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Abstract

We consider the problem of coloringk-colorable graphs
with the fewest possible colors. We give a randomized poly-
nomial time algorithm which colors a 3-colorable graph
onn vertices withminfO(�1=3 log4=3�); O(n1=4 logn)g
colors where� is the maximum degree of any vertex. Be-
sides giving the best known approximation ratio in terms
of n, this marks the first non-trivial approximation result
as a function of the maximum degree�. This result can
be generalized tok-colorable graphs to obtain a color-
ing usingminf ~O(�1�2=k); ~O(n1�3=(k+1))g colors. Our
results are inspired by the recent work of Goemans and
Williamson who used an algorithm forsemidefinite opti-
mization problems, which generalize linear programs, to
obtain improved approximations for the MAX CUT and
MAX 2-SAT problems. An intriguing outcome of our work
is a duality relationship established between the value of
the optimum solution to our semidefinite program and the
Lovász#-function. We show lower bounds on the gap be-
tween the optimum solution of our semidefinite program
and the actual chromatic number; by duality this also
demonstrates interesting new facts about the#-function.

1 Introduction

A legal vertex coloring of a graphG(V;E) is an assign-
ment of colors to its vertices such that no two adjacent ver-
tices receive the same color. Equivalently, a legal coloring
ofG byk colors is a partition of its vertices intok indepen-
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a coloring is called the chromatic number ofG, and is usu-
ally denoted by�(G). Determining the chromatic number
of a graph is known to be NP-hard (cf. [19]).

Besides its theoretical significance as a canonical NP-
hard problem, graph coloring arises naturally in a vari-
ety of applications such as register allocation [11, 12, 13]
and timetable/examination scheduling [8, 40]. In many
applications which can be formulated as graph coloring
problems, it suffices to find anapproximately optimum
graph coloring—a coloring of the graph with a small
though non-optimum number of colors. This along with
the apparent impossibility of an exact solution has led
to some interest in the problem of approximate graph
coloring. The analysis of approximation algorithms for
graph coloring started with the work of Johnson [25]
who shows that a version of the greedy algorithm gives
an O(n= logn)-approximation algorithm fork-coloring.
Wigderson [39] improved this bound by giving an ele-
gant algorithm which usesO(n1�1=(k�1)) colors to legally
color a k-colorable graph. Subsequently, other polyno-
mial time algorithms were provided by Blum [9] which
useO(n3=8 log8=5 n) colors to legally color ann-vertex
3-colorable graph. This result generalizes to coloring ak-colorable graph withO(n1�1=(k�4=3) log8=5 n) colors.
The best known performance guarantee for general graphs
is due to Halldórsson [24] who provided a polynomial time
algorithm using a number of colors which is within a factor
of O(n(log logn)2= log3 n) of the optimum.

Recent results in the hardness of approximations indi-
cate that it may be not possible to substantially improve
the results described above. Lund and Yannakakis [33]
used the results of Arora, Lund, Motwani, Sudan, and
Szegedy [6] and Feige, Goldwasser, Lovász, Safra, and
Szegedy [17] to show that there exists a (small) constant� > 0 such that no polynomial time algorithm can approx-
imate the chromatic number of a graph to within a ratio ofn� unless P= NP. Recently, Bellare and Sudan [7] showed
that the exponent� in the hardness result can be improved
to 1=10 unless NQP6= co-RQP, and to1=13 unless NP=
co-RP. However, none of these hardness results apply to
the special case of the problem where the input graph is
guaranteed to bek-colorable for some smallk. The best
hardness result in this direction is due to Khanna, Linial,



and Safra [26] who show that it is not possible to color a
3-colorable graph with 4 colors in polynomial time unless
P= NP.

In this paper we present improvements on the result of
Blum. In particular, we provide a randomized polynomial
time algorithm which colors a 3-colorable graph of maxi-
mum degree� withminfÕ(�1=3); O(n1=4 logn)g colors;
moreover, this can be generalized tok-colorable graphs
to obtain a coloring using̃O(�1�2=k) or ~O(n1�3=(k+1))
colors. Besides giving the best known approximations in
terms ofn, our results are the first non-trivial approxi-
mations given in terms of�. Our results are based on
the recent work of Goemans and Williamson [20] who
used an algorithm forsemidefinite optimization problems
(cf. [22, 2]) to obtain improved approximations for the
MAX CUT and MAX 2-SAT problems. We follow their
basic paradigm of using algorithms for semidefinite pro-
gramming to obtain an optimum solution to a relaxed ver-
sion of the problem, and a randomized strategy for “round-
ing” this solution to a feasible but approximate solution to
the original problem. Motwani and Naor [35] have shown
that the approximate graph coloring problem is closely re-
lated to the problem of finding a CUT COVER of the edges
of a graph. Our results can be viewed as generalizing
the MAX CUT approximation algorithm of Goemans and
Williamson to the problem of finding an approximate CUT
COVER. In fact, our techniques also lead to improved ap-
proximations for the MAXk-CUT problem [18]. We also
establish a duality relationship between the value of the op-
timum solution to our semidefinite program and the Lovász#-function [22, 23, 31]. We show lower bounds on the
gap between the optimum solution of our semidefinite pro-
gram and the actual chromatic number; by duality this also
demonstrates interesting new facts about the#-function.

Alon and Kahale [4] use related techniques to devise a
polynomial time algorithm for 3-coloring random graphs
drawn from a “hard” distribution on the space of all 3-
colorable graphs. Recently, Frieze and Jerrum [18] have
used a semidefinite programming formulation and random-
ized rounding strategy essentially the same as ours to ob-
tain improved approximations for the MAXk-CUT prob-
lem with large values ofk. Their results required a more
sophisticated version of our analysis, but for the coloring
problem our results are tight up to poly-logarithmic factors
and their analysis does not help to improve our bounds.

