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access to them are not under the control of the data owner, there is a clear need to provide proper confiden-
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also of the specific accesses (or patterns of them) that users make on such data.

In this paper, we address these issues and propose an approach for guaranteeing content, access, and
pattern confidentiality in a data outsourcing scenario. The proposed solution is based on the definition of
a shuffle index structure, which adapts traditional B+-trees and, by applying a combination of techniques
(covers, caches, and shuffling), ensures confidentiality of the data and of queries over them, protecting each
single access as well as sequences thereof. The proposed solution also supports update operations over the
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exhibits a limited performance cost, thus resulting effectively usable in practice.
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1. INTRODUCTION

The research and industrial communities have been recently showing considerable in-
terest in the outsourcing of data and computation. The motivations for this trend come
from the economics of system administration, which present large scale economies,
and by the evolution of ICT (Information and Communications Technology), which
offers universal network connectivity that makes it convenient for users owning mul-
tiple devices to store personal data at an external server. A major obstacle toward
the large adoption of outsourcing, otherwise particularly attractive to individuals and
to small/medium organizations, is the perception of insecurity and potential loss of
control on sensitive data and the exposure to privacy breaches (e.g., [De Capitani di
Vimercati et al. 2008; De Capitani di Vimercati et al. 2012; Jhawar et al. 2012]). Guar-
anteeing privacy in a context where data are externally outsourced entails protecting
the confidentiality of the data as well as of the accesses to them [Foresti 2010]. In par-
ticular, it requires to maintain confidentiality on: the data being outsourced (content
confidentiality); the fact that an access aims at a specific piece of information (access
confidentiality); the fact that two accesses aim at the same target (pattern confiden-
tiality).

Several solutions have been proposed in the past few years, both in the theoretical
and in the system communities, for guaranteeing data availability (e.g., [Bowers et al.
2009; Bessani et al. 2011]) and for protecting the confidentiality of the outsourced
data. Typically, solutions focusing on data confidentiality (e.g., [Damiani et al. 2003;
Hacigümüs et al. 2002b]) consider an honest-but-curious server (i.e., a server trusted
to provide the required storage and management services but not authorized to read
the actual data content) and possibly resort to encryption to protect the outsourced
data. Since the server is not allowed to decrypt the data for access execution, these
solutions provide different techniques for elaborating queries on encrypted data. Fur-
thermore, they aim at content confidentiality but do not address the problem of access
and pattern confidentiality.

Access and pattern confidentiality have been traditionally addressed within a dif-
ferent line of work by Private Information Retrieval (PIR) proposals (e.g., [Ostrovsky
and Skeith, III 2007; Sion and Carbunar 2007]), which provide protocols for query-
ing a database that prevent the storage server from inferring which tuples are being
accessed. PIR approaches typically work on a different problem setting. As a matter
of fact, in most proposals, the external database being accessed is in plaintext (i.e.,
content confidentiality is not an issue). Regardless of whether the external database
is plaintext or encrypted, PIR solutions have high computational complexity and are
therefore not applicable to real systems. It has been proved [Sion and Carbunar 2007]
that the execution of information-theoretic PIR protocols requires more resources than
those required for a complete transfer of the database from the server to the client.
Recent solutions, based on a careful adaptation of the Oblivious RAM data structure
(e.g., [Stefanov and Shi 2013; Stefanov et al. 2013; Williams et al. 2012]), protect ac-
cess and pattern confidentiality at a reduced cost with respect to PIR. These solutions
however imply a still relevant computational overhead, compared to the adoption of
non-privacy preserving access structures.

In this paper, we aim at providing a novel efficient approach addressing the differ-
ent aspects of the privacy problem. We consider a reference scenario where a data
owner outsources data to an external honest-but-curious server, and accesses her data
by submitting requests to a client that directly interacts with the server. Our goal is
to enable the owner to efficiently access the outsourced data, either to search for a
value (or a set thereof) or to update the outsourced data collection. The access protocol
should not reveal to any observer, including the server itself, which kind of access is
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being executed (i.e., read or update) and should guarantee content, access, and pattern
confidentiality. In [De Capitani di Vimercati et al. 2011a] we presented an early ver-
sion of our proposal, which here is extended with the support of range queries and of
updates to the outsourced data collection as well as with more extensive analysis and
experimental results (see Section 11 for more details).

We propose a novel data structure, called shuffle index, with which the data to be
outsourced are organized (Section 3). The design of the shuffle index data structure
uses as a foundation the well-known and carefully investigated B+-tree, arguably to-
day the structure most commonly used to efficiently store and manage large amounts
of data. B+-trees are preferred to hash structures thanks to the support of a total order
relationship among the values of the index key. Our shuffle index assumes data to be
organized in a B+-tree with no link between leaves and applies node-level encryption
to protect actual data from the external storage server. In the working of the system,
the client can hide the actual request within cover (fake) requests, cache nodes, and
shuffle the content among blocks stored at the server. In this way, no observer, includ-
ing the server itself, can reconstruct the association between blocks read and actually
accessed data (Section 4). Our solution combines cover, caching, and shuffling tech-
niques in an effective way and efficiently supports both equality (Section 5) and range
queries (Section 6). Indeed, the ordering of the data in the unchained B+-tree struc-
ture leads to a clear benefit when executing range queries, which instead are not sup-
ported by hash indexes. To guarantee that content, access, and pattern confidentiality
are preserved also when the outsourced data collection is updated (Section 7) the client
adopts a probabilistic split approach that possibly splits a node in the shuffle index ev-
ery time it is visited (although it could still accommodate the insertion of new values).
In this way, an observer cannot infer whether an access to the shuffle index is search-
ing for a value or is updating the data collection. Our proposal provides confidentiality
(Sections 9) while maintaining a limited performance overhead (Section 10). Consider-
ing reasonable system configurations and a set of requests by users, the shuffle index
causes a performance overhead of about 20% with respect to a plain encrypted index.
Compared with the most efficient recently proposed approach based on the Oblivious
RAM data structure [Stefanov and Shi 2013], the shuffle index is more efficient as it
requires less access operations to retrieve outsourced data. Also, it directly supports
range queries and updates. We also note that the shuffle index technique simply relies
on a soft state stored at the client side. This makes our solution resilient against fail-
ures at the client side and accessible by different clients. In fact, after each access, the
shuffle index stored at the server is in a consistent state. The performance advantage
and extended features of our solution derive from the use of a simpler structure and
a limited reduction in the level of protection. For many applications the performance
advantages of the shuffle index make it preferable to the alternatives.

2. MOTIVATION

The motivation for the shuffle index is to provide complete confidentiality protection
to the data as well as to the accesses to them. Such protection is provided even to the
eyes of the server storing and managing access to the data. In this section, we illus-
trate how, in absence of the access and pattern confidentiality provided by our shuffle
index, sensitive information about users’ activities or data content can be improperly
leaked (even assuming encryption of the stored data). For concreteness, in the discus-
sion below, we consider two representative scenarios, with the notes that observations
on them can apply to other application scenarios. Both scenarios see a cloud provider
(our honest-but-curious server) storing and managing access to data on behalf of the
data owner. In the first scenario (also described in [Williams et al. 2008; Stefanov et al.
2013]) data are stocks stored on behalf of a financial organization and accessed by the
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organization’s customers. Access to a given item corresponds to the search, in the data
structure, of a specific stock. In the second scenario, data are encrypted authentica-
tors (e.g., passwords or biometric traits) against which physical access to locations by
employees must be controlled (with control outsourced to the cloud provider). Access
to a given item corresponds to the search, in the data structure, of the authentica-
tion proof being sought (e.g., the encrypted biometric traits of the employee entering
the gate). While in both scenarios basic encryption can protect confidentiality of data
stored at the cloud provider, we note below how observations on the accesses to such
data can, without our shuffle index, breach confidentiality of the data themselves or
leak sensitive information on users’ activities.

For simplicity and concreteness, in the discussion below, we assume that each atomic
unit of access (i.e., data block) corresponds to a single data item. This simplification
is not limiting; for trees supporting range queries, while every data block will store
multiple items, such items will all be close within a given range. Also, the fact that
multiple data items can be associated with a single data block introduces noise in the
reconstruction, but the noise can be progressively reduced with the observation of a
large number of accesses.

The external server storing the (encrypted) data and managing accesses to them
has knowledge of the encrypted physical blocks where the data are stored and can
observe every access to such blocks. We now illustrate how, even if data are encrypted,
the server, can, based on such observations and on possible limited other knowledge,
breach confidentiality of the stored data or actions on them. We identify four main
cases.

No knowledge. Even without any additional knowledge, the static nature of the (en-
crypted) data structure exposes information. In fact, by observing accesses, the
server can establish correlation of accesses aimed at the same item. For the financial
application, the server would be able to infer when different transactions operate
on the same stock. In the authentication scenario, the server would be able to keep
track of all accesses by the same employee.

Single-access knowledge. Suppose the server has knowledge of one specific access in-
stance (e.g., it knows a given access is aimed at a given stock or that a given em-
ployee is entering a given building). This limited punctual knowledge can, thanks
to the tracking noted above, expose confidentiality of many accesses. Knowledge of
a specific access discloses in fact to the server that a given item (stock or authenti-
cator) is stored at a given physical block: all accesses operating on the same block
would then be for the same item. For the financial application, the server would
be able to know when different transactions will be operating on the same (known)
stock. In the authentication scenario, the server would be able to keep track of all
the accesses by the same (known) employee.

Data or access frequency knowledge. Suppose the server has (some) knowledge on the
frequency of accesses to the stored items. Such a knowledge does not necessar-
ily require availability of confidential information. For instance, there are public
data describing the distribution of values for many categories of information. Since
the server observes every access, it can also build a frequency histogram of the ac-
cesses served. Comparing these observations with the frequency knowledge above,
the server can establish the physical blocks of certain data items (which are out-
liers, for example, most frequently or less frequently accessed). For instance, in the
financial scenario the server can infer that certain blocks contain information of
given stocks. In the authentication scenario, the server can infer that certain blocks
contain information of given employees. Each of such inference introduces a ‘single
access knowledge’ that subsequently triggers further inference.
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No knowledge, with range queries. When the query protocol supports the efficient ex-
ecution of range queries, the server can observe the fact that accesses hit specific
sets of blocks. By combining several of such observations, the server can infer the
plaintext order on the encrypted content of the blocks. A limited amount of addi-
tional knowledge about the content of the protected information can then allow the
server to quickly reconstruct the plaintext content. In particular, in [Islam et al.
2014] it is shown that, thanks to a limited additional knowledge on the distribution
of domain values, an attacker is able to identify up to 90% of the plaintext content
after a limited number of range queries have been executed, even under the as-
sumption that the leaves of the tree are not visited in order and are simply accessed
as a set. In [Pang et al. 2013] it is shown that, after a sequence of range queries
that cover the whole domain have been executed, the analysis of correlation is able
to determine the plaintext ordering of the n data blocks with an uncertainty equal
to 1/2 − 1/n!, where the 1/2 term is due to the uncertainty about the direction of
the ordering. In both the financial and the authentication scenario, such inference
would allow the server to establish the plaintext order of the stored values (stocks or
authenticator tokens, assuming the ordering key of the latter to be the last name).
A limited set of range queries quickly discloses the ordering of blocks and can be
used to reconstruct the content.

All the scenarios of inference above are made possible, despite the application of
encryption, by the static nature of the data structure, which exposes the fact that
accesses targeted a same item and, when the item is known, targeted that specific
item. The shuffle index illustrated in this paper breaks such a static correspondence by
reorganizing the data structure at every access, so that accesses to the same data item
cannot be related anymore since they will target different physical blocks. Analogously,
accesses to the same physical blocks will not correspond to accesses to the same data
items. As we will illustrate, cover (fake) searches provide further uncertainty in the
observations and, together with some caching, enables the execution of such shuffling.

3. SHUFFLE INDEX DATA STRUCTURE

For outsourcing, we assume data to be indexed over a candidate key K, defined over
actual domain D ⊆ Dk, for the data collection and organized as a B+-tree, with data
stored in the leaves in association with their index values, and where there are no links
from a leaf to the next, representing a chain. In the following, we will refer to such a
structure as an unchained B+-tree. Accesses to the data are based on the value of the
index. The reason for not representing the links between the leaves is that following
such links, when accessing data, would leak to the server (to which the content of the
nodes is not known) i) the fact that the query being executed is a range query, and
ii) the order relationship among index values in different nodes. Our data structure is
therefore characterized by a fan out F , meaning that each node (except the root) has
q ≥ ⌈F/2⌉ children and stores q − 1 values v1, . . . , vq−1, ordered from the smallest to
the greatest. The first child of any internal node in the unchained B+-tree is the root
of the subtree containing all the values lower than the first value in the node (v < v1).
The last child is the root of the subtree containing all the values greater than the last
value in the node (v ≥ vq−1). The second child is the the root of the subtree containing
all the values greater than or equal to the first value in the node, but lower than the
second one (v1 ≤ v < v2). In general, the i-th child, 1 < i < q − 1, is the root of the
subtree containing all the values greaten than or equal to the (i − 1)-th value in the
node, but lower than the i-th one (vi−1 ≤ v < vi). Figure 1(a) illustrates a graphical
representation of an example of our data structure characterized by fan out F equal
to 5. In the figure, nodes appear ordered (left to right) according to the values they
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store and pointers are represented by arrows. Pointers between nodes of the abstract
data structure correspond, at the logical level, to node identifiers, which can then be
easily translated at the physical level into physical addresses. At the logical level, our
data structure can be seen as a set of nodes, where each node is a pair ⟨id , n⟩, with
id the node identifier and n the node content. Note that the possible order between
identifiers does not necessarily correspond to the order in which nodes appear in the
value-ordered abstract representation. Figure 1(b) illustrates a possible logical rep-
resentation of the data structure in Figure 1(a), where nodes appear ordered (left to
right) according to their identifiers, which are reported on the top of each node. For
simplicity and easy reference, in our example, the first digit of the node identifier de-
notes the level of the node in the tree. The reason why we distinguish between node
identifier and node content is that, as we will see later on, our approach is based on
shuffling content among nodes. In other words, a given content may be associated with
different identifiers at different times. In the following, when clear from the context,
we will use the term node to refer either to the content of a node or to the content
together with the identifier.

As typical in emerging outsourcing solutions, we use encryption to preserve content
confidentiality. We assume encryption to be applied at the node level (i.e., each node
is individually encrypted). To destroy plaintext distinguishability, the encryption func-
tion adopts a random salt. Also, the encrypted node is concatenated with the result of
a MAC (Message Authentication Code) function applied to the encrypted node and its
identifier. In this way, the client can assess the authenticity of the node returned by
the server and check whether the server properly performed the write operations re-
quested by the data owner during previous interactions. Note that, since nodes contain
pointers to children, the ability to establish authenticity of a node (starting from the
root) implies the ability to establish authenticity, and therefore integrity, of the whole
data structure.

In the realization of physical accesses, for efficiency reasons, the size of the node to be
stored (i.e., its encrypted version together with the result of the MAC function) should
be a multiple of the size of the disk block. For simplicity, we assume the size of each
encrypted node to be equal to the size of one disk block of the server, and the identifier
of the block to be the same as the identifier of the node. Without loss of generality, we
also assume that each leaf node can store F − 1 key values and tuples. We refer to an
encrypted node as a block. Blocks are formally defined as follows (see Appendix A for
more details).

