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Abstract

We consider the problem of coloriigcolorable graphs

with the fewest possible colors. We give a randomized poly-

nomial time algorithm which colors a 3-colorable graph
onn vertices withnin{ O(A/3 log*/® A), O(n*/* logn)}
colors whereA is the maximum degree of any vertex. Be-
sides giving the best known approximation ratio in terms
of n, this marks the first non-trivial approximation result
as a function of the maximum degrée This result can
be generalized td:-colorable graphs to obtain a color-
ing usingmin{O(A~2/k) O(n!~3/(k+1))} colors. Our
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a coloring is called the chromatic number®fand is usu-
ally denoted byy(G). Determining the chromatic number
of a graph is known to be NP-hard (cf. [19]).

Besides its theoretical significance as a canonical NP-
hard problem, graph coloring arises naturally in a vari-
ety of applications such as register allocation [11, 12, 13]
and timetable/examination scheduling [8, 40]. In many
applications which can be formulated as graph coloring
problems, it suffices to find aapproximately optimum
graph coloring—a coloring of the graph with a small

though non-optimum number of colors. This along with
the apparent impossibility of an exact solution has led

results are inspired by the recent work of Goemans and y some interest in the problem of approximate graph

Williamson who used an algorithm faemidefinite opti-
mization problemswhich generalize linear programs, to
obtain improved approximations for the MAX CUT and
MAX 2-SAT problems. An intriguing outcome of our work

coloring. The analysis of approximation algorithms for
graph coloring started with the work of Johnson [25]

who shows that a version of the greedy algorithm gives

an O(n/logn)-approximation algorithm for-coloring.

is a duality relationship established between the value of Wigderson [39] improved this bound by giving an ele-

the optimum solution to our semidefinite program and the
Lovaszd-function. We show lower bounds on the gap be-
tween the optimum solution of our semidefinite program
and the actual chromatic number; by duality this also
demonstrates interesting new facts aboutdkeinction.

1 Introduction

A legal vertex coloring of a grap&(V, E) is an assign-
ment of colors to its vertices such that no two adjacent ver-
tices receive the same color. Equivalently, a legal cofprin
of G by k colors is a partition of its vertices intoindepen-

gant algorithm which use8(n' ~1/(*~1)) colors to legally
color a k-colorable graph. Subsequently, other polyno-
mial time algorithms were provided by Blum [9] which
use O(n3/810g®/® n) colors to legally color am-vertex
3-colorable graph. This result generalizes to coloring a
k-colorable graph withO(n!—1/(k=4/3) 10g%/5 1) colors.

The best known performance guarantee for general graphs
is due to Halldorsson [24] who provided a polynomial time
algorithm using a number of colors which is within a factor
of O(n(loglogn)?/ log® n) of the optimum.

Recent results in the hardness of approximations indi-
cate that it may be not possible to substantially improve

dent sets. The minimum number of colors needed for suchthe results described above. Lund and Yannakakis [33]
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used the results of Arora, Lund, Motwani, Sudan, and
Szegedy [6] and Feige, Goldwasser, Lovasz, Safra, and
Szegedy [17] to show that there exists a (small) constant
e > 0 such that no polynomial time algorithm can approx-
imate the chromatic number of a graph to within a ratio of
n® unless P= NP. Recently, Bellare and Sudan [7] showed
that the exponentin the hardness result can be improved
to 1/10 unless NQPR# co-RQP, and td /13 unless NP=
co-RP. However, none of these hardness results apply to
the special case of the problem where the input graph is
guaranteed to bg-colorable for some smal. The best
hardness result in this direction is due to Khanna, Linial,



and Safra [26] who show that it is not possible to color a show that the relaxed problem can be solved; this is done
3-colorable graph with 4 colors in polynomial time unless in Section 3. We then show relationships between the re-
P=NP. laxation and the original problem. In Section 4, we show

In this paper we present improvements on the result of that (in a sense to be defined later) the value of the relax-

Blum. In particular, we provide a randomized polynomial &tion bounds the value of the original problem. Then, in
time algorithm which colors a 3-colorable graph of maxi- S€ctions 5,6, 7, and 8 we show how a solution to the relax-

mum degree\ with min{f)(AW), O(n1/4 logn)} colors; ation can be “rounded” to make it a solution to the original
moreover, this can be generalized kecolorable graphs problem. Combining the last two arguments shows that we
to obtain a coloring usin@(Apz/k) or O(n1*3/(’“+1)) can find a good approximation. Section 3, Section 4, and

colors. Besides giving the best known approximations in Sections 5-8 are in fact independent and can be read in any
terms ofn, our results are the first non-trivial approxi- order after the definitions in Section 2. In Section 9, we in-

mations given in terms of\. Our results are based on vestigate the relationship between vector colorings aed th

the recent work of Goemans and Williamson [20] who Lovaszﬁ—fun(_:tion,;howingthatthey are_infactdl_JaI to one
used an algorithm fosemidefinite optimization problems ~another. We investigate the approximation error inherent i
(cf. [22, 2]) to obtain improved approximations for the ourformulgtlop of thg chromatic number via semi-definite
MAX CUT and MAX 2-SAT problems. We follow their ~ Programming in Section 10.

