then we have
ProjU0

= ProjU .

Proof. Given V = V †1 V2, then U1V = ProjS⊥1
V1V = ProjS⊥1

V2. Recall that by definition U2 =
ProjS⊥2

V2, then the problem is now reduced to the simple problem of merging two projections

(U2 = ProjS⊥2
V2 and U1V = ProjS⊥1

V2) of the same matrix (V2). Therefore, to show that the

columns of U0 = [U2, U1V ] indeed span V2 and thus the desired subspace U , we only need to show
that [ProjS⊥1

,ProjS⊥2
] has full column span. We show this by bounding the smallest singular value

of it:

σn([ProjS⊥2
,ProjS⊥1

]) ≥σ2s([ProjS⊥2
,ProjS⊥1

]

[
S1 0
0 S2

]
)

=σ2s(
[

(In − S2S
>
2 )S1, (In − S1S

>
1 )S2

]
)

=σ2s(
[
S1, S2

] [ Is −S>1 S2

−S>2 S1 Is

]
)

=σ2s(
[
S1, S2

] [ S>1
−S>2

] [
S1,−S2

]
)

=σ2s(
[
S1, S2

] [
S1,−S2

]> [
S1,−S2

]
)

=σ2s([S1, S2])3

>0, (28)

where the last inequality is by the assumption that σ2s([S1, S2]) > 0.
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Next, we show that in the exact case, the matrix V = V †1 V2 can be computed by V =
(S>3 U1)†(S>3 U2). The basic idea is to use the overlapping part of the two projections U1 and
U2 to align the two basis V1 and V2. Recall that by its construction, S3 = (S1 ∪ S2)⊥ = S⊥1 ∩ S⊥2 ,
and ProjS3

= ProjS⊥1 ∩S⊥2 . Then for j = 1 and 2, we have:

S>3 Uj = S>3 ProjS⊥j
Vj = S>3 (ProjS⊥3

ProjS⊥j
+ ProjS3

ProjS⊥j
)Vj = S>3 (0 + ProjS3

)Vj = S>3 Vj .

Moreover, since Uj = ProjS⊥j
Vj is an orthonormal matrix, we have that all singular values of

Vj are equal or greater than 1. Also note that U is an orthonormal matrix, so we have that
σk(ProjS3

Vj) ≥ σk(ProjS3
U) > 0. In other words, S>3 Vj has full column rank k. Therefore,

V = (S>3 U1)†(S>3 U2)

= (S>3 V1)†(S>3 V2)

= (V >1 S3S
>
3 V1)−1V >1 S3(S>3 V2)

= (V >1 S3S
>
3 V1)−1V >1 S3S

>
3 V1V

†
1 V2

= V †1 V2

where the third equality is the Moore-Penrose definition, the fourth equality is because V1 and V2

are basis of the same subspace, there exists some full rank matrix X ∈ Rk×k such that V2 = V1X,
so we have V1V

†
1 V2 = V1V

†
1 V1X = V1X = V2.

2. Stability result.
Given Ŝ1, Ŝ2 and Û1, Û2 which are close to the exact S1, S2, U1 and U2, we then need to bound

the distance ‖Proj
Û
− ProjU‖. This follows the standard perturbation analysis. In order to apply

Lemma G.5 we need to bound the distance between ‖Û − U0‖F , and lower bound the smallest
singular value of U0, namely σk(U0). Recall that we define U0 same as in (27) for the exact case
with δs = δu = 0.

First, we bound ‖Û−U0‖F . Note that we can write U>0 as U>0 = U2B, whereB = [I, U1(S>3 U1)†S3]>.
Recall that S3 = (S1 ∪ S2)⊥, apply Lemma G.5 and we have:

‖Ŝ3 − S3‖ ≤ ‖Proj
Ŝ1∪Ŝ2

− ProjS1∪S2
‖ ≤
√

2
‖[Ŝ1, Ŝ2]− [S1, S2]‖F

σ2s([S1, S2])
≤ 2

√
2δs

σ2s([S1, S2])
.

Next, note that ‖Ŝ3 − S3‖ < 1 and ‖Û1 − U1‖ ≤ δu < 1, apply Lemma G.6 we have:

‖Ŝ>3 Û1 − S>3 U1‖ ≤ 2(‖Ŝ3 − S3‖+ ‖Û1 − U1‖).

Next, note that σk(S
>
3 U1) = σk(ProjS3

V1) > 0 by assumption. Apply Lemma G.8, we have:

‖(Ŝ>3 Û1)† − (S>3 U1)†‖ ≤ 2
√

2‖Ŝ>3 Û1 − S>3 U1‖
σk(ProjS3

V1)2
.

Next, apply Lemma G.6 again we can bound the perturbation of matrix product:

‖Û − U0‖ = ‖Û2B̂ − U2B‖
≤ 2(‖Û2 − U2‖+ ‖B̂ −B‖)
= 2(‖Û2 − U2‖+ ‖Û1(Ŝ>3 Û1)†Ŝ3 − U1(S>3 U1)†S3‖)
≤ 2(‖Û2 − U2‖+ 4(‖Û1 − U1‖+ ‖(Ŝ>3 Û1)† − (S>3 U1)†‖+ ‖Ŝ3 − S3‖)).

≤ C(δu + δs/σ2s([S1, S2]))

σk(ProjS3
V1)2

,
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where C is some absolute constant, and the last inequality summarizes the previous three inequal-
ities, and used the fact that σk(ProjS3

V1) < 1. Note that ‖Û − U0‖F ≤
√
k‖Û − U0‖.

We are left to bound σk(U0). Recall that σk(V2) ≥ σk(U2) = 1, and we have shown that in
the exact case U0 = [ProjS⊥2

V2, ProjS⊥1
V2]. Then we can bound the smallest singular value of U0

following the inequality in (28):

σk(U0) ≥σn([ProjS⊥2
,ProjS⊥1

]) ≥ σ2s([S1, S2])3.

Finally we can apply Lemma G.5 to bound the distance between the projections by:

‖Proj
Û
− ProjU0

‖ ≤
√

2‖Û − U0‖F
σk(U0)

≤ C
√
k(δu + δs/σ2s([S1, S2]))

σk(ProjS3
V1)2σ2s([S1, S2])3

.

In Step 1 (c), we are given the output Ũ1 and Ũ2 from Step 1 (b), as well as the output S̃⊥1
and S̃⊥2 from Step 1 (a). Recall that U = span{vec(Σ̃(i)) : i ∈ [k]}, and for j = 1, 2, the matrix Ũj
given by Step 1 (b) corresponds to the subspace U projected to the subspace B̃j = S̃⊥j ⊗kr In.

Let matrix S̃3 = S̃⊥1 ∩ S̃⊥2 = (S̃1 ∪ S̃2)⊥ (obtained by taking the singular vectors of (In−AA>),

where A corresponds to the first 2k|H| singular vectors of [S̃1, S̃2]), and denote B̃3 = S̃3 ⊗kr In.
Define the matrix Q̃U to be:

Q̃U =
[
Ũ2, Ũ1(B̃3Ũ1)†B̃3Ũ2)

]
, (29)

and similarly define the perturbed version Q̂U to be:

Q̂U =
[
Û2, Û1(B̂3Û1)†B̂3Û2)

]
.

Now we want to apply Lemma B.11 to show that Proj
Q̃U

= Proj
Σ̃

and bound the distance

‖Proj
Q̂U
−Proj

Σ̃
‖. In order to use the lemma, we first use smoothed analysis to show (in Lemma B.13

and Lemma B.14 )that the conditions required by the lemma are all satisfied with high probability
over the ρ-perturbation of the covariance matrices, then conclude the robustness of Step 1 (c) in
Lemma B.15.

Lemma B.13. With high probability, for some constant C

σk(Proj
B̃3

Σ̃) ≥ Cερn.

Proof. This is in fact exactly the same as Claim B.9.
Given Σ̃ = Σ + E, by the definition of S̃3 and B̃3 we know that B̃3 only depends on the

randomness of PJE for i = 1, 2, where

J = {(j1, j2) : j1 ∈ H1 ∪H2, or j1 ∈ H1 ∪H2},

and PJ denotes the mapping that only keeps the coordinates corresponding to the set J . Therefore,
we have:

σk(Proj
B̃3

Σ̃) ≥ σk(Proj
(B̃>3 Σ)⊥Proj

B̃3
E).

Note that the rank of B̃⊥3 is 2nk|H|) and |J | = 2n|H|, thus n2−|J |−2nk|H|−k = Ω(n2) > 2k. So
we can apply Lemma G.15 to conclude that for some absolute constants C1, C2, C3, with probability
at least 1− (C1ε)

C2n2
, σk(B̃

>
3 Σ̃) ≥ ερ

√
C3n2.
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Lemma B.14. With high probability, for some constant C,

σ2k|H|([S̃1, S̃2]) ≥ Cωo(ερ)2n−0.25.

Proof. For i = 1, 2, recall that S̃i is the singular vectors of Q̃Si , where Q̃Si is defined with the set
Hi as in (12). We can write the singular value decomposition of Q̃Si as Q̃Si = S̃iD̃iṼ

>
i for some

diagonal matrix D̃i and orthonormal matrix Ṽi, and

[S̃1, S̃2] = [Q̃S1 , Q̃S2 ]

[
Ṽ1D̃

−1
1 0

0 Ṽ2D̃
−1
2

]
.

Note that we can write [Q̃S1 , Q̃S2 ] = [P̃S1 , P̃S2 ](diag(B
S̃1
, B

S̃2
))>, and following almost exactly with

the proof of Lemma B.1, we can argue that, with probability at least 1− (C1ε)
C2n,

σ2k|H|([Q̃S1 , Q̃S2 ]) ≥ Cωo(ερ)2n.

Moreover, by the structure ofM4 and the bounds on Σ̃(i) ≺ 1
2I, we can bound ‖Q̃Si‖ ≤ 3

√
n(|H|/3)3,

and thus:

σk|H|(ViD̃
−1
i ) =

1

σmax(Q̃Si)
≥ 1

3
√
n(|H|/3)3

= Ω(n−1.25).

Therefore, we can conclude that, for some absolute constant C, we have:

σ2k|H|([S̃1, S̃2]) ≥ Cωo(ερ)2n−0.25.

In the next lemma, we apply Lemma B.11 to show that under perturbation, with high probability
the column span of Proj

Q̃U
= Proj

Σ̃
and this step is robust.

Lemma B.15. Given the output Ŝ1, Ŝ2 and Û1, Û2 from Step 1 (a) and (b) based on the empirical

moments M̂4. Suppose that for i = 1, 2, ‖Ŝi − S̃i‖F ≤ δs, ‖Ûi − Ũi‖F ≤ δu for δs, δu < 1. Let
the columns of Ũ ∈ Rn2×k be the k leading singular vectors of Q̃U defined in (29). Then for some
absolute constants C, with high probability,

‖Proj
Û
− Proj

Ũ
‖ ≤ C

√
k(δu + δsn

0.75/(ωoε
2ρ2))

ω3
oε

8ρ8n1.25
. (30)

Note that σ2k|H|n([B̃1, B̃2]) = σ2k|H|([S̃1, S̃2]), and for i = 1, 2, we have ‖B̂i − B̃i‖F ≤
√
n‖Ŝi −

S̃i‖F ≤
√
nδs. Therefore, with the above two smoothed analysis Lemmas showing polynomial bound

of σ2k|H|([S̃1, S̃2]) and σk(Proj
B̃3

(Σ̃)), the proof of Lemma B.15 follows by applying Lemma B.11.

C Step 2. Unfolding the Moments

In the second step of the algorithm, we solve two systems of linear equations to recover the unfolded
moments.
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Input: 4-th order moments M4 ∈ Rn4 , 6-th order moments M6 ∈ Rn6 , the span of
(vectorized with distinct entries) covariance matrices U ∈ Rn2×k.
Output: Unfolded moments in the coordinate system of U : Y4 ∈ Rk×ksym, Y6 ∈ Rk×k×ksym .

Let Y4 be the solution to minY4∈Rk×ksym
‖
√

3F4(UY4U
>)−M4‖2F .

Let Y6 be the solution to minY6∈Rk×k×ksym
‖
√

15F6Y6(U>, U>, U>)−M6‖2F .

Return: Y4, Y6.

Algorithm 4: EstimateY4Y6

C.1 Unfolding the 4-th Order Moments

Recall the first system of linear equations is

M4 =
√

3F4 ◦ XU4 (Y4).

In the equation, Y4 ∈ Rk×ksym is the unknown variable which can be viewed as a k×k symmetric matrix.

Given U ∈ Rn2×k, the column span of Σ̃ that we learned in Step 1, the first linear transformation
XU4 is simply XU4 (Y4) = UY4U

>. It is supposed to transform Y4 into the unfolded moments

X4 ∈ Rn2×n2
sym , which is defined to be

∑k
i=1wivec(Σ̃(i))vec(Σ̃(i))>. The next transformation

√
3F4

maps the unfolded moments X4 to the folded moments M4 ∈ Rn4 . As we showed in Lemma 3.7,
the mapping F4 is a projection.