Definition 3.1 (Block). Let ⟨id, n⟩ be a node of an unchained B+-tree. The en-
crypted version of ⟨id, n⟩, called block, is a pair ⟨id, b⟩, with b=E||T , E=Eke

(salt||n),
T =MACkm

(id||E), with E a symmetric encryption function, ke the encryption key, salt
a value chosen at random during each encryption, and MAC a strongly unforgeable
keyed cryptographic hash function with key km.

We refer to the encrypted version of the logical data structure, outsourced to the server
and on which accesses are executed, as shuffle index. The term shuffle derives from the
fact that the structure is dynamically reorganized at every access (see Section 4). Our
shuffle index is defined as follows.

Definition 3.2 (Shuffle index). Let {⟨id0, n0⟩,. . . , ⟨idm, nm⟩} be a set of nodes of an
unchained B+-tree. The shuffle index is the set {⟨id0, b0⟩, . . . , ⟨idm, bm⟩} of correspond-
ing blocks (Definition 3.1).

Figure 1(c) illustrates the physical representation of the logical structure in Fig-
ure 1(b). According to the definition of shuffle index, the server just sees a collection of
blocks, each with a given identifier but whose content is encrypted. Access to the data
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Fig. 1. An example of abstract (a) and logical (b) representation of an unchained B+-tree, and of the corre-
sponding view of the server (c)

requires an iterative process between the client and the server [Damiani et al. 2003].
The client performs an iteration for each level of the shuffle index starting from the
root. At each iteration it determines the node to be read (i.e., the block to be retrieved
from the server) at the next level. The process ends when a leaf block is retrieved,
which is the block that contains the index value target of the search (or where it would
have appeared, if the index value does not belong to the database).
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4. PROTECTION TECHNIQUES

We first describe the different aspects of confidentiality we want to guarantee against
non authorized observers. We then illustrate our protection techniques complementing
encryption for ensuring confidentiality.

4.1. Problem Statement and Observer Knowledge

We consider an observer that is not authorized to access outsourced data, but that can
observe both outsourced data and accesses to them. Such an observer may exploit this
information to partially infer confidential data and/or the target of private accesses.
Our goal is to protect the confidentiality of the outsourced data and accesses against
any possible observer. Since, among all possible observers, the server is the party that
has the highest potential for observations (all accesses are executed by it), without
loss of generality, in the following we assume the server as our observer. Recall that
the server is assumed honest-but-curious, meaning that it is trusted to provide the
required storage and management service, but it is not authorized to read the actual
data content. It will then try to exploit its knowledge to possibly partially infer confi-
dential data and/or the target of private accesses. The assumption that the server does
not corrupt the outsourced data is supported by the use of MAC structures that are
verified at every access and are able to immediately detect violations to the integrity.

Observer’s knowledge. We assume the server to have, or be able to infer from its
interactions with the client, the following information:

— the number m of blocks (nodes) in the shuffle index;
— the height h of the shuffle index;
— for each physical block bi, its identifier idi and the level in the tree of the node it

stores;
— the sequence {bi0, . . . , bih} of blocks read and written for each access operation;
— the frequency with which values in the actual domain of the key K of the shuffle

index are typically accessed;
— the target of some of the accesses and the time at which these accesses will be (or

have been) performed.

In fact, the server receives from the data owner a set of blocks to store as described
in Section 3 and has therefore knowledge of the number m of blocks (nodes) and their
identifiers. Since the iterative process adopted to access the shuffle index (summarized
in Section 3 and illustrated in the details in Section 5) requires the retrieval of a block
for each level of the shuffle index, the server also knows the height h of the shuffle
index and, by observing a long enough history of accesses, it can easily establish the
level associated with each block. Note that, assuming the adoption of our shuffle index
approach, the server does not know and cannot infer the topology of the shuffle index
(i.e., the pointers between parent and children). Figure 1(c) illustrates the view of
the server on the shuffle index in Figure 1(b). In the working of the system, every
access request is performed through a set of read and/or write operations affecting a
sequence {bi0, . . . , bih} of blocks at the server. It then translates into an observation
oi of the server for blocks {bi0, . . . , bih}. Adopting our shuffle index, the knowledge of
the frequency of accesses to values cannot be inferred from the working of the system.
However, we assume that the server might exploit additional external knowledge to
gain information about these frequencies (e.g., the frequencies of accesses to the values
in the index domain may be publicly known). The server may also have additional
knowledge (e.g., thanks to its knowledge of the application domain) on a limited subset
of the accesses that the client is expected to perform. As an example, the server may
have knowledge of accesses that are scheduled to be performed periodically by the
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client (e.g., that every day at noon, the client accesses the remote dataset checking the
warehouse status).

Confidentiality goals. Before defining the confidentiality we want to guarantee, we
note that the server can only monitor accesses at the granularity of a block (node).
The basic protection granted by encryption ensures uncertainty on the actual index
value (and therefore on the specific data) requested by an access, since any of the
index values stored in the returned node could potentially be the target. Such a basic
protection cannot be considered sufficient, also because index values stored in the same
node will all be close within a given range. Given this observation, in the following, we
consider confidentiality breaches at the granularity of nodes.

At any point in time, given a sequence of observations o1, . . . , oz corresponding to
all the accesses performed, the server should not be able to infer: i) the data stored
in the shuffle index (content confidentiality); ii) the data to which access requests
are aimed, that is, ∀i = 1, . . . , z, the server should not infer that oi aims at a spe-
cific node (access confidentiality); and iii) that oi aims at accessing the same node as
oj , ∀i, j ∈ {1, . . . , z}, i ̸= j (pattern confidentiality). Intuitively content confidentiality
refers to the data stored in the leaves of the unchained B+-tree, access confidentiality
to the data targeted by a request, and pattern confidentiality to the relationship among
the data targeted by different requests. It is easy to see that encryption provides con-
tent confidentiality of data at rest (i.e., data stored on persistent storage that are not
accessed) and access confidentiality of individual requests. It is however not sufficient
for providing pattern confidentiality of a set of observations. To illustrate this, suppose
that a shuffle index never changes. By observing that two accesses retrieve the same
blocks, an observer could easily determine that the accesses refer to the same node,
thus breaching pattern confidentiality. An observer can then exploit the possible in-
formation on the frequencies with which different values can be accessed and a set of
observations to reconstruct the correspondence between plaintext values and blocks
and infer (or restrict her uncertainty on) the specific node to which a specific access
refers, thus breaching access confidentiality.

Since data are encrypted in storage, the information that the server can exploit in
the working of the system is the comparison between the frequencies with which blocks
are accessed and the frequencies of accesses to different values. The key aspect for
guaranteeing all forms of confidentiality above is then to destroy such a correspon-
dence through the combination of three basic strategies: 1) cover searches, 2) cached
searches, and 3) shuffling. In a nutshell, cover searches aim at hiding the actual target
of an access among a set of fake searches; cached searches are used to protect repeated
accesses by keeping recent results in a cache at the client side; and shuffling dynami-
cally changes the allocation of nodes to blocks to decouple physical accesses from logical
ones. In the following subsections, we will describe each technique singularly taken.
We will then illustrate their combined adoption in Section 5.

4.2. Cover Searches

As noted above, the execution of an access over the shuffle index can trivially leak
information on the fact that two accesses aim, or do not aim, at the same node. Also,
combined with the possible knowledge of the server on frequencies of accesses to node
contents, it can help the server to establish the correspondence between node con-
tents and blocks where they are stored (frequently accessed data will correspond to
frequently accessed blocks) [Ceselli et al. 2005]. For instance, consider the logical rep-
resentation of the shuffle index in Figure 1(b), and two consecutive requests for index
value ‘Fb’ translating into accesses to blocks {(001); (101); (203)} and {(001); (101);
(203)}, respectively. By observing these sequences of accessed blocks, the server can
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infer that the two requests refer to the same data (i.e., the content of block 203). Our
first protection technique aims at introducing confusion on the target of an access re-
quest by hiding it within a group of other requests that work as covers.

Cover searches are fake searches that the client executes in conjunction with the
actual target search of the index value it aims to access. The number of cover searches
is a protection parameter of our approach.

Since, as noted in Section 4.1, the granularity of protection is the block (node), cover
searches must provide block diversity, that is, must translate into accesses to different
blocks at each level of the shuffle index, but the root. As a matter of fact, covers trans-
lating to the same block would not provide any additional protection than that offered
by encryption. For instance, ‘Fa’ cannot be chosen as a cover for ‘Fb’ as both would
translate into accesses to block 203, thus disclosing that the access requests refer to
the content of block 203. Given a shuffle index built over a candidate key with actual
domain D and a value v ∈ D, path(v) denotes the set of blocks in the unique path of
the shuffle index that starts at the root and ends in the leaf block where v is possibly
stored, if v is in the database. Cover searches are formally defined as follows.

Definition 4.1 (Cover searches). Let {⟨id0, b0⟩, . . . , ⟨idm, bm⟩} be a set of blocks form-
ing a shuffle index built over a candidate key with domain D, and let v0 be a value
in D. A set {v1, . . . , vn} of values in D is a set of cover searches for v0 if ∀vi, vj ∈
{v0, v1, . . . , vn} : =⇒ path(vi)∩path(vj)=⟨id0, b0⟩, that is, contains only the root of the
shuffle index.

Basically, assuming num cover cover searches are adopted in the execution of an ac-
cess, instead of asking the server to retrieve, for each level in the shuffle index, the
block in the path from the root to the target, the client asks the server to retrieve
num cover+1 blocks: one corresponds to the block in the path to the target, and each
of the others corresponds to the block in the path to one cover.

Intuitively, cover searches hide the actual search within a set of searches. When
cover searches are indistinguishable from actual searches, any of the num cover+1
leaf blocks have the same probability of containing the actual target. We guarantee
this cover/target indistinguishability property by ensuring that the frequency distri-
bution with which values in the candidate key domain D are used as cover searches
is the same as the frequency distribution with which values are searched upon client’s
request (see Section 5). For instance, consider again the two searches above for in-
dex value ‘Fb’ (block 203), and assume the first uses cover ‘Ic’ while the second one
uses cover ‘Ma’. The sequences of accesses to blocks observed by the server would
now be {(001); (101,104); (203,215)} and {(001); (101,102); (201,203)}, respectively.
While without cover the server was able to detect that the two requests aimed at the
same block (node), with one cover the server can assess this only with probability
0.5 · 0.5 = 0.25.

The fact that searches are all executed in parallel (i.e., all the num cover+1 blocks
at each level of the shuffle index are retrieved before proceeding to the next level),
confuses the parent-child relationship of the different blocks. In fact, at each level any
of the num cover+1 parents could be associated with any of the num cover+1 children,
producing therefore (num cover+1)h potential paths. For instance, with reference to
the example above, 215 could be child of either 101 or 104. Of course, parent-child in-
formation (like actual targets) can be disclosed by intersection attacks, observing the
same set of blocks in different accesses (101 and 203 in the example above). Intersec-
tion attacks are counteracted by caching and shuffling, as explained in the remainder
of this section.
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4.3. Cached Searches

Our second protection technique aims at counteracting intersection attacks in the short
term and consists in maintaining at the trusted client side a local copy, called cache, of
nodes in the path to the target. Being client side, we maintain the cache in plaintext
(i.e., the cache stores plaintext nodes and not their encrypted version).

Definition 4.2 (Cache). Let {⟨id0, n0⟩, . . . , ⟨idm, nm⟩} be a set of nodes forming an
unchained B+-tree of height h. A cache C of size num cache for the unchained B+-tree
is a layered structure of h + 1 sets Cache0, . . . ,Cacheh , where:

— Cache0 contains the root node ⟨id0, n0⟩;
— Cachel, l = 1, . . . , h, contains num cache nodes belonging to the l-th level of the

unchained B+-tree;
— ∀n ∈ Cache l, l = 1, . . . , h, the parent of n in the unchained B+-tree belongs to

Cachel−1 (path continuity property).

Path continuity guarantees that the parent of any node in the cache belongs to the
cache. As a consequence, the path connecting the root of the unchained B+-tree to
every node in the cache completely belongs to the cache itself. We assume the cache to
be properly initialized by the data owner at the time of outsourcing, by locally storing
nodes in num cache disjoint paths (i.e., with only the root in common) of the unchained
B+-tree.

In the working of the system, the cache will be updated and will keep track only
of actual (and not of cover) searches, since it is intended to work as an actual cache.
We assume the cache at each level to be managed according to the LRU policy, that
is, when a new node is added to Cache l , the node least recently used is pushed out
from Cache l . The application of the LRU policy guarantees the satisfaction of the path
continuity property (Section 8).

The cache helps in counteracting short term intersection attacks since it avoids the
client to search for a repeated target of two close access requests. In fact, with the
cache, two close searches, regardless of whether they aim or not at the same target,
will always have some blocks in common. Therefore, two close searches aimed at the
same target will not be observable as such. For instance, with reference to the two
consecutive requests for index value ‘Fb’ in Section 4.2, the second request would find
‘Fb’ in cache. Since the number of blocks requested to the server has always to be
the same (i.e., num cover+1), the client would generate, for the second request, two
cover searches (e.g., ‘Cb’ and ‘Ma’). Consequently, the observations of the server on the
two requests would be {(001); (101,104); (203,215)} and {(001); (102,103); (201,211)},
respectively. The server would not be able to determine whether the two requests aim
at the same target. The reader may wonder why we perform num cover+1 fake cover
searches when the target node is already in cache. First, as illustrated in Section 4.1,
if the observer knows that an access was to be executed, not performing it would leak
information on the fact that the target node is in the cache. The server may then exploit
such information and try to guess the target of the access. As an example, if every day
at noon the client checks the warehouse balance, not accessing the dataset at that
time would reveal to the server that this information is in cache. If there is no concern
about this, the client can avoid to repeat accesses that can be directly managed with
the cache content (i.e., when the leaf node target of the access is in cache). Second,
the protection given by the cache does not work only as an independent technique,
but plays a role together with the other protection techniques (for more details, see
Section 9).
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4.4. Shuffling

Caching does not prevent intersection attacks on observations that go beyond the
size of the cache. As an example, suppose that no cache is used (i.e., num cache=0),
and with reference to Figure 1(b) consider three consecutive requests all for in-
dex value ‘Fb’, using one cover search for each request (e.g., ‘Ma’, ‘Cb’, and ‘Ic’, re-
spectively). These access requests will translate into the following sequences of ac-
cesses to blocks {(001); (101,102); (201,203)}, {(001); (101,103); (203,211)}, and {(001);
(101,104); (203,215)}, respectively. Assuming the indistinguishability of targets and
covers, by the observation of these sequences of accesses the server can infer with prob-
ability 0.5 · 0.5 · 0.5 = 0.125 that the three access requests refer to the same data (i.e.,
the content of block 203). Also, accesses leak to the server the parent-child relationship
between blocks. While the information on the parent-child relationship by itself might
seem to not compromise confidentiality, it can easily open the door to privacy breaches
and should then remain confidential. Given a long enough history of observations, the
server will be able to reconstruct the topology of the shuffle index and therefore gain
knowledge on the similarity between values stored in the blocks.

Our third protection technique starts from the observation that inferences such as
the one mentioned above are possible to the server by exploiting the one-to-one corre-
spondence between a block and the node stored in it: accesses to the same block triv-
ially correspond to accesses to the same node. Node shuffling breaks this one-to-one
correspondence by exchanging the content among nodes (and therefore blocks). Since
a block depends on the content of the corresponding node and on the node identifier
(Definition 3.1), shuffling clearly requires the re-computation of the blocks associated
with shuffled nodes and then requires node decryption and re-encryption. Note how
the re-encryption of a node, applied to the node content concatenated with a possibly
different node identifier and a different random salt, produces a different encrypted
text (block). This aspect is particularly important since encrypted text corresponding
to a given node automatically changes at each access, making it impossible for the
server to track the shuffling executed and to determine if the node content stored in a
block has been changed or has remained the same. Node shuffling is formally defined
as follows.