basic paradigm of using algorithms for semidefinite pro-

gramming to obtain an optimum solution to a relaxed ver- 2 A Vector Relaxation of Coloring

sion of the problem, and a randomized strategy for “round-

ing” this solution to a feasible but approximate solution to In this section, we describe the relaxed coloring prob-
the original problem. Motwani and Naor [35] have shown |em whose solution is in turn used to approximate the so-
that the approximate graph coloring problem is closely re- |ution to the coloring problem. Instead of assigning col-
lated to the problem of flndlng a CUT COVER of the edges ors to the vertices of a graph, we consider assignjn.g (
of a graph. Our results can be viewed as generalizing dimensional) unitvectorsto the vertices. To capture the
the MAX CUT approximation algorithm of Goemans and property of a coloring, we aim for the vectors of adjacent
Williamson to the problem of finding an approximate CUT  vertices to be “different” in a natural way. Thector k-
COVER. In fact, our techniques also lead to improved ap- coloring that we define plays the role that a hypothetical
proximations for the MAXk-CUT problem [18]. We also  “fractional k-coloring” would play in a classical linear-
establish a duality relationship between the value of the op programming relaxation approach to the problem. Our re-

timum solution to our semidefinite program and the Lovasz |axation is related to the concept of an orthonormal repre-
v-function [22, 23, 31]. We show lower bounds on the sentation of a graph [31, 22].

gap between the optimum solution of our semidefinite pro-

gram and the actual chromatic number; by duality this also Definition 2.1 Given a graphGG = (V, E) onn vertices,
demonstrates interesting new facts aboutitanction. a vectork-coloringof G is an assignment of unit vectors
u; from the spacét™ to each vertex € V, such that for
any two adjacent verticesand j the dot product of their
vectors satisfies the inequality

Alon and Kahale [4] use related techniques to devise a
polynomial time algorithm for 3-coloring random graphs
drawn from a “hard” distribution on the space of all 3-

colorable graphs. Recently, Frieze and Jerrum [18] have 1

used a semidefinite programming formulation and random- (i, ug) < — _1

ized rounding strategy essentially the same as ours to ob-

tain improved approximations for the MAX-CUT prob- The definition of anorthonormal representatiofi31,

lem with large values of. Their results required a more ~ 22] requires that the given dot products be equal to zero,
sophisticated version of our analysis, but for the coloring @ weaker requirement than the one above.
problem our results are tight up to poly-logarithmic fastor

and their analysis does not help to improve our bounds. 3 Solving the Vector Coloring Problem

Semidefinite programming relaxations are an extension
of the linear programming relaxation approach to approx-  In this section we show how the vector coloring relax-
imately solving NP-complete problems. We thus present ation can be solved using semidefinite programming. The
our work in the style of the classical LP-relaxation ap- methods in this section closely mimic those of Goemans
proach. We begin in Section 2 by defining a relaxed ver- and Williamson [20].
sion of the coloring problem. Since we use a more com-  To solve the problem, we need the following auxiliary
plex relaxation than standard linear programming, we must definition.



Definition 3.1 Given a graphG = (V, E) onn vertices,
a matrix k-coloring of the graph is am x n symmetric
positive semidefinite matri¥/, with m;; = 1 andm,;; <

-1/(k-1)if {i,j} € E.

We now observe that matrix and vectecolorings are
in fact equivalent (cf. [20]). Thus, to solve the vector col-
oring relaxation it will suffice to find a matrik-coloring.

Fact 3.1 A graph has a vectok-coloring if and only if it
has matrixk-coloring. Moreover, a vectofk + ¢)-coloring
can be constructed from a matrkxcoloring in time poly-
nomial inn andlog(1/¢) time.

Proof: Given a vectork-coloring {v;}, the matrixk-
coloring is defined byn;; = (v;,v;. For the other di-
rection, it is well known that for every symmetric positive
definite matrix)/ there exists a square matiixsuch that
UUT = M (whereUT is the transpose df). The rows of
U are vectorqu;}}-, that form a vectok-coloring ofG.

An §-close approximation to the matrix can be found
in time polynomial inn andlog(1/4) can be found using
the Incomplete Cholesky Decompositif#0, 21]. (Here
by J-close we mean a matrix’ such that/'U’" — M has
L., norm less thar.) This in turn gives a vectdik + ¢)-
coloring of the graph, providedlis chosen appropriately.

|

Lemma 3.2 If a graph G has a vectork-coloring then a
vector(k + €)-coloring of the graph can be constructed in
time polynomial ink, n, andlog(1/¢).

Proof: Our proof is similar to those of Lovasz [31]
and Goemans-Williamson [20]. We construct a semidef-
inite optimization problem (SDP) whose optimum is
—1/(k — 1) whenk is the smallest real number such that a
matrix k-coloring of G exists. The optimum solution also
provides a matrix-coloring ofG.

minimize «

where {m;;} is positive semidefinite
subjectto m;; < o if(i,j)€eE
mg; = Mmj;
my = 1.

Consider a graph which has a vector (and mat#x)
coloring. This means there is a solution to the above
semidefinite program witlk = —1/k — 1. The ellipsoid
method or other interior point based methods [22, 2] can

isatmost —1/(k — 1), whichisatmost-1/(k +€— 1)

for e = 26(k — 1)2, provideds < 1/2(k —1). Thus a
matrix (k + €)-coloring can be found in time polynomial
in k, n andlog(1/¢). From the matrix coloring, the vector
coloring can be found in polynomial time as was noted in
the previous lemma |

4 Relating Original and Relaxed Solutions

In this section, we show that our vector coloring prob-
lem is a useful relaxation because the solution to it is re-
lated to the solution of the original problem. In order to
understand the quality of the relaxed solution, we need the
following geometric lemma:

Lemma 4.1 For all positive integerg andn such that <
n + 1, there existt unit vectors infR"™ such that the dot
product of any distinct pairis-1/(k — 1).

Proof: We prove the claim by induction da The base
case withk = 2 is proved by the one-dimensional vec-
tors(1) and(—1). Now assume that we can firkdvectors
v1,...,v such thatp;,v) < —1/(k—1) fori # j. We

use these vectors to creatg, ..., ury; as follows. For
1 <k, let

G—DGrn, k1

% i E):

wherev{ denotes thgth component of the vectar;. In

other wordsu; contains—1/k in the new coordinate and

looks like v; (scaled to make:; a unit vector) in the old

coordinates. The final vectay,; = (0,...,0,1).
Observe that the dot-product of any vectgmwith w1

is —1/k. Moreover, for distinct, j < k,

(k—1)(k+1) 1
U; = <f’ui7"'7

<uivuj> = W@ivvﬁ + %
o —(k-1)(k+1) 1
- k2(k—1) k2

which is also equal te-1/k. |

Corollary 4.2 Everyk-colorable graphG has a vectoik-
coloring.