Since U is the column span matrix of Σ̃, there must exist a Y4 such that X4 = Σ̃Dω̃Σ̃> = UY4U
>

(recall that Dω̃ is the diagonal matrix with entries ω̃i), so the system must have at least one solution.
Rewrite the system of linear equations M4/

√
3 = F4 ◦ XU4 (Y4) in the canonical form: M4

√
3 =

H4vec(Y4) where the variable vec(Y4) ∈ Rk2 , and the coefficient matrix H4 ∈ Rn4×k2 is a function
of U and therefore also a function of the parameter Σ (recall n4 =

(
n
4

)
and k2 =

(
k+1

2

)
). The system

has a unique solution if the smallest singular value of the coefficient matrix H4 is greater than zero.
The main theorem of this section shows that with high probability over the ρ-perturbation the

system has a unique solution:

Theorem C.1. With high probability over the ρ-perturbation of Σ̃, the smallest singular value of
the coefficient matrix H̃4 is lower bounded by σmin(H̃4) ≥ Ω(ρ2n/k). As a corollary, the system
has a unique solution.

In order to prove this theorem, we first need the following structural lemma:

Lemma C.2. The coefficient matrix H̃4 is equal to Ã4B̃4. The first matrix Ã4 ∈ Rn4×k2 has
columns indexed by pair {(i, j) : 1 ≤ i ≤ j ≤ k}, and the (i, j)-th column is equal to Ci,jF4(vec(Σ̃(i))�
vec(Σ̃(j))). Here Ci,j = 1 if i = j and Ci,j = 2 if i < j. The second matrix B̃4 ∈ Rk2×k2 transforms
a k × k symmetric matrices Y4 into:

B̃4vec(Y4) = vec((Σ̃†U)Y4(Σ̃†U)>).

Next we need to prove the bounds on the smallest singular values for Ã4 and B̃4. The first matrix
Ã4 is essentially a projection of the Kronecker product (Σ̃ ⊗kr Σ̃). In particular, this projection
satisfy the “symmetric off-diagonal” property defined below:

Definition C.3 (symmetric off-diagonal). Let the columns of matrix P ∈ Rn2
2×d2 form an (arbi-

trary) basis of the subspace P, and index the rows of P by pair (i, j) ∈ [n2]× [n2]. The subspace P
and the matrix P is called symmetric off-diagonal, if (i, i)-th row of P is 0 (“off-diagonal”), and
the (i, j)-th row and (j, i)-th row are identical (“symmetric”).
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Remark C.4. Since symmetric off-diagonal is a property on the structure of rows of the basis
P . If one basis of the subspace P is symmetric off-diagonal, then any basis is too. Moreover, any
orthogonal basis of the subspace P will still be symmetric off-diagonal.

Consider a Kronecker product of the same matrix E ∈ Rn2×k. The columns of E ⊗kr E are
indexed by pair (i, j) ∈ [k]× [k]. Consider applying a symmetric off-diagonal projection P> to the
Kronecker product. By the property of symmetry the projection will map two columns E[:,i]�E[:,j]

and E[:,j] � E[:,i] to the same vector. Therefore the projected Kronecker product P>(E ⊗kr E)
will not have full column rank k2. However, we will show that the k2 “unique” columns after the
projection are linearly independent.

To formalize this, we define the matrix (E ⊗kr E)uniq ∈ Rn2
2×k2 with the “unique” columns of

E ⊗kr E labeled by pairs {(i, j) : 1 ≤ i ≤ j ≤ k}. In particular,

[(E ⊗kr E)uniq][:,(i,j)] = E[:,i] � E[:,j].

In the following main lemma, we show even after projection to any symmetric off-diagonal space
with sufficiently many dimensions, the “unique” columns of a Kronecker product of random matrices
still has good condition number.

Lemma C.5. Let E ∈ Rn2×k be a Gaussian random matrix (each entry distributed as N (0, 1)).
Let P ∈ Rn2

2×d2 be a symmetric off-diagonal subspace of dimension d2 = Ω(n2
2). Then for any

constant C > 0, when n2 ≥ k2+C we have with high probability σmin(P>(E ⊗kr E)uniq) ≥ Ω(n2).

Let us first see how Theorem C.1 follows from the two lemmas (Lemma C.2 and Lemma C.5 ).

Proof. (of Theorem C.1) Using the structural Lemma C.2, we know we only need to bound the
smallest singular value of Ã4 and B̃4 separately. The following two claims directly imply the
theorem.

Claim C.6. σmin(Ã4) ≥ Ω(ρ2n2).

Claim C.7. σmin(B̃4) ≥ 1/(4‖Σ̃‖2) ≥ 1/(4nk).

Next we prove the two claims.
We apply Lemma C.5 to prove Claim C.6. Note that the ρ-perturbed covariances Σ̃ is not a

random Gaussian matrix, yet it is equal to the unperturbed matrix Σ plus a random Gaussian
matrix EΣ = ρE7. Since we consider arbitrary Σ, the columns of Σ̃ as well as the columns Ã4 may
not be incoherent.

Instead, we project Ã4 to a subspace to strip away the terms involving the original matrix Σ.
Let S be the range space corresponding to the projection F4. Recall that |S| = n4 = Ω(n2

2), and
by the definition of F4, S is symmetric off-diagonal. Define the subspace S′ = span(S⊥,Σ ⊗kr
In2 , In2 ⊗kr Σ). Let P = (S′)⊥. By construction |P | ≥ |S| − 2kn2 = Ω(n2

2). Also, since P = (S′)⊥

is a subspace of S, it must also be symmetric off-diagonal (see Remark C.4). After projecting Ã4

to P , we know that the (i, j)-th column (1 ≤ i ≤ j ≤ k) of P>Ã4 is given by:

P>[Ã4][:,(i,j)] = Ci,jP
>(Σ[:,i] � Σ[:,j] + ρE[:,i] � Σ[:,j] + ρΣ[:,i] � E[:,j] + ρ2E[:,i] � E[:,j])

= Ci,jρ
2P>E[:,i] � E[:,j].

7Note that the diagonal entries are then arbitrarily perturbed, but we will project on a symmetric off-diagonal
subspace so changes on diagonal entries do not change the result.
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Thus in P>Ã4 all the terms involving Σ disappears. Therefore

σmin(Ã4) ≥ σmin(P>Ã4) = σmin(P>(Σ̃⊗kr Σ̃)uniq) = ρ2σmin(P>(E ⊗kr E)uniq) ≥ Ω(ρ2n2),

where the first inequality is because the smallest singular value cannot become larger after projec-
tion, the first equality is by definition, the second equality is by the property of P , and the final
step uses Lemma C.58.

For Claim C.7. Pick any Y4 ∈ Rk×ksym, we have

‖B̃4(Y4)‖ = ‖vec((Σ̃†U)Y4(Σ̃†U)>)‖ = ‖(Σ̃†U)Y4(Σ̃†U)>‖F ≥ ‖Y4‖Fσmin(Σ̃†U)2 = ‖Y4‖F /‖Σ̃‖2,

where the inequality is because ‖AB‖F ≥ σmin(A)‖B‖F if A ∈ Rm×n and m ≥ n. Since ‖vec(Y4)‖
is within a factor of

√
2 to ‖Y4‖F , and by the assumption Σ̃(i) ≺ 1

2I we can bound ‖Σ̃‖ ≤ Ω(
√
nk),

we have the desired bound for σmin(B̃4).

Structure of the Coefficient Matrix In this part we prove the structural Lemma C.2.

Proof. (of Lemma C.2) First, assume we know the true Σ̃ matrix, then in order to get the unfolded
moments X4, we only need to solve the equation F4(Σ̃D4Σ̃>) = M4 with the k × k symmetric
variable D4, and the solution should be equal to the diagonal matrix Dω̃.

However, we only know U which is the column span of Σ̃, so we can only use UY4U
> and

let UY4U
> = Σ̃D4Σ̃>. Note that there is a one-to-one correspondence between Y4 and D4. In

particular we know D4 = (Σ̃†U)Y4(Σ̃†U)>, this is exactly the second part B̃4.
Now the first matrix Ã4 should map vec(D4) to M4. By construction, the (i, j)-th column

(i < j) of Ã4 is equal to F4(Σ̃(i) � Σ̃(j) + Σ̃(j) � Σ̃(i)) = 2F4(Σ̃(i) � Σ̃(j)), since F4 is symmetric
off-diagonal we know F4(v1� v2) = F4(v2� v1) for any two vectors v1, v2. For the (i, i)-th column,
by construction they are equal to F4(Σ̃(i) � Σ̃(i)) as we wanted.

Main Lemma on Projection of Kronecker Product In this part we prove Lemma C.5.
The singular values of Kronecker Product between two matrices are well-understood: they are

just the products of the singular values of the two matrices. Therefore, the Kronecker product of
two rank k matrices will have rank k2. However, in our case the problem becomes more complicated
because we only look at a projection of the resulting matrix. The projected Kronecker product may
no longer have rank k2 because of symmetry. Here we are able to show that even with projection
to a low dimensional space, the rank of the new matrix is still as large as

(
k+1

2

)
.

The basic idea of the proof is to consider the inner-products between columns, and show that
the columns are incoherent even after projection.

Proof. (of Lemma C.5) Consider the matrix (E ⊗kr E)>uniqPP
>(E ⊗kr E)uniq, we shall show the

matrix is diagonally dominant and hence its smallest singular value must be large. In order to do
that we need to prove the following two claims:

Claim C.8. For any i, j ≤ k, i ≤ j, with high probability ‖P>(E[:,i] � E[:,j])‖2 ≥ Ω(n2
2).

Claim C.9. For any i, j ≤ k, i ≤ j, with high probability∑
1≤i′≤j′≤k,(i,j)6=(i′,j′)

|
〈
P>(E[:,i] � E[:,j]), P

>(E[:,i′] � E[:,j′])
〉
| ≤ o(n2

2).

8Note that although diagonal entries are not perturbed, we also have P[i,i] = 0 so we can still apply the lemma.
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With this two claims, we can apply Gershgorin’s Disk Theorem G.9 to conclude that σmin((E⊗kr
E)>uniqPP

>(E ⊗kr E)uniq) ≥ Ω(n2
2). Therefore σmin(P>(E ⊗kr E)uniq) ≥ Ω(n2).

Now we prove the two claims. For Claim C.8, it essentially says the projection of a random vector
to a fixed subspace should have large norm. If the vector has independent entries, this is first shown
in Tao and Vu (2006). Recently Vu and Wang (2013) generalized the result to K-concentrated
vectors, see Lemma G.18. By Lemma G.19 we know conditioned on ‖E[:,i]‖, ‖E[:,j]‖ ≤ 2

√
n2,

(E[:,i] � E[:,j])p,q(p 6= q) is O(
√
n2)-concentrated. By assumption P ignores all the (E[:,i] � E[:,j])p,p

entries. Therefore Pr[|‖P>(E[:,i] � E[:,j])‖2 − d2| ≥ 2t
√
d2 + t2] ≤ Ce−Ω(t2/n2) + e−Ω(n2). We then

pick t =
√
d2/5 ≥ Ω(n2), which implies Pr[‖P (E[:,i] � E[:,j])‖2 ≤ d2/2] ≤ Ce−Ω(n2). This is what

we need for Claim C.8.
For Claim C.9, we need to bound terms of the form

〈
P>(E[:,i] � E[:,j]), P

>(E[:,i′] � E[:,j′])
〉
.

These are degree-4 Gaussian chaoses and are well-studied in Lata la et al. (2006).
We break the terms according to how many of i′, j′ appears in i, j.

Case 1: i′, j′ 6∈ {i, j}. In this case we first randomly pick E[:,i], E[:,j], and condition on the high
probability event that ‖E[:,i]‖, ‖E[:,j]‖ ≤ 2

√
n2. In this case the inner-product can be rewritten as〈

PP>(E[:,i] � E[:,j]), (E[:,i′] � E[:,j′])
〉
, and we know ‖PP>(E[:,i] � E[:,j])‖ ≤ 4n2. Also, since P is

symmetric off-diagonal we know in this degree-2 Gaussian chaos (only E[:,i′] and E[:,j′] are random
now) there are no “diagonal” terms. Therefore the Decoupling Theorem G.23 shows without loss of
generality we can assume i′ 6= j′. Apply Theorem G.21 we know this term is bounded by O(n1+ε

2 )
with high probability for any ε > 0.
Case 2: One of i′, j′ is in {i, j}. Without loss of generality assume i′ ∈ {i, j} (the other case is sym-
metric). Again we first randomly pick E[:,i], E[:,j] and condition on the high probability event that
‖E[:,i]‖, ‖E[:,j]‖ ≤ 2

√
n2 (but this will also determine E[:,i′]). After the conditioning, only E[:,j′] is

still random, and the inner-product can be rewritten as
〈
mat(PP>(E[:,i] � E[:,j])E[:,i′], E[:,j′]

〉
where

the fixed vector mat(PP>(E[:,i]�E[:,j]))E[:,i′] has norm bounded by ‖PP>(E[:,i]�E[:,j])‖‖E[:,i′]‖ ≤
8n

3/2
2 . By property of Gaussian with high probability the inner-product is bounded by O(n

3/2+ε
2 )

for any ε > 0.
Case 3: i′, j′ ∈ {i, j}. Since i′, j′ cannot be equal to i, j, there is only one possibility: i′, j′ are both
equal to one of i, j and i 6= j. Without loss of generality assume i′ = j′ = i 6= j. We can swap i, j
with i′, j′ and this actually becomes Case 2. By the same argument we know this term is bounded

by O(n
3/2+ε
2 ) for any ε > 0.