Definition 4.3 (Shuffling). Let N={⟨id1, n1⟩,. . . , ⟨idm, nm⟩} be a set of nodes at the
same level of an unchained B+-tree and π be a permutation of id1, . . . , idm. The node
shuffling of N with respect to π is the set {⟨id1, n′

1⟩, . . . , ⟨idm, n′
m⟩} of nodes, where

idi = π(idj) and n′
i = nj, with i, j = 1, . . . ,m.

Intuitively, our approach exploits shuffling by exchanging the contents of all blocks
read in the execution of an access and the nodes in cache (so that their contents are
shuffled), and rewriting all of them back to the server. In this way, the correspondence
existing between block identifiers and the content of the nodes they store is destroyed.
For instance, assume that shuffling is used and that the server observes the following
sequences of accesses to blocks (which are the same sequences discussed above): {(001);
(101,102); (201,203)}, {(001); (101,103); (203,211)}, and {(001); (101,104); (203,215)}.
The server can observe that the three sequences have a leaf block in common (i.e.,
203). The three requests aim at accessing the same node only if: the second and third
requests are for the content of block 203 (the probability is 0.5 · 0.5 = 0.25); the data
target of the first request coincides with the content of block 203 after the first shuf-
fling operation (the probability is 0.5); and the content of block 203 is not moved by
the second shuffling operation (the probability is 0.5). As a consequence, 0.0625 is the
probability that the three requests aim at the same node.
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/* S : shuffle index on a candidate key with domain D, height h , fan out F */
/* Cachel , l=0, . . . , h : cache */
/* num cache : number of nodes in Cachel , l=1, . . . , h */
/* num cover : number of cover searches */

INPUT target value : value to be searched in the shuffle index
OUTPUT n : leaf node that contains target value

MAIN
1: randomly choose a set cover value[1. . .num cover+1] cover searches for target value (Definition 4.1)
2: for l :=1. . .h do
3: /* identify the blocks to read from the server */
4: target id := identifier of the node at level l along the path to target value
5: cover id[i] := identifier of the node at level l along the path to cover value[i], i=1. . .num cover+1
6: if target id is the identifier of a node in Cachel then
7: ToRead ids := cover id[1. . .num cover+1]
8: else ToRead ids := {target id} ∪ cover id[1. . .num cover ]
9: /* read blocks */

10: Read := download from the server the blocks with identifier in ToRead ids and decrypt their content
11: /* shuffle nodes */
12: let π be a permutation of the identifiers of nodes in Read and Cachel

13: shuffle nodes in Read and Cachel according to π
14: update pointers to children of the parents of nodes in Read and Cachel according to π
15: encrypt and write at the server nodes accessed and in Cachel−1 at iteration l − 1
16: target id := π(target id)
17: cover id[i] := π(cover id[i]), i=1. . .num cover+1
18: /* update cache at level l */
19: update Cachel according to LRU policy and access to node with identifier target id
20: encrypt and write at the server nodes accessed and in Cacheh at iteration h
21: /* return the target leaf node */
22: return the node in Cacheh with identifier equal to target id

Fig. 2. Shuffle index access algorithm

Shuffling among nodes at a given level requires to update the parents of the nodes
so that the pointers in them properly reflect the shuffling. For instance, consider Fig-
ure 1(b) and assume nodes (101,102) are shuffled so that π(101)=102 and π(102)=101,
(i.e., their contents are swapped). As a consequence, root node [ 1

0
3

Ea 1
0
1

Ia 1
0
4

La 1
0
2

- - ] must
be updated to be [ 1

0
3

Ea 1
0
2

Ia 1
0
4

La 1
0
1

- - ].
Note that cached nodes are shuffled together with accessed nodes and rewritten back

to the server. This participation in the shuffling of the cached blocks is needed since: i)
cached blocks do need to be rewritten, as their content (pointers to non-cached children
involved in the access, in particular) might have changed; and ii) rewriting the blocks
in the cache back to the server without shuffling their content would not enforce on
them the protection of shuffling (as they would be known by the server to have the
same content as when they were read). The participation of the cache in the shuffling
and the rewriting of the cache on the server do not diminish the protection given by
caching since again, two close searches aimed at the same target will not be observable
as such (their access profile is the same as the one of searches for different targets).

5. ACCESS EXECUTION AND SHUFFLE INDEX MANAGEMENT

We illustrate how the protection techniques described in Section 4 (cover, cache, and
shuffling) are applied in a joint way in the execution of an access and how the shuffle
index is managed. Figure 2 presents the algorithm, executed at client-side, enforcing
the search process and the updates to the blocks composing the shuffle index. Here,
we assume that each internal node n is associated with a unique identifier, n.id , and
two arrays, n.values and n.pointers , storing the key values and pointers to the child
nodes, respectively. Leaf nodes differ from internal nodes by the array pointers that is
replaced by the array data containing the data associated with the key values stored
in the leaf nodes.

Given a request for searching target value in shuffle index S, the algorithm first de-
termines num cover+1 values, cover value[1], . . . ,cover value[num cover+1] to be used
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as cover searches (Definition 4.1) for target value (line 1). Note that the number of
cover searches is num cover+1, because for each level of the shuffle index, num cover+1
blocks have to be downloaded from the server and therefore, if the block in the path
to the target value belongs to the cache, an additional cover search becomes neces-
sary. For each level l = 1, . . . , h, the algorithm then executes the following process.
The algorithm first determines the identifiers (i.e., ToRead ids) of the blocks at level l
in the path to the target value (i.e, target id , line 4) and to the cover searches (i.e.,
cover id [1], . . . ,cover id [num cover+1], line 5). If the node in the path to the target
value does not belong to Cache l (i.e., a cache miss occurs), one of the values ini-
tially chosen as a cover is discarded and only num cover out of the num cover+1 cover
searches are performed (lines 6-8). It sends to the server a request for the blocks with
identifiers in ToRead ids and decrypts their content, obtaining a set Read of nodes
(line 10). The nodes in Read and Cache l are then shuffled according to a random per-
mutation π (Definition 4.3) (lines 12-13). As a consequence, the pointers stored in the
nodes that are parents of the nodes in Read and Cache l , which are the nodes accessed
by the algorithm during the previous iteration (at level l − 1), are updated according to
permutation π, encrypted, and sent back to the server for storage (lines 14-15). To re-
flect the effects of the shuffling on all the variables of interest, target id and cover id [i],
i=1, . . . ,num cover+1, are updated according to π (lines 16-17). The algorithm finally
updates Cache l by possibly inserting, if a cache miss occurred, the most recently ac-
cessed node in the path to the target value (line 19). When the visit of the shuffle index
terminates, the node identified by target id , which is the leaf node where target value
is stored (if present in the database), is returned (line 22).

To properly access and manage the shuffle index structure, it is necessary to keep
track of the nodes and blocks accessed during the current and previous iteration, as
well as of the first occurrence of a cache miss during the traversal of the tree, which
are not explicitly considered by the algorithm in Figure 2. A detailed pseudocode of
the algorithm accessing and managing a shuffle index structure is illustrated in Ap-
pendix B.

We note that the choice of cover searches (line 1) has to satisfy the target/cover
indistinguishability property. Intuitively, indistinguishability is guaranteed if cover
searches and target searches follow the same frequency distribution. However, the
frequency distribution with which the target values are accessed may not be known in
advance. If this is the case, the client can build a simple statistical model [Silverman
1986] that: i) estimates the probability density function bound to the occurrence of
target values; and ii) chooses cover values by sampling from the estimated distribution.
Our implementation of the shuffle index concretely implements indistinguishability
(see Section 9.3). To empirically demonstrate this property, we considered recurrences
within 100 accesses of the same physical blocks, and analyzed, for every recurrence, if
this was due to a target or a cover access. The average value of the absolute difference
in probability between targets and covers was equal to 0.0001 (i.e., it is hard for the
server to distinguish targets from covers).

Example 5.1. Consider the index in Figure 1(b) (reported for convenience at the top
of Figure 3) and assume num cover=1, num cache=2, target value=‘Fb’, and that the
cache initially stores the nodes with identifier {001} at level 0, {101, 103} at level 1,
and {206, 209} at level 2. Initially, two values, for example, ‘Ma’ and ‘Ic’, are randomly
chosen as covers for ‘Fb’.

For l = 1, the identifier of the node along the path to ‘Fb’ is 101, which is in Cache1.
Therefore, the two nodes in the paths to the cover searches (i.e., 102 and 104, respec-
tively) are read from the server. The nodes in Cache1 and in Read (i.e., downloaded
from the server) are shuffled according to the following permutation π: 101’s content
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Fig. 3. Evolution of the shuffle index for Example 5.1

moves to block 102; 102’s to 101; 103’s to 104; and 104’s to 103. Cache1 is updated by
refreshing the timestamp of node 102 (i.e., target id ). Finally, the pointers in n0 (i.e.,
the root node) are updated according to π, and node 001 is encrypted and stored at the
server.

For l = 2, the identifier of the node along the path to ‘Fb’ is 203, which does not
belong to Cache2, and hence the second cover is dropped. Nodes 201 and 203 are read.
The nodes in Cache2 and in Read are shuffled according to the following permutation
π: 201’s content moves to block 209; 203’s to 201; 206’s to 203; and 209’s to 206. Node
201 (i.e., target id ) is inserted into Cache2 and node 206 (which we suppose the least
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recently used) is pushed out. The pointers in the nodes accessed during the previous
iteration (i.e., 101, 102, 103, 104) are updated according to π, encrypted, and sent to
the server.

Finally, accessed leaf nodes (i.e., 201, 203, 206, 209) are encrypted and sent to the
server. Node 201 (i.e., target id ) is returned. Figure 3 shows the evolution of the shuffle
index.

6. EXECUTION OF RANGE QUERIES

Our shuffle index can support the execution of range queries defined on the candidate
key K on which the shuffle index is built. A range query aims at retrieving all data
whose keys are in a range [lower bound ,upper bound ]. With a traditional B+-tree, a
range query is executed by first performing an equality query for K=lower bound to
retrieve the first leaf node n of interest. The data in n are examined and then the
sibling link to the next leaf is possibly followed. This process terminates when a leaf
node with at least one key greater than or equal to upper bound is reached. As already
noted in Section 3, this process would leak to the server both the fact that the query
being executed is a range query and the relative order of leaf nodes in the shuffle in-
dex. To prevent such a leakage, the leaf nodes of the shuffle index are not linked, and
the evaluation of range queries requires a different approach. Our solution consists in
translating a range query into an equivalent set of equality queries, meaning that the
leaf nodes returned by these equality queries are all and only the leaf nodes that store
data whose keys are in the range [lower bound ,upper bound ]. Note that our protection
techniques guarantee that an observer cannot infer whether these equality queries
are related to each other. In other words, an observer is not able to distinguish the
evaluation of a range query from an arbitrary sequence of accesses to the shuffle index
(see Section 9). Also, the equivalent set of equality queries cannot be computed a priori
because neither the actual key values stored in the leaves nor their organization is
known to the client. We then dynamically determine these queries by exploiting the
organization of the key values in the unchained B+-tree. Recall that the i-th child of
any internal node of a B+-tree, with i = 1, . . . , q − 1, is the root of the subtree that
contains the values v with: v < v1; vi−1 ≤ v < vi, i = 2, . . . , q − 2; v ≥ vq−1 (see
Section 3). It is then easy to see that the first key value stored in a leaf node (the
only exception is for the first leaf node that contains the minimum key value) is also
stored in one of the internal nodes. Suppose now to consider two contiguous leaf nodes
of the shuffle index, say ni and nj (i.e., we assume that there is not another node,
say nl, such that ni.values[x]<nl.values[y]<nj.values[z], x = 1, . . . ,Length(ni.values),
y = 1, . . . ,Length(nl.values), z = 1, . . . ,Length(nj .values), with Length(n.values) the
number of values actually stored by node n). The smallest value in nj (i.e., nj .values[1])
is represented within the deepest common ancestor of ni and nj. As an example, con-
sider leaf nodes [Da Db Dc -] and [Ea Eb - - ] in Figure 1. Their common ancestor is
the root node that contains ‘Ea’. Therefore, when we execute the first equality query
for K=lower bound , we have to identify the common ancestor of the leaf node possibly
storing lower bound and the next leaf node. To this purpose, we adapt the algorithm de-
scribed in Section 5 to keep track of the next target to be searched (see the pseudocode
in Appendix B). Intuitively, the process starts with the execution of an equality query
looking for target value=lower bound , which identifies, while visiting the shuffle index,
the first key value stored in the leaf node (if any) following the one resulting from the
search for target value. A new equality query is then executed looking for this value as
a target. The process terminates when the interval has been completely covered.

As an example, consider the shuffle index in Figure 1 and a range query with range
[Cb,Db]. We first evaluate an equality query for K=‘Cb’. The algorithm starts from
the root [ 1
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- - ], and returns leaf node
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211 [Ca Cb Cc -]. Since the interval is not completely covered by the leaf, we execute
another equality query for K=‘Da’, which is the first value in the next leaf node. In-
deed, it is the value in the parent of the returned leaf following the pointer to node
211. When the search for value ‘Da’ terminates, returning leaf node 216[Da Db Dc -], the
interval has been covered as the first value in the next leaf is ‘Ea’>‘Db’. The set of leaf
nodes returned by the sequence of searches is then {211 [Ca Cb Cc -], 216[Da Db Dc -]},
which is equivalent to the result of the original range query.

Note that the overhead introduced in the evaluation of range queries with our shuffle
index is due to the fact that, for accessing the next leaf node, we need to restart the
process from the root. The number of additional nodes visited is h(w − 1), where h is
the height of the tree and w is the number of leaves in the result of the range query. In
practical scenarios, since h is low and the number of values stored in each leaf is high,
the number w of leaves in the result of a range query is small. The overhead is then
limited, as also shown by the experimental results (see Section 10).

7. UPDATE MANAGEMENT

Since the outsourced data are likely to change over time, the shuffle index storing
them may need to be updated accordingly. The possible update operations are related
to the change of an existing tuple, the removal of a tuple, or the insertion of a new
tuple. These operations are recognizable from read-only accesses whenever their man-
agement implies a change in the structure of the shuffle index. Note that the update
of a tuple may impact the shuffle index only when it requires a change in the value of
attribute K of the tuple. In this case, the update operation can be seen as the removal
of a tuple followed by the insertion of the same tuple with a new value for attribute K,
and can then be treated as described in the following.

The removal of a tuple from a node n can bring the number of data stored in n below
the minimum allowed (which is usually equal to ⌈F/2⌉ for traditional B+-trees). In this
case, a traditional B+-tree is updated by redistributing the data stored in n and in one
of its siblings or by merging node n with one of its siblings. These operations cannot be
executed on our shuffle index without revealing that the access removed a tuple since
they require the download of an additional node (i.e., the sibling node) followed by a
possible change in the structure of the shuffle index. We then propose to remove tuples
by marking them as ‘not-valid’. The advantages of such a solution are that the shuffle
index remains unchanged and the indistinguishability of removal operations from all
the other operations is preserved.