Semidefinite programming relaxations are an extension
of the linear programming relaxation approach to approx-
imately solving NP-complete problems. We thus present
our work in the style of the classical LP-relaxation ap-
proach. We begin in Section 2 by defining a relaxed ver-
sion of the coloring problem. Since we use a more com-
plex relaxation than standard linear programming, we must

show that the relaxed problem can be solved; this is done
in Section 3. We then show relationships between the re-
laxation and the original problem. In Section 4, we show
that (in a sense to be defined later) the value of the relax-
ation bounds the value of the original problem. Then, in
Sections 5, 6, 7, and 8 we show how a solution to the relax-
ation can be “rounded” to make it a solution to the original
problem. Combining the last two arguments shows that we
can find a good approximation. Section 3, Section 4, and
Sections 5–8 are in fact independent and can be read in any
order after the definitions in Section 2. In Section 9, we in-
vestigate the relationship between vector colorings and the
Lovász#-function, showing that they are in fact dual to one
another. We investigate the approximation error inherent in
our formulation of the chromatic number via semi-definite
programming in Section 10.

2 A Vector Relaxation of Coloring

In this section, we describe the relaxed coloring prob-
lem whose solution is in turn used to approximate the so-
lution to the coloring problem. Instead of assigning col-
ors to the vertices of a graph, we consider assigning (n-
dimensional) unitvectorsto the vertices. To capture the
property of a coloring, we aim for the vectors of adjacent
vertices to be “different” in a natural way. Thevectork-
coloring that we define plays the role that a hypothetical
“fractional k-coloring” would play in a classical linear-
programming relaxation approach to the problem. Our re-
laxation is related to the concept of an orthonormal repre-
sentation of a graph [31, 22].

Definition 2.1 Given a graphG = (V;E) on n vertices,
a vectork-coloringof G is an assignment of unit vectorsui from the space<n to each vertexi 2 V , such that for
any two adjacent verticesi and j the dot product of their
vectors satisfies the inequalityhui; uji � � 1k � 1 :

The definition of anorthonormal representation[31,
22] requires that the given dot products be equal to zero,
a weaker requirement than the one above.

3 Solving the Vector Coloring Problem

In this section we show how the vector coloring relax-
ation can be solved using semidefinite programming. The
methods in this section closely mimic those of Goemans
and Williamson [20].

To solve the problem, we need the following auxiliary
definition.



Definition 3.1 Given a graphG = (V;E) on n vertices,
a matrix k-coloring of the graph is ann � n symmetric
positive semidefinite matrixM , withmii = 1 andmij ��1=(k � 1) if fi; jg 2 E.

We now observe that matrix and vectork-colorings are
in fact equivalent (cf. [20]). Thus, to solve the vector col-
oring relaxation it will suffice to find a matrixk-coloring.

Fact 3.1 A graph has a vectork-coloring if and only if it
has matrixk-coloring. Moreover, a vector(k+�)-coloring
can be constructed from a matrixk-coloring in time poly-
nomial inn andlog(1=�) time.

Proof: Given a vectork-coloring fvig, the matrixk-
coloring is defined bymij = hvi; vji. For the other di-
rection, it is well known that for every symmetric positive
definite matrixM there exists a square matrixU such thatUUT =M (whereUT is the transpose ofU ). The rows ofU are vectorsfuigni=1 that form a vectork-coloring ofG.

An Æ-close approximation to the matrixU can be found
in time polynomial inn andlog(1=Æ) can be found using
the Incomplete Cholesky Decomposition[20, 21]. (Here
by Æ-close we mean a matrixU 0 such thatU 0U 0T �M hasL1 norm less thanÆ.) This in turn gives a vector(k + �)-
coloring of the graph, providedÆ is chosen appropriately.

Lemma 3.2 If a graphG has a vectork-coloring then a
vector(k + �)-coloring of the graph can be constructed in
time polynomial ink, n, andlog(1=�).

Proof: Our proof is similar to those of Lovász [31]
and Goemans-Williamson [20]. We construct a semidef-
inite optimization problem (SDP) whose optimum is�1=(k � 1) whenk is the smallest real number such that a
matrix k-coloring ofG exists. The optimum solution also
provides a matrixk-coloring ofG.

minimize �
where fmijg is positive semidefinite

subject to mij � � if (i; j) 2 Emij = mjimii = 1:
Consider a graph which has a vector (and matrix)k-
coloring. This means there is a solution to the above
semidefinite program with� = �1=k � 1. The ellipsoid
method or other interior point based methods [22, 2] can
be employed to find a feasible solution where the value of
the objective is at most�1=(k � 1)+Æ in time polynomial
in n andlog 1=Æ. This implies that for allfi; jg 2 E, mij

is at mostÆ� 1=(k � 1), which is at most�1=(k + �� 1)
for � = 2Æ(k � 1)2, providedÆ � 1=2(k � 1). Thus a
matrix (k + �)-coloring can be found in time polynomial
in k, n andlog(1=�). From the matrix coloring, the vector
coloring can be found in polynomial time as was noted in
the previous lemma

4 Relating Original and Relaxed Solutions

In this section, we show that our vector coloring prob-
lem is a useful relaxation because the solution to it is re-
lated to the solution of the original problem. In order to
understand the quality of the relaxed solution, we need the
following geometric lemma:

Lemma 4.1 For all positive integersk andn such thatk �n + 1, there existk unit vectors in<n such that the dot
product of any distinct pair is�1=(k � 1).

Proof: We prove the claim by induction onk. The base
case withk = 2 is proved by the one-dimensional vec-
tors(1) and(�1). Now assume that we can findk vectorsv1; : : : ; vk such thathvi; vji � �1=(k � 1) for i 6= j. We
use these vectors to createu1; : : : ; uk+1 as follows. Fori � k, letui = �p(k�1)(k+1)k v1i ; : : : ; p(k�1)(k+1)k vki ;�1k� ;
wherevji denotes thejth component of the vectorvi. In
other words,ui contains�1=k in the new coordinate and
looks like vi (scaled to makeui a unit vector) in the old
coordinates. The final vectoruk+1 = (0; : : : ; 0; 1).