Proof: Bijectively map thek colors to thek vectors
defined in the previous lemma. |

Note that a graph is vect@rcolorable if and only if it is

be employed to find a feasible solution where the value of 2-colorable. Lemma 4.1 is tight in that it provides the best

the objective is at most1/(k — 1) +4 in time polynomial
in n andlog 1/6. This implies that for alfi, j} € E, m;;

possible value for minimizing the mutual dot-productof
unit vectors. This can be seen from the following lemma.



Lemma 4.3 Let G be vectork-colorable and leti be a
vertex inG. The induced subgraph on the verticgs |
j is a neighbor of in G} is vector(k — 1)-colorable.

Proof: Letwy,...,v, be a vectork-coloring of G and
assume without loss of generality that= (1, 0,0, ...,0).
Associate with each neighbgof i a vector’; obtained by
projectingv; onto coordinated throughn and then scaling
it up so that; has unit length. It suffices to show that for
any two adjacent verticesandj' in the neighborhood of
i, @), v < =1/(k - 2).

Observe first that the projection of onto the first co-
ordinate is negative and has magnitude at ldg$k —

1). This implies that the scaling factor fef. is at least

V(k—=1)/(k—2). Thus,

k-1 1 -1
3 ! - < -
k_2(<v]7vj> (k_l)z)_k_2

W), vj) <

A simple induction using the above lemma shows that
any graph containing & + 1)-clique is notk-vector col-
orable. Thus the “vector chromatic number” lies between

between the clique and chromatic number. This also shows

that the analysis of Lemma 4.1 is tight in that /(k — 1)
is the minimum possible value of the maximum of the dot-
products ofk vectors.

In the next few sections we prove the harder part,
namely, if a graph has a vectércoloring then it has an
O(n'~3/(++1))_coloring.

5 Semicolorings

Given the solution to the relaxed problem, our next step
is to show how to “round” the solution to the relaxed prob-
lem in order to get a solution to the original problem. Both
of the rounding techniques we present in the following sec-
tions produce the coloring by working through an almost
legalsemicoloringof the graph, as defined below.

Definition 5.1 A k-semicoloringof a graphG is an as-
signment ofk colors to the vertices such that at most
|V (G)|/4 edges are incident on two vertices of the same
color.

Any constant larger tha# can replaceé in the denomi-
nator in the above definition. An algorithm for semicolor-
ing leads naturally to a coloring algorithm.

Lemma 5.1 If an algorithm A can k;-semicolor anyi-
vertex subgraph of grap&' in polynomial time, wheré;
increases withi, then A can be used t®(k,, log n)-color
G. Furthermore, if there exists > 0 such that for all,
k; = Q(i€), then A can be used to colo& with O(ky,)
colors.

Proof: We show how to construct a coloring algorithm
A’ to color any subgraphl of G. A’ starts by usingd to
semicolorH. Let .S be the subset of vertices which have
at least one improperly colored edge incident to them. Ob-
serve thalS| < |V (H)|/2. A’ fixes the colors of vertices
notin S, and then recursively colors the induced subgraph
on S using a new set of colors.

Let ¢; be the maximum number of colors used Ay
to color anyi-vertex subgraph. Thet) satisfies the recur-
rence

¢i <yt ki

It is easy to see that this amy satisfying this recur-
rence, must satisfy; < k; logi. In particular this implies
thatc, < O(k,logn). Furthermore for the case where
ki 2(i€) the above recurrence is satisfied only when
C; = @(k,) |

Using the above lemma, we devote the next few sec-
tions to algorithms for transforming vector colorings into
semicolorings.

6 Rounding via Hyperplane Partitions

We now focus our attention on vect@-colorable
graphs, leaving the extension to gendrdbr later. LetA
be the maximum degree in a gragh In this section, we
outline a randomized rounding scheme for transforming a
vector 3-coloring of G into an O(Al°#s 2)-semicoloring,
and thus into arO(A'°8:2logn)-coloring of G. Com-
bining this method with Wigderson'’s technique yields an
O(n°-38%)-coloring of G. The method is based on [20] and
is weaker than the method we describe in the following
section; however, it introduces several of the ideas we will
use in the more powerful algorithm.

Assume we are given a vectgrcoloring {u;},. Re-
call that the unit vectors; andu; associated with an adja-
cent pair of vertices andj have a dot product of at most
—1/2, implying that the angle between the two vectors is
atleas2r /3 radians or 120 degrees.

Definition 6.1 Consider a hyperplanél. We say thatd
separateswo vectors if they do not lie on the same side of
the hyperplane. For any edde, j} € E, we say that the
hyperplaneH cutsthe edge if it separates the vectars
andu;.

In the sequel, we use the terandom hyperplant de-
note the unique hyperplane containing the origin and hav-
ing as its normal a random unit vectoruniformly dis-
tributed on the unit spher&,. The following lemma is a
restatement of Lemma 1.2 of Goemans-Williamson [20].



Lemma 6.1 (Goemans-Williamson [20])Given two vec-
tors at an angle o#, the probability that they are separated
by a random hyperplane is exactly.

We conclude that for any eddé, j} € E, the probabil-
ity that a random hyperplane cuts the edge is ex&gty It
follows that the expected fraction of the edgessinvhich
are cut by a random hyperplane is exa@hB. Suppose
that we pickr random hyperplanes independently. Then,
the probability that an edge is not cut by one of these hy-
perplanesigl/3)", and the expected fraction of the edges
not cutis alsq1/3)".