The insertion of a new tuple in a leaf node that can accommodate it, either because
it stores less than F − 1 tuples or because it stores tuples marked as ‘not-valid’ (which
is then overwritten), is clearly indistinguishable from a search or removal operation.
A problem arises when we need to insert a new tuple in a leaf node that is already full
because, according to traditional B+-tree management operations, the node has to be
split in two: half the keys (the ones representing higher values) and the corresponding
tuples are moved into a new node n′, and the smallest key moved into n′ is also inserted
into the parent of n. Note that the insertion of a key value in the parent node may in
turn cause a split of the parent. In the worst case, all nodes in the insertion path
are split, thus possibly increasing by one the height of the shuffle index. Since the
splitting of a node is recognizable by an observer, also the insertion of a new tuple
may be recognizable. Our idea for counteracting this problem is to split nodes in a
probabilistic way when they are accessed, independently from the purpose of the access
(i.e., insertion, removal, or read). In other words, whenever we access a node of the
shuffle index, the node is split with a given probability that increases as the number
of values stored within it increases; the probability is equal to one when the node is
full. This strategy has a twofold advantage: 1) we have the guarantee that whenever
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a node is split, its parent is not full (otherwise, we would have split its parent before
accessing the node) and therefore it can accommodate an additional key value without
propagating the split up in the shuffle index; 2) an observer cannot know whether
a split operation is due to the insertion of a new tuple or it is the consequence of
our probabilistic approach (a node can be split when we visit it during any kind of
operation).

In the following, we describe more in details the split operation and its impact on
the shuffle index, differentiating between the split of the root and the split of a leaf or
internal node.

7.1. Split of the Root Node

The split of the root is performed only when it is full (i.e., the probability of splitting a
non-full root is zero) because it causes the increase by one of the height of the shuffle
index, thus impacting the performance of all subsequent accesses. Differently from
traditional B+-trees, when the root of a shuffle index is split, it cannot generate a new
root with two children, but we need to guarantee the presence of at least num cover
+ num cache + 1 children of the new root. This constraint arises from the application
of our protection techniques that require num cover + num cache + 1 distinct paths to
introduce uncertainty on the target of the access to the shuffle index. The split of the
root is formally defined as follows.

Definition 7.1 (Root splitting). Let ⟨id0,n0⟩ be the root of an unchained B+-tree
with F − 1 key values, nc be the number of children required for the new root, and
nk=⌊(F − 1 − (nc − 1))/nc⌋ be the minimum number of key values that each child
of the new root will store. The splitting of the root produces nc new nodes ⟨id ′

0, n
′
0⟩,

⟨id1, n1⟩, . . . , ⟨idnc−1, nnc−1⟩, with ⟨id ′
0, n

′
0⟩ the new root and ⟨id i, ni⟩, i = 1, . . . , nc − 1,

the children of ⟨id ′
0, n

′
0⟩, such that:

R1. i = 1, . . . , (nc − 1), n0.values [(1 + nk) · i] is moved to n′
0.values [i];

R2. i = 0, . . . , (nc − 1), id i is inserted into n′
0.pointers [i];

R3. i = 1, . . . , (nc− 2), n0.values [(1+nk) · i+1], . . . , n0.values [(1+nk) · i+nk ] are moved
to ni.values [1], . . . , ni.values [nk ];

R4. i = 1, . . . , (nc − 2), n0.pointers [(1 + nk) · i + 0], . . . , n0.pointers [(1 + nk) · i + nk ] are
moved to ni.pointers [0], . . . , ni.pointers [nk ];

R5. i = (1 + nk)(nc − 1) + 1, . . . ,Length(n0.values), n0.values [i] is moved to
nnc−1.values [i− (1 + nk)(nc − 1)];

R6. i = (1 + nk)(nc − 1), . . . ,Length(n0.pointers), n0.pointers [i] is moved to
nnc−1.pointers [i − (1 + nk)(nc − 1)];

Conditions R1-R2 determine the key values and pointers that have to be moved from
the old root note to the new root. Conditions R3-R4 determine the key values and point-
ers that have to be moved from n0 to nodes n1, . . . , nnc−2. Conditions R5-R6 determine
the key values and pointers that have to be moved from n0 to the last child nnc−1 of the
new root. Note that node nnc−1 has to be considered separately from the other children
of the new root because it may contain a number of key values (and pointers) greater
than nk . According to Definition 7.1, node ⟨id0, n0⟩ becomes the left-hand side child of
the new root, and the key values and pointers originally stored in n0 are re-distributed
within nodes ⟨id ′

0, n
′
0⟩, ⟨id1, n1⟩, . . . , ⟨idnc−1, nnc−1⟩ to preserve the correctness of the

shuffle index. As an example of root split, consider the root node in Figure 4(a), and
assume that num cover=1, num cache=0. In this case, the split of the root has to gen-
erate a new root with at least two children, as illustrated in Figure 4(a). Note that both
the new root node and the second of its children are allocated to free blocks.
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Fig. 4. An example of split of the root node (a), of an internal node (b), and of a leaf node (c)

To support insertion, removal, and update operations, the algorithm described in
Section 5 should check, at each access to the shuffle index, whether the root node is full
and possibly split it according to the strategy illustrated above. The pseudocode of the
function splitting the root node and its detailed description are reported in Appendix C.

7.2. Split of Non-Root Nodes

The split of an internal or leaf node is performed as in traditional B+-trees, with the
difference that it can be executed also when the node is not full. It then creates a new
node in the shuffle index and requires the update of the parent of the split node, as
formally defined in the following definition.

Definition 7.2 (Internal and leaf node splitting). Let ⟨id ,n⟩ be an internal or
leaf node of an unchained B+-tree, ⟨idp,np⟩ be the parent node of ⟨id ,n⟩, and
promoted value=n.values [i], with i = ⌈(Length(n.values))/2⌉, be a value stored in n.
The splitting of node n with respect to promoted value produces a new node ⟨id ′, n′⟩
such that:

— if ⟨id ,n⟩ is an internal node:
I1. promoted value is moved to np.values and id ′ is inserted into np.pointers ;
I2. j = i+ 1, . . . ,Length(n.values), n.values [j] is moved to n′.values [j − i];
I3. j = i, . . . ,Length(n.pointers), n.pointers [j] is moved to n′.pointers [j − i];

— if ⟨id ,n⟩ is a leaf node:
L1. promoted value is copied into np.values and id ′ is inserted into np.pointers ;
L2. j = i, . . . ,Length(n.values), n.values [j] is moved to n′.values [j − i+ 1];
L3. j = i, . . . ,Length(n.data), n.data[j] is moved to n′.data[j − i+ 1].

Condition I1 (L1, resp.) determines the value and the pointers that have to be added
to the parent of the split node for preserving the correctness of the index structure.
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Note that the insertion of promoted value and id ′ into np is performed so to preserve
the ascending order among the values and pointers already stored in the node. Also,
this insertion may cause the parent node to overflow, which then requires the recursive
application of the split operation to the parent node np. Condition I2 (L2, resp.) deter-
mines the key values that have to be moved from n to the new node n′. Condition I3
(L3, resp.) determines the pointers (data, resp.) that have to be moved from n to the
new node n′.

According to Definition 7.2, the split of a leaf node differs from the split of an in-
ternal node not only because the leaf node stores the actual data while the internal
node stores the pointers to its children, but also because for leaf nodes the key value
promoted value is inserted both into the new node n′ and into the parent node; it is in-
serted only into the parent node, otherwise. As an example of node splitting, consider
the internal node allocated to block 102 in the shuffle index in Figure 1 and reported
in Figure 4(b) for the reader’s convenience together with its parent node, and suppose
that promoted value=‘Oa’. The nodes resulting from the split are illustrated in Fig-
ure 4(b), which also highlights the update of the parent of the split node. Figure 4(c)
illustrates the split of the leaf node allocated to block 206 in the shuffle index in Fig-
ure 1. It is immediate to see that the promoted value promoted value=‘Gb’ appears both
in the new leaf and in its parent.

To support the probabilistic split of visited nodes, the access algorithm illustrated in
Section 5 is modified as discussed in detail in Appendix C. In fact, the algorithm needs
to invoke, for each visited node, a procedure in charge of evaluating its possible split
according to the strategy illustrated above. This procedure then possibly splits the
node and updates the variables necessary to guarantee the correctness of the access
process accordingly (e.g., cached nodes, variables representing the target and cover
searches). A detailed description and the pseudocode of this procedure are presented
in Appendix C.

The split operation of an internal or leaf node n is regulated by a probability function
℘(n) that is equal to: 1, if n is full; 0, if n stores less than t values, where t is a threshold
fixed by the client to prevent the presence in the shuffle index of almost empty nodes;
a value in (0,1) that increases with the number of values stored in the node, otherwise.
Formally, ℘(n) is defined as follows.

Definition 7.3 (Probabilistic Split). Let ⟨id, n⟩ be a node of an unchained B+-tree
with fan out F , and 2≤t<F − 1 be a threshold value representing the minimum num-
ber of values in each node. The event E(n) of splitting n when visiting it follows a
Bernoulli distribution and takes value E(n)=true with success probability ℘(n) and
value E(n)=false with failure probability 1− ℘(n), where:

℘(n)=

⎧

⎨

⎩

0, Length(n.values)≤t

Length(n.values)−t
(F−1)−t otherwise

The value of parameter t has clearly an impact on the cost of accessing a tuple since
it determines the height of the shuffle index. Note however that the maximum growth
in the height of the shuffle index caused by the adoption of a probabilistic split is
constant, as it depends on constant values, that is: the fan out F of the tree, the chosen
threshold t, and the number |D| of tuples (actual valid tuples or old tuples marked
as ‘not-valid’ and not yet overwritten) in the tree. The height of a traditional B+-
tree with fan out F and N leaf nodes is ⌈logF (N)⌉. In our case, since the number of
tuples stored in the leaf nodes is |D| and each node contains at least t key values, the

maximum height of the shuffle index is
⌈

logt+1
|D|
t

⌉

, which corresponds to a shuffle
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Fig. 5. Evolution of the shuffle index for Example 7.4

index where each node (except the root) contains exactly t key values. The minimum
height of the shuffle index is instead obtained when all nodes are full and is equal to
⌈

logF
|D|
F−1

⌉

. It is easy to see that the performance overhead can be reduced by properly

tuning parameter t choosing a value close to F − 1 to limit the height of the tree, while
protecting access confidentiality. We note that the value of parameter t does not impact
the indistinguishability between search and insert operations (see Section 9.2).

Example 7.4. Consider the index in Figure 1(b) (reported for convenience at the
top of Figure 5) and assume that num cover=1, num cache=2, and that the client is
interested in inserting a new tuple, with key attribute value target value=‘Fc’. We also
assume that the initial configuration of the cache is the same considered in Exam-
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ple 5.1 (i.e., it stores nodes {001} at level 0, {101, 103} at level 1, and {206, 209} at
level 2) and that the covers for ‘Fc’ are still ‘Ma’ and ‘Ic’. Initially, the algorithm visits
the root node, which is not split as it is not full.

For l = 1, the identifier of the node along the path to ‘Fc’ is 101, which is in Cache1.
Therefore, the two nodes in the paths to the cover searches (i.e., 102 and 104, respec-
tively) are read from the server. The algorithm evaluates whether to split each of these
nodes and splits node 102 because it is full. To this purpose, it gets a free block iden-
tifier from the server, 105 in our example, splits node [ 2

1
0

Ma 2
0
1

Na 2
0
7

Oa 2
0
8

Pa 2
0
5

] into nodes
[ 2

1
0

Ma 2
0
1

Na 2
0
7

- - - - ] and [ 2
0
8

Pa 2
0
5

- - - - - - ] allocated to blocks 102 and 105, respectively, and
updates the root node (i.e., the parent of node 102) that becomes [ 1

0
3

Ea 1
0
1

Ia 1
0
4

La 1
0
2

Oa 1
0
5

] (as
illustrated in Figure 4(b)). The nodes in Cache1 and in Read (i.e., downloaded from the
server) are shuffled according to the following permutation π: 101’s content moves to
block 102; 102’s to 104; 103’s to 105; 104’s to 101; and 105’s to 103. Cache1 is updated
by refreshing the timestamp of node 102 (i.e., target id ). Finally, the pointers in n0 (i.e.,
the root node) are updated according to π, and node 001 is encrypted and stored at the
server.

For l = 2, the identifier of the node along the path to ‘Fc’ is 203, which does not
belong to Cache2, and hence the second cover is dropped. Nodes 201 and 203 are read.
The algorithm evaluates whether to split visited nodes and decides to split node 206
although it is not full, thanks to the probabilistic approach adopted. The procedure gets
a free block identifier from the server, 217 in our example, splits leaf node [Ga Gb Gc -]
into nodes [Ga - - - ] and [Gb Gc - - ] allocated to blocks 206 and 217, respectively, and
updates the parent of node 206 (i.e., node 102) as [ 2

0
4

Fa 2
0
3

Ga 2
0
6

Gb 2
1
7

Ha 2
0
2

] (as illustrated in
Figure 4(c)). The nodes in Cache2 and in Read are shuffled according to the following
permutation π: 201’s content moves to block 209; 203’s to 206; 206’s to 201; 209’s to 217;
and 217’s to 203. Node 206 (i.e., target id ) is updated inserting the new tuple with key
value ‘Fc’ and inserted into Cache2 and node 217 (which we suppose the least recently
used) is pushed out. The pointers in the nodes accessed during the previous iteration
(i.e., 101, 102, 103, 104, 105) are updated according to π, encrypted, and sent to the
server.

Finally, accessed leaf nodes (i.e., 201, 203, 206, 209, 217) are encrypted and sent to
the server. Figure 5 shows the evolution of the shuffle index. In the figure, gray boxes
represent blocks that have been added by the split operations performed during the
algorithm execution.

8. CORRECTNESS AND COMPLEXITY OF SHUFFLE INDEX MANAGEMENT

We analyze the correctness and computational complexity of the algorithm in Figure 2
extended to support the probabilistic split of visited nodes (for the detailed pseudo-
code, see Appendix B and Appendix C). To prove the correctness of the algorithm,
we need to prove that it correctly performs the search of the target value and that
it preserves the correctness of the shuffle index and cache structures, as stated by
Theorems 8.1–8.3 below (the proofs of the theorems are in Appendix D).

We start by proving correctness of the search operation.

THEOREM 8.1 (RETRIEVAL CORRECTNESS). Let S be a shuffle index built on can-
didate key K with domain D and target value be a value in D. The algorithm in Figure 2
returns the unique leaf node where target value is (or should be) stored.

Theorem 8.2 proves that after the execution of a search, removal, or insert operation,
the shuffle index still represents a correct unchained B+-tree defined on the same
set of data, possibly with the addition of the target of the executed operation if it
corresponds to an insert.
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THEOREM 8.2 (SHUFFLE INDEX CORRECTNESS). Let S be a shuffle index repre-
senting an unchained B+-tree built on candidate key K defined over domain DK ,
D⊂DK be the set of key values stored in the unchained B+-tree, and target value be a
value in DK . After the execution of an access operation on S by the algorithm in Figure 2
with target value target value, S is a shuffle index representing an unchained B+-tree
defined on D possibly extended with target value if the access is inserting target value.

Theorem 8.3 proves that the algorithm correctly manages the cache stored at the
client-side, that is, the cache satisfies Definition 4.2.

THEOREM 8.3 (CACHE CORRECTNESS). Let S be a shuffle index and
Cache0, . . . ,Cacheh be a cache (Definition 4.2). After the execution of an access
operation on S by the algorithm in Figure 2, Cache0, . . . ,Cacheh satisfies Definition 4.2.