Observe that the dot-product of any vectorui with uk+1
is�1=k. Moreover, for distincti, j � k,hui; uji = (k � 1)(k + 1)k2 hvi; vji+ 1k2= �(k � 1)(k + 1)k2(k � 1) + 1k2
which is also equal to�1=k.

Corollary 4.2 Everyk-colorable graphG has a vectork-
coloring.

Proof: Bijectively map thek colors to thek vectors
defined in the previous lemma.

Note that a graph is vector2-colorable if and only if it is2-colorable. Lemma 4.1 is tight in that it provides the best
possible value for minimizing the mutual dot-product ofk
unit vectors. This can be seen from the following lemma.



Lemma 4.3 Let G be vectork-colorable and leti be a
vertex inG. The induced subgraph on the verticesfj jj is a neighbor ofi in Gg is vector(k � 1)-colorable.

Proof: Let v1; : : : ; vn be a vectork-coloring ofG and
assume without loss of generality thatvi = (1; 0; 0; : : : ; 0).
Associate with each neighborj of i a vectorv0j obtained by
projectingvj onto coordinates2 throughn and then scaling
it up so thatv0j has unit length. It suffices to show that for
any two adjacent verticesj andj0 in the neighborhood ofi, hv0j ; v0j0i � �1=(k � 2).

Observe first that the projection ofvj onto the first co-
ordinate is negative and has magnitude at least1=(k �1). This implies that the scaling factor forv0j is at leastp(k � 1)=(k � 2). Thus,hv0j ; v0j0i � k � 1k � 2(hvj ; vj0i � 1(k � 1)2 ) � �1k � 2 :

A simple induction using the above lemma shows that
any graph containing a(k + 1)-clique is notk-vector col-
orable. Thus the “vector chromatic number” lies between
between the clique and chromatic number. This also shows
that the analysis of Lemma 4.1 is tight in that�1=(k � 1)
is the minimum possible value of the maximum of the dot-
products ofk vectors.

In the next few sections we prove the harder part,
namely, if a graph has a vectork-coloring then it has an
Õ(n1�3=(k+1))-coloring.

5 Semicolorings

Given the solution to the relaxed problem, our next step
is to show how to “round” the solution to the relaxed prob-
lem in order to get a solution to the original problem. Both
of the rounding techniques we present in the following sec-
tions produce the coloring by working through an almost
legalsemicoloringof the graph, as defined below.

Definition 5.1 A k-semicoloringof a graphG is an as-
signment ofk colors to the vertices such that at mostjV (G)j=4 edges are incident on two vertices of the same
color.

Any constant larger than2 can replace4 in the denomi-
nator in the above definition. An algorithm for semicolor-
ing leads naturally to a coloring algorithm.

Lemma 5.1 If an algorithmA can ki-semicolor anyi-
vertex subgraph of graphG in polynomial time, whereki
increases withi, thenA can be used toO(kn logn)-colorG. Furthermore, if there exists� > 0 such that for alli,ki = 
(i�), thenA can be used to colorG with O(kn)
colors.

Proof: We show how to construct a coloring algorithmA0 to color any subgraphH of G. A0 starts by usingA to
semicolorH . Let S be the subset of vertices which have
at least one improperly colored edge incident to them. Ob-
serve thatjSj � jV (H)j=2. A0 fixes the colors of vertices
not inS, and then recursively colors the induced subgraph
onS using a new set of colors.

Let 
i be the maximum number of colors used byA0
to color anyi-vertex subgraph. Then
i satisfies the recur-
rence 
i � 
i=2 + ki
It is easy to see that this any
i satisfying this recur-
rence, must satisfy
i � ki log i. In particular this implies
that 
n � O(kn logn). Furthermore for the case whereki = 
(i�) the above recurrence is satisfied only when
i = �(ki).

Using the above lemma, we devote the next few sec-
tions to algorithms for transforming vector colorings into
semicolorings.

6 Rounding via Hyperplane Partitions

We now focus our attention on vector3-colorable
graphs, leaving the extension to generalk for later. Let�
be the maximum degree in a graphG. In this section, we
outline a randomized rounding scheme for transforming a
vector 3-coloring of G into anO(�log3 2)-semicoloring,
and thus into anO(�log3 2 logn)-coloring of G. Com-
bining this method with Wigderson’s technique yields anO(n0:386)-coloring ofG. The method is based on [20] and
is weaker than the method we describe in the following
section; however, it introduces several of the ideas we will
use in the more powerful algorithm.

Assume we are given a vector3-coloringfuigni=1. Re-
call that the unit vectorsui anduj associated with an adja-
cent pair of verticesi andj have a dot product of at most�1=2, implying that the angle between the two vectors is
at least2�=3 radians or 120 degrees.

Definition 6.1 Consider a hyperplaneH . We say thatH
separatestwo vectors if they do not lie on the same side of
the hyperplane. For any edgefi; jg 2 E, we say that the
hyperplaneH cuts the edge if it separates the vectorsui
anduj .

In the sequel, we use the termrandom hyperplaneto de-
note the unique hyperplane containing the origin and hav-
ing as its normal a random unit vectorv uniformly dis-
tributed on the unit sphereSn. The following lemma is a
restatement of Lemma 1.2 of Goemans-Williamson [20].



Lemma 6.1 (Goemans-Williamson [20])Given two vec-
tors at an angle of�, the probability that they are separated
by a random hyperplane is exactly�=�.

We conclude that for any edgefi; jg 2 E, the probabil-
ity that a random hyperplane cuts the edge is exactly2=3. It
follows that the expected fraction of the edges inG which
are cut by a random hyperplane is exactly2=3. Suppose
that we pickr random hyperplanes independently. Then,
the probability that an edge is not cut by one of these hy-
perplanes is(1=3)r, and the expected fraction of the edges
not cut is also(1=3)r.