We claim that this gives us a good semicoloring algo-
rithm for the graphZ. Notice thatr hyperplanes can par-
tition R™ into at most2” distinct regions. (For < n this
is tight sincer hyperplanes create exactly regions.) An
edge is cut by one of thesehyperplanes if and only if
the vectors associated with its end-points lie in distieet r
gions. Thus, we can associate a distinct color with each of
the 2" regions and give each vertex the color of the region

belowd at the cost of using at mo8t:/4 colors. Thus, we
can obtain a semicoloring usir@(n/é + §°-%31) colors.
The optimum choice of is aroundn®-5*2, which implies
a semicoloring using (n°-387) colors. This semicoloring
can be used to legally cold¥ usingO(n°-387) colors by
applying Lemma 5.1.

Corollary 6.3 A 3-colorable graph with: vertices can be
colored usingD(n®*87) colors by a polynomial time ran-
domized algorithm.

By varying the number of hyperplanes, we can arrange
for a tradeoff between the number of colors used and the
number of edges that violate the resulting coloring. This
may be useful in some applications where a nearly legal
coloring is good enough.

The bound just described is (marginally) weaker than
the guarantee of &(n"3"®) coloring due to Blum [9].
We now improve this result by constructing a semicolor-
ing with fewer colors.

containing its vector. The expected number of edges whose

end-points have the same colo(193)"m, wherem is the
number of edges it.

Theorem 6.2 If a graph has a vectoB-coloring, then it
has anO(A'°#s 2)-semicoloring which can be constructed
from the vector3-coloring in polynomial time with high
probability.

Proof: We use the random hyperplane method just de-
scribed. Fixr = 2 + [logg A], and note thaf1/3)" <
1/9A and that2” = O(A!*¢:2). As noted abover hy-

7 Rounding via Vector Projections

This section is dedicated to proving the following more
powerful version of Theorem 6.2.

Theorem 7.1 If a graph has a vectok-coloring, then it
has anO(A'~2/*)-semicoloring that can be constructed
from the vector coloring with high probability in polyno-
mial time.

As in the previous section, this has immediate conse-

perplanes chosen independently at random will cut an edgequences for approximate coloring.

with probability1 /9A. Thus the expected number of edges
which are not cutisn/9A < n/18 < n/8, since the num-
ber of edges is at mostA /2. By Markov’s inequality, the
probability that the number of uncut edges is more than
twice the expected value is at mdgt2. But if the number
of uncut edges is less thary4 then we have a semicolor-
ing.

Repeating the entire procelsimes means that we will
find aO(Al°8: 2)-semicoloring with probability at leagt-
1/2t. [ |

Noting thatlog; 2 < 0.631 and thatA < n, this
theorem and Lemma 5.1 implies a semicoloring using
O(n®%1) colors. However, this can be improved using
the following idea due to Wigderson [39]. Fix a thresh-
old valued. If there exists a vertex of degree greater than
0, pick any one such vertex and 2-color its neighbors (its
neighborhood is vector 2-colorable and hence 2-colorable)
The colored vertices are removed and their colors are not
used again. Repeating this as often as possible (or until
half the vertices are colored) brings the maximum degree

We prove this theorem by analyzing a new method for
assigning colors to vertices which provides a significantly
better semicoloring than the hyperplane partition method.
The idea is to pick randomcentersey, . ..,¢; € R™ and
use them to define a set btolors, sayl, . .., t. Consider
any vertexi and letu; be its associated unit vector from
a vector coloring. We color vertexaccording to the cen-
ter “nearest” to vecto;, i.e. the center with the largest
projection ontau;.

Definition 7.1 Given any fixed vectar, we say that a cen-
ter ¢; captures: if for all i # j,

€9 <€, 9.

Note that this definition allows for some vertices not to be
captured by any vector, but this happens with probability
approaching in the limit.

Observe that the centers need not be of equal length and
thus the nearest centerdonay not be the one of minimum
angle displacement from. Each vectow; is captured by



a unique center and the index of that center is assigned tocase of a vector 3-coloring any center must be at an angle
vertexi as its color. Clearly, this givestacoloring of the of at least60° from one of the endpoints of an edge. The
vertices of(7, but this need not be a legal coloring or even center’s projection onto this distant vector is very small,
a good partial coloring in general. However, it is intuitive making it likely that some other nearer center will have a
that since the vectors corresponding to the endpoints of anlarger projection, thus preventing the center from captyri
edge are “far apart,” it is unlikely that both are captured that far away vector.
by the same center; thus, as in the hyperplane rounding We have therefore reduced our analysis to the problem
method, an edge is likely to be cut by the coloring. We of determining the probability that a center at a large an-
formalize this intuition and show how to pick centers so gle from a given vector captures that vector. We start by
that the resulting coloring is indeed a semicoloring with deriving some useful properties of the normal distribution
high probability. In particular, we show that the properties of the normal
Our basic plan for choosing centers is to give each cen- distribution allow us to reduce thedimensional problem
ter a “direction” selected uniformly at random®t. The under consideration to a two dimensional one. But first, we
most obvious method for doing this might be to choose the develop some technical tools which will be applied to the
vector uniformly from the points on the unit sphereifi. two-dimensional analysis.
Instead, we choose each centgindependently at random
from the n-dimensional normal distribution. This means 7.1 Probability Distributions in &
that each of thes components of; is independently cho-
sen from the standard normal distribution with expectation ~ Recall that thestandard normal distributiorhas the
0 and variance 1. The reason for this choice of the distri- density functiong(z) = \/%C_z /2 with distribution
bution will become clear shortly. Notice that the lengths of function ®(z), mean 0, and variance 1. A random vec-
these vectors are random, and so they are not unit vectorstor r = (r1,...,r,) is said to have thei-dimensional
It turns out that the limiting behavior of the random unit standard normal distributiorif the components; are in-
vector approach is exactly the same as for the one we usedependent random variables, each component having the
but it is more difficult to analyze. standard normal distribution. It is easy to verify that this
We now give an overview of how and why this assign- distribution is spherically symmetric, in that the directi
ment of centers gives a semicoloring. As before, the prob- specified by the vectar is uniformly distributed. (Refer
lem reduces to showing that the probability that an edge to Feller [15, v. lI], Knuth [29, v. 2], and Rényi [36] for
is cut by the assignment of colors is high, which in turn further details about the higher dimensional normal distri
reduces to showing that the two endpoints of an edge arebutions.)
unlikely to be captured by the same center. In particular, ~ Subsequently, the phrase “randekdimensional vec-
suppose we have a graph with afdimensional vectok- tor” will always denote a vector chosen from the
coloring. Suppose we throw ihrandom centers and use dimensional standard normal distribution. A crucial prop-
them to assign colors as described above. By definition, erty of the normal distribution which motivates its use in
the dot product between the unit vectors assigned to theour algorithm is the following theorem paraphrased from
endpoints of an edge is1/(k — 1). Let Py(n,t) be the Rényi [36] (see also Section 11.4 of Feller [15, v. II]).
probability that two such widely separated vectors are cap-
tured by the same center. The technical work of this section Theorem 7.2 (Theorem IV.16.3 [36])
shows that Letr = (rq,...,7,) be a random-dimensional vector.
Pi(n,t) ~ t—F/(k=2) The projections of onto two lineg/; and/, are indepen-
dent (and normally distributed) if and onlyéf and /- are
Given this fact, we can use the same techniques as theprthogonal.
hyperplane rounding scheme to construct a semicoloring.