We conclude this section by noting that the algorithm in Figure 2 works in polyno-
mial time in the height of the shuffle index, and in the number of cover and cached
searches. Intuitively, each access to the shuffle index implies the visit of num cover +
num cache + 1 disjoint paths in parallel: one for the target of the access, num cover for
cover searches, and num cache for cached paths. If no node is split, an access to a shuf-
fle index then costs O((num cover + num cache) logF (m)) as h = logF (m), with m the
number of nodes in the shuffle index. Split operations impact access time as the split
of a node requires to update its parent. Since nodes in the shuffle index do not have
a direct reference to their parent, the update of the parents of shuffled nodes costs,
in the worst case, O(num cover + num cache + 1). In fact, it is necessary to search for
the parent of the split node among the nodes in cache or read for the previous level in
the shuffle index. As a consequence, in the worst case (i.e., if each visited node is split)
the cost of the algorithm in Figure 2 becomes O((num cover +num cache)2 logF (m)), as
formally stated by the following theorem.

THEOREM 8.4 (COMPUTATIONAL COMPLEXITY). The algorithm in Figure 2 oper-
ates in O((num cover + num cache)2 logF (m)) time, where m is the number of blocks in
the shuffle index and F is its fan out.

Our experiments in a representative configuration scenario (see Section 10) show
that the overall performance overhead caused by the adoption of our protection tech-
niques remains limited (≈20% with respect to a plain encrypted index assuming
num cover=1 and num cache between 1 and 2). Also, as discussed in Section 10, con-
figurations with num cover=1 and num cache=2 provide sufficient guarantees of both
access and pattern confidentiality.

9. PROTECTION ANALYSIS

In this section, we analyze the confidentiality guarantees offered by our shuffle index.
Before diving into the discussion of confidentiality issues, we would like to make

a note on a major guarantee of our proposal (which is not satisfied instead by alter-
natives like Practical ORAM [Stefanov et al. 2013] and Path ORAM [Stefanov et al.
2013]), which is to always leave, at the end of each access, a consistent representation
of the data stored at the server. We believe this to be a critical requirement that needs
to be considered to permit access to the shuffle index by different clients as well as
guarantee reliability and recoverability of the system.

In the remainder of this section, we first formally prove that our approach guaran-
tees both access and pattern confidentiality (Section 9.1), and then that the storage
server is not able to distinguish the kind of operation executed on the shuffle index
(Section 9.2). Intuitively, these guarantees are a consequence of the shuffling, which
degrades the possible knowledge that an observer has on the correspondence between
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nodes and blocks where they are stored, and of the probabilistic split, which has the
effect of making the different operations indistinguishable. Finally, we present an ex-
perimental evaluation showing that the theoretical results illustrated actually hold in
practice (Section 9.3).

9.1. Access and Pattern Confidentiality

We first analyze how shuffling degrades the information on the correlation between
nodes and blocks. We then describe how the shuffle index supports access and pattern
confidentiality (content confidentiality as well as integrity of the outsourced data are
guaranteed by encryption). For simplicity and without loss of generality, our analy-
sis will consider only the leaf blocks accessed at each request, since leaves are more
exposed than internal nodes, which, representing only summary information on the
descendants, are more protected. We will also consider the worst case assumption that
no accessed node is split since the splitting increases the number of shuffled nodes,
providing higher protection.

Degradation due to shuffling. The continuous shuffling, which occurs at every access,
is able to degrade any information the server may possess on the correspondence be-
tween nodes and blocks, reaching, after a sufficient number of accesses, a complete loss
of information. This result shows an interesting feature of the shuffle index behavior
and the absence of long term accumulation of information. Let N = {n1, . . . , nm} and
B = {b1, . . . , bm} be the set of leaf nodes in the unchained B+-tree and the set of leaf
blocks in the shuffle index, respectively. The knowledge that the server has on the cor-
respondence between nodes and blocks storing their encrypted content can be modeled
as the probability P(ni, bj) that the server can establish an association between a node
ni ∈ N and a block bj ∈ B, with i, j = 1, . . . ,m.

We now analyze how the application of cover searches and shuffling techniques at
each access progressively destroys any information the server may have acquired on
the correspondence between nodes and blocks, thus providing access confidentiality.
In this analysis, we consider the worst case assumption that no cache is maintained
(only to simplify the analysis) and that the server, at initialization time, knows the
block where each node is stored. We first prove that the maximum value of probability
P(ni, bj) for each node ni and each accessed block bj decreases at each access, thanks
to shuffling.

THEOREM 9.1 (KNOWLEDGE DEGRADATION). Let S be a shuffle index represent-
ing an unchained B+-tree, N be the set of leaf nodes in the unchained B+-tree, B be the
set of leaf blocks in S, P(ni, bj) be the probability estimated by the server that node ni is
stored in block bj , and Ba = {bq1 , . . . , bqnum cover+1} ⊂ B be the set of leaf blocks involved
in an access. After the search operation, for each ni ∈ N , the maximum value of proba-
bility P(ni, bj), with bj∈Ba: i) does not change, if P(ni, bj)=P(ni, bk) for all bj ,bk∈Ba; ii)
decreases, otherwise.

PROOF. After the access is executed, for all nodes ni ∈ N , and all blocks bqj ∈ Ba, the

probability P(ni, bqj ) becomes equal to (
∑num cover+1

j=1 P(ni, bqj ))/(num cover + 1) due
to the shuffling. In fact, thanks to re-encryption with a different salt, the encrypted
representation of shuffled nodes always changes at each access. Then, an observer is
not able to determine to which block bqj ∈ Ba each node ni ∈ N has been moved. The
maximum value among P(ni, bqj ), with bqj ∈ Ba, then decreases. It does not change
only if ∀bqj ,bqk∈Ba, P(ni, bqj )=P(ni, bqk).

Note that P(ni, bj) remains unaltered for all the blocks that are not involved
in the access (i.e., blocks in B \ Ba). For instance, assume that before the ac-

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.



Shuffle Index: Efficient and Private Access to Outsourced Data A:25

cess: num cover=3; Ba={301, 302, 303, 304}; and P(ni, 301)=0.1, P(ni, 302)=0.4,
P(ni, 303)=0.2, and P(ni, 304)=0.1. After the access, each probability would be equal
to (P(ni, 301)+P(ni, 302)+P(ni, 303)+P(ni, 304))/4=0.2, due to the random shuffling. If
∃bk ̸∈Ba s.t. P(ni, bk)≥P(ni, bj), ∀ bj∈B, then the overall maximum probability does not
change and is equal to P(ni, bk). If the previous condition is not satisfied and, on the
contrary, ∃bqk∈Ba s.t. P(ni, bqk)≥P(ni, bj), ∀ bj∈B, then P(ni, bqk) decreases and there-
fore also the maximum probability decreases. Note that, as already noted, this prob-
ability does not decrease only if P(ni, bqj )=P(ni, bqk) for all bqj ,bqk∈Ba, but due to the
random choice of covers, this will typically happen only when P(ni, bj)=P(ni, bk) for all
bj,bk∈B, that is, when the server has no knowledge on the node/block association.

We apply classical concepts of information theory to model the overall degree of un-
certainty of the server about the block containing a node. For each node ni ∈ N , such
uncertainty is measured through the entropy, denoted Hni

, applied on the probabilities
P(ni, bj), for all bj ∈ B. Formally, Hni

=−
∑m

j=1 P(ni, bj) log2 P(ni, bj). Note that, Hni
=0

means that the server knows exactly the block storing node ni; on the other hand,
Hni

=log2 m means that the server has complete uncertainty about the correspondence,
since P(ni, bj) = 1/m, j = 1, . . . ,m. Indeed, the knowledge of the server about the block
containing node ni (corresponding to the block bx s.t. P(ni, bx)≥P(ni, bj), ∀bj∈B) de-
creases progressively at each access, due to shuffling. The entropy remains constant
only when all the accessed blocks have equal probability. The following corollary proves
this property.

COROLLARY 9.2 (ENTROPY INCREASE). Let S be a shuffle index representing an
unchained B+-tree, N be the set of leaf nodes in the unchained B+-tree, B be the
set of leaf blocks in S, and Ba = {bq1 , . . . , bqnum cover+1} ⊂ B be the set of leaf blocks
involved in an access. After the search operation, ∀ni ∈ N , Hni

does not change, if
P(ni, bj)=P(ni, bk) for all bj,bk∈Ba; increases, otherwise.

As an example, suppose that the server knows, at a given time t0, the exact correspon-
dence between a node ni ∈ N and the block bj ∈ B storing it, meaning that P(ni, bj)=1;
P(ni, by)=0, for all y = 1, . . . ,m, with y ̸= j, and Hni

=0. Suppose now that there is an
access and that among the num cover + 1 blocks accessed there is block bj. Because of
the shuffling, when the access is terminated, the observer does not know which of the
num cover + 1 written blocks contains node ni. The probability that ni is stored in one
of the num cover + 1 written blocks becomes 1/(num cover + 1) while it remains equal
to zero for all the other blocks. As a consequence, the value of Hni

increases for each
node ni ∈ N . We note that the increase in Hni

depends on the set of blocks accessed
by each search operation. As shown by the experimental results in Section 9.3, after a
limited number of accesses the value of entropy starts to increase and quickly reaches
its maximum, even for scenarios where initially the choice of blocks tends to produce
lower increases.

Access confidentiality. Access confidentiality is characterized as the protection
against the server ability to associate a specific access request with a specific
node/data. Static encrypted indexing structures do not exhibit access confidentiality,
because the server may exploit information on the frequency of accesses (e.g., the
server may know that people last names are used as key and “Smith” is the most
frequently accessed value) and may thus identify the content associated with a specific
block.

The shuffle index offers a natural protection against this attack. Even disregarding
the caching and considering only the contribution offered by covers, every time an
access is performed any information on the specific access has to be divided among all
the num cover+1 nodes involved in the access request. After the nodes are shuffled, the
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information on the correspondence between nodes and blocks is further destroyed. In
general, we observe here a reenforcing mechanism: access confidentiality is typically
at risk when there are values that are characterized by high access frequency, but
the higher the access frequency, the greater the destruction of information realized
by shuffling. An experimental verification of this aspect is provided by our experiment
that shows how extremely different target distributions produce almost identical block
access profiles (Section 9.3).

Pattern confidentiality. Pattern confidentiality is characterized as the protection
against the server ability to recognize that two separate accesses refer to the same
node. We first consider a generic scenario, for which we quantify the minimum level of
protection offered by the shuffle index. We then extend the analysis to the considera-
tion of patterns separated by a number of steps smaller than the size of the cache. We
can observe that the degradation of information that derives from shuffling guarantees
that accesses separated by a significant number of steps will not be recognizable.
1) Protection by covers and shuffling. To simplify the analysis, here we suppose that
the cache is not used. The server observes two consecutive requests that trans-
late into accesses to the following two sets of leaf blocks: {bi1 , . . . , binum cover+1} and
{bj1 , . . . , bjnum cover+1}, respectively (non-consecutive requests are characterized by bet-
ter protection). Two cases may occur: i) the two sets do not have any block in common,
or ii) there is (at least) one block that appears in their intersection. In the first case,
there is no repeated access and therefore no pattern to protect. In the second case,
there is the possibility that the two accesses represent a repeated access to the same
target node content. By the cover/target indistinguishability, the probability that the
intersection identifies a repeated access is 1/(num cover+1)2. We observe that the con-
sideration of patterns presenting a greater number of accesses (i.e., the identification
of z accesses to the same node) will be characterized by a probability decreasing at a
geometric rate (i.e., a sequence of z accesses presenting a non-empty intersection will
be due with probability 1/(num cover + 1)z to the execution of z accesses to the same
node). The server then cannot use the information on the accessed blocks to recognize
accesses to the same nodes.
2) Protection by caching. Considering a worst case scenario where the server knows
which are the nodes in the cache before the i-th access (with i≤num cache), pattern
confidentiality is violated if the server can determine whether the i-th target access
refers to the same node n1 as the first access or not. The following theorem formally
proves that, under the cover/target indistinguishability hypothesis (see Section 9.3),
pattern confidentiality is fully protected.

THEOREM 9.3 (SAME ACCESS UNRECOGNIZABILITY). Let S be a shuffle index rep-
resenting an unchained B+-tree, N = {n1, . . . , nm} be the set of leaf nodes in the un-
chained B+-tree, Cache0, . . . ,Cacheh be the cache, and {nj1 , . . . , nji} be a sequence of
accessed (target) nodes, with i≤num cache. Even if the server knows the content of the
cache before the i-th access, the server cannot infer whether nji=nj1 .

PROOF. The proof must consider two cases.
Case 1: nj1 and nji are both in cache. Both accesses would correspond to a cache

hit; then, the num cover + 1 blocks accessed at the i-th access {bi1 , . . . , binum cover+1} are
all covers and there is no information gained from knowledge of the cache and of the
accessed blocks that can help in identifying if the access has been to nj1 or to nji .

Case 2: nj1 is in cache and nji is not in cache. If it is nj1 that is accessed, a cache hit
is generated and the num cover + 1 blocks {bi1 , . . . , binum cover+1} accessed at time i are
all covers. If it is nji that is accessed, a cache miss is produced and the accessed blocks
will represent num cover covers and one target access to the physical node containing

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.



Shuffle Index: Efficient and Private Access to Outsourced Data A:27

nji . Since the server ignores where nji is stored, the server cannot recognize if nj1 or
nji is accessed since, by hypothesis, the server is not able to distinguish cover searches
from targets.

Proving protection in the scenario considered by the above theorem, where uncer-
tainty is reduced to a single bit, implies that pattern confidentiality holds in any sce-
nario, where the server has access to less knowledge. We can then conclude that the
shuffle index fully protects pattern confidentiality when the distance between the ob-
servations is within the size of the cache. As a consequence, we can also conclude that
the evaluation of range queries adopting the approach discussed in Section 6 guar-
antees their indistinguishability from a sequence of arbitrary accesses to the shuffle
index. Indeed, the distance between the accesses in the sequence is within the size of
the cache, for any num cache≥1, and presents repeated accesses to internal nodes.

9.2. Indistinguishability of Accesses

In this section, we prove that our approach to insert new tuples in the shuffle index
does not reveal to the server whether an access is searching for a value or inserting
a tuple. To this purpose, we prove that the server cannot infer whether a value has
been inserted into a node by simply observing whether the node has been subject to
a split during the access to the shuffle index. This is formally proved by the following
theorem.

THEOREM 9.4 (INSERT UNRECOGNIZABILITY). Let S be a shuffle index represent-
ing an unchained B+-tree, and n be a node in the unchained B+-tree. Read and Insert
operations are indistinguishable since:

(1) even if the server can recognize the split of a node n, generating nodes ni and nj , and
a subsequent split operating on ni, the server cannot infer whether a value has been
inserted into ni or not (the case for nj is symmetric);

(2) even if the server can recognize that an access did not split node n, the server cannot
infer whether a value has been inserted into n.

PROOF. We now prove each of the conditions in the theorem.

(1) Let us assume that the server can recognize the split of a node n, generating nodes
ni and nj; and a subsequent split operating on ni, generating nodes nk and nl. (Note
that this is a worst case scenario as the server does not know which are the blocks stor-
ing ni and nj after the split of n, thanks to shuffling.) We now prove that this scenario
can happen also if no value has been inserted into ni. To this purpose, let us assume
that n is full, that is, it stores F − 1 values. Its split generates two nodes, ni and nj ,
storing each either

⌊

F−1
2

⌋

or
⌊

F−1
2

⌋

− 1 values. Let us now assume that the threshold
t fixed by the client is lower than or equal to

⌊

F−1
2

⌋

. As a consequence, the probability
℘(ni) (℘(nj), resp.) of splitting node ni (nj , resp.) when visiting it is not null, even if
it has been obtained splitting another node n. Therefore, it may be split by the next
access to the index, although no value has been inserted into the node.