There are O(k2) terms in Case 1, O(k) terms in Case 2 and O(1) terms in Case 3. Therefore by

union bound we know the sum is bounded by O(kn
3/2+ε
2 +k2n1+ε

2 ) with high probability. Recall we
are assuming n2 ≥ k2+C (which only requires n ≥ k1+C/2). Choose ε to be a small enough constant
depending on C gives the result.

C.2 Unfolding 6-th Order Moments

Recall the second system of linear equations is

M6/
√

15 = F6 ◦ XU6 (Y6).

In the equation, Y6 ∈ Rk×k×ksym is the unknown variable which can be viewed as a k × k × k
symmetric tensro. The first linear transformation XU6 transforms Y6 into the unfolded moments

X6 ∈ Rn2×n2×n2
sym , which is supposed to be equal to

∑k
i=1 w̃ivec(Σ̃(i))⊗3. The transformation is

simply X6 = XU6 (Y6) = Y4(U>, U>, U>) where U ∈ Rn2×k is the column span of Σ̃ that we learned
in the previous section.
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The next transformation F6 maps the unfolded moments X6 to the folded moments M6 ∈ Rn6 ,
which as we showed in Lemma 3.7 is a projection. Recall that n6 =

(
n
6

)
.

Rewrite the system of linear equationsM6/
√

15 = F6◦XU6 (Y6) in the canonical form: M6/
√

15 =

H̃6vec(Y6) where the coefficient matrix H̃6 ∈ Rn6×k3 is a function of U and therefore is a function
of Σ̃ (recall k3 =

(
k+2

3

)
).

The second system of linear equations tries to unfold the 6-th order moment M6 to get Y6.
Similar to Theorem C.1 the following theorem guarantees that with high probability over the
perturbation the system has a unique solution.

Theorem C.10. With high probability over the perturbation, the coefficient matrix H̃6 has smallest
singular value σmin(H̃6) ≥ Ω(ρ3(n/k)1.5). As a corollary, the system has a unique solution.

The proof of this theorem is very similar to the proof of Theorem C.1. Here we list the important
steps and highlight the differences.

As before the theorem relies on a structural lemma (Lemma C.11), and a main lemma about the
symmetric off-diagonal projection of a Kronecker product of three identical matrices (Lemma C.13).

Lemma C.11. The coefficient matrix H̃6 is equal to Ã6B̃6. The first matrix Ã6 ∈ Rn6×k3 has
columns indexed by triples (i1, i2, i3) for 1 ≤ i1 ≤ i2 ≤ i3 ≤ k, and are given by:

[Ã6][:,(i1,i2,i3)] = Ci1,i2,i3F6(vec(Σ̃(i1))� vec(Σ̃(i2))� vec(Σ̃(i3))),

where Ci1,i2,i3 is a constant depending only on multiplicity of the indices (i1, i2, i3). The second

matrix B̃6 ∈ Rk3×k3 transforms a k × k × k symmetric tensor Y6 into:

B̃6(Y6) = Y6((Σ̃†U)>, (Σ̃†U)>, (Σ̃†U)>).

Before stating the main lemma, we update the definition of symmetric off-diagonal subspace.

Definition C.12. Let the columns of matrix P ∈ Rn3
2×d3 form a basis of a subspace P. Index

the rows of P by triples (i1, i2, i3) ∈ [n2] × [n2] × [n2]. The matrix P and the subspace P are
called symmetric off-diagonal if: whenever i1, i2, i3 are not distinct the corresponding row is 0
(“off-diagonal”); and for any permutation π over {1, 2, 3}, the rows corresponding to (i1, i2, i3) and
(iπ(1), iπ(2), iπ(3)) are identical (“symmetric”).

It is easy to verify that since the moments in M6 all have indices corresponding to distinct
variables, the projection F6 is indeed symmetric off-diagonal. The constraints in this definition is
closely related to the decoupling Theorem G.23 of Gaussian chaoses.

Similarly, we define the “unique” columns in the 3-way Kronecker product to be the matrix
(E⊗krE⊗krE)uniq ∈ Rn2

2×k3 whose columns are labeled by triples (i1, i2, i3) : 1 ≤ i1 ≤ i2 ≤ i3 ≤ k,
and (E ⊗kr E ⊗kr E)uniq)[:,(i1,i2,i3)] = E[:,i1] � E[:,i2] � E[:,i3].

Lemma C.13. Let E ∈ Rn2×k be a Gaussian random matrix. Let P ∈ Rn3
2×d3 be a symmetric

off-diagonal subspace of dimension d3 ≥ Ω(n3
2). For any constant C > 0, if n2 ≥ k2+C , with high

probability σmin(P>(E ⊗kr E ⊗kr E)uniq) ≥ Ω(n
3/2
2 ).

The proofs of Theorem C.10 are based on the above two lemmas. The proof of Lemma C.11 is
essentially the same as Lemma C.2. The proof of Lemma C.13 is very similar to that of Lemma C.5,
and we highlight the only different case below:
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Proof. (of Lemma C.13)
As before we try to prove that the columns of P>(E ⊗kr E ⊗kr E)uniq are incoherent. Recall

we needed the following two claims:

Claim C.14. For any 1 ≤ i1 ≤ i2 ≤ i3 ≤ k, with high probability ‖P>(E[:,i1] � E[:,i2] � E[:,i3])‖2 ≥
Ω(n3

2).

Claim C.15. For any 1 ≤ i1 ≤ i2 ≤ i3 ≤ k, with high probability∑
1≤i′1≤i′2≤i′3,(i1,i2,i3)6=(i′1,i

′
2,i
′
3)

∣∣∣〈P>(E[:,i1] � E[:,i2] � E[:,i3]), P
>(E[:,i′1] � E[:,i′2] � E[:,i′3])

〉∣∣∣ ≤ o(n3
2).

The first claim can still be proved by the projection Lemma G.18, except the vector E[:,i1] �
E[:,i2]�E[:,i3] is now O(n2)-concentrated (the proof is an immediate generalization of Lemma G.19).

The second claim can be proved using similar ideas, however there is one new case. We again
separate the terms according to the number of i′1, i

′
2, i
′
3 that do not appear in {i1, i2, i3}.

Case 1: At least one of i′1, i
′
2, i
′
3 does not appear in {i1, i2, i3}. Suppose there are t of i′1, i

′
2, i
′
3 that

do not appear in {i1, i2, i3}, similar to before we first sample Ei1 , Ei2 , Ei3 and condition on the event
that they all have norm at most 2

√
n2. The inner-product then becomes an order t Gaussian chaos

with Frobenius norm n
6−t/2
2 . By Theorem G.23 and Theorem G.21 we know with high probability

all these terms are bounded by n
6−t/2+ε
2 for any constant ε > 0.

Case 2: All of i′1, i
′
2, i
′
3 appear in {i1, i2, i3}. In the previous proof (of Lemma C.5), there was

only one possibility and it reduces to Case 1. However for 6-th moment we have a new case:
i = i1 = i2 = i′1 < i′2 = i′3 = i3 = j (and the symmetric case i1 = i′1 = i′2 < i2 = i3 = i′3).

For this we will treat T = PP> as a 6-th order tensor with Frobenius norm at most n
3/2
2 (as a

matrix it has spectral norm 1, and rank at most n3
2). The tensor is applied to the vectors E[:,i] and

E[:,j] as T (E[:,i], E[:,i], E[:,j], E[:,i], E[:,j], E[:,j]). First we sample E[:,i], by Lemma G.24 we know with
high probability what remains will be a 3-rd order tensor T (E[:,i], E[:,i], I, E[:,i], I, I) with Frobenius

norm bounded by O(n2+ε
2 ). Notice that here it is important that Lemma G.24 can handle diagonal

entries, because E[:,i] appears on the 1, 2, 4-th coordinate (instead of the first three). We the apply
Lemma G.24 again on T (E[:,i], E[:,i], I, E[:,i], I, I)(E[:,j], E[:,j], E[:,j])

9, and conclude that with high

probability the term is bounded by O(n2.5+2ε
2 ) which is still much smaller than n3

2.
Finally we take the sum over all terms and choose ε to be small enough (depending on C), then

when k2+C ≤ n2 the sum is a lower-order term.

C.3 Stability Bounds

For the two linear equation systems in (7), we can write them in canonical form with coefficient
matrices H̃4, H̃6 and the unknown variable vec(Y4), vec(Y6), corresponding to the k2, k3 distinct
elements in symmetric Y4, Y6, namely:

H̃4vec(Y4) = M4/
√

3, H̃6vec(Y6) = M6/
√

15.

When M̂4, M̂6, the empirical moment estimations for M̃4, M̃6, are used throughout the algorithm,
both the coefficient matrices H̃4, H̃6 and the constant terms M4,M6 are affected by the noise from

9The notation might be confusing here: T (E[:,i], E[:,i], I, E[:,i], I, I) is a 3rd order tensor, and we are applying it to
E[:,j], E[:,j], E[:,j]. The whole expression is equal to T (E[:,i], E[:,i], E[:,j], E[:,i], E[:,j], E[:,j]).
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empirical estimation. In practice, instead of solving systems of linear equations, we solve the least
square problem:

min
Y4∈Rk×ksym

‖
√

3F4(UY4U
>)− M̂4‖2, min

Y6∈Rk×k×ksym

‖
√

15F6Y6(U>, U>, U>)− M̂6‖2. (31)

and the solution to the least square problems are given by: vec(Ŷ4) = Ĥ†4M̂4 and vec(Ŷ6) = Ĥ†6M̂6.

Lemma C.16. Given the empirical 4-th and 6-th order moments M̂4 = M̃4 +E4, M̂6 = M̃6 +E6,
and suppose that the absolute value of entries in E4 and E6 are at most δ1. Let Û be the output
of Step 1 for the span of the covariance matrices, and suppose that ‖Û − Ũ‖ ≤ δ2. Suppose that

δ1 ≤ min{‖M̃4‖F /
√
n4, ‖M̃6‖F /

√
n6}, and δ2 ≤ min{1, σk2(H̃4)/2, σk3(H̃6)/2}. Then, conditioned

on the high probability event that both σk2(H̃4), σk3(H̃6) are bounded below, we have:

‖Ŷ4 − Ỹ4‖F ≤ O
((

δ1 +
δ2

σk2(H̃4)2

)
√
n4

)
.

‖Ŷ6 − Ỹ6‖F ≤ O
((

δ1 +
δ2

σk3(H̃6)2

)
√
n6

)
.

Proof. We write the proof for Ŷ4, the proof for Ŷ6 is exactly the same except changing the subscripts.
Recall that the coefficient matrix H̃4 corresponds to the composition of two linear mappings

F4(UY4U
>) on the variable Y4. Since we have showed that F4 is a projection determined by the

Isserlis’ Theorem and independent of the empirical estimation of the moments, we can bound the
perturbation on the coefficient matrices by:

‖Ĥ4 − H̃4‖ ≤ ‖Û �2 −Ũ �2 ‖ ≤ 2‖Û − Ũ‖‖Ũ‖+ ‖Û − Ũ‖22 ≤ 3δ2 ≤ ‖H̃4‖.

Similarly, we have ‖Ĥ6 − H̃6‖ ≤ ‖Û �3 −Ũ �3 ‖ ≤ 7δ2 ≤ ‖H̃6‖.
Therefore we can analyze the stability of the solution to the least square problems in (31) as

follows:

‖vec(Ŷ4)− vec(Ỹ4)‖ =
∥∥∥Ĥ†4M̂4 − H̃†4M̃4

∥∥∥
≤ O(‖H̃†4‖‖M̂4 − M̃4‖+ ‖Ĥ†4 − H̃†4‖‖M̃4‖)

≤ O(‖M̂4 − M̃4‖+ ‖Ĥ†4 − H̃†4‖
√
n4)

≤ O
(√

n4(δ1 + ‖Ĥ†4‖‖H̃†4‖δ2)
)

≤ O
(
√
n4(δ1 +

1

σk2(H̃4)2
δ2)

)
,

where the first inequality is by applying Lemma G.6 and note that ‖(M̂4 − M̃4)‖F ≤ δ1
√
n4 ≤

‖M̃4‖F , the second inequality is because ‖M̃4‖F ≤ O(
√
n4), the third inequality is by applying

the perturbation bound of pseudo-inverse in Theorem G.7, the fourth inequality is by the assump-
tion that δ2 is sufficiently small compared to the smallest singular value of H̃4 thus σk2(Ĥ4) =
O(σk2(H̃4)).
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Input: the span of covariance matrices U ∈ Rn2×k (vectorized with distinct entries), the
unfolded 4-th and 6-th moments Y4 ∈ Rk×k and Y6 ∈ Rk×k×k in the coordinate system of U .
Output: Parameters G = {(ωi,Σ(i)) : i ∈ [k]}.