Taket to be aboutA'=2/k, Then Py (n,t) is aboutl /A. Alternatively, we can say that under any rotation of the

Using the same approach as with the hyperplane roundingcoordinate axes, the projectionsiofilong these axes are

method, this gives us a semicoloring witholors. independent standard normal variables. In fact, it is known
We now discuss the analysis Bf (n, t). This probabil- that the only distribution with this strong spherical sym-

ity is just ¢ times the probability that both endpoints of an metry property is the.-dimensional standard normal dis-
edge are captured by a particular center, say the first. Totribution. The latter fact is precisely the reason behirisl th
show this probability is small, note that regardless of the choice of distributiof in our algorithm. In particular, we
orientation of the first center it must be “far” from at least IR pr— o .

eaders familiar with physics will see the connection to els

one of the two vectors it is trying to capture, since _these law on the distribution of velocities of molecules$t?. Maxwell started
two vectors are far from each other. For example, in the with the assumption that ieveryCartesian coordinate systemdit#, the




will make use of the following corollary to the preceding is to determine a tight bound on the probability that for

theorem. a specific edgdz, y} the two endpoints receive the same
color. Letu, andu, denote the unit vectors associated
Corollary 7.3 Letr = (ry,...,r,) be a random vector  jth the two vertices. Recall that the angle between these

(of i.i.d. standard normal variables). Suppose we fix two twpo vertices is at leastr/3. Note that the bad event hap-
OI’thOgonal unit VeCtorﬂl and U2 in k™. The prOjeCtionS pens when the same random Center’ @ay:aptures both

of r along these two directions, given by the dot products . andu,. We will show that this is unlikely to happen if
(u1,7) and {u,, r), are independent random variables with  the number of centers is large.

the standard normal distribution. Fix any two unit vectors: andb in ®” such that they
subtend an angle dfr/3 (as do the vectors of adjacent
vertices in a vector 3-coloring). We will study the prob-
ability of the bad event with respect to these vectors, and
by the spherical symmetry of the normal distribution our
analysis will apply to the case of two vertex vectagsand

uy. The crucial step in this analysis is a reduction to a two-
dimensional problem, as follows. Note that the use of the
n-dimensional normal distribution was motivated entirely
by the need to facilitate the following lemma.

Itturns out that even if is a random-dimensionaunit
vector, the above lemma still holds in the limit: ragrows,
the projections of- on orthogonal lines approach (scaled)
independent normal distributions. Thus using random unit
vectors for centers turns out to be equivalent to using ran-
dom normal vectors in the limit, but is much more difficult
to analyze.

The following two lemmas are also useful in our anal-
ysis. The first lemma states that the square of the length
of a random vector in two dimensions has the exponen-
tial distribution with parametet/2. Recall that the expo- ~ -emma 7.6 Letd be such thatos¢ = —1/(k —1). Let
nential distribution with parameter has density function £ *(d;?) denote the Brobab|l|ty_of the event that, given any
() = Ae=>=, distribution functionF (z) = 1—e=* and two vectorse, b € R subtending an angle df, they are

both captured by the same member of a collectiarrah-

expectatiori /A. ,
dom centers i?. Then, for alld > 2 and all¢ > 1,

Lemma 7.4 Let X and Y be standard normal random

variables. Then, the random variabfe= X2 + Y2 has Py(d,t) = Py(2,1).

the exponential distribution with parameter= 1/2.
Proof: Let H(a,b) be the plane determined by the two

Lemma 7.5 LetYy, ..., Y., and X have the exponential vectorsa andb. Rotate the coordinate axes so that the first
distribution with parameteA = 1/2. Then the probability ~ two axes lie in this plane and all other axes are perpendic-
of the event that{X > ¢ x max; Y;}is ular to it. By Corollary 7.3, we can still view the random
. vectors as having been chosen by picking their components
r+gq along the new axes as standard normal random variables.
< r > ’ Now, the projection of any vector iR? onto any line of this

plane depends only on its components along the two coor-
where("1?) is the generalized binomial coefficientwhen  ginate axes lying in the plane. In other words, any event
is not necessarily an integer. depending only on the projection of the random vectors
onto the lines in this plane does not depend on the com-
ponents of the vectors along the remainihg 2 axes. In
particular, the probability’; (d, t) is the same a®(2,t).