(2) The second property immediately follows from the observation that not all the in-
sert operations cause a node split. Indeed, if the nodes along the path to the leaf where
the new tuple should be stored are not full, they can accommodate the new value with-
out splits. On the other hand, in our approach, search operations may cause the split
of visited nodes.

This theorem proves that the split of a node and the insertion of a tuple into the
same node are independent events. In fact, the number of accesses occurring between
the insertion of a tuple into a node and the split of the same is arbitrary.
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We note that the theorem above considers a worst case scenario that cannot happen
adopting a shuffle index for the management of a data collection. Indeed, as already
proved in Section 9.1, the server is not able to recognize two subsequent accesses to
the same node, thanks to shuffling. Analogously, it is not able to infer whether an ac-
cess splits one of the nodes resulting from a previous split. Furthermore, our approach
possibly splits nodes along the path to the target value, but also nodes along the path
to cover searches and nodes in cache. Since the server is not able to distinguish cover
searches from the target search, it cannot precisely determine which of the nodes ac-
cessed during an access has been split, and therefore it cannot determine whether an
access to the shuffle index performs an insert or a search operation.

To strengthen the fact that the server is not able to infer which operation is be-
ing executed by an access to the shuffle index, we formally analyze the probability of
splitting a node, considering a sequence of accesses visiting it.

THEOREM 9.5 (PROBABILITY OF SPLITTING A NODE). Let S be a shuffle index rep-
resenting an unchained B+-tree, and n be a node in the unchained B+-tree. The prob-
ability that the k-th access to n splits the node is ℘(n) · (1 − ℘(n))k−1.

PROOF. The probability that an access to a node splits it is ℘(n). Since the accesses
in the considered sequence are independent, the probability that the k-th access splits
the node is obtained multiplying the probability that the first k−1 accesses do not split
the node by the probability that the k-th access splits it, that is, ℘(n) · (1−℘(n))k−1 .

Recall that the probability ℘(n) of splitting node n when visiting it changes (in-
creases) every time a new value is inserted into the node (Definition 7.3). Also, the
nodes resulting from a split have probability of being split lower than the original
node, since they store at most half the values in the original node.

9.3. Experimental Results

To assess the protection guaranteed by our algorithm, we implemented it in Java and
evaluated: 1) the rate of decrease of the server knowledge about the correspondence
between nodes and blocks due to cover searches and shuffling (supporting access con-
fidentiality), and 2) the degree of similarity of block access profiles, showing that dif-
ferent accesses exhibit the same behavior at the block level, and therefore are not
distinguishable by the server (supporting pattern confidentiality).

Entropy evolution. In the experiment for evaluating knowledge degradation by the
server, we considered a shuffle index with 100 leaf blocks. We started from a con-
figuration where the server knows the block bi where a leaf node ni is stored (i.e.,
P(ni, bi) = 1). We applied a sequence of random accesses with num cover=10 and
num cache=0 and measured entropy Hni

. The idea is to simulate random accesses to
the blocks. The entropy Hni

increases when the probability P(ni, bj) of a read block bj
is greater than zero. From the starting configuration, this entropy increase will hap-
pen only when bi is read. Intuitively, as soon as bi is read, the probability is distributed
over a larger number of blocks (those accessed together with bi), increasing the prob-
ability of a further entropy increase. Figure 6 illustrates the average entropy (over
5000 experiments) and the value of the entropy for the 25th, 10th, and 5th bottom per-
centile (the p-th bottom percentile is the case that exhibits a value of Hni

worse than
100(1−p)% of the simulations), as a function of the number of accesses. As the graph
shows, Hni

progressively increases (with a rate increasing with num cover/m, where m
is the number of leaf blocks) and after at most m accesses it reaches its maximum value
(i.e., log2 m), meaning that the server’s knowledge about the correspondence between
nodes and blocks has been completely destroyed.
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Block access profiles. In the experiment to evaluate the indistinguishability of ac-
cess profiles, we simulated different access profiles by synthetically generating index
values that follow a self-similar probability distribution with skewness γ in the range
[0, 0.5] [Gray et al. 1994]. Given a domain of cardinality d, a self-similar distribution
with skewness γ provides a probability equal to 1−γ of choosing one of the first γd do-
main values. The same proportion holds when considering also any sub-range of the do-
main values. For instance, a value γ = 0.5 generates a sequence of domain values that
follows a uniform probability density function. Figure 7 illustrates the rank/frequency
distribution of block identifiers corresponding to three access profiles, generated ex-
tracting 1000 target values from three self-similar distributions with γ = 0.5 (50-50
rule), γ = 0.25 (75-25 rule), and γ = 0.10 (90-10 rule), respectively. On the x-axis, we
report, in decreasing order of frequency, the rank number assigned to the blocks ac-
cessed with the same frequency (i.e., the first value on the x-axis corresponds to the
block accessed more frequently). The figure shows that our approach makes the fre-
quency distributions of accesses to the blocks so close to become statistically indistin-
guishable, even if the considered logical access profiles are extremely different. Since
the statistical profile of accesses to index values is always near to that produced by
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the uniform distribution, the use of simple statistical models to support the choice of
covers easily satisfies the indistinguishability property.

10. PERFORMANCE ANALYSIS

To assess the performance of our algorithm, we used a data set of 2 GiB stored in
the leaves of a shuffle index with 3 levels, built on a numerical candidate key K of
fixed-length, with fan out 512, and representing 218 different index values. The size
of the nodes of the shuffle index was 8 KiB. The hardware used in the experiments
included a server machine with an Intel Core i7-920 CPU at 2.6 GHz, L3–8 MiB, 12
GiB RAM DDR3 1066, 120 GiB SSD disk SATA III with read throughput 240 MiB/s,
write throughput 220 MiB/s, running an Ubuntu operating system with the ext4 file
system. The client machine was running an Intel Core i5-2520M CPU at 2.5 GHz, L3–
3 MiB, 8 GiB RAM DDR3 1066, running an Arch Linux operating system with the ext4
file system. We considered both a scenario where the client and the server operate in
a wide area network, by properly simulating adequate network configurations using
professional-grade tools, and a scenario where they operate in a local area network.
The implementation of the algorithm in Figure 2 that accesses the shuffle index has
been optimized to minimize the number of interactions between the client and the
server. The performance analysis started after the system had processed a significant
number of accesses, to be in a steady state. We generated access requests according
to a uniformly random profile of the target values. Also, we considered the manage-
ment of both read accesses and of updates to the dataset stored in the leaves of the
shuffle index. As a consequence, each access to a node in the shuffle index (either to
search for a value or to modify the dataset) may cause its split (see Section 7). We will
therefore describe the effects, in terms of performance overhead, of our probabilistic
split approach with respect to the base scenario where the outsourced data collection
never changes. In the following, we first analyze the performance of the algorithm in
Figure 2, extended with probabilistic node split (Section 10.1), and we then evaluate
the computational overhead caused by the evaluation of range queries (Section 10.2).

10.1. Single Access Request

To evaluate the performance of the shuffle index we took into consideration the cost of:
CPU, disk, and network.

CPU. The computational load required for the management of the shuffle index is
quite limited. The algorithm uses only symmetric encryption and a MAC function; the
execution times we measured on a 8 KiB block for both cryptographic functions are
under 100 µs, a negligible fraction of the time required by network and disk accesses,
which then drive the performance of the shuffle index.

Disk. We analyzed the performance of the shuffle index when the client and the
server operate in a local area network (we used a 100 Mbps switched Fast Ethernet
network with average Round Trip Time - RTT equal to 0.67 ms). In this configura-
tion, disk performance becomes the limiting factor. Figure 8 reports observed times
in milliseconds. The values are grouped by the same value of num cover , between 1
to 10, varying the value of num cache from 1 to 10. The access time grows linearly
with the number of cover searches, since every additional cover requires to traverse
an additional path in the shuffle index; the depth of the tree remains constant and
the quadratic element in the complexity analysis in Theorem 8.4 does not apply. Al-
though an increase in num cache causes a growth in the number of blocks written for
each level of the shuffle index, the number of cached nodes has a smaller impact on
the access time. This is justified by the fact that the disk operations caused by the
increase in num cache greatly benefit from buffering and cache mechanisms at the
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operating system and disk controller level, which currently provide significant perfor-
mance improvements on high capacity storage. In particular, the cost of the repeated
write operations on cached blocks will be lower than that associated with cover and
target blocks. We claim that, as it is typical for database index structures, the bottle-
neck in the performance of the shuffle index in a Local Area Network (LAN) scenario
is the number of read and write operations on the local disk. The best performance is
obtained when using a single cover and a single cache; increasing the number of cov-
ers there is an impact on performance, but in every tested configuration the average
access time was below 80 ms.
The dashed line in Figure 8 represents our baseline. It has been obtained measuring
the access time of a plain encrypted index with the same static structure of the shuffle
index (this is essentially the tree structure that was proposed in [Damiani et al. 2003]).
The adoption of a plain encrypted index still requires the client to visit the nodes in the
tree level-by-level, but it does not use covers, caching, and shuffling to provide access
and pattern confidentiality. The comparison with a plain encrypted index, which pro-
vides content confidentiality, permits to evaluate the specific overhead caused by the
adoption of the techniques to protect access and pattern confidentiality. The perfor-
mance overhead introduced by the adoption of our protection techniques ranges from
×2.5 to ×10 of the baseline, depending on the number of covers and on the size of the
cache. This increase in the access time is mainly due to the disk cost caused by a higher
number of (random) read/write operations.
To assess the performance overhead caused by probabilistic node split, we compared
the access time when visited nodes are not split and when a subset of the visited
nodes are split. The split of a subset of the nodes visited while accessing the shuf-
fle index implies the transmission of additional nodes (i.e., one for each node that
has been split) to the server. This causes an increase in the measured access time
of ≈1.3(num cache + num cover ) ms, depending on the number of nodes that have been
split. It is however interesting to note that access times of requests that are evaluated
after a node split largely benefit from the split since, once a node split is performed,
the probability of a further split of the same node (in particular, if it is an internal one)
quickly decreases. Hence, the slowdown of the measured access time due to a split op-
eration is distributed on the subsequent requests.
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The approach described in [Stefanov and Shi 2013] (which is discussed in the related
work) shows an access response time comparable with the one provided by our tech-
nique. However, with respect to network bandwidth overhead, the performance analy-
sis in [Stefanov and Shi 2013] reports a ×40–×50 penalty with respect to the baseline
represented by performing an unprotected access (i.e., for accessing one data block,
on average, 40–50 data blocks need to be accessed). By contrast, the shuffle index
incurs a lower I/O overhead compared to the unprotected version, which is equal to
(2+2·num cover+num cache).

Network. To better analyze how the network impacts on the time necessary to ac-
cess the shuffle index, we first study the number of messages and the number of nodes
(which corresponds to the number of bytes) exchanged between the client and the
server during each access. Given a shuffle index of height h, the client and the server
exchange 2h+1 messages for the evaluation of each access. In fact, for each level in the
shuffle index but the root level, the client sends a request for a set of blocks, and the
server replies with their content. The client also sends to the server, together with her
request for blocks at level l , also the blocks to be rewritten at level l − 1. The visit of
each level then implies the exchange of two messages. The root level, on the contrary,
implies no message exchange as the root node is in cache. An additional message is
finally required to write the leaves of the shuffle index.
The number of blocks downloaded from the server for each level of the shuffle in-

dex (except for the root level) is always equal to 1 + num cover . The number of
blocks sent to the server (i.e., written back) instead possibly varies as a conse-
quence of split operations. If no accessed node is split, the number of written blocks
is 1 + num cover + num cache for each level, but the root level that requires to
write one block only. The split of one among the accessed nodes causes the need to
write one additional block. Hence, the number of written blocks can be computed
as (1 + num cover + num cache) · (1 + ℘̄(n)), with ℘̄(n) the expected value of ℘(n)
(which follows a Bernoulli distribution as the split of different nodes during a same
access are independent events). Considering a single access to the shuffle index,
the local expected value of ℘(n) at the time of the access is ℘̄ = F−1−t

2(F−1) , therefore

the overall number of blocks exchanged during each access is, on average, equal to
1+h(2+2num cover +num cache + ℘̄(1+num cover +num cache)). Figure 9 illustrates
the average number of bytes exchanged during an access to our shuffle index assuming
t=256 and varying the number of cover searches and of nodes in cache for each level
of the shuffle index between 0 and 10.

We analyzed the performance of the shuffle index when the client and the server
operate in a Wide Area Network (WAN). This scenario, where a client uses a remote
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untrusted party for the private access to data, is the most interesting and natural for
the shuffle index. We adopted a network configuration suitable for interactive traffic
between the client and the server, in contrast to configurations where network connec-
tions are sized to better support database replication or database backup operations.
To properly configure the network used for our experiments, we adopted a professional-
grade tool suite (i.e., Traffic Control and Network Emulation, for Linux systems), which
permits to tune the networking configuration through a granular control over the
queuing systems and mechanisms by which packets are received, transmitted, and re-
ordered. We chose two representative WAN configurations with LAN-like bandwidth.
The first configuration is characterized by round trip time typical of US east-coast to
Europe connections (modeled as a normal distribution with mean of 100 ms and stan-
dard deviation of 2.5 ms). The second configuration is characterized by round trip time
typical of continental connections (modeled as a normal distribution with mean of 30
ms and standard deviation of 2.5 ms). In both configurations, network performance
becomes the limiting factor. Figures 10(a) and 10(b) report observed times in millisec-
onds for the US-to-Europe connection and for the continental connection, respectively.
The values are grouped by the same value of num cover , between 1 and 10, varying
the value of num cache from 1 to 10. As it is visible from the figure, for every tested
pair of num cover and num cache parameters, the average access time was below 450
ms for the US-to-Europe connection, and below 200 ms for the continental connection.
In both scenarios, the average access time to the shuffle index mostly depends on the
number of send and receive operations on the network channel between the client and
the server. Therefore, the performance overhead caused by an additional cover search
is greater than the overhead caused by an additional cached search. Indeed, cached
nodes do not need to be downloaded from the server at each access (see Figure 2) as
they are locally stored at the client side.
Like for the LAN scenario, we compared the access time of our shuffle index with the
access time of a plain encrypted index with the same static structure of the shuffle in-
dex, which is represented by the dashed lines in Figures 10(a) and 10(b). We note that
the performance of the shuffle index scales much better in a WAN configuration, espe-
cially in the US-to-Europe connection configuration, than in a LAN scenario. Indeed,
the performance overhead caused by the adoption of our protection techniques ranges
from ×1.2 up to ×1.8, depending on the round trip time of the WAN connection, on the
number covers, and on the size of the cache. More precisely, from the results obtained
in the US-to-Europe configuration, we can conclude that each increase in the number
of covers and cache searches adds 1.2% and 0.6% (4.2% and 2.1% in the continental
scenario), respectively, of the plain encrypted access time to the overall performance.
We note that configurations with num cover=1 and num cache between 1 and 2 already
provide a strong degree of access and pattern confidentiality and cause a limited per-
formance overhead. The choice of num cover=1 permits at each access to shuffle the
position of the target node with a randomly chosen node; larger numbers of covers
would offer a faster degradation of the information the server may obtain from the
access, but each cover also requires an additional node involved at every step of the
protocol. With respect to the cache, the choice of num cache between 1 and 2 guarantees
the protection of accesses that are repeated after a short period, and this is particularly
important for range queries, which would otherwise be recognizable by the repetition
of the accesses to the nodes above the leaf; the increase in num cache produces a lim-
ited performance impact and the chosen value appears a good compromise between
security and the extreme attention to performance that characterizes most scenarios.
Configurations with num cover=1 and num cache between 1 and 2 have a performance
overhead factor of ≈20% with respect to a plain encrypted index (the measured values
were 310.58 ms for the plain encrypted index and less than 380 ms for the shuffle in-
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Fig. 10. Access time of the shuffle index as a function of the number of covers in the US-Europe WAN
configuration (a), and in the continental WAN configuration (b). The dashed line (baseline) represents the
access time observed using a plain encrypted index with the same height.

dex in the US-to-Europe configuration, and 108.78 ms and 130 ms, respectively, in the
continental configuration).
The performance overhead caused by our approach to support updates to the data col-
lection is: ≈1.42(num cache + num cover ) ms in the US-to-Europe configuration, and
≈1.44(num cache + num cover) ms in the continental configuration, depending on the
number of nodes that have been split. The overhead caused by the support of updates
to the data collection is almost the same in the LAN and in the WAN scenarios, be-
cause the split of a node causes a limited increase in the transmission time of the set
of blocks exchanged between the client and the remote server, which is not influenced
by the network delay.
We note that, even in a broadband WAN configuration where the network latency is the
dominant factor, our solution enjoys limited communication and computational cost.
From the observations above, we believe our approach to be particularly appealing in
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many application scenarios, since it provides adequate access and pattern confiden-
tiality at an affordable overhead.