Compute the SVD of Y4: Y4 = V2Λ2V
>

2 .

Let G = Y6(V2Λ
−1/2
2 , V2Λ

−1/2
2 , V2Λ

−1/2
2 )

Find the (unique) first k orthogonal eigenvectors vi and the corresponding eigenvalues λi
of G, denoted by {(vi, λi) : i ∈ [k]}

For all i ∈ [k], let vec(Σ(i)) = λiUV2Λ
1/2
2 vi, let ωi = (λi)

−2.

Return: G = {(ωi,Σ(i)) : i ∈ [k]}.
Algorithm 5: TensorDecomp

D Step 3: Tensor Decomposition

Given the estimations of the unfolded moments Y4 and Y6 from Step 2, and given the span of
covariance matrices U from Step 1, Step 3 use tensor decomposition to robustly find the parameters
of the mixture of zero-mean Gaussians.

Recall that in the coordinate system with basis U , the covariance matrices (vectorized with
distinct entries) are given by Σ̃(i) = Ũ σ̃(i) for all i. The unfolded moments in the same coordinate
system are:

Ỹ4 =
k∑
i=1

ω̃iσ̃
(i)⊗2, Ỹ6 =

k∑
i=1

ω̃iσ̃
(i) ⊗3 .

We will apply tensor decomposition algorithm to find the σ̃(i)’s. We restate the theorem for or-
thogonal symmetric tensor decomposition in Anandkumar et al. Anandkumar et al. (2014) below:

Theorem D.1 (Theorem 5.1 in Anandkumar et al. (2014)). Consider k orthonormal vector
v1, . . . vk ∈ Rn’s and k positive weights λ1, . . . λk. Define the tensor T =

∑k
i=1 λivi⊗3. Given

T̂ = T + E and assume that ‖E‖ ≤ C1 min{λi}/k, then there is an algorithm that finds λi’s and
vi’s in polynomial running time with the following guarantee: with probability at least 1− e−n, for
some permutation π over [k] and for all i ∈ [k], we have:

‖vi − v̂i‖ ≤ O(‖E‖/λi), |λi − λ̂i| ≤ O(‖E‖).

In order to reduce our problem to the orthogonal tensor decomposition so that the tensor
power method (Algorithm 1, page 21 in Anandkumar et al. (2014)) can be applied, we use the
same “whitening” technique as in Anandkumar et al. (2014). We first compute the SVD of the
unfolded 4-th moments Ỹ4 = Ṽ2Λ̃2Ṽ

>
2 , then use the singular vectors to transform the unfolded 6-th

moments Y6 into an orthogonal symmetric tensor Ỹ6(Ṽ2Λ̃
−1/2
2 , Ṽ2Λ̃

−1/2
2 , Ṽ2Λ̃

−1/2
2 ).

Next we complete the stability analysis for the two-step procedure, i.e. whitening and orthogonal
tensor decomposition, which was not analyzed in Anandkumar et al. (2014).

Theorem D.2. Consider k linearly independent vectors a1, . . . , ak ∈ Rn, and k positive weights
ω1, . . . , ωk. Define G2 =

∑k
i=1 ωiai ⊗ ai ∈ Rn×nsym and G3 =

∑k
i=1 ωiai ⊗ ai ⊗ ai ∈ Rn×n×nsym . Let
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γmin = min{σmin(G2), 1}, γmax = σmax(G2), and let ωo = min{ωi}. Given Ĝ2, Ĝ3 and assume
that:

‖Ĝ2 −G2‖F ≤ δ2 ≤ o
(
γ2.5
min

k‖G3‖

)
, ‖Ĝ3 −G3‖F ≤ δ3 ≤ o

(
γ1.5
min

k

)
.

There exists an algorithm that finds âi and ω̂i in polynomial (in variables (n, k, 1/σmin(G2))) run-
ning time with the following guarantee: with probability at least 1 − e−n, for some permutation π
over [k] and for all i ∈ [k] we have:

‖âπ(i) − aπ(i)‖ ≤ poly(‖G3‖, 1/σmin(G2), 1/ωo)δ2 + poly(‖G3‖, 1/σmin(G2), 1/ωo)δ3,

‖ω̂i − ωi‖ ≤ poly(‖G3‖, 1/σmin(G2))δ2 + poly(‖G3‖, 1/σmin(G2))δ3.

Proof. (to Theorem D.2)
1. Algorithm
We first apply the whitening technique in Anandkumar et al. (2014): Let Ĝ2 = V̂2Λ̂2V̂

>
2 be the

singular value decomposition of Ĝ2, and note that the matrix V̂2Λ̂
−1/2
2 whitens G2 in the sense that

Ĝ2(V̂2Λ̂
−1/2
2 , V̂2Λ̂

−1/2
2 ) = In. Similarly we can whiten Ĝ3 with the matrix V̂2Λ̂

−1/2
2 and obtain the

following symmetric 3-rd order tensor Ĝ ∈ Rk×k×ksym :

Ĝ = Ĝ3(V̂2Λ̂
−1/2
2 , V̂2Λ̂

−1/2
2 , V̂2Λ̂

−1/2
2 ).

Note th at in the exact case with G2 and G3, we have that:

G =

k∑
i=1

λivi⊗3,

where λi = ω
−1/2
i , and the vectors vi = λ−1

i V >2 Λ
−1/2
2 ai and they are orthonormal. Also note that

λmin ≥ 1 and λmax ≤ ω
−1/2
o . We can then apply orthogonal tensor decomposition (Algorithm 1 in

Anandkumar et al. (2014)) to Ĝ to robustly obtain estimations of vi’s and λi’s. After obtaining
the estimation v̂i and λ̂i’s, we can further obtain the estimation of ai’s and ωi’s as:

âi = V̂2Λ̂
1/2
2 v̂iλ̂i, ω̂i = (λ̂i)

−2 (32)

2. Stability analysis
The estimation of the vectors and weights are given in (32). In order to bound the distance

‖âi − ai‖ and ‖ω̂i − ωi‖, we show the stability of the estimation V̂2, Λ̂2, and v̂i, λ̂i separately.
First, note that by assumption ‖Ĝ2−G2‖F ≤ δ2, we can apply Lemma G.2 and Lemma G.3 to

bound the singular values and the singular vectors of Ĝ2 by:

‖V̂2 − V2‖ ≤
√

2δ2/γmin, ‖Λ̂2 − Λ2‖ ≤ δ2.

Define X = V2Λ
−1/2
2 and define ∆X = X̂ − X. By the assumption that δ2 ≤ o(γmin), we have

‖V̂2 − V2‖ ≤ 1 and ‖Λ̂−1/2
2 − Λ

−1/2
2 ‖ ≤ ‖Λ−1/2

2 ‖ ≤ γ
−1/2
min . Therefore we can apply Lemma G.6 to

bound ‖∆X‖:

‖∆X‖ ≤ O(‖V̂2 − V2‖‖Λ−1/2
2 ‖+ ‖V2‖‖Λ̂−1/2

2 − Λ
−1/2
2 ‖)

≤ O
(

δ2

γ1
min

γ
−1/2
min + (γ

−1/2
min )2δ2

)
≤ O(δ2/γ

1.5
min.)
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Moreover, since δ2 ≤ o(γmin), we also have ‖∆X‖ ≤ ‖X‖ = γ−0.5
min .

Next, we bound the distance ‖Ĝ − G‖. Recall that Ĝ = Ĝ3(X̂, X̂, X̂). Using the fact that
tensor is a multi-linear operator, and by the assumption that ‖Ĝ3 −G3‖ ≤ δ3, we have:

ε ≡ ‖Ĝ−G‖ ≤ ‖Ĝ3(X̂, X̂, X̂)−G3(X,X,X)‖F
≤ ‖G3(X̂, X̂, X̂)−G3(X,X,X)‖+ ‖Ĝ3(X̂, X̂, X̂)−G3(X̂, X̂, X̂)‖
≤ 3‖G3(∆X , X,X)‖+ 3‖G3(∆X ,∆X , X)‖+ ‖G3(∆X ,∆X ,∆X)‖+ δ3‖X̂‖3

≤ 7‖G3‖‖X‖2‖∆X‖+ (‖X‖+ ‖∆X‖)3δ3

≤ O
(‖G3‖
γ2.5
min

δ2 +
1

γ1.5
min

δ3

)
.

Note that by the assumption δ2 ≤ o(
γ2.5min
k‖G3‖), δ3 ≤ o(

γ1.5min
k ), we have ε ≤ o( 1

k ). Therefore we can

apply Theorem D.2 to conclude that with probability at least 1− e−n (over the randomness of the
randomized algorithm itself), the tensor power algorithm runs in time poly(n, k, 1/λmin) and for
some permutation π over [k] it returns:

‖v̂π(i) − vπ(i)‖ ≤
8ε

λmin
, |λ̂i − λi| ≤ 5ε, ∀j ∈ [k].

Finally, since we also have 5ε ≤ 1/2 ≤ λmin/2 we can bound the estimation error of âi and ω̂i
as defined in (32) by:

‖âπ(i) − ai‖ ≤ 3(‖∆X‖λmax +
1

γ0.5
min

8ε

λmin
λmax +

1

γ0.5
min

5ε)

≤ poly(‖G3‖, 1/σmin(G2), 1/ωo)δ2 + poly(‖G3‖, 1/σmin(G2), 1/ωo)δ3,

‖ω̂i − ωi‖ ≤ poly(‖G3‖, 1/σmin(G2))δ2 + poly(‖G3‖, 1/σmin(G2))δ3.

Now we can apply Theorem D.2 to our case.

Lemma D.3. Given Ŷ4, Ŷ6, Û and suppose that ‖Ŷ4 − Ỹ4‖F , ‖Ŷ6 − Ỹ6‖F as well as ‖Û − Ũ‖ are
bounded by some inverse poly(n, k, 1/ωo, 1/ρ)δ. There exists an algorithm that with high probability,
returns Σ̂(i)’s and ω̂i’s such that for some permutation π over [k], we have the distance ‖Σ̂(i)− Σ̃(i)‖
and ‖ω̂i − ω̃i‖ are bounded by δ. Moreover, the running time of the algorithm is upperbounded by
poly(n, k, 1/ωo, 1/ρ).

Proof. (to Lemma D.3 )
We apply Theorem D.2, and pick G2 = Ỹ4, G3 = Ỹ6. We only need to verify that ‖Ỹ6‖ and

1/σmin(Ỹ4) are polynomials of the relevant parameters. This is easy to see, since σmin(Ỹ4) ≥
ωoσmin(Σ̃)2, and the matrix Σ̃ is a perturbed rectangular matrix which by Lemma G.15 has
σmin(Σ̃) ≥ Ω(ρ

√
n2) with high probability.

Finally, given σ̂(i), and given the output of Step 2, i.e. Û , with inverse polynomial accuracy, we
can recover Σ̂(i) = Û σ̂(i) up to accuracy polynomial in the relevant parameters.
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Input: Samples xi from the mixture of Gaussians , number of components k.
Output: Set of parameters G = {(ωi,Σ(i)) : i ∈ [k]}.

Estimate M4, M6 using the samples.

M4 =
1

N

N∑
i=1

xi⊗4, M6 =
1

N

N∑
i=1

xi ⊗6 .

Let s = 9d√ne
(Step 1 (a) Algorithm 1)
S1 = FindColumnSpan(M4, {1, ..., s}),
S2 = FindColumnSpan(M4, {s+ 1, ..., 2s}).

(Step 1 (b) Algorithm 2)
U1 = FindProjectedSigmaSpan(M4, {1, ..., s}, S1),
U2 = FindProjectedSigmaSpan(M4, {s+ 1, ..., 2s}, S2).

(Step 1 (c) Algorithm 3)
U = MergeProjections(S1, U1, S2, U2).

(Step 2 Algorithm 4)
(Y4, Y6) = EstimateY4Y6(M4,M6, U).

(Step 3 Algorithm 5)
G = TensorDecomp(Y4, Y6, U)

Return: G.
Algorithm 6: MainAlgorithm (Zero-mean case)

E Proofs of Theorem 3.5

The results in all previous sections showed the correctness and robustness of each individual step
for the algorithm for zero-mean case, In this section, we summarize those results to prove that the
overall algorithm has polynomial time/sample complexity.

Lemma E.1 (Concentration of empirical moments). Given N samples x1, . . . , xN drawn i.i.d. from
the n-dimensional mixture of k Gaussians, if N ≥ n7/δ2, then with high probability, we have that
for all j1, . . . , j6 ∈ [n]:∣∣∣[M̂4]j1,j3,j3,j4 − [M̃4]j1,j3,j3,j4

∣∣∣ ≤ δ, ∣∣∣[M̂6]j1,j3,j3,j4,j5,j6 − [M̃6]j1,j3,j3,j4,j5,j6

∣∣∣ ≤ δ.
Proof. Let x denote the random vector of this mixture of Gaussians. We first truncate its tail
probabilities to make all the entries ([x]j for j ∈ [n]) in the vector x be in the range [−√n,√n].
Apply union bound, we know that with high probability (at least 1 − O(e−n)), for all indices

j1, . . . , j6 ∈ [n], we have
∣∣∣[x]j1 . . . [x]j6

∣∣∣ ≤ n3. Then we can apply Hoeffding’s inequality to bound

the empirical moments by:

Pr
[
|Ê[xj1 . . . xj6 ]− E[xj1 . . . xj6 ]| ≥ δ

]
≤ exp(− 2δ2N2

N(2n3)2
) +O(e−n) ≤ O(e−n).