Notice that the probability bound is essentially? for
larger. In our applicationg = 1/ cos? w wherew is half

the angle between the endpoints of an edge. Since for vec- n

tor 3-coloringsw = /3, we havecosw = 1/2, ¢ = 4 and _ . .

the probability bound ig /r%. In the rest of this section, we will assume that all vec-
tors are ink?, and by the preceding lemma the resulting

7.2 Analyzing the Vector Projection Algorithm analysis will apply to the case of-dimensional vectors.

_ ~ We focus on the case where the angle between the vectors
We are now ready to analyze the quality of the partial ¢ andb is 27/3 and thus bound’s (n, t), but the analysis

coloring obtained by using the projections of random vec- generalizes easily to other valueskoés well.
tors to color the vertices @f. The first step in the analysis

three components of the velocity vector are mutually indelpat and Theorem 7.7 For0 < e < w/3,letp=¢/m, 0 = /3 —¢,
had expectation zero. Applying this assumption to rotatiohthe axes, andg =1/ cos? 6. Then,
we conclude that the velocity components must be indepérnuemal

variables with identical variance. This immediately inegliMaxwell’s - o
distribution on the velocities. Ps(n,t) = P3(2,t) = O(tp? &l (pt)" 7).



Proof: We will concentrate on bounding the probabil-
ity that the first random vectoe;, captures botla andb;
clearly, multiplying this byt will give the desired probabil-
ity. Note that any vector must subtend an angle of at least
/3 with one of the two vectora andb. Assume that;
subtends a larger angle with and hence is at least/3
radians away from it. Now;; captures: only if none of
the remainingt — 1 vectors has a larger projection onto
a. We will bound the probability of this event from above.
A similar argument applies in the case whéris further
away frome; .

Let R denote the wedge of the plane within an angle of
e from a, and suppose thatcenters fall in this region. If
¢, captures, then its projection onta must be larger than
that of ther centers inR. In fact, it is easy to see that the
projection ofc; onto the nearer of the two lines bounding
R must be larger than the lengths of all the center®in
(Observe that the latter is a necessary, but not sufficient,
condition fore; to capturen.) Essentially this corresponds
to the eventF that the projection ot; onto a line at an
angle of¢ = 7/3 — € is longer than the lengths of all the
centers lying inR.

We will upper bound the probability of the eveft If r
random vectors fall into the regiaR, then by Lemma 7.5

1
we know that the probability of is given by (r ;f q) ,

whereq = 1/cos?#. Since the random vectors have a
spherically symmetric distribution, the number of random
vectors lying inR has the binomial distributioB (¢, p)
with p = ¢/7. Thus, we obtain the following bound on
the probability of 7. In the first step of the derivation,
we use an identity given in Exercise 1.2.6 (20) of Knuth'’s
book [29, v. 1], which applies to generalized binomial co-

efficients.
—1
t T —r r +
( )p (1-p - ( q)
r r

- () S (rrae
) Bl

< (tjq)_lg(”ﬁ) )"

= (e zzj ("M
< ol (") kg

By the preceding argument, multiplying this byives a
bound on the probability (n, t).

The reason for introducingyq] is that there are two
problems with directly applying the binomial theorem of
calculus: for one, we are outside the radius of conver-
gence of the infinite sum; and for the other, the infinite sum
has negative terms so we cannot immediately make claims
about the first few terms being less than the whole Sm.

The above theorem applies regardless of how we choose
e (thus determining andg). We now show how ande
should be chosen so as to ensure that we get a semicolor-
ing.
Corollary 7.8 P3(2,t) = O(t=3 log* t).

Proof: We sete = 1/logt. Thusp = 1/(wlogt). To
getq, we use the Taylor expansions for sines and cosines.
In fact, the particular constants do not matter: it suffices

to note thaty = 1/cos*(7/3 —€) = 4 — O(e). Thus,
¢ [q] = O(e) and
pq*[tﬂ — O = IOg_Q(l/IOgtt =0(1).
By Theorem 7.7 we have
Ps(2,t) = O(t(pt)")
_ O(t(tlogt)—4(1—o(1/logt)))
= Ot >log*t).
|

Lemma 7.9 With high probability, the vector projection
method provides a®(A!/3 log?/® A)-semicoloring of a
3-colorable graph with maximum degred.

Proof: We uset = A/31og*/® A random vectors and
apply the above corollary. It follows that the probabil-
ity that a particular edge is not legally colored is at most
O(1/A). Thus the expected humber of edges which are
not legally colored is at mog?(n), and can be made less
thann /4 by proper choice of constants. |

As in Theorem 6.2, we now apply the idea of finding an
independent set of linear size and recursively coloring the
remaining graph.

Theorem 7.10 A vector 3-colorable graphG with n
vertices and maximum degre&d can be colored with
O(AY310g*? Alogn) colors by a polynomial time ran-
domized algorithm (with high probability).

As in Corollary 6.3, we now use Wigderson’s tech-
nique (with A = n3/*/logn) to get aO(n'/*logn)-
semicoloring of any vectos-colorable graph. The next
result follows from an application of Lemma 5.1.