10.2. Range Queries

The approach discussed in Section 6 for supporting range queries is based on the ex-
ecution of a sequence of accesses to the leaf nodes that contain keys that fall in the
requested range. The shuffle index is expected to have high fan out and then also
to have relatively large nodes, which leads to a tree with a low height. The number
of leaves needed to cover the result of a range query is then expected to be limited,
as the access to every leaf node is amortized over all the other values belonging to the
queried range that appear in the same leaf. In fact, each leaf in the shuffle index stores
up to F − 1 tuples with contiguous key values and then a range condition including,
for example, F tuples will require to access no more than two (contiguous) leaves. To
demonstrate the validity of this observation, we run a series of queries with a range
width varying between 1 and 512 index keys, which is the fan out of our shuffle in-
dex. For each considered range width, we generated 100 queries by randomly selecting
the lower bound of the query range from the numerical domain of the index, follow-
ing a uniform probability distribution. Figure 11 illustrates the average access times
obtained in the US-to-Europe WAN configuration described in the previous section.
The figure confirms that the average access time slowly increases with the increase of
the range width, with an average cost for the access to an element of the range that
continuously decreases with the increase in the range width.

11. RELATED WORK

The problem of defining efficient and effective indexing techniques supporting the exe-
cution of queries on encrypted data has been extensively studied in the data outsourc-
ing scenario (e.g., [Agrawal et al. 2013; Agrawal et al. 2004; Ceselli et al. 2005; Damiani
et al. 2003; Hacigümüs et al. 2002a; Hacigümüs et al. 2002b; Hore et al. 2012; Ren et al.
2012; Shmueli et al. 2005; Wang and Lakshmanan 2006]). The first approach in this
direction supported equality conditions only and is based on partitioning the plaintext
attribute domain in non-overlapping subsets of values, each mapped to a different in-
dex value [Hacigümüs et al. 2002a; Hacigümüs et al. 2002b]. An alternative approach
is based on the adoption of hash-based index functions [Ceselli et al. 2005]. To support
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also range queries, the outsourced dataset can be complemented with an encrypted
B+-tree structure, which is iteratively accessed to retrieve the tuples of interest [Ce-
selli et al. 2005]. Other proposals [Agrawal et al. 2004; Hacigümüs et al. 2004; Hore
et al. 2012; Wang et al. 2005] aim at better supporting SQL clauses or at reducing the
burden for the requesting client in the query evaluation process. All these proposals, as
demonstrated in [Ceselli et al. 2005], suffer from inference attacks when even a limited
number of indexes is published. To address inference exposure, in [Wang and Laksh-
manan 2006] the authors propose an indexing method that exploits B-trees for sup-
porting both equality and range queries, while limiting inference exposure thanks to
an almost flat distribution of the frequencies of index values. Other solutions support
keyword-based search operations or select/range queries on encrypted and outsourced
data without revealing to the server any information about the outsourced data and
the target values (e.g., [Chang and Mitzenmacher 2005; Curtmola et al. 2006; Song
et al. 2000; Sun et al. 2013; Wang et al. 2010; Wang et al. 2012; Wang et al. 2011]).
Both traditional indexing techniques and keyword search approaches focus on protect-
ing confidentiality of data at rest, but do not consider the privacy risks caused by the
exposure of the target of accesses. In [Pang et al. 2013] the authors propose a privacy
enhancing B+-tree index structure that protects both content and access confidential-
ity. While interesting, also this proposal does not address the pattern confidentiality
problem.

Access and pattern confidentiality have been typically addressed by the Private In-
formation Retrieval (PIR) proposals, which however do not protect content confiden-
tiality and suffer from high computation costs that limit their applicability (e.g., [Os-
trovsky and Skeith, III 2007]). Recent efforts trying to make PIR more practical have
investigated the application of the Oblivious RAM (ORAM) structure [Goldreich and
Ostrovsky 1996] and of dynamic data allocation techniques. The proposal in [Williams
et al. 2008] exploits the pyramid-shaped database layout of the ORAM, associating
with each level a Bloom filter and a hash function for data retrieval. Confidentiality
is provided by caching searches and reorganizing the ORAM every time the cache be-
comes full. Such a reorganization entails a significant performance overhead. The cost
of reorganizing the bottom level of the pyramid is O(N), where N is the number of
index values in the dataset. The response time of access requests submitted during
the reordering of lower levels of the database is high and not acceptable in many real-
world scenarios. Also, the architecture requires a secure coprocessor trusted by the
client on the server. The proposal in [Ding et al. 2011] mitigates the cost of query eval-
uation when a reordering of low levels in the ORAM structure becomes necessary. The
idea is to limit the shuffling to fetched records only. All these proposals entail a signifi-
cant performance overhead remaining impractical for many real-life applications. Our
shuffle index does not rely on any trust assumption on server components and enjoys
a (non amortized) computational cost for query evaluation of O(logN), with a low con-
stant, maintaining a stable and practical computational and communication overhead
(as confirmed by the experimental evaluation).

Recently, novel solutions have been proposed to make ORAM more practical. Oblivi-
Store [Stefanov and Shi 2013] splits the data collection into P =

√
N partitions, each

organized as an ORAM data structure. The partitioning framework is designed to re-
duce the worst-case shuffling cost of the original ORAM model. The client stores a local
cache used for background eviction and a position map, keeping track of the partition
where each block is stored. Every time a user needs to access a block, she either di-
rectly accesses it (if in cache) or downloads it from the server. In both cases, the block
is re-assigned to a randomly chosen partition and stored in the local cache. The posi-
tion map is updated according to the new partition assignment. Blocks in cache are
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periodically evicted and written back to the server in the partition to which they are
assigned. Read and write of blocks in partitions work according to the ORAM access
protocol. Path ORAM technique [Stefanov et al. 2013] relies on a similar approach.
It is a tree-shaped data structure whose nodes are buckets storing a fixed number of
(dummy and data) blocks. Each block is mapped to a randomly chosen leaf and it is
stored either at the client (in a local stash) or in one of the buckets along the path to
the leaf. Every read operation downloads (and stores in the stash) all the buckets in
the path from the root to the leaf to which the block is mapped. The mapping of the
target block is then randomly updated and the path downloaded from the server is
written back, possibly inserting into the buckets along the path a subset of blocks in
the local stash. The advantage of our shuffle index over ObliviStore and Path ORAM
is three-fold. First, thanks to the unchained B+-tree logical organization of the data,
the shuffle index directly supports the evaluation of range queries. A second advan-
tage (as noted in Section 9) is that our proposal leaves the shuffle index structure
stored at the server in a consistent state after each access. Hence, our approach can
easily recover from failures at the client side and easily supports the transition from
one client to another one. The third advantage is in terms of resource consumption. In
fact, while presenting comparable access response time, our approach enjoys a lower
network bandwidth overhead, which directly influences the economic cost of the com-
munication. For each target block accessed, a shuffle index with h levels, requires to
transfer (2+2·num cover+num cache)·h blocks, while the proposal in [Stefanov and Shi
2013] requires to transfer 40–50 blocks. Note that B+-trees are usually shallow (their
height h is 2 or 3 even for large datasets) and that 1 cover and 1 or 2 nodes in cache
provide sufficient protection guarantees.

Alternative approaches are based on the definition of a dynamically allocated in-
dex structure that guarantees efficient and private access to the data by swapping
the content of (a subset of) the accessed blocks. The approach in [Lin and Candan
2004a] preserves content and access confidentiality by using a tree-shaped structure
and combining access redundancy, node swapping, and node re-encryption as follows.
Each access request includes m blocks (the block storing the target node and m − 1
additional blocks, at least one of which must be empty) and swaps the content of the
block storing the target node with the content of one of the blocks downloaded from the
server and whose content is empty. The client re-encrypts all the blocks downloaded
from the server to hide the swap. This proposal does not provide pattern confidential-
ity since frequently accessed blocks can be easily identified by the server and exploited
for inference purposes. In [Lin and Candan 2004b], the authors propose a solution to
this drawback that is based on the preliminary definition of fixed query plans to be
adopted in query evaluation, which is difficult to apply in a real-world scenario.

In [Yang et al. 2011], the authors present a solution where the accesses to data items
are based on a hierarchical structure with which the data items are organized. Two
dummy data items (cover searches, in our terminology) are added to the target data
item, and then the target data is possibly swapped with one of these dummy items to
protect access confidentiality. To protect repeated accesses, one of the three accessed
data items is among the items visited by the previous search. Although similar, the
solution in [Yang et al. 2011] also presents differences with respect to our approach,
which provides higher flexibility thanks to the support of an arbitrary number of cov-
ers and to shuffling among all the accessed/cached nodes. Also, the solution in [Yang
et al. 2011] does not rely on a tree-shaped index structure, thus providing lower access
performance. The limited fixed number of nodes involved in each access operation and
the adoption of a swap, in contrast to shuffling, operation make the protection guaran-
tees provided by the solution in [Yang et al. 2011] weaker than the guarantees offered
by the shuffle index approach.

ACM Transactions on Storage, Vol. V, No. N, Article A, Publication date: January YYYY.



A:38 S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, G. Pelosi, P. Samarati

The shuffle index approach presented in this paper (Sections 3–5) has been first in-
troduced in [De Capitani di Vimercati et al. 2011a]. The current submission extends
the original shuffle index proposal in several directions. This paper clearly introduces
the motivation of the problem and real world application scenarios (Section 2). It then
introduces support for range queries and for updates to the outsourced data collection
(i.e., tuple insertion, removal, and update). These enhancements are formally defined,
introducing a novel secure access protocol, and analyzed to prove that they do not af-
fect the correctness and security of the original shuffle index proposal (Sections 6–7,
and Sections 8–9, respectively). A wide experimental evaluation confirms that the sup-
port for range queries and updates to the outsourced data collection does not affect the
efficiency of the shuffle index (Section 10). We note that the shuffle index structure
proposed in this paper can be integrated with the approach illustrated in [De Capi-
tani di Vimercati et al. 2013b], which supports concurrent read accesses by different
clients. This technique substitutes the cache with repeated searches, which guarantee
an intersection of fixed length among the blocks accessed by two subsequent searches.
Thanks to the removal of the cache structure, no auxiliary data structure needs to be
stored at the client side. Support for concurrent accesses is obtained by dynamically
creating versions of the accessed shuffle index nodes, called delta versions, on which
each transaction accessing the outsourced data collection has exclusive lock. Period-
ically, delta versions are reconciled and applied to the shuffle index, to preserve the
effects of the different operations performed by different transactions. This approach
naturally supports concurrent range queries, while it needs to be adapted to support
concurrent write operations. To this purpose, both traditional locking techniques and
novel eventual serializability approaches can be adapted to operate in the considered
scenario. Although the shuffle index structure proposed in this paper assumes data
to be stored at one server only, it can easily be extended to operate in a distributed
scenario, according to the proposal in [De Capitani di Vimercati et al. 2013a]. This
approach further enhances access and pattern confidentiality guarantees as shuffling
operates across different servers. Intuitively, the nodes of the shuffle index are stored
at different servers, which are not aware of each other. Every access to the shuffle in-
dex entails accessing blocks stored at each of the servers, in such a way to make it
believe that it is the only server storing data.

12. CONCLUSIONS

We presented an indexing technique for data outsourcing that proves to be efficient
while ensuring content, access, and pattern confidentiality. Our solution is based on dy-
namic data allocation for destroying the otherwise static relationship between blocks
and the data they store. We provided a description of the protection techniques adopted
and of their combined use for accessing the data collection, while preserving confiden-
tiality. We also described how the shuffle index handles range queries and how to man-
age insert, delete, and update operations without revealing to the server which kind
of operation is being executed. The indistinguishability among the different kinds of
accesses is provided by a probabilistic split approach that, at each visit, possibly splits
the nodes in the shuffle index even if the access is not inserting a new index value.
The experimental results illustrated in this paper show that the proposed solution can
manage large data collections, with a limited overhead in the response time to users
requesting access to outsourced data. To our knowledge, this is the first work provid-
ing content, access, and pattern confidentiality with such a limited overhead. Another
advantage is related to the fact that the underlying structure is a B+-tree, which is
commonly used in relational DBMSs to support the efficient execution of queries. This
similarity can facilitate the integration between shuffle indexes and traditional query
processing.
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APPENDIX

A. NODE ENCRYPTION

The definition of block (Definition 3.1) guarantees content confidentiality and integrity.

Confidentiality. To guarantee that a block does not leak information on the node it
stores, the symmetric encryption function E adopted must ensure indistinguishability
under: i) chosen-plaintext attack (IND-CPA), meaning that an observer can choose a
number of messages and obtain the corresponding ciphertexts accessing an encryp-
tion oracle; and ii) (adaptive) chosen-ciphertext attack (IND-CCA), meaning that an
observer may send a number of ciphertexts to a decryption oracle and then choose
other ciphertexts depending on the previous decryption operations. IND-CPA is guar-
anteed since each node is encrypted with a symmetric function E using the Cipher
Block Chaining (CBC) mode [Bellare et al. 1997]. In the CBC mode (Figure 12), the
content of a node is partitioned into fragments of equal length. The first fragment is
xored with an Initialization Vector (IV) and then encrypted. Each subsequent fragment
is encrypted, after being xored with the previously encrypted fragment. IND-CCA is
guaranteed by the use of a strongly unforgeable keyed cryptographic hash function
MAC, which is composed with the encryption function E according to the encrypt-
then-mac composition scheme (i.e., the ciphertext is obtained by first encrypting the
plaintext and then appending a MAC of the encrypted plaintext).