Proof. (of Theorem 3.5 )
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We show that, to achieve ε accuracy in the output of Step 3 in the algorithm for the zero-
mean case, the number of samples we need to estimate the moments M4 and M6 is bounded by a
polynomial of relevant parameters, namely poly(n, k, 1/ωo, 1/ε, 1/ρ), and each step of the algorithm
can be done in polynomial time.

We backtrack the input-output relations from Step 3 to Step 2 and to Step 1, and we show
that the estimation error in the empirical moments and the inputs / outputs only polynomially
propagate throughout the steps.

First note that we have shown that every steps fails with negligible probability (O(e−n
C

) for any
absolute constant C). Then apply union bound, we have that the entire algorithm works correctly
with high probability.

1. By Lemma D.3, in order to achieve ε accuracy in the final estimation of the mixing weights
and the covariance matrices, we need to drive the input accuracy of Step 3 (also the output
accuracy of Step 2) to be bounded by some inverse polynomial in (n, 1/ε, 1/ρ, 1/ωo), Also
recall that this step has running time poly(n, k, 1/ρ, 1/ωo).

2. Theorem C.1 and Theorem C.10 guarantee that with smoothed analysis σmin(H̃4) and σmin(H̃6)
are lower bounded polynomially. Then by Lemma C.16, in order to have the output accuracy
of Step 2 be bounded by inverse poly(n, 1/ε, 1/ρ, 1/ωo), we need to drive the input accuracy

of Step 2 (Û , M̂4) to be bounded by some other inverse polynomial. Step 2 involves solving
linear systems of dimension n4k2 and n6k3, thus it running time is polynomial.

3. Lemma B.13 and B.14 guarantees that with smoothed analysis σk(Q̃U ) is lower bounded
polynomially. Then by Lemma B.15, in order to have the output accuracy of Step 1 (c) (Û)
be bounded by inverse polynomial, we need to drive the input accuracy (output Ŝi of Step
1 (a) and output Ûi of Step 1 (b) ) to be bounded by some other inverse polynomial. Step
1 (c) involves multiplications and factorization of matrices of polynomial size, and thus the
running time is also polynomial.

4. Lemma B.7 guarantees that with smoothed analysis σk(Q̃US ) is lower bounded polynomi-

ally. Then by Lemma B.10, in order to have the output accuracy of Step 1 (b) (ÛS) be
bounded by inverse polynomial, we need to drive the input accuracy (output Ŝi of Step 1 (a)
) to be bounded by some other inverse polynomial. Step 1 (b) involves multiplications and
factorization of matrices of polynomial size, and thus the running time is also polynomial.

5. Lemma B.1 guarantees that with smoothed analysis σk(Q̃S) is lower bounded by inverse
polynomial. Then by Lemma B.3, in order to have the output accuracy of Step 1 (a) (Ŝ) be
bounded by inverse polynomial, we need to drive the input accuracy (the moment estimation

M̂4) to be bounded by some other inverse polynomial. Step 1 (a) involves multiplications and
factorization of matrices of polynomial size, and thus the running time is also polynomial.

6. Finally, by Lemma E.1, in order to have the accuracy of moment estimation (M̂4, M̂6) be
bounded by inverse polynomial, we need the number of samples N polynomial in all the
relevant parameters, including k.

F General Case

In this section, we present the algorithm for learning mixture of Gaussians with general means.
The algorithm generalizes the insights obtained from the algorithm for the zero-mean case. The
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steps are very similar, and we will highlight the differences.

Input: Samples {xi ∈ Rn : i = 1, . . . , N} from the mixture of Gaussians, number of
components k.
Output: Set of parameters G = {(ωi, µ(i),Σ(i)) : i ∈ [k]}.

Estimate M3 M4, M6 using the samples

M3 =
1

N

N∑
i=1

xi⊗3, M4 =
1

N

N∑
i=1

xi⊗4, M6 =
1

N

N∑
i=1

x6⊗3

Step 1 (a). (This can be accomplished similar to Algorithm 1 FindColumnSpan)

Let H1 = {1, . . . , 12
√
n}, find S1 = span{µ̃(i), Σ̃

(i)
[:,j] : i ∈ [k], j ∈ H1}.

Let H2 = {12
√
n+ 1, . . . , 24

√
n}, find S2 = span{µ̃(i), Σ̃

(i)
[:,j] : i ∈ [k], j ∈ H2}.

Step 1 (b) (This can be accomplished similar to Algorithm 2 FindProjectedSigmaSpan)
Find U1 = span{ProjS⊥1

Σ̃(i) : i ∈ [k]}.
Find U2 = span{ProjS⊥2

Σ̃(i) : i ∈ [k]}.

Step 1 (c) (This can be accomplished similar to Algorithm 3 MergeProjections)
Merge U1 and U2 to get Z = span{µ(i) : i ∈ [k]},
U ′ = span{vec(ProjZ⊥Σ(i)) : i ∈ [k]}, and Uo = span{ProjZ⊥Σ(i)ProjZ⊥ : i ∈ [k]}.

Step 2
Project the samples to the subspace Z⊥: ProjZ⊥x = {ProjZ⊥x1, . . . ,ProjZ⊥xN}.
Apply the algorithm for zero mean case to the projected samples,
let Go = {(ωi,ProjZ⊥Σ(i)ProjZ⊥) : i ∈ [k]} = MainAlgorithm (Zero-mean case)(ProjZ⊥x).

Step 3

Let T =
[
vec(ProjZ⊥Σ(i)ProjZ⊥) : i ∈ [k]

]†> ∈ Rn2×k,
and let T (i) for i ∈ [k] denote the columns of T .
Let M3(1) ∈ Rn×n2

be the matricization of M3 along the first dimension.

Let µ(i) = M3(1)T
(i)/ωi for i ∈ [k] and let µ = [µ(i) : i ∈ [k]].

Step 4
Let M ′4 = M4 + 2

∑k
i=1 ωiµ

(i)⊗4.

Find the span S = span{vec(Σ̃(i)) + µ̃(i) � µ̃(i) : i ∈ [k]}.
(This can be achieved by treating M ′4 as the 4-th moments of a mixture of zero-mean
Gaussians, and apply Step 1 in the algorithm for zero-mean case to find the span of the
covariance matrices, and let S denote the result.)

Let Σ = [vec(Σ(i)) : i ∈ [k]] = (ProjSU
′ − µ� µ).

Return: G = {(ωi, µ(i),Σ(i)) : i ∈ [k]}.
Algorithm 7: MainAlgorithm (General Case)
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Step 1. Span finding In this step, we find the following two subspaces:

Z̃ = span{µ̃(i) : i ∈ [k]}, Σ̃o = span{Proj
Z̃⊥Σ̃(i)Proj

Z̃⊥}.

This is very similar to Step 1 in the algorithm for the zero-mean case, and can be achieved in
three small steps:

1. Step 1 (a). For a subset H of size 12
√
n, find the span S of the mean vectors and a subset of

columns of the covariance matrices:

S = span{µ̃(i), Σ̃
(i)
[:,j] : i ∈ [k], j ∈ H}.

2. Step 1 (b). Find the span of covariance matrices projected to the subspace S⊥:

US = span{ProjS⊥Σ̃(i) : i ∈ [k]}.

3. Step 1 (c). Run 1(a) and 1(b) on two disjoint subsets H1 and H2. Merge the two spans U1

and U2 to get Z̃ and span{Proj
Z̃⊥Σ̃(i) : i ∈ [k]}.

Next, we discuss each small step and compare it with the similar analysis of the algorithm for
the zero-mean case.

Step 1 (a). Find the span S of the means and a subset of the columns of the covariance
matrices Similar to Step 1 (a) for the zero-mean case, in this step we want to find a subspace
S which contains the span of a subset of columns of Σ̃(i)’s. However, with the mean vector µ̃(i)’s
appearing in the moments, the subspace we find also contains the span of all the mean vectors. In
particular, for a subset H ∈ [n] with |H| = √n, we aim to find the following subspace:

S = span{µ̃(i), Σ̃
(i)
[:,j] : i ∈ [k], j ∈ H}. (33)

Similar to Claim 5.1 for the zero-mean case, the key observation for finding the subspace is the
structure of the one-dimensional slices of the 4-th order moments for the general case:

Claim F.1. For any indices j1, j2, j3 ∈ [n], the one-dimensional slices of M̃4 are given by:

M̃4(ej1 , ej2 , ej3 , I) =

n∑
i=1

ω̃i

(
µ̃

(i)
j1
µ̃

(i)
j2
µ̃

(i)
j3
µ̃(i) +

∑
π∈

{
(j1,j2,j3),
(j2,j3,j1),
(j3,j1,j2)

} Σ̃(i)
π1,π2Σ̃

(i)
[:,π3] + µ̃(i)

π1 µ̃
(i)
π2 Σ̃

(i)
[:,π3] + Σ̃(i)

π1,π2 µ̃
(i)
π3 µ̃

(i)
)

(34)

Note that if we pick the indices j1, j2, j3 ∈ H, all such one-dimensional slice of M̃4 lie in the
subspace S. We again evenly partition the set H into three disjoint subset H(i) and take ji ∈ H(i)

for i = 1, 2, 3. Define the matrix Q̃S ∈ Rn×(|H|/3)3 as in (12) whose columns are the one-dimensional

slices of M̃4:

Q̃S =
[[

[M̃4(ej1 , ej2 , ej3 , I) : j3 ∈ H(3)] : j2 ∈ H(2)
]

: j1 ∈ H(1)
]
∈ Rn×(|H|/3)3 . (35)

The proof of this step is similar to the Lemmas B.1 (for smoothed analysis) and B.3 (for stability
analysis). The main difference is that in the matrix B̃ defined in the structural Claim B.2, there is
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now another block B̃(0) with k columns that corresponds to the µ̃(i) directions, which we can again
handle with Lemma G.12.

Lemma F.2 shows the deterministic conditions for Step 1 (a) to correctly identify the subspace
S from the columns of Q̃S , and uses smoothed analysis to show that the conditions hold with high
probability.

Lemma F.2 (Correctness). Given M̃4 of a general mixture of Gaussians , for any subset H ∈ [n]
and |H| = c2k with the constant c2 > 9, let Q̃S be the matrix defined as in (35). The columns
of Q̃S give the desired span S defined in (33) if the matrix Q̃S achieves the maximal column rank
k + k|H|. With probability (over the ρ-perturbation) at least 1 − Cε0.5n for some constant C, the
k(1 + |H|)-th singular value of Q̃S is bounded below by:

σk(1+|H|)(Q̃S) ≥ ρε√n.

The proof idea is similar to that of Lemma B.1. We construct a basis P̃S ∈ Rn×(k+k|H|) for the
subspace S as follows.

P̃S =
[[
µ̃(i) : i ∈ [k]

]
,
[
[Σ̃

(i)
[:,j] : i ∈ [k]] : j ∈ H(l)

]
: l = 1, 2, 3

]
=
[
µ̃, Σ̃[:,H(1)], Σ̃[:,H(2)], Σ̃[:,H(3)]

]
.

(36)

Note that the dimension of the subspace S is at most k(|H| + 1) < n/3. Then we show by the
Claim about the moment structure that the matrix Q̃S can be written as a product of P̃S and some
coefficient matrix B̃S . Then we bound the smallest singular value of the two matrices P̃S and B̃S
via smoothed analysis separately. The coefficient matrix B̃S is slightly different than that in the
zero-mean case, but has similar block-diagonal structure properties.

The detailed proof is provided below.

Proof. (of Proposition F.2 )
Similar to structural property in Claim B.2 for the zero-mean case, we can write the matrix Q̃S

in a product form:

Q̃S = P̃S
(
Dω̃ ⊗kr I|H|

)
(B̃S)>.

We will bound the smallest singular value for each of the factor, and apply union bound to conclude
the lower bound of σk(1+|H|)(Q̃S).

The matrix P̃S ∈ Rn×(k+k|H|) is defined in (36). Restricting to the rows corresponding to [n]\H,
we can use Lemma G.16 to argue that σk(1+|H|) ≥ ερ

√
n with probability at least 1− (Cε)0.25n.

In order to lower bound σmin(B̃S), we first analyze the structure of this coefficient matrix. The
matrix B̃S has the following block structure:

B̃S =
[
B̃(0), B̃(1), B̃(2), B̃(3)

]
.