We claim that this gives us a good semicoloring algo-
rithm for the graphG. Notice thatr hyperplanes can par-
tition <n into at most2r distinct regions. (Forr � n this
is tight sincer hyperplanes create exactly2r regions.) An
edge is cut by one of theser hyperplanes if and only if
the vectors associated with its end-points lie in distinct re-
gions. Thus, we can associate a distinct color with each of
the2r regions and give each vertex the color of the region
containing its vector. The expected number of edges whose
end-points have the same color is(1=3)rm, wherem is the
number of edges inE.

Theorem 6.2 If a graph has a vector3-coloring, then it
has anO(�log3 2)-semicoloring which can be constructed
from the vector3-coloring in polynomial time with high
probability.

Proof: We use the random hyperplane method just de-
scribed. Fixr = 2 + dlog3�e, and note that(1=3)r �1=9� and that2r = O(�log3 2). As noted above,r hy-
perplanes chosen independently at random will cut an edge
with probability1=9�. Thus the expected number of edges
which are not cut ism=9� � n=18 � n=8, since the num-
ber of edges is at mostn�=2. By Markov’s inequality, the
probability that the number of uncut edges is more than
twice the expected value is at most1=2. But if the number
of uncut edges is less thann=4 then we have a semicolor-
ing.

Repeating the entire processt times means that we will
find aO(�log3 2)-semicoloring with probability at least1�1=2t.

Noting that log3 2 < 0:631 and that� � n, this
theorem and Lemma 5.1 implies a semicoloring usingO(n0:631) colors. However, this can be improved using
the following idea due to Wigderson [39]. Fix a thresh-
old valueÆ. If there exists a vertex of degree greater thanÆ, pick any one such vertex and 2-color its neighbors (its
neighborhood is vector 2-colorable and hence 2-colorable).
The colored vertices are removed and their colors are not
used again. Repeating this as often as possible (or until
half the vertices are colored) brings the maximum degree

belowÆ at the cost of using at most2n=Æ colors. Thus, we
can obtain a semicoloring usingO(n=Æ + Æ0:631) colors.
The optimum choice ofÆ is aroundn0:613, which implies
a semicoloring usingO(n0:387) colors. This semicoloring
can be used to legally colorG usingO(n0:387) colors by
applying Lemma 5.1.

Corollary 6.3 A 3-colorable graph withn vertices can be
colored usingO(n0:387) colors by a polynomial time ran-
domized algorithm.

By varying the number of hyperplanes, we can arrange
for a tradeoff between the number of colors used and the
number of edges that violate the resulting coloring. This
may be useful in some applications where a nearly legal
coloring is good enough.

The bound just described is (marginally) weaker than
the guarantee of aO(n0:375) coloring due to Blum [9].
We now improve this result by constructing a semicolor-
ing with fewer colors.

7 Rounding via Vector Projections

This section is dedicated to proving the following more
powerful version of Theorem 6.2.

Theorem 7.1 If a graph has a vectork-coloring, then it
has anÕ(�1�2=k)-semicoloring that can be constructed
from the vector coloring with high probability in polyno-
mial time.

As in the previous section, this has immediate conse-
quences for approximate coloring.

We prove this theorem by analyzing a new method for
assigning colors to vertices which provides a significantly
better semicoloring than the hyperplane partition method.
The idea is to pickt randomcenters
1; : : : ; 
t 2 <n and
use them to define a set oft colors, say1; : : : ; t. Consider
any vertexi and letui be its associated unit vector from
a vector coloring. We color vertexi according to the cen-
ter “nearest” to vectorui, i.e. the center with the largest
projection ontoui.
Definition 7.1 Given any fixed vectora, we say that a cen-
ter 
j capturesa if for all i 6= j,h
i; ai < h
j ; ai:
Note that this definition allows for some vertices not to be
captured by any vector, but this happens with probability
approaching0 in the limit.

Observe that the centers need not be of equal length and
thus the nearest center toa may not be the one of minimum
angle displacement froma. Each vectorui is captured by



a unique center and the index of that center is assigned to
vertexi as its color. Clearly, this gives at-coloring of the
vertices ofG, but this need not be a legal coloring or even
a good partial coloring in general. However, it is intuitive
that since the vectors corresponding to the endpoints of an
edge are “far apart,” it is unlikely that both are captured
by the same center; thus, as in the hyperplane rounding
method, an edge is likely to be cut by the coloring. We
formalize this intuition and show how to pick centers so
that the resulting coloring is indeed a semicoloring with
high probability.

Our basic plan for choosing centers is to give each cen-
ter a “direction” selected uniformly at random in<n. The
most obvious method for doing this might be to choose the
vector uniformly from the points on the unit sphere in<n.
Instead, we choose each center
j independently at random
from then-dimensional normal distribution. This means
that each of then components of
j is independently cho-
sen from the standard normal distribution with expectation
0 and variance 1. The reason for this choice of the distri-
bution will become clear shortly. Notice that the lengths of
these vectors are random, and so they are not unit vectors.
It turns out that the limiting behavior of the random unit
vector approach is exactly the same as for the one we use,
but it is more difficult to analyze.

We now give an overview of how and why this assign-
ment of centers gives a semicoloring. As before, the prob-
lem reduces to showing that the probability that an edge
is cut by the assignment of colors is high, which in turn
reduces to showing that the two endpoints of an edge are
unlikely to be captured by the same center. In particular,
suppose we have a graph with ann-dimensional vectork-
coloring. Suppose we throw int random centers and use
them to assign colors as described above. By definition,
the dot product between the unit vectors assigned to the
endpoints of an edge is�1=(k � 1). Let Pk(n; t) be the
probability that two such widely separated vectors are cap-
tured by the same center. The technical work of this section
shows that Pk(n; t) � t�k=(k�2):

Given this fact, we can use the same techniques as the
hyperplane rounding scheme to construct a semicoloring.
Taket to be about�1�2=k. ThenPk(n; t) is about1=�.
Using the same approach as with the hyperplane rounding
method, this gives us a semicoloring witht colors.