Theorem 7.11 A vector 3-colorable grapld with n ver- By substitutiony(x) =1 —3/(x + 1).
tices can be colored wittd(n'/*logn) colors by a poly-

nomial time randomized algorithm (with high probability). Theorem 8.1 A vectory-colorable graph can be colored

usingO(A=2/x) or O(n'~3/(x+1) colors.
The analysis of the vector projection algorithm given
above is tight to within polylogarithmic factors. A tighter
analysis, due to Coppersmith [14], shows that the number
of colors used by this algorithm 8((n logn)'/*). The most intensively studied relaxation of a semidef-
inite programming formulation to date is the Lovasz
function [22, 23, 31]. This relaxation of the clique num-
ber of a graph led to the first polynomial-time algorithm

An easy generalization of the above shows that for any for finding the clique and chromatic numbers of perfect
constant vector-chromatic numberwe can color a graph ~ 9raphs. We now investigate a connection betwéemd
of maximum degree\ using Al1=2/x+°(1) colors. The a close variant of the vector chromatic number.
only change is in the degree of separation between the vec- Intuitively, the clique and coloring problems have a cer-
tors of the endpoints of an edge. Suppose a grap is tain “duality” since large cliques prevent a graph from be-
colorable. Then it is vectoy-colorable, meaning we can ing colored with few colors. Indeed, it is the equality of
assign unit vectors so that the vectors on the endpoints ofthe clique and chromatic numbers in perfect graphs which
an edge have dot-product at mest/(y — 1). We round  lets us compute both in polynomial ime. We proceed to
these vectors with the same approach of using random cenformalize this intuition. The duality theory of linear pro-
ters. The only change in the analysis is in determining the 9ramming has an extension to semidefinite programming.
probability that witht random centers, the same center will With the help of Eva Tardos and David Williamson, we

capture both endpoints of an edge. This analysis is a generhave shown that in fact thé-function and a close variant
alization of Theorem 7.7, where naiv= 1 arccos(1/(x — of the vector chromatic number are semidefinite program-

1)) — ¢, sothaty = 1/cos’> 0 ~ 2(x — 1)/(x — 2). We ming duals to one another and are therefore equal.
deduce that the probability that an edge is cut is approx-  We first define the variant.

imately ¢ */(x?) so thatA'~*/x*°(1) centers suffice 0 Definition 9.1 Given a graptG = (V, E) onn vertices, a
givea sgmmolormg. _ _ strict vectork-coloringof G is an assignment of unit vec-
Ignoring theo(1) term, we determine absolute approxi-  tors 4, from the spac&™ to each vertex € V, such that

mation ratios independent &f. We identify a positive real  for any two adjacent verticesand j the dot product of
functionr(x) such that we can color a vectgrchromatic their vectors satisfies the equality

graph with at most”(®) colors. For eacly, we establish

9 Duality Theory

8 Approximation for k-Colorable Graphs

a degree threshold, = A, (n). While the degree ex- (Wi, uj) = _L,

ceedsA,, we take a neighborhood of a vertex of degree k-1

d > A, and recursivelyl"X—1)-color it and discard it (by As usual we say that a graph is strictly vector
Lemma 4.3 the neighborhood is vectqr— 1)-chromatic). colorable if it has a strict vectdr-coloring. The strict vec-

The average number of colors used per vertex in this pro- tor chromatic number of a graph is the smallest real number
. —1)— —-1)—1 i i i - i
cess igl"x—D-1 < A;(X )= Thus the total number of  k forwhich it has a strict vectar-coloring. It follows from

the definition that the strict vector chromatic number of any

colors used up in this process is at magt,* ! col- . .
P P X graph is lower bounded by the vector chromatic number.

ors. Once the degree is less thap, we use our coloring
algorithm directly to use an additionAli_%‘ colors. We Theorem 9.1 The strict vector chromatic number 6f is

balance the colors used in each part by setting equal tod(G).

nATO-D=1 _ A1-2/x Proof: The dual of our strict vector coloring semidefi-

X X nite program is as follows (cf. [2]):
which implies that o
maximize - py

n = A272/x=r(x-1)
y ’ here {pi;} is positive semidefinite
A, = /e, w Pijs 1S P
subject to i <1
We obtain a coloring with (1 =2/X)/(2=2/x=r(x=1)) colors, : ;p” -
in other words pii = Ppii
ij Pji

r(x) =1 =2/x)/2=2/x—r(x - 1)) pij = 0 for(i,j) ¢ Eandi#j



By duality, the value of this SDP is1/(k — 1) wherek but in the gap between the original problem and its relax-
is the strict vector chromatic number. Our goal is to prove ation. We investigate the following question: given a vec-

k = 0. As before, the fact thefip;; } is positive semidefi-  tor k-colorable graplt7, how large can its chromatic num-
nite means we can find vectosssuch thap;; = @;, v;). ber be in terms of andn? We will show that a graph with
The last constraint says that the vectoiferm anorthog- chromatic number*(") can have bounded vector chro-

onal labeling[23], i.e. that;,v;) = 0for (i,j) ¢ E. We matic number. This implies that our technique is tight in
now claim that optimization problem can be reformulated that it is not possible to guarantee a coloring witti)

as follows: colors on all vector 3-colorable graphs.

— > i, v)

2z i, 05) Definition 10.1 The Kneser graplk (m, r, t) is defined as
follows: the vertices are all possiblesets from a universe
of sizem; and, the vertices; andv; are adjacent if and
only if the corresponding-sets satisfyS; N S;| < t.

maximize

over all orthogonal labeling$v;}. To see this, consider
an orthogonal labeling and defipe= 3", . . (v;, v;). Note
this is the value of the first constraint in the first formu-
lation of the dual (squ < 1) and of the denominator in
the second formulation. Then in an optimum solution to
the first formulation, we must haye= 1, since otherwise
we can divide each; by /i and get a feasible solution
with a larger objective value. Thus the optimum of the
sgcqnd formulation is gt least as large as that of the first. Theorem 10.1 (Milner) LetS;,
Similarly, given any optimun{v;} for the second formu-
lation, v; //1x forms a feasible solution to the first formu-

We will need following theorem of Milner [34] regard-
ing intersecting hypergraphs. Recall that a collection of
sets is called an antichain if no set in the collection con-
tains another.