The first block B̃(0) ∈ R(|H|/3)3×k is a summation of four matrices B̃
(0)
i for i = 0, 1, 2, 3, where

B̃
(0)
0 = µ̃H(3) � µ̃H(2) � µ̃H(1) , and B̃

(0)
1 = Σ̃H(3),H(2) � µ̃H(1) . With some fixed and known row

permutation π(2) and π(3), the other two matrix blocks B̃
(0)
2 and B̃

(0)
3 are equal to Σ̃H(3),H(1)� µ̃H(2)

and Σ̃H(2),H(1) � µ̃H(3) , separately.

The block B̃(1) ∈ R(|H|/3)3×k|H|/3 is block diagonal with the identical block Σ̃H(3),H(2) + µ̃H(3) �
µ̃H(2) . Similarly, with the row permutation π(2), π(3), the other two matrix blocks B̃(2), B̃(3) are
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equal to the block diagonal matrices with the identical block (Σ̃H(3),H(1) + µ̃H(3) � µ̃H(1)) and

(Σ̃H(2),H(1) + µ̃H(2) � µ̃H(1)) respectively.

Note that we can write the block B̃(0) as:

B̃(0) =(µ̃H(3) � µ̃H(2) + Σ̃H(3),H(2))� µ̃H(1) + (π(2))−1(µ̃H(3) � µ̃H(1) + Σ̃H(3),H(1))� µ̃H(2)

+ (π(3))−1(µ̃H(2) � µ̃H(1) + Σ̃H(2),H(1))� µ̃H(3) − 2µ̃H(3) � µ̃H(2) � µ̃H(1) ,

where it is easy to see the first summand (µ̃H(3) � µ̃H(2) + Σ̃H(3),H(2))� µ̃H(1) is a linear combination

of the columns of the block diagonal matrix B̃(1), and similarly the second and third summands

are linear combinations of the columns of B̃(2) and B̃(3), and the last summand is simply −2B̃
(0)
0 .

Therefore for some absolute constant C (the smallest singular value corresponding to the linear
transformation) we have that:

σmin(B̃S) ≥ Cσmin(
[
B̃

(0)
0 , B̃(1), B̃(2), B̃(3)

]
)

Note that B̃
(0)
0 = µ̃H(3) � µ̃H(2) � µ̃H(1) only depends on the randomness over the mean vectors.

Note that the Khatri-Rao product is a submatrix of the Kronecker product, therefore for tall
matrices Q1 and Q2, we have that σmin(Q1 � Q2) ≤ σmin(Q1 ⊗kr Q2) = σmin(Q1)σmin(Q2). In

particular, we can bound the smallest singular value of B̃
(0)
0 with high probability (at least 1−Cε0.5n)

as follows:

σk(B̃
(0)
0 ) ≥ σk(µ̃H(3))σk(µ̃H(2))σk(µ̃H(1)) ≥ (ρε

√
n)3.

Then condition on the value of the means, we further exploit the randomness over the covariance

matrices to lower bound σk|H|
(

Proj
B̃

(0)⊥
0

[B̃(1), B̃(2), B̃(3)]
)

. It is almost the same as the argument

of the proof for Proposition B.1. For example, compared to (18) we have the following inequality
instead:

σk

(
Proj

([B̃(0),B̃(2),B̃(3)]{j}×H(2)×H(3) )⊥Proj(ΣH(2),H(3)+µ̃H(2)�µ̃H(3) )⊥(Σ̃H(2),H(3) + µ̃H(2) � µ̃H(3))

)
≥ ερ√n,

and note that any block in B̃(0) is independent of the randomness of covariance matrices, and we
have (|H|/3)2 − k − 2k|H|/3 ≥ 2k. Similar modifications apply to the inequalities in (20),(21).

Finally by the argument of Lemma G.12 we can bound σmin(B̃S) with probability at least
1− Cε0.5n (over the randomness of both the perturbed means and covariance matrices):

σmin(B̃S) ≥ min{(ρε√n)3, ερ
√
n} = ερ

√
n,

as we assume ρ to be small perturbation and ρε
√
n < 1.

Step 1 (b). Find the projected span of covariance matrices Given the subspace S =

span{µ̃(i), Σ̃
(i)
[:,H] : i ∈ [k]} obtained from Step 1 (a), Step 1(b) finds the span of the covariance

matrices with the columns projected to S⊥, namely:

US = span{ProjS⊥Σ̃(i) : i ∈ [k]}.
This is in parallel with Step 1 (b) for the zero-mean case, and we rely on the structure of the two-

dimensional slices of M̃4 to find the span of the projected covariance matrices. Similar to Claim B.6
for the zero-mean case, the following claim shows how the structure of the two-dimensional slices
is related to the desired span.
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Claim F.3. For a mixture of general Gaussians, the two-dimensional slices of M̃4 are given by:

M̃4(ej1 , ej2 , I, I) =

k∑
i=1

ω̃i

(
(Σ̃

(i)
j1,j2

+ µ̃
(i)
j1

(µ̃
(i)
j2

)>)(Σ̃(i) + µ̃(i)(µ̃(i))>)

+ µ̃
(i)
j1

(µ̃(i)(Σ̃
(i)
[:,j2])

> + Σ̃
(i)
[:,j2](µ̃

(i))>) + µ̃
(i)
j2

(µ̃(i)(Σ̃
(i)
[:,j1])

> + Σ̃
(i)
[:,j1](µ̃

(i))>)

+ Σ̃
(i)
[:,j1](Σ̃

(i)
[:,j2])

> + Σ̃
(i)
[:,j2](Σ̃

(i)
[:,j1])

>
)
, ∀j1, j2 ∈ [n].

Note that given the set of indices H we chose in Step 1 (a) and the subspace S, if we pick the
indices j1, j2 ∈ H, project the two-dimensional slice to S⊥, all the rank one terms in the sum are
eliminated and the projected slice lies in the desired span US :

ProjS⊥M̃4(ej1 , ej2 , I, I) =
k∑
i=1

ω̃i(Σ̃
(i)
j1,j2

+ µ̃
(i)
j1

(µ̃
(i)
j2

)>)ProjS⊥Σ̃(i), ∀j1, j2 ∈ H.

Applying the same argument as in Lemma B.7 for the zero-mean case, we can show that with
high probability over the perturbation, all the projected slices span the subspace US .

Step 1 (c). Merge the two projections of covariance matrices Pick two disjoint index set
H1 and H2 and repeat the previous two steps 1 (a) and 1 (b), we can obtain the two spans U1 and
U2, corresponding to the subspace of the covariance matrices projected to S1 and S2, respectively.

In this step, we apply similar techniques as in Step 1 (c) for the zero-mean case to merge the
two spans U1 and U2: we first use the overlapping part of the two projections ProjS⊥1

and ProjS⊥2
to align the basis of U1 and U2, then merge the two spans using the same basis.

Note that for the general case, by definition the span of the mean vectors Z̃ lie in both subspaces
S1 and S2, therefore we have S⊥1 ⊂ Z̃⊥ and S⊥2 ⊂ Z̃⊥. We can show that S⊥1 ∪ S⊥2 = Z̃⊥ by lower
bounding σn−k([ProjS⊥1 ,ProjS⊥2 ]) with high probability, similar to that in (28). This gives us the

span of the mean vectors Z̃.
Moreover, in the general case, from merging U1 and U2 we are only able to find the span of

covariance matrices projected to the subspace Z̃⊥. In particular, we can follow Lemma B.11 and
Lemma B.15 in Step 1 (c) for the zero-mean case to show that for the general case, we can merge
U1 and U2 to obtain the span span{Proj

Z̃⊥Σ̃(i) : i ∈ [k]. By further projecting the span to Z̃⊥ from

the right side, we can also obtain Σ̃o = span{Proj
Z̃⊥Σ̃(i)Proj

Z̃⊥ : i ∈ [k]}.

Step 2. Find the covariance matrices in the subspace orthogonal to the means Given
the subspace Z̃ and Σ̃o = span{Proj

Z̃⊥Σ̃(i)Proj
Z̃⊥ : i ∈ [k]} obtained from Step 1, Step 2 applies

the zero-mean case algorithm to find the covariance matrices projected to the subspace Z̃⊥, i.e.,
Proj

Z̃⊥Σ̃(i)Proj
Z̃⊥ ’s, as well as find the mixing weights ω̃i’s.

This follows the same arguments as in Step 2 and Step 3 for the zero mean case. Consider
projecting all the samples to Z̃⊥, the subspace orthogonal to all the means. In this subspace,
the samples are like from a mixture of zero-mean Gaussians with the projected covariance matri-
ces, and the 4-th and 6-th order moment are given by M̃4(Proj

Z̃⊥ ,Proj
Z̃⊥ ,Proj

Z̃⊥ ,Proj
Z̃⊥) and

M̃6(Proj
Z̃⊥ ,Proj

Z̃⊥ ,Proj
Z̃⊥ ,Proj

Z̃⊥ ,Proj
Z̃⊥ ,Proj

Z̃⊥). Since Z̃ is of dimension k, the dimension of
the zero-mean Gaussian in the projected space is at least n− k = O(n).

Note that the subspace Z̃⊥ only depends on the randomness of the means, and random per-
turbation on the covariance matrices is independent of that of µ̃. The smoothed analysis for the
moment unfolding in Step 2 and tensor decomposition in Step 3 for the zero-mean case, which only
depend on the randomness of the covariance matrices, still go through in the projected space.
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Step 3. Find the means This step finds the mean vectors based on the outputs of the previous
steps. The key observation for this step is about the structure of the 3-rd order moments in the
following claim:

Claim F.4. Let the matrix M̃3(1) ∈ Rn×n2
be the matricization of M̃3 along the first dimension.

The j-th row of M̃3(1) is given by:

[M̃3(1)][j,:] =
[
[E[xjxj1xj2 ] : j1 ∈ [n]] : j2 ∈ [n]

]
=

k∑
i=1

ω̃i

(
µ̃

(i)
j vec(Σ̃(i)) + µ̃

(i)
j µ̃

(i) � µ̃(i) + Σ̃
(i)
[:,j] � µ̃

(i) + µ̃(i) � Σ̃
(i)
[:,j]

)>
(37)

The following lemma shows how to extract the means µ̃(i)’s from M̃3(1) using the information of

the covariance matrices projected to the subspace orthogonal to the means, i.e. Σ̃o, and the mixing
weights ω̃i’s.

Lemma F.5. Given the mixing weights ω̃i’s and the projected covariances Σ̃
(i)
o ’s, define the matrix

T̃ ∈ Rn2×k to be the pseudo-inverse of Σ̃o:

T̃ =
[
vec(Σ̃(i)

o ) : i ∈ [k]
]†>

.

The mean µ̃(i) of the i-th component can be obtained by:

µ̃(i) =
1

ω̃i
M̃3(1)T̃[:,i].

This step correctly finds the means if the Σ̃o is full rank with good condition number, and this holds
with high probability over the perturbation.

Proof. (of Lemma F.5 )
The basic idea is that since Σ̃o lies in the span of P̃ = Proj

Z̃⊥ ⊗kr Proj
Z̃⊥ , and the last three

summands in the parenthesis in (37) all lie in span{In ⊗kr Proj
Z̃
, Proj

Z̃
⊗kr In} = span{P̃⊥}.

Therefore hitting the matrix M̃3(1) with Σ̃†o from the right will eliminate those summands and pull
out only the mean vectors.

Recall that the columns of the matrix Σ̃o are vec(Proj
Z̃⊥Σ̃(i)Proj

Z̃⊥) = P̃vec(Σ̃(i))’s, and the

columns of Σ̃ are vec(Σ̃(i))’s.
Note that T̃ = (P̃ Σ̃)†> = P̃ Σ̃†>, and the columns of T̃ lie in span{P̃}. Also note that for all

i, j ∈ [k] the vectors µ̃(i) � µ̃(i), Σ̃
(i)
[:,j] � µ̃(i) and µ̃(i) � Σ̃

(i)
[:,j] all lie in the subspace span{In ⊗kr

Proj
Z̃
, Proj

Z̃
⊗kr In} = span{P̃⊥}. Therefore these terms will be eliminated if we multiply

the columns of T̃ to the right of M̃3(1). For the first term µ̃
(i)
j vec(Σ̃(i)), since vec(Σ̃(j))>T̃[:,i] =

(P̃vec(Σ̃(j)))>T̃[:,i] = 1[i=j]. Therefore, we have M̃3(1)T̃[:,i] = ω̃iµ̃
(i).

The smoothed analysis for the correctness of this step is easy. We only need to show that both
Σ̃o and Σ̃ robustly have full column rank with high probability over perturbation of the covariance
matrices, and thus the pseudo-inverse T̃ is well defined. This follows from Lemma G.15.

Finally, the stability analysis for this step is also straightforward using the perturbation bound
for pseudo-inverse in Theorem G.7.
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Step 4. Find the unprojected covariance matrices Note that by definition Z̃ = span{µ̃(i) :
i ∈ [k]}, the projected covariance Proj

Z̃⊥(Σ̃(i)) we obtained in Step 2 is also equal to Proj
Z̃⊥(Σ̃(i) +

µ̃(i)(µ̃(i))>). In Step 4 we try to recover the missing part of the covariance matrices in the subspace
Z̃. Note that since we have also obtained the means in Step 3, it is equivalent to finding (Σ̃(i) +
µ̃(i)(µ̃(i))>) for all i. We will show that if we can find the span{(Σ̃(i) + µ̃(i)(µ̃(i))>) : i ∈ [k]}, the
projected vector Proj

Z̃⊥(Σ̃(i) + µ̃(i)(µ̃(i))>) can be used as anchor to pin down the unprojected
vector.