We now discuss the analysis ofPk(n; t). This probabil-
ity is just t times the probability that both endpoints of an
edge are captured by a particular center, say the first. To
show this probability is small, note that regardless of the
orientation of the first center it must be “far” from at least
one of the two vectors it is trying to capture, since these
two vectors are far from each other. For example, in the

case of a vector 3-coloring any center must be at an angle
of at least60Æ from one of the endpoints of an edge. The
center’s projection onto this distant vector is very small,
making it likely that some other nearer center will have a
larger projection, thus preventing the center from capturing
that far away vector.

We have therefore reduced our analysis to the problem
of determining the probability that a center at a large an-
gle from a given vector captures that vector. We start by
deriving some useful properties of the normal distribution.
In particular, we show that the properties of the normal
distribution allow us to reduce then-dimensional problem
under consideration to a two dimensional one. But first, we
develop some technical tools which will be applied to the
two-dimensional analysis.

7.1 Probability Distributions in <n
Recall that thestandard normal distributionhas the

density function�(x) = 1p2� e�x2=2 with distribution
function�(x), mean 0, and variance 1. A random vec-
tor r = (r1; : : : ; rn) is said to have then-dimensional
standard normal distributionif the componentsri are in-
dependent random variables, each component having the
standard normal distribution. It is easy to verify that this
distribution is spherically symmetric, in that the direction
specified by the vectorr is uniformly distributed. (Refer
to Feller [15, v. II], Knuth [29, v. 2], and Rényi [36] for
further details about the higher dimensional normal distri-
butions.)

Subsequently, the phrase “randomd-dimensional vec-
tor” will always denote a vector chosen from thed-
dimensional standard normal distribution. A crucial prop-
erty of the normal distribution which motivates its use in
our algorithm is the following theorem paraphrased from
Rényi [36] (see also Section III.4 of Feller [15, v. II]).

Theorem 7.2 (Theorem IV.16.3 [36])
Let r = (r1; : : : ; rn) be a randomn-dimensional vector.
The projections ofr onto two lines̀ 1 and`2 are indepen-
dent (and normally distributed) if and only if`1 and`2 are
orthogonal.

Alternatively, we can say that under any rotation of the
coordinate axes, the projections ofr along these axes are
independent standard normal variables. In fact, it is known
that the only distribution with this strong spherical sym-
metry property is then-dimensional standard normal dis-
tribution. The latter fact is precisely the reason behind this
choice of distribution1 in our algorithm. In particular, we1Readers familiar with physics will see the connection to Maxwell’s
law on the distribution of velocities of molecules in<3. Maxwell started
with the assumption that ineveryCartesian coordinate system in<3, the



will make use of the following corollary to the preceding
theorem.

Corollary 7.3 Let r = (r1; : : : ; rn) be a random vector
(of i.i.d. standard normal variables). Suppose we fix two
orthogonal unit vectorsu1 andu2 in <n. The projections
of r along these two directions, given by the dot productshu1; ri and hu2; ri, are independent random variables with
the standard normal distribution.

It turns out that even ifr is a randomn-dimensionalunit
vector, the above lemma still holds in the limit: asn grows,
the projections ofr on orthogonal lines approach (scaled)
independent normal distributions. Thus using random unit
vectors for centers turns out to be equivalent to using ran-
dom normal vectors in the limit, but is much more difficult
to analyze.

The following two lemmas are also useful in our anal-
ysis. The first lemma states that the square of the length
of a random vector in two dimensions has the exponen-
tial distribution with parameter1=2. Recall that the expo-
nential distribution with parameter� has density functionf(x) = �e��x, distribution functionF (x) = 1�e��x and
expectation1=�.

Lemma 7.4 Let X and Y be standard normal random
variables. Then, the random variableS = X2 + Y 2 has
the exponential distribution with parameter� = 1=2.

Lemma 7.5 Let Y1, : : :, Yr, andX have the exponential
distribution with parameter� = 1=2. Then the probability
of the eventE thatfX � q �maxi Yig is�r + qr ��1;
where

�r+qr � is the generalized binomial coefficient whenq
is not necessarily an integer.

Notice that the probability bound is essentiallyr�q for
larger. In our application,q = 1= 
os2 ! where! is half
the angle between the endpoints of an edge. Since for vec-
tor 3-colorings! = �=3, we have
os! = 1=2, q = 4 and
the probability bound is1=r4.
7.2 Analyzing the Vector Projection Algorithm

We are now ready to analyze the quality of the partial
coloring obtained by using the projections of random vec-
tors to color the vertices ofG. The first step in the analysis

three components of the velocity vector are mutually independent and
had expectation zero. Applying this assumption to rotations of the axes,
we conclude that the velocity components must be independent normal
variables with identical variance. This immediately implies Maxwell’s
distribution on the velocities.

is to determine a tight bound on the probability that for
a specific edgefx; yg the two endpoints receive the same
color. Let ux anduy denote the unit vectors associated
with the two vertices. Recall that the angle between these
two vertices is at least2�=3. Note that the bad event hap-
pens when the same random center, say
1, captures bothux anduy. We will show that this is unlikely to happen if
the number of centers is large.

Fix any two unit vectorsa andb in <n such that they
subtend an angle of2�=3 (as do the vectors of adjacent
vertices in a vector 3-coloring). We will study the prob-
ability of the bad event with respect to these vectors, and
by the spherical symmetry of the normal distribution our
analysis will apply to the case of two vertex vectorsux anduy. The crucial step in this analysis is a reduction to a two-
dimensional problem, as follows. Note that the use of then-dimensional normal distribution was motivated entirely
by the need to facilitate the following lemma.