., So be an antichain of
sets from a universe of size such that, for al and,

lation with the same value. Thus the optima are equal. We 1S:1 8] >t
now manipulate the second formulation. ! =
Then, it must be the case that
max _Z<Uz,vz> — max _Z<vlvv1>
> iz Wis v)) >0 Wi vg) = 2o (i, vi) o< < m )
i) = ) S\
= min — Z(’U >
i Y . Notice that using al§-sets, forg = (m + ¢ +1)/2, gives a
. Zz’,j (vi, vj) tight example for this theorem.
= min - ——— +1
B > i, v The following theorem establishes that the Kneser
S o, 0) -1 graphs have a large gap between their vector chromatic
= —(max=L" 1y , number and chromatic numbers.
E<Ui> vi)
It follows from the last equation that the vector chromatic Theorem 10.2 Letn = (7‘) denote the number of vertices
number is of.the grath(m,r,t). Forr = m/2 andt :.m/8,
Y, i) this graph is 3-vector colorable but has chromatic number
max LJ N ") 00113
i, v)
However, by the same argument as used to reformulate the Proof: We prove a lower bound on the Kneser graph's
dual, this is equal to problem of maximizilig, ; @i, v,) chromatic numbeg by establishing an upper bound on its
over all orthogonal labelings such thgl@;, v) < L. This independence number. It is easy to verify that thev in
is simply Lovasz'sd; formulation of they-function [23, Milner’s theorem is exactly the independence number of
page 287]. ] the Kneser graph. We can bourdas follows, using the
standard equality that
10 The Gap between Vector Colorings and <a> _o (g)b< a )“_"
Chromatic Numbers b b/ \a-b

The performance of our randomized rounding approach for b linearly related ta:. For the purposes of determining
seems far from optimum. In this section we ask why, and the exponent in the chromatic number, the constant factor
show that the problem is not in the randomized rounding hidden in thed-notation can and will be ignored. We now



observe that This has led to the hope that the following extended version

N may be true.
Y > =
a . Conjecture 11.1 There exisk, ¢ > 0 such that, for any
> (7‘) graphG onn vertices
B ((mﬂf)ﬂ) 19(@) . _ '
[ (2)1/2(2)1/? ]m e <w(@) <IG) < x(G) <IG) xntc. (2)
(16/9)°/16(16/7)7/1 Our work in this paper provides reinforcement for this hope
= (1.007864)™. by giving an upper bound on the the chromatic number of

G in terms ofY(G). However, this is far from achieving
the bound conjectured above and it remains to be seen if
- (m) _ {(2)1/2(2)1/2]7” ~ om Fhis cor_ljecture is true. In related work, Szeggdy [37] stud-
r ) ies various aspects of the parametfeand, with respect
to this conjecture, shows that there is suchcdrounded
away from zero if and only if there is ath bounded away
x > (1.007864)'8™ = plg 1007864 , 00113 from zero. Alon, Kahale and Szegedy [5] have also been
able to use the semidefinite programming technique in con-
Finally, it remains to show that the vector chromatic jynction with our technigues to obtain algorithms for com-
number of this graphis 3. This follows by associating with - huting bounds on the clique number of a graph with linear-
each vertex; anm-dimensional vector obtained from the  sjzed cliques, improving upon some results due to Boppana
characteristic vector of the séf. In the characteristic vec-  and Halldorsson [10].
tor, +1 represents an element presensirand —1 repre- In terms of disproving such a conjecture (or, proving
sents elements absent frdfp The vector associated with  ypper bounds or ande’), relevant results include the fol-
a vertex is the characteristic vector$fscaled downby a  |owing: Lovasz [32] points out that for a random gra@h
factor of /m to obtain a unit vector. It is easy to see that x(G) = n/logn while¥(G) = \/n; Koniagin has demon-
the dot product of adjacent vertices, or sets with intersec- strated the existence of a graph which ag) > n/2and

Again using the approximation,

Sincen = 1gm, it follows that

tion at most, is bounded from above by 9(G) = O(n*/®logn); Alon [3] has explicit constructions
dr — At — m matching or slightly improving both these bounds. Our
- m =-1/2. constructions from Section 10 are of a similar flavor and

This implies that th tor ch i beris 3. W provide graphs with vector chromatic number at nfoistit
IS Implies that the vector chromatic numberis . with x(G) > n¢. In fact, by using a similar construction

More refined calculations can be used to improve this gnd applying a result of Frankl and Rodl [16], we can also
bound somewhat. The basic idea is to improve the bound construct graphs witd(G) < 3 and x(G) > ne. Inde-
on the vector chromatic number of the Kneser graph us- pendent of our results, Szegedy [38] has also shown that
ing an appropriately weighted version of the characteristi 3 similar construction yields graphs with vector chromatic
vectors. number at moss but which are not colorable using’-%°
colors. Notice that the exponent obtained from his result
is better than the one in Section 10. Alon [3] has obtained
a slight improvement over Szegedy’s bound by using an
interesting variant of the Kneser graph construction.

The connection between the vector chromatic number
and the clique/chromatic numbers is far from being com-
pletely understood and it is our hope that this work will
motivate further study of this relationship.

Theorem 10.3 There exists a Kneser grapR (m,r,t)
which is 3-vector colorable but has chromatic number ex-
ceedingn®-0610! ‘wheren = (') denotes the number of
vertices in the graph. Further, for largk, there exists a
Kneser graphK (m, r, t) which isk-vector colorable but
has chromatic number exceedint; 0717845,

11 Conclusions

The Lovasz number of a graph has been a subject of ACknowledgements
active study due to the close connections between this pa-
rameter and the clique and chromatic numbers. In par-
ticular, the following “sandwich theorem” was proved by
Lovasz [31] (see Knuth [30] for a survey).

Thanks to David Williamson for giving us a preview
of the MAX-CUT result [20] during a visit to Stanford.
We are indebted to John Tukey and Jan Pedersen for their

help in understanding multidimensional probability distr
w(@) <Y(G) < x(G). (1) butions. Thanks to David Williamson and Eva Tardos for



discussions of the duality theory of SDP. Finally, we thank [17] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and
Noga Alon, Don Coppersmith, Laci Lovasz and Mario
Szegedy for useful discussions.
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