They key observation for finding the span of span{(Σ̃(i) + µ̃(i)(µ̃(i))>) : i ∈ [k]} is to first

construct a 4-th order tensor M̃ ′4 which corresponds to the 4-th moment of a mixture of zero-mean

Gaussians with covariance matrices (Σ̃(i) + µ̃(i)(µ̃(i))>), and then follow Step 1 in the algorithm for
zero-mean case to find the span of the covariance matrices for this new mixture of Gaussians.

The next lemma shows how to construct such 4-th order tensor:

Lemma F.6. Given the 4-th moment M̃4 for a mixture of Gaussians with parameters {ω̃i, µ̃(i), Σ̃(i)},
define the 4-th order tensor M̃ ′4 to be:

M̃ ′4 = M̃4 + 2
k∑
i=1

ω̃iµ̃
(i)⊗4,

then M̃ ′4 is equal to the 4-th moment of a mixture Gaussians with parameters {ω̃i, 0, Σ̃(i)+µ̃(i)(µ̃(i))>}.
The proof follows directly from Isserlis’ Theorem. Therefore we can repeat Step 1 in the zero-

mean case here to find the span of the space {vec(Σ̃(i)) + µ̃(i) � µ̃(i) : i ∈ [k]}. Since we also know
the projection of Σ̃(i)’s in a large subspace (in the subspace Proj

Z̃⊥ ⊗kr Proj
Z̃⊥ obtained from Step

2), we can easily recover Σ̃(i)’s:

Lemma F.7. For any matrix U ∈ Rd×k and any subspace P , given P>U and the span S of columns
of U , the matrix U can be computed as

U = S(P>S)†(P>U).

Further, this procedure is stable if σmin(P>S) is lower bounded.

Proof. This is a special case of the Step 1 (c) where we merge two projections of an unknown
subspace.

The span S is equal to UV for some unknown matrix V . We can compute V = (P>U)†P>S,
and hence U = SV −1 = S(P>S)†(P>U). The stability analysis is similar (and simpler than)
Lemma B.11.

We will apply this lemma to where the subspace P is Proj
Z̃⊥⊗krProj

Z̃⊥ . Since the perturbation
of the means and the covariance matrices are independent, we can lower bound the smallest singular
value of P>S.

F.1 Proof Sketch of the Main Theorem 3.4

The proof follows the same strategy as Theorem 3.5. First we apply the union bound to all the
smoothed analysis lemmas, this will ensure the matrices we are inverting all have good condition
number, and the whole algorithm is robust to noise.

Then in order to get the desired accuracy ε, we need to guarantee inverse polynomial accuracy in
different steps (through the stability lemmas). The flow of the algorithm is illustrated in Figure 5.

In the end all the requirements becomes a inverse polynomial accuracy requirement on M̂4 and M̂6,
which we obtain by Lemma E.1.
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Figure 5: Flow of the algorithm for the general case

G Matrix Perturbation, Concentration Bounds and Auxiliary Lem-
mas

In this section we collect known results on matrix perturbation and concentration bounds. In
general, matrix perturbation bounds are the key for the perturbation lemmas, and concentration
bounds are crucial for the smoothed analysis lemmas. We also prove some corollaries of known
results that are very useful in our settings.

G.1 Matrix Perturbation Bounds

Given a matrix Â = A + E where E is a small perturbation, how does the singular values and
singular vectors of A change? This is a well-studied problem and many results can be found in
Stewart and Sun Stewart (1977). Here we review some results used in this paper, and prove some
corollaries.

Given Â = A + E, the perturbation in individual singular values can be bounded by Weyl’s
theorem:

Theorem G.1 (Weyl’s theorem). Given Â = A+E, we know σk(A)−‖E‖ ≤ σk(Â) ≤ σk(A)+‖E‖.
We can also bound the `2 norm change in singular values by Mirsky’s Theorem.

Lemma G.2 (Mirsky’s theorem). Given matrices A,E ∈ Rm×n with m ≥ n, then√√√√ n∑
i=1

(σi(A+ E)− σi(A))2 ≤ ‖E‖F .

For singular vectors, the perturbation is bounded by Wedin’s Theorem:

Lemma G.3 (Wedin’s theorem; Theorem 4.1, p.260 in Stewart and Sun (1990)). Given matrices
A,E ∈ Rm×n with m ≥ n. Let A have the singular value decomposition

A = [U1, U2, U3]

 Σ1 0
0 Σ2

0 0

 [V1, V2]>.

Let Â = A + E, with analogous singular value decomposition. Let Φ be the matrix of canonical
angles between the column span of U1 and that of Û1, and Θ be the matrix of canonical angles
between the column span of V1 and that of V̂1. Suppose that there exists a δ such that

min
i,j
|[Σ1]i,i − [Σ2]j,j | > δ, and min

i,i
|[Σ1]i,i| > δ,

53



then

‖ sin(Φ)‖2 + ‖ sin(Θ)‖2 ≤ 2
‖E‖2
δ2

.

We do not go into the definition of canonical angles here. The only way we will be using this
lemma is by combining it with the following:

Lemma G.4 (Theorem 4.5, p.92 in Stewart and Sun (1990)). Let Φ be the matrix of canonical
angles between the column span of U and that of Û , then

‖Proj
Û
− ProjU‖ = ‖ sin Φ‖.

As a corollary, we have:

Lemma G.5. Given matrices A,E ∈ Rm×n with m ≥ n. Suppose that the A has rank k and the
smallest singular value is given by σk(A). Let S and Ŝ be the subspaces spanned by the first k
eigenvectors of A and Â = A+ E, respectively. Then we have:

‖Ŝ − S̃‖ ≤ ‖ProjŜ − ProjS‖ = ‖ProjŜ⊥ − ProjS⊥‖ ≤
√

2‖E‖F
σk(A)

.

Moreover, if ‖E‖F ≤ σk(A)/
√

2 we have ‖Ŝ − S̃‖ ≤
√

2‖E‖
σk(A) .

Proof. We first prove the first inequality:

‖ProjŜ − ProjS‖ = ‖2S̃(Ŝ − S̃)> + (Ŝ − S̃)(Ŝ − S̃)>‖ ≥ 2‖S̃‖‖Ŝ − S̃‖ − ‖Ŝ − S̃‖2 ≥ ‖S̃‖‖Ŝ − S̃‖ = ‖Ŝ − S̃‖.
The equality is because ProjS⊥ = I −ProjS so the two differences are the same. The final step

follows from Wedin’s Theorem and Lemma G.4.

Often we need to bound the perturbation of a product of perturbed matrices, where we apply
the following lemma:

Lemma G.6. Consider a product of matrices A1 · · ·Ak, and consider any sub-multiplicative norm
on matrix ‖ · ‖. Given Â1, . . . , Âk and assume that ‖Âi −Ai‖ ≤ ‖Ai‖, then we have:

‖Â1 · · · Âk −A1 · · ·Ak‖ ≤ 2k−1
k∏
i=1

‖Ai‖
k∑
i=1

‖Âi −Ai‖
‖Ai‖

.

The proof of this lemma is straightforward by induction.

Perturbation bound for pseudo-inverse When we have a lowerbound on σmin(A), it is easy
to get bounds for the perturbation of pseudoinverse.

Theorem G.7 (Theorem 3.4 in Stewart (1977)). Consider the perturbation of a matrix A ∈ Rm×n:
B = A+ E. Assume that rank(A) = rank(B) = n, then

‖B† −A†‖ ≤
√

2‖A†‖‖B†‖‖E‖.
As a corollary, we often use:

Lemma G.8. Consider the perturbation of a matrix A ∈ Rm×n: B = A + E where ‖E‖ ≤
σmin(A)/2. Assume that rank(A) = rank(B) = n, then

‖B† −A†‖ ≤ 2
√

2‖E‖/σmin(A)2.

Proof. We first apply Theorem G.7, and then bound ‖A†‖ and ‖B†‖. By definition we know
‖A†‖ = 1/σmin(A). By Weyl’s theorem σmin(B) ≥ σmin(A) − ‖E‖ ≥ σmin(A)/2, hence ‖B†‖ =
σmin(B)−1 ≤ 2σmin(A)−1.

54



G.2 Lowerbounding the Smallest Singular Value

Gershgorin’s Disk Theorem is very useful in bounding the singular values.

Theorem G.9 (Gershgorin’s theorem). Given a symmetric matrix X ∈ Rk×k, a lower bound on
the smallest eigenvalue is given by:

σmin(X) ≥ min
i∈[k]

Xi,i −
∑

j∈[k],j 6=i
Xi,j

 .

Sometimes, it is easier to consider the projection of a matrix. Lowerbounding the smallest
singular value of a projection will imply the same lowerbound on the original matrix:

Lemma G.10. Suppose A ∈ Rm×n, let P ∈ Rm×d be a subspace, then σk(P
>A) ≤ σk(A).

Proof. Observe that (P>A)>(P>A) = A>(PP>)A � A>A (because P is a subspace). Therefore
the eigenvalues of (P>A)>(P>A) must be dominated by the eigenvalues of A>A. Then the lemma
follows from the definition of singular values.

As a corollary we have the following lemma:

Lemma G.11. Let A ∈ Rm×n and suppose that m ≥ n. For any projection ProjS, we have that
the singular values are non-increasing after the projection:

σi(ProjS(A)) ≤ σi(A), fori = 1, . . . , n.

In several places of this work we want to bound the singular value of a matrix, where part of
the matrix has a block structure.

Lemma G.12. For given matrices B(i) ∈ Rm×n and C(i) ∈ Rm×n′ for i = 1, . . . , d. Suppose
md > (n+ n′d), Define the tall matrix A ∈ Rmd×(n+dn′):

A =


B(1) C(1) 0 · · · 0

B(2) 0 C(2) · · · 0
...

...
...

. . .
...

B(d) 0 0 · · · C(d)

 =
[
B, diag(C(i))

]
.

The smallest singular value is bounded by:

σ(n+dn′)(A) ≥ min{σn(B), σn′(Proj(B(i))⊥C
(i)) : i = 1, . . . , d}.

Proof. The idea is to break the matrix into two parts A = ProjBA + ProjB⊥A.Since these two
spaces are orthogonal we know σ(n+dn′)(A) ≥ min{σn(ProjBA), σdn′(ProjB⊥A)}.

For the first part, clearly σn(ProjBA) ≥ σn(B), as B is a submatrix of ProjBA.
For the second part, we actually do the projection to a smaller subspace: for each block we

project to the orthogonal subspace of B(i). Under this projection, the block structure is preserved.
The dn′-th singular value must be at least the minimum of the n′-th singular value of the blocks.
In summary we have:

σ(n+dn′)(A) ≥ min{σn(B), σdn′(ProjB⊥diag(C(i)))}
≥ min{σn(B), σdn′(Projdiag((B(i))⊥)diag(C(i)))}
≥ min{σn(B), σdn′(diag(Proj(B(i))⊥C

(i)))}
≥ min{σn(B), σn′(Proj(B(i))⊥C

(i)) : i = 1, . . . , d}.
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Smallest singular value of random matrices In our analysis, we often also want to bound
the smallest singular value of a matrix whose entries are Gaussian random variables. Our analysis
mostly builds on the following results in random matrix theory.

For a random rectangular matrix, Rudelson and Vershynin (2009) gives the following nice result:

Lemma G.13 (Theorem 1.1 in Rudelson and Vershynin (2009)). Let A ∈ Rm×n and suppose that
m ≥ n. Assume that the entries of A are independent standard Gaussian variable, then for every
ε > 0, with probability at least 1− (Cε)m−n+1 + e−C

′n, where C,C ′ are two absolute constants, we
have:

σn(A) ≥ ε(√m−
√
n− 1).

We will mostly use an immediate corollary of the above lemma with slightly simpler form:

Corollary G.14. Let A ∈ Rm×n and suppose that m ≥ 2n. Assume that the entries of A are
independent standard Gaussian variable, then for every ε > 0, and for some absolute constant C,
with probability at least 1− (Cε)0.5m, we have:

σn(A) ≥ ε√m.
This lemma can also be applied to a projection of a Gaussian matrix:

Lemma G.15. Given a Gaussian random matrix E ∈ Rm×n, for some set J ∈ [m] define EJ =
[E[j,:] : j ∈ J ] and EJc = [E[j,:] : j ∈ [m]/J ]. Define matrix S ∈ Rn×r whose columns are
orthonormal. Suppose that the matrix S is an arbitrary function of EJ and is independent of EJc.
Assume that

m− |J | − r ≥ 2n (38)

Then for any ε > 0, we have that with probability at least 1 − (Cε)0.5(m−|J |−r), for some absolute
constant C, the smallest singular value of the projected random matrix is bounded by:

σn(ProjS⊥E) ≥ ε
√
m− |J | − r. (39)

Proof. For a matrix A ∈ Rm×n, define the fixed matrix PJc ∈ R(m−|J |)×m such that:[
[PJc ][:,j] : j ∈ J

]
= 0,

[
[PJc ][:,j] : j ∈ [n]/J

]
= I(m−|J |)×(m−|J |),

which only keeps the coordinates that correspond to [m]/J of any vector in Rm. Note that

σn(ProjS⊥E) ≥ σn(PJc(ProjS⊥E))

≥ σn(Proj(PJcS)⊥PJcProjS⊥E)

= σn(Proj(PJcS)⊥PJcE).