Lemma 7.6 Let � be such that
os � = �1=(k � 1). LetPk(d; t) denote the probability of the event that, given any
two vectorsa, b 2 <d subtending an angle of�, they are
both captured by the same member of a collection oft ran-
dom centers in<d. Then, for alld � 2 and all t � 1,Pk(d; t) = Pk(2; t):

Proof: LetH(a; b) be the plane determined by the two
vectorsa andb. Rotate the coordinate axes so that the first
two axes lie in this plane and all other axes are perpendic-
ular to it. By Corollary 7.3, we can still view the random
vectors as having been chosen by picking their components
along the new axes as standard normal random variables.
Now, the projection of any vector in<d onto any line of this
plane depends only on its components along the two coor-
dinate axes lying in the plane. In other words, any event
depending only on the projection of the random vectors
onto the lines in this plane does not depend on the com-
ponents of the vectors along the remainingd � 2 axes. In
particular, the probabilityPk(d; t) is the same asPk(2; t).

In the rest of this section, we will assume that all vec-
tors are in<2, and by the preceding lemma the resulting
analysis will apply to the case ofn-dimensional vectors.
We focus on the case where the angle between the vectorsa andb is 2�=3 and thus boundP3(n; t), but the analysis
generalizes easily to other values ofk as well.

Theorem 7.7 For 0 < � < �=3, letp = �=�, � = �=3� �,
andq = 1= 
os2 �. Then,P3(n; t) = P3(2; t) = O(tpq�dqe(pt)�q):



Proof: We will concentrate on bounding the probabil-
ity that the first random vector,
1, captures botha andb;
clearly, multiplying this byt will give the desired probabil-
ity. Note that any vector must subtend an angle of at least�=3 with one of the two vectorsa andb. Assume that
1
subtends a larger angle witha, and hence is at least�=3
radians away from it. Now,
1 capturesa only if none of
the remainingt � 1 vectors has a larger projection ontoa. We will bound the probability of this event from above.
A similar argument applies in the case whereb is further
away from
1.

LetR denote the wedge of the plane within an angle of� from a, and suppose thatr centers fall in this region. If
1 capturesa, then its projection ontoa must be larger than
that of ther centers inR. In fact, it is easy to see that the
projection of
1 onto the nearer of the two lines boundingR must be larger than the lengths of all the centers inR.
(Observe that the latter is a necessary, but not sufficient,
condition for
1 to capturea.) Essentially this corresponds
to the eventF that the projection of
1 onto a line at an
angle of� = �=3 � � is longer than the lengths of all the
centers lying inR.

We will upper bound the probability of the eventF . If r
random vectors fall into the regionR, then by Lemma 7.5

we know that the probability ofF is given by

�r + qr ��1
,

whereq = 1= 
os2 �. Since the random vectors have a
spherically symmetric distribution, the number of random
vectors lying inR has the binomial distributionB(t; p)
with p = �=�. Thus, we obtain the following bound on
the probability ofF . In the first step of the derivation,
we use an identity given in Exercise 1.2.6 (20) of Knuth’s
book [29, v. 1], which applies to generalized binomial co-
efficients.

P[F ℄ = tXr=0�tr�pr(1� p)t�r � �r + qr ��1= �t+ qt ��1 tXr=0�t+ qt� k�pr(1� p)t�r= �t+ qt ��1 tXu=0�t+ qu �pt�u(1� p)u� �t+ qt ��1 tXu=0�t+ dqeu �pt�u(1� p)u= p�dqe�t+ qt ��1 tXu=0�t+ dqeu �pt+dqe�u(1� p)u� pq�dqe �pq�t+ qt ���1 (p+ (1� p))t+dqe= O(pq�dqe(pt)�q)

By the preceding argument, multiplying this byt gives a
bound on the probabilityPk(n; t).

The reason for introducingdqe is that there are two
problems with directly applying the binomial theorem of
calculus: for one, we are outside the radius of conver-
gence of the infinite sum; and for the other, the infinite sum
has negative terms so we cannot immediately make claims
about the first few terms being less than the whole sum.

The above theorem applies regardless of how we choose� (thus determiningp andq). We now show howt and�
should be chosen so as to ensure that we get a semicolor-
ing.

Corollary 7.8 P3(2; t) = O(t�3 log4 t):
Proof: We set� = 1= log t. Thusp = 1=(� log t). To

getq, we use the Taylor expansions for sines and cosines.
In fact, the particular constants do not matter: it suffices
to note thatq = 1= 
os2(�=3 � �) = 4 � O(�). Thus,q � dqe = O(�) andpq�dqe = ���(�) = log��(1= log t t = �(1):
By Theorem 7.7 we haveP3(2; t) = O(t(pt)�q)= O �t(t log t)�4(1�O(1= log t))�= O(t�3 log4 t):
Lemma 7.9 With high probability, the vector projection
method provides anO(�1=3 log4=3�)-semicoloring of a
3-colorable graphG with maximum degree�.

Proof: We uset = �1=3 log4=3� random vectors and
apply the above corollary. It follows that the probabil-
ity that a particular edge is not legally colored is at mostO(1=�). Thus the expected number of edges which are
not legally colored is at mostO(n), and can be made less
thann=4 by proper choice of constants.

As in Theorem 6.2, we now apply the idea of finding an
independent set of linear size and recursively coloring the
remaining graph.

Theorem 7.10 A vector 3-colorable graphG with n
vertices and maximum degree� can be colored withO(�1=3 log4=3� logn) colors by a polynomial time ran-
domized algorithm (with high probability).

As in Corollary 6.3, we now use Wigderson’s tech-
nique (with � = n3=4= logn) to get aO(n1=4 logn)-
semicoloring of any vector3-colorable graph. The next
result follows from an application of Lemma 5.1.



Theorem 7.11 A vector 3-colorable graphG with n ver-
tices can be colored withO(n1=4 logn) colors by a poly-
nomial time randomized algorithm (with high probability).