We justify the last equality below. Note that

ProjS⊥E = E − ProjSE,

and note that the columns of (PJcProjSE) lie in the column span of PJcS, therefore,

Proj(PJcS)⊥PJcProjS⊥E = Proj(PJcS)⊥PJcE − Proj(PJcS)⊥(PJcProjSE)

= Proj(PJcS)⊥PJcE.

Finally, note that PJcS, with column rank no more than r, is independent of PJcE, which is a
random Gaussian matrix of size (m−|J |)×n, therefore we have that Proj(PJcS)⊥PJcE is equivalent
to a (m− |J | − r)× n random Gaussian matrix. Since (38) is satisfied, we can apply Lemma G.13
and conclude (39) with high probability.
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However, in the smoothed analysis setting, the matrix we are interested in are often not random
Gaussian matrices. Instead they are fixed matrices perturbed by Gaussian variables. We call these
“perturbed rectangular matrices”, their singular values can be bounded as follows:

Lemma G.16 (Perturbed rectangular matrices). Let A ∈ Rm×n and suppose that m ≥ 3n. If all
the entries of A are independently ρ-perturbed to yield Ã, then for any ε > 0, with probability at
least 1− (Cε)0.25m, for some absolute constant C, the smallest singular value of Ã is bounded below
by:

σn(Ã) ≥ ερ√m.

Proof. The idea is to use the previous lemma and project to the orthogonal subspace of A. We
have that Ã = A+ E, where E ∈ Rm×n is a random Gaussian matrix.

σn(Ã) ≥ σn(ProjA⊥Ã) = σn(ProjA⊥E).

Since m− n > 2n, we can apply Lemma G.15 to conclude that for any ε > 0,

σn(ProjA⊥E) ≥ ερ√m,

with probability at least 1− (Cε)0.5(m−n) ≤ 1− (Cε)0.25m.

G.3 Projection of random vectors

In Step 2, we need to bound the norm of a random vector of the form u � v after a projection,
where u and v are two Gaussian vectors. In order to show this, we apply the result in Vu and
Wang (2013) which provides a concentration bound of projection of well-behaved (K-concentrated)
random vectors.

First we cite the definition of “K-concentrated” below:

Definition G.17. A random vector X = (ξ1, ξ2, ..., ξn) is K-concentrated (where K may depend
on n) if there are constants C,C ′ > 0 such that for any convex, 1-Lipschitz function f : Cn → R
and for any t > 0, we have:

Pr[|F (X)−med(F (X))| ≥ t] ≤ C exp

(
−C ′ t

2

K2

)
,

where med(·) denotes the median of a random variable (choose an arbitrary one if there are many).

Lemma G.18 (Concentration for Random Projections (Lemma 1.2 in Vu and Wang (2013))). Let
v be a K-concentrated random vector in Cn. The entries of v has expected norm 1. Then there
are constants C,C ′ > 0 such that the following holds. Let ProjS be a projection to a d-dimensional
subspace in Cn.

P
(∣∣∣v>ProjSv − d

∣∣∣ ≥ 2t
√
d+ t2

)
≤ Cexp(−C ′ t

2

K2
).

In order to apply this lemma in our setting, we need to prove the vectors that we are interested
in is K-concentrated:

Lemma G.19. Conditioned on the high probability event that ‖E[:,i]‖, ‖E[:,j]‖ ≤ 2
√
n2, the vector

[[E[:,i] � E[:,j]]s,s′ : s < s′] is 2
√
n2)-concentrated.

57



Proof. For any 1-Lipschitz function F on [[E[:,i] � E[:,j]]s,s′ : s < s′], we can define a function
G(E[:,i], E[:,j]) = F ([[E[:,i] � E[:,j]]s,s′ : s < s′]) (if i = j then the function G only takes E[:,i] as
the variable). Under the assumption that ‖E[:,i]‖, ‖E[:,j]‖ ≤ 2

√
n2, this new function G is 2

√
n2-

Lipschitz.
Now we extend G to G∗ when the input ‖E[:,i]‖, ‖E[:,j]‖ > 2

√
n2. Define the truncation function

trunc(v) = v for ‖v‖ ≤ 2
√
n2, and trunc(v) = 2

√
n2v/‖v‖ for ‖v‖ > 2

√
n2. Define the extended

function G∗(E[:,i], E[:,j]) = G(trunc(E[:,i]), trunc(E[:,j])), which is still 2
√
n2-Lipschitz since the trun-

cation function is 1-Lipschitz.
Note that for the two Gaussian random vectors E[:,i], E[:,j] ∼ N(0, I), we can apply Gaussian

concentration bound in Theorem G.20 on G∗, which implies

P[|G∗(E[:,i], E[:,j])−med(G∗(E[:,i], E[:,j]))| ≥ t] ≤ C exp(−C ′t2/4n2).

Since the probability of the event ‖E[:,i]‖, ‖E[:,j]‖ > 2
√
n2 is very small (∼ exp(−Ω(n2))), we have

δ = |med(G(E[:,i], E[:,j]))−med(G∗(E[:,i], E[:,j]))| in the order of O(
√
n2). Therefore, for t ∼ Ω(

√
n2),

we have

P[|G∗(E[:,i], E[:,j])−med(G(E[:,i], E[:,j]))| ≥ t] ≤ P[|G∗(E[:,i], E[:,j])−med(G(E[:,i], E[:,j]))| ≥ t− δ]
≤ C exp(−C ′t2/4n2).

Finally,

P
[∣∣∣G(E[:,i], E[:,j])−med(G(E[:,i], E[:,j]))| ≥ t

∣∣∣‖E[:,i]‖, ‖E[:,j]‖ ≤ 2
√
n2

]
≤
P[|G∗(E[:,i], E[:,j])−med(G(E[:,i], E[:,j]))| ≥ t]

P[‖E[:,i]‖ ≥ 2
√
n2 or ‖E[:,i]‖ ≥ 2

√
n2]

≤C exp(−C ′t2/4n2).

Therefore the random vector [[E[:,i] � E[:,j]]s,s′ : s < s′] is 2
√
n2-concentrated.

Theorem G.20 (Gaussian concentration bound). Let f : Rn → R be a function which is Lipschitz
with constant 1. Consider a random vector X ∼ N (0, In). For any s > 0 we have

P
(∣∣f(X)− E[f(X)]

∣∣ ≥ s) ≤ 2e−Cs
2
,

for all s > 0 and some absolute constant C > 0.

G.4 Gaussian Chaoses

In Step 2, we want to show that the inner product of two random vectors of the form < Proj(u�
v),Proj(u � v) > is small, where u, u′ and v, v′ are Gaussian vectors. In order to show this, we
treat the inner product as a (homogeneous) Gaussian chaos, which is defined to be a homogeneous
polynomial over Gaussian random variables10. Our analysis builds on the results of many works
studying the concentration bound of Gaussian chaoses.

For decoupled Gaussian chaoses, we mostly use the following theorem, which is a simple corollary
of Lemma G.22.

10In fact, the squared norm of projected random vectors considered previously is a special case of Gaussian chaos,
and we treat it separately.
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Theorem G.21. Suppose a = (ai1,...,id)1≤i1,...,id≤n is a d-indexed array, and ‖a‖F denotes its

Frobenius norm. Let (X
(j)
i )1≤i≤n,j=1,...,d be independent copies of X ∼ N (0, In). For any fixed

ε > 0, with probability at least 1− Cexp
(
−C ′n2ε/d

)
,∣∣∣∣∣∣

n∑
i1,...,id=1

ai1,...,idX
(1)
i1
· · ·X(d)

id

∣∣∣∣∣∣ ≤ ‖a‖Fnε.
Lemma G.22 (Gaussian chaoses concentration (Corollary 1 in Lata la et al. (2006))). Suppose a =

(ai1,...,id)1≤i1,...,id≤n is a d-indexed array. Consider a decoupled Gaussian chaos G =
∑

i1,...,id
ai1,...,idX

(1)
i1
· · ·X(d)

id
,

where X
(k)
i are independent copies of the standard normal random variable for all i ∈ [n], k ∈ [d].

P (|G| ≥ t) ≤ Cdexp

(
− 1

Cd
min

1≤k≤d
min

(I1,...,Ik)∈S(k,d)

(
t

‖a‖I1,...,Ik

)2/k
)
,

where Cd ∈ (0,∞) depends only on d, and S(k, d) denotes a set of all partitions of {1, . . . , d} into
k nonempty disjoint sets I1, . . . , Ik, and the norm ‖ · ‖I1,...,Ik is given by:

‖a‖I1,...,Ik := sup

 ∑
i1,...,id

ai1,...,idx
(1)
iI1
· · ·x(k)

iIk
:
∑
iI1

(x
(1)
iI1

)2 ≤ 1, . . . ,
∑
iIk

(x
(k)
iIk

)2 ≤ 1

 .

Proof. (of Theorem G.21) Apply the inequality:

‖a‖{1},...,{d} ≤ ‖a‖I1,...,Ik ≤ ‖a‖[d] = ‖a‖F , ∀(I1, . . . , Ik) ∈ S(k, d).

For a fixed order d and for any ε > 0, apply Lemma G.22 and set t = nε‖a‖F . We have that
P (|G| ≥ t) ≤ Cexp

(
−C ′n2ε/d

)
, for some constant C,C ′.

For coupled Gaussian chaoses, namely when X(j)’s are identical copies of the same X, we first
cite the following decoupling theorem in de la Peña and Montgomery-Smith (1995).

Theorem G.23. (Decoupling) Let (ai1,...,id)1≤i1,...,id≤n be a symmetric d-indexed array such that
ai1,...,id = 0 whenever there exists k 6= l such that ik = il. Let X1, ..., Xn be independent random

variables and (X
(j)
i )1≤i≤n for j = 1, dots, d, be independent copies of the sequence (Xi)1≤i≤n, then

for all t ≥ 0,

L−1
d Pr

∣∣∣∣∣∣
n∑

i1,...,id=1

ai1,...,idX
(1)
i1
· · ·X(d)

id

∣∣∣∣∣∣ ≥ Ldt
 ≤ Pr

∣∣∣∣∣∣
n∑

i1,...,id=1

ai1,...,idXi1 · · ·Xid

∣∣∣∣∣∣ ≥ Ldt


≤ Ld Pr

∣∣∣∣∣∣
n∑

i1,...,id=1

ai1,...,idX
(1)
i1
· · ·X(d)

id

∣∣∣∣∣∣ ≥ L−1
d t

 ,
where Ld ∈ (0,∞) depends only on d.

Essentially this theorem shows for a symmetric tensor with no “diagonal” terms, i.e., ai1,...,id = 0
whenever there exists k 6= l such that ik = il), there is only a constant factor difference between
the coupled and decoupled Gaussian chaos distribution.

In most of our applications, we do have symmetric tensors with no “diagonal” terms. However
there is one case where we do have diagonal terms, for which we need the following lemma.

59



Lemma G.24. Let (ai1,i2,i3)1≤i1,...,i3≤n be a symmetric 3-indexed array and let ‖a‖F denote its
Frobenius norm. Let X ∼ N (0, In), then for any ε > 0, with probability at least 1−Cnexp(−C ′n2ε/3),∣∣∣∣∣∣

n∑
i1,i2,i3=1

ai1,i2,i3Xi1Xi2Xi3

∣∣∣∣∣∣ ≤ 4‖a‖Fn0.5+ε.

Proof. The sum of the “diagonal” terms is equal to 3
∑

i 6=j ai,i,jX
2
iXj+1/2

∑
i ai,i,iX

3
i . Since Xi are

independent standard Gaussian random variables, with probability at least 1 − Cnexp(−C ′n2ε/3)
(union bound), |Xi| ≤ nε/3 for all i ∈ [n]. Conditioned on this high probability event, the absolute
value of the sum is bounded by:∣∣∣∣∣∣3

∑
i 6=j

ai,i,jX
2
iXj +

1

2

∑
i

ai,i,iX
3
i

∣∣∣∣∣∣ ≤ 3
n∑

i,j=1

|ai,i,j ||Xj |X2
i

≤ 3‖(ai,i,j)1≤i,j≤n‖1nε
≤ 3
√
n‖(ai,i,j)1≤i,j≤n‖Fnε

≤ 3‖a‖Fn0.5+ε.

By Theorem G.21, we know that with probability at least 1 − Cexp
(
−C ′n2ε/3

)
, the absolute

value of the sum of the “non-diagonal” terms is bounded by ‖a‖Fnε. Therefore we can conclude
the proof by applying the union bound.
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