The analysis of the vector projection algorithm given
above is tight to within polylogarithmic factors. A tighter
analysis, due to Coppersmith [14], shows that the number
of colors used by this algorithm is�((n logn)1=4).
8 Approximation for k-Colorable Graphs

An easy generalization of the above shows that for any
constant vector-chromatic number�, we can color a graph
of maximum degree� using�1�2=�+o(1) colors. The
only change is in the degree of separation between the vec-
tors of the endpoints of an edge. Suppose a graph is�-
colorable. Then it is vector�-colorable, meaning we can
assign unit vectors so that the vectors on the endpoints of
an edge have dot-product at most�1=(� � 1). We round
these vectors with the same approach of using random cen-
ters. The only change in the analysis is in determining the
probability that witht random centers, the same center will
capture both endpoints of an edge. This analysis is a gener-
alization of Theorem 7.7, where now� = 12 ar

os(1=(��1)) � �, so thatq = 1= 
os2 � � 2(� � 1)=(� � 2). We
deduce that the probability that an edge is cut is approx-
imately t��=(��2) so that�1�2=�+o(1) centers suffice to
give a semicoloring.

Ignoring theo(1) term, we determine absolute approxi-
mation ratios independent of�. We identify a positive real
functionr(�) such that we can color a vector�-chromatic
graph with at mostnr(�) colors. For each�, we establish
a degree threshold�� = ��(n). While the degree ex-
ceeds��, we take a neighborhood of a vertex of degreed � �� and recursivelydr(��1)-color it and discard it (by
Lemma 4.3 the neighborhood is vector(��1)-chromatic).
The average number of colors used per vertex in this pro-
cess isdr(��1)�1 � �r(��1)�1� . Thus the total number of

colors used up in this process is at mostn�r(��1)�1� col-
ors. Once the degree is less than��, we use our coloring

algorithm directly to use an additional�1�2=�� colors. We
balance the colors used in each part by settingn�r(��1)�1� = �1�2=��
which implies thatn = �2�2=��r(��1)� ;�� = n1=(2�2=��r(��1)):
We obtain a coloring withn(1�2=�)=(2�2=��r(��1)) colors,
in other wordsr(�) = (1� 2=�)=(2� 2=�� r(� � 1)):

By substitution,r(�) = 1� 3=(�+ 1).
Theorem 8.1 A vector�-colorable graph can be colored
using ~O(�1�2=�) or ~O(n1�3=(�+1)) colors.

9 Duality Theory

The most intensively studied relaxation of a semidef-
inite programming formulation to date is the Lovász#-
function [22, 23, 31]. This relaxation of the clique num-
ber of a graph led to the first polynomial-time algorithm
for finding the clique and chromatic numbers of perfect
graphs. We now investigate a connection between# and
a close variant of the vector chromatic number.

Intuitively, the clique and coloring problems have a cer-
tain “duality” since large cliques prevent a graph from be-
ing colored with few colors. Indeed, it is the equality of
the clique and chromatic numbers in perfect graphs which
lets us compute both in polynomial time. We proceed to
formalize this intuition. The duality theory of linear pro-
gramming has an extension to semidefinite programming.
With the help of Eva Tardos and David Williamson, we
have shown that in fact the#-function and a close variant
of the vector chromatic number are semidefinite program-
ming duals to one another and are therefore equal.

We first define the variant.

Definition 9.1 Given a graphG = (V;E) onn vertices, a
strict vectork-coloringof G is an assignment of unit vec-
torsui from the space<n to each vertexi 2 V , such that
for any two adjacent verticesi and j the dot product of
their vectors satisfies the equalityhui; uji = � 1k � 1 :

As usual we say that a graph is strictly vectork-
colorable if it has a strict vectork-coloring. The strict vec-
tor chromatic number of a graph is the smallest real numberk for which it has a strict vectork-coloring. It follows from
the definition that the strict vector chromatic number of any
graph is lower bounded by the vector chromatic number.

Theorem 9.1 The strict vector chromatic number ofG is
equal to#(G).

Proof: The dual of our strict vector coloring semidefi-
nite program is as follows (cf. [2]):

maximize �X pii
where fpijg is positive semidefinite

subject to
Xi 6=j pij � 1pij = pjipij = 0 for (i; j) =2 E andi 6= j



By duality, the value of this SDP is�1=(k � 1) wherek
is the strict vector chromatic number. Our goal is to provek = #. As before, the fact thatfpijg is positive semidefi-
nite means we can find vectorsvi such thatpij = hvi; vji.
The last constraint says that the vectorsv form anorthog-
onal labeling[23], i.e. thathvi; vji = 0 for (i; j) =2 E. We
now claim that optimization problem can be reformulated
as follows:

maximize
�Phvi; viiPi 6=jhvi; vji

over all orthogonal labelingsfvig. To see this, consider
an orthogonal labeling and define� = Pi 6=jhvi; vji. Note
this is the value of the first constraint in the first formu-
lation of the dual (so� � 1) and of the denominator in
the second formulation. Then in an optimum solution to
the first formulation, we must have� = 1, since otherwise
we can divide eachvi by

p� and get a feasible solution
with a larger objective value. Thus the optimum of the
second formulation is at least as large as that of the first.
Similarly, given any optimumfvig for the second formu-
lation, vi=p� forms a feasible solution to the first formu-
lation with the same value. Thus the optima are equal. We
now manipulate the second formulation.max �Phvi; viiPi 6=jhvi; vji = max �Phvi; viiPi;jhvi; vji �Phvi; vii= �minPi;jhvi; vji �Phvi; vii�Phvi; vii ��1= �min�Pi;jhvi; vjiPhvi; vii + 1��1= ��maxPi;jhvi; vjiPhvi; vii � 1��1 :
It follows from the last equation that the vector chromatic
number is maxPi;jhvi; vjiPhvi; vii :
However, by the same argument as used to reformulate the
dual, this is equal to problem of maximizing

Pi;jhvi; vji
over all orthogonal labelings such that

Phvi; vii � 1. This
is simply Lovász’s#3 formulation of the#-function [23,
page 287].

10 The Gap between Vector Colorings and
Chromatic Numbers

The performance of our randomized rounding approach
seems far from optimum. In this section we ask why, and
show that the problem is not in the randomized rounding

but in the gap between the original problem and its relax-
ation. We investigate the following question: given a vec-
tor k-colorable graphG, how large can its chromatic num-
ber be in terms ofk andn? We will show that a graph with
chromatic numbern
(1) can have bounded vector chro-
matic number. This implies that our technique is tight in
that it is not possible to guarantee a coloring withno(1)
colors on all vector 3-colorable graphs.

Definition 10.1 The Kneser graphK(m; r; t) is defined as
follows: the vertices are all possibler-sets from a universe
of sizem; and, the verticesvi andvj are adjacent if and
only if the correspondingr-sets satisfyjSi \ Sj j < t.

We will need following theorem of Milner [34] regard-
ing intersecting hypergraphs. Recall that a collection of
sets is called an antichain if no set in the collection con-
tains another.

Theorem 10.1 (Milner) LetS1, : : :, S� be an antichain of
sets from a universe of sizem such that, for alli andj,jSi \ Sj j � t:
Then, it must be the case that� � � mm+t+12 �:
Notice that using allq-sets, forq = (m+ t+1)=2, gives a
tight example for this theorem.

The following theorem establishes that the Kneser
graphs have a large gap between their vector chromatic
number and chromatic numbers.

Theorem 10.2 Letn = �mr � denote the number of vertices
of the graphK(m; r; t). For r = m=2 and t = m=8,
this graph is 3-vector colorable but has chromatic numbern0:0113.

Proof: We prove a lower bound on the Kneser graph’s
chromatic number� by establishing an upper bound on its
independence number�. It is easy to verify that the� in
Milner’s theorem is exactly the independence number of
the Kneser graph. We can bound� as follows, using the
standard equality that�ab� = � �ab�b� aa� b�a�b!
for b linearly related toa. For the purposes of determining
the exponent in the chromatic number, the constant factor
hidden in the�-notation can and will be ignored. We now



observe that� � n�� �mr �� m(m+t)=2�= � (2)1=2(2)1=2(16=9)9=16(16=7)7=16�m= (1:007864)m:
Again using the approximation,n = �mr � = h(2)1=2(2)1=2im � 2m:
Sincen � lgm, it follows that� � (1:007864)lgn = nlg 1:007864 � n0:0113:

Finally, it remains to show that the vector chromatic
number of this graph is 3. This follows by associating with
each vertexvi anm-dimensional vector obtained from the
characteristic vector of the setSi. In the characteristic vec-
tor,+1 represents an element present inSi and�1 repre-
sents elements absent fromSi. The vector associated with
a vertex is the characteristic vector ofSi scaled down by a
factor of

pm to obtain a unit vector. It is easy to see that
the dot product of adjacent vertices, or sets with intersec-
tion at mostt, is bounded from above by�4r � 4t�mm = �1=2:
This implies that the vector chromatic number is 3.

More refined calculations can be used to improve this
bound somewhat. The basic idea is to improve the bound
on the vector chromatic number of the Kneser graph us-
ing an appropriately weighted version of the characteristic
vectors.

Theorem 10.3 There exists a Kneser graphK(m; r; t)
which is 3-vector colorable but has chromatic number ex-
ceedingn0:016101, wheren = �mr � denotes the number of
vertices in the graph. Further, for largek, there exists a
Kneser graphK(m; r; t) which isk-vector colorable but
has chromatic number exceedingn0:0717845.
11 Conclusions

The Lovász number of a graph has been a subject of
active study due to the close connections between this pa-
rameter and the clique and chromatic numbers. In par-
ticular, the following “sandwich theorem” was proved by
Lovász [31] (see Knuth [30] for a survey).!(G) � #(G) � �(G): (1)

This has led to the hope that the following extended version
may be true.

Conjecture 11.1 There exist�, �0 > 0 such that, for any
graphG onn vertices#(G)n1�� � !(G) � #(G) � �(G) � #(G)� n1��0 : (2)

Our work in this paper provides reinforcement for this hope
by giving an upper bound on the the chromatic number ofG in terms of#(G). However, this is far from achieving
the bound conjectured above and it remains to be seen if
this conjecture is true. In related work, Szegedy [37] stud-
ies various aspects of the parameter# and, with respect
to this conjecture, shows that there is such an� bounded
away from zero if and only if there is an�0 bounded away
from zero. Alon, Kahale and Szegedy [5] have also been
able to use the semidefinite programming technique in con-
junction with our techniques to obtain algorithms for com-
puting bounds on the clique number of a graph with linear-
sized cliques, improving upon some results due to Boppana
and Halldorsson [10].

In terms of disproving such a conjecture (or, proving
upper bounds on� and�0), relevant results include the fol-
lowing: Lovász [32] points out that for a random graphG,�(G) = n= lognwhile#(G) = pn; Koniagin has demon-
strated the existence of a graph which has�(G) � n=2 and#(G) = O(n2=3 logn); Alon [3] has explicit constructions
matching or slightly improving both these bounds. Our
constructions from Section 10 are of a similar flavor and
provide graphs with vector chromatic number at most3 but
with �(G) � n�. In fact, by using a similar construction
and applying a result of Frankl and Rodl [16], we can also
construct graphs with#(G) � 3 and�(G) � n�. Inde-
pendent of our results, Szegedy [38] has also shown that
a similar construction yields graphs with vector chromatic
number at most3 but which are not colorable usingn0:05
colors. Notice that the exponent obtained from his result
is better than the one in Section 10. Alon [3] has obtained
a slight improvement over Szegedy’s bound by using an
interesting variant of the Kneser graph construction.

The connection between the vector chromatic number
and the clique/chromatic numbers is far from being com-
pletely understood and it is our hope that this work will
motivate further study of this relationship.
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