Integrity. To guarantee integrity, we need to provide: i) the integrity of plaintext (INT-
PTXT), meaning that it is computationally infeasible to produce a ciphertext that de-
crypts to a message that the data owner had never encrypted; and ii) the integrity
of ciphertext (INT-CTXT), meaning that it is computationally infeasible to produce a
ciphertext not previously produced by the data owner, regardless of whether or not
the underlying plaintext is known. These properties are guaranteed by the use of a
strongly unforgeable keyed cryptographic hash function MAC. Function MAC takes
a secret key and an arbitrary-length message (i.e., the node identifier concatenated
with the encryption of the node) to be authenticated as input and returns a tag. The
tag value guarantees both integrity and authenticity of the considered message by
allowing a client, who also possesses the secret key, to detect any change to the mes-
sage content. Furthermore, it is computationally unfeasible for an observer to find
another message-tag pair, even under the assumption of a CPA [Bellare and Nam-
prempre 2008]. As a consequence, the inclusion of the node identifier id as input to
MAC enables the client to assess the authenticity of the returned node (i.e., possible
misbehavior of the server returning an incorrect node can be immediately detected).
Note that Bellare and Namprempre also demonstrate that the encrypt-then-mac com-
position scheme used in our definition of block is the only one that is secure in IND-
CCA+INT-CTXT and IND-CPA+INT-PTXT.
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INPUT target value : value to be searched in the shuffle index
/* for range queries: [lower bound , upper bound]: query range, with target value = lower bound */

OUTPUT n : leaf node that contains target value

MAIN

1: /* Initialize variables*/
2: Non Cached := ∅ /* nodes at level l in cache before or read by the access, but not in cache after the access */
3: Non Cached P := ∅ /* nodes at level l − 1 in cache before or read by the access, but not in cache after the access */
4: let n0 be the unique node in Cache0

5: target id := n0 .id
6: cache hit := TRUE /* the root always belongs to Cache0 */
7: num cover := num cover + 1 /* additional cover necessary to support possible cache hits */
8: for i:=1. . .num cover do cover id[i] := target id
9: /* Choose cover searches (line 1, Figure 2) */

10: for i:=1. . .num cover do
11: randomly choose cover value[j ] in D s.t. ∀j=1,. . .,i−1,
12: ChildToFollow(n0 ,cover value[i]) ̸= ChildToFollow(n0 ,cover value[j ])
13: ChildToFollow(n0 ,cover value[i]) /∈ {n.id|n∈Cache1} and
14: ChildToFollow(n0 ,cover value[i]) ̸= ChildToFollow(n0 ,target value)

/* for range queries: next target := target value */
/* for updates: start := EvaluateRootSplit(num cover + num cache + 1) */

15: /* Search, shuffle, and update cache and index structure */
16: for l :=1. . .h do /* for updates for l :=start. . .h do */
17: let n∈Cachel−1 such that n.id=target id
18: target id := ChildToFollow(n,target value) /* (line 4, Figure 2) */

/* for range queries: if target value < n.values[Length(n.values)] then */
/* next target := {v∈n.values|(v>target value) ∧ (!v ′∈n.values, v ′>target value ∧ v>v ′)}*/

19: /* identify the blocks to read from the server (lines 5–8, Figure 2) */
20: if target id ̸∈{n.id|n∈Cachel} then
21: ToRead ids := {target id}
22: if cache hit then
23: cache hit := FALSE

24: num cover := num cover − 1 /* reduce the number of covers by one at the first cache miss */
25: else ToRead ids := ∅
26: for i:=1. . .num cover do
27: let n∈Cachel−1∪Non Cached P such that n.id=cover id[i]
28: cover id[i] := ChildToFollow(n,cover value[i])
29: ToRead ids := ToRead ids ∪ {cover id[i]}
30: /* read blocks (line 10, Figure 2) */
31: Read := Decrypt(ReadBlocks(ToRead ids))

/* for updates: EvaluateNodesSplit */
32: /* shuffle nodes (lines 12–13, Figure 2) */
33: let π be a permutation of ToRead ids∪{n.id|n∈Cachel}
34: for each n∈Read∪Cachel do n.id := π(n.id)
35: /* determine effects on parents and store nodes at level l−1 (lines 14–15, Figure 2) */
36: for each n∈Cachel−1∪Non Cached P do
37: for i:=0. . .Length(n.values) do n.pointers[i] := π(n.pointers[i])
38: WriteBlock(n.id , Encrypt(n))
39: target id := π(target id) /* (line 16, Figure 2) */
40: for i:=1. . .num cover do cover id[i] := π(cover id[i]) /* (line 17, Figure 2) */
41: /* update cache at level l (line 19, Figure 2) */
42: Non Cached := Read
43: if cache hit then refresh the timestamp of n∈Cachel s.t. n.id=target id
44: else let deleted be the least recently used node in Cachel

45: let n∈Read s.t. n.id=target id
46: insert n into Cachel

47: Non Cached := Non Cached ∪ {deleted} \ {n}
48: Non Cached P := Non Cached
49: /* Write nodes at level h (line 20, Figure 2) */
50: for each n∈Cacheh∪Non Cached P do WriteBlock(n.id , Encrypt(n))
51: /* Return the target leaf node (line 22, Figure 2) */
52: let n∈Cacheh such that n.id=target id

/* for range queries: if ((target value ̸=next target) AND (next target≤upper bound))
then search for next target */

53: return(n)

Fig. 13. Detailed pseudocode of the shuffle index access algorithm
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0
7
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0
8

Pa 2
0
5

]

201 [Ma Mb - - ] 201→209 209 [Ma Mb - - ] 103 [ 2
1
5

Ja 2
1
4

Ka 2
1
3

- - - - ]
203 [Ga Gb Gc -] 206 [Aa Ab Ac -]
201 [Fa Fb - - ] 209 [Ma Mb - - ]

Fig. 14. An example of access to the shuffle index in Figure 3 with target value=‘Fb’, cover value[1]=‘Ma’,
cover value[2]=‘Ic’

B. ACCESS EXECUTION - DETAILED ALGORITHM

Figure 13 reports the detailed pseudocode of the algorithm in Figure 2. In the follow-
ing, we provide an example of step-by-step execution of the algorithm introduced in
Section 5 for accessing a shuffle index structure.

Example B.1. Figure 14 illustrates an example of execution of the algorithm in
Figure 13 for the access to the shuffle index described in Example 5.1. The columns of
the table represent: the level of the shuffle index (l ); the content of the cache (Cache l
in Retrieved nodes) and the nodes read from the server (Read in Retrieved nodes); the
permutation (π); the nodes in the cache (Cache l in Shuffled nodes) and read after the
shuffling (Non Cached in Shuffled nodes); the nodes written on the server (Written
nodes). In column Retrieved nodes, a ∗ denotes the node in the path to target value.
We note that each row in columns Retrieved nodes and Shuffled nodes represents the
evolution of the same node in the shuffle index.

C. ACCESS EXECUTION WITH A DYNAMIC INDEX STRUCTURE

In this section, we introduce function EvaluateRootSplit and procedure EvaluateN-
odesSplit invoked by the algorithm in Figure 13 and provide a step-by-step example
of their execution.

The algorithm for processing a request to search, remove, or insert target value in
shuffle index S is based on the algorithm described in Section 5 and better detailed in
Appendix B. The main differences are related to how the visited nodes are managed.
More precisely, the algorithm has to call function EvaluateRootSplit that verifies
whether the root is full and, in this case, splits it. Also, for each level of the shuffle
index, the node in the path to the target value as well as the cover nodes and those
in the cache are subject to a probabilistic split, which works as described in Section 7
and is implemented through procedure EvaluateNodesSplit. If one or more of these
nodes are split, the procedure properly updates the variables used by the algorithm
and the cache to preserve the correctness of the algorithm. We now illustrate more in
details how the split of the root and of the internal/leaf nodes are managed.

EvaluateRootSplit. The split of the root generates a new root with num shares ≥
num cover + num cache + 1 children. The key values stored in the old root are there-
fore re-distributed into these nodes according to Definition 7.1. Since the number of
levels in the shuffle index increases by one, the cache structure is updated accordingly.
Figure 15 illustrates the pseudocode of function EvaluateRootSplit, which is called
after the cover searches have been determined by the algorithm in Figure 13 (i.e., af-
ter line 14 in Figure 13). It receives as input the number num shares of children that
the new root node must have, and returns the level in the tree from which the search
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1: EVALUATE ROOT SPLIT(num shares)
2: let n0 be the unique node in Cache0 /* n0 is the current root of the shuffle index */
3: if Length(n0.values)<(F − 1) then return(1) /* the root is not full and it is not split */
4: new root .id := GetFreeIdentifier(S) /* returns a logic identifier not used by the nodes of the shuffle index */

5: val per child :=
⌊

Length(n0.values)−(num shares−1)
num shares

⌋

/* number of values in each new child of the root */

6: new root .pointers[0] := n0.id
7: move n0.values[val per child + 1] to new root .values[1]
8: pos := val per child + 1 /* position of the last value in n0 that has been copied into one of its new children */
9: for i:=1, . . . ,num shares − 1 do /* create the i-th child of the new root; the first child is the old root */

10: ni.id := GetFreeIdentifier(S)
11: if i ̸=num shares − 1 then /* all the new children of the root but the last one store the same number of values */
12: num vals := val per child
13: move n0.values[pos + num vals + 1] to new root .values[i + 1] /* promote the value to the root node */
14: else num vals := Length(n0.values)−pos /* the last child might store more values than others */
15: new root .pointers[i] := ni.id /* insert into the root the pointer to the new child */
16: move n0.values[pos + 1, . . . , pos + num vals] to ni.values[1, . . . ,num vals] /* move values to the new child */
17: move n0.pointers[pos, . . . , pos + num vals] to ni.pointers[0, . . . ,num vals] /* move pointers to the new child */
18: pos := pos + num vals + 1
19: /* update the cache structure */
20: h := h+1 /* increase by 1 the height of the shuffle index */
21: for l :=h. . .1 do Cachel := Cachel−1 /* update the cache structure inserting a new level */
22: Cache0 := ∅; Cache1 := ∅
23: insert new root into Cache0 with the timestamp of n0

24: for i:=0, . . . ,num shares − 1 do
25: if (∃nc∈Cache2 s.t. nc.id∈ni .pointers) then /* ni must be kept in cache to provide path continuity */
26: insert ni into Cache1 with the timestamp of the MRU node in Cache2 and child of ni

27: else Non Cached P := Non Cached P ∪ {ni} /* move the new children that are not in cache to Non Cached P */
28: if |Cache1|<num cache then move num cache−|Cache1| nodes from Non Cached P to Cache1 with n0 ’s timestamp
29: WriteBlock(new root .id , Encrypt(new root))
30: target id := ChildToFollow(new root ,target value) /* update the identifier of the node in the path to target value */
31: let n∈{n0, . . . , nnum shares−1} s.t. n.id=target id
32: let deleted be the least recently used node in Cache1

33: if n∈Cache1 then refresh the timestamp of n /* update Cache1 */
34: else
35: insert n into Cache1

36: Non Cached P := Non Cached P ∪ {deleted} \ {n}
37: return(2)

Fig. 15. Function that evaluates whether to split the root node

process should start (i.e., the starting value of variable l used by the for loop at line 16
in Figure 13), which is equal either to 2 or to 1 depending on whether the root node
has been split or not, respectively.

The function retrieves the root of the shuffle index from Cache0 (line 2). If the root is
not full, the function returns 1 and terminates (line 3). Otherwise, the function creates
a new root node new root whose identifier corresponds to a block that is not in use and
is obtained from the server through function GetFreeIdentifier (line 4). Function
EvaluateRootSplit then determines the minimum number of values (val per child )
that will be stored in each of the children of the new root. This value is computed by
taking into account the fact that num shares − 1 values in n0 will be promoted to the
new root (line 5). The function then inserts the identifier of the first child (n0.id ) of
the new root into new root .pointers[0] and moves value n0.values[val per child + 1] to
new root .values[1] (lines 6-7). The function continues by creating the remaining chil-
dren of the new root and by re-distributing the values and pointers originally stored in
n0 according to Definition 7.1 (lines 8-18).

Function EvaluateRootSplit then updates the cache structure by adding a new
layer and inserting the new root into Cache0 with the same timestamp of the old root
n0 (lines 20-23). To guarantee the path continuity property, the function inserts into
Cache1 the children of the new root that have at least one child in Cache2 (lines 24-
27); the other children of the new root are inserted into Non Cached P (line 27). Note
that the timestamp associated with each node ni inserted into Cache1 is the highest
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among the ones of its descendants in Cache2. In this way, a node is not pushed out
from the cache when its children are still in cache. Also, if Cache1 does not contain
num cache nodes, then num cache−|Cache1| nodes are moved from Non Cached P to
Cache1 (line 28). The new root is then encrypted, and sent to the server for storage
(lines 29). The function updates variable target id , which represents the identifier of
the node in the path to target value, and sets it to the identifier of the node resulting
from the split that is in the path to the target (line 30). It then updates Cache1 accord-
ingly, that is, it updates the timestamp of the node n in the path to target value if n
is in cache; it inserts n into Cache1 otherwise (lines 31-36). Function EvaluateRoot-
Split finally returns value 2 as the access to the shuffle index starts from level 2 of the
shuffle index (line 37).

EvaluateNodesSplit. The split of an internal or leaf node generates a new node
and requires to update the parent of the split node. Figure 16 illustrates the pseu-
docode of procedure EvaluateNodesSplit, which is called at each level l of the shuffle
index after the blocks representing nodes in the paths to the target and cover values
have been downloaded from the server and decrypted (i.e., after line 31 in Figure 13).
The procedure is called before shuffling, since also the nodes resulting from the split
must be shuffled together with the nodes in Read (i.e., downloaded from the server)
and in Cache l .

The procedure first creates a copy of Read (variable Copy Read ) and of Cache l (vari-
able Copy Cache ) as their content will be possibly modified as a result of the split of
the nodes they include (lines 2-3). Then, for each node n in Read and in Cache l , the pro-
cedure verifies whether n should be split. The procedure randomly extracts a number
rnd from a uniform distribution U(0, 1) and compares it with ℘(n). If rnd is lower than
℘(n), node n is split (lines 4-6). In such a case, the procedure gets the identifier of a
free block from the server and assigns it to the new node n′ (line 8). Procedure Evalu-
ateNodesSplit determines the value promoted value in n.values that will be promoted
to the parent parent of node n (lines 9-10), and then proceeds with the split of node
n according to Definition 7.2 (lines 11-16). Note that value promoted value is inserted
into parent .values[i] so that parent .values[i−1]<promoted value<parent .values[i+1], and
consequently n′.id is inserted into parent .pointers[i] (lines 18-25). The procedure then
updates the variables used to follow the paths to the target and cover values, and the
cache structure. To this purpose, it first checks whether n is the node in the path to
target value. If this is the case and target value follows promoted value, then the proce-
dure sets target id to n′.id (line 27). Subsequently, the procedure verifies whether n is
in Copy Cache . The following two cases may then occur.
Case 1: node n is in cache. If node n does not have any child in Cachel+1 and the new
node n′ has a child in Cachel+1 or n′ is the node in the path to target value, node n is
removed from the cache and is inserted into Copy Read while its identifier is inserted
in ToRead ids (lines 32-37). Otherwise, node n remains in the cache and its timestamp
is updated to the timestamp of the most recently used among its children in cache (if
any). Then, if node n′ has at least one child in Cachel+1 or n′ is the node in the path to
target value, node n′ is inserted in the cache (lines 38-39). Otherwise, node n′ is inserted
into Copy Read , and its identifier into ToRead ids (lines 40-42). Note that both n and
n′ can be in Copy Cache only if they have at least one child each in Cachel+1. This
implies that the node least recently used (i.e., node deleted ) can be removed and added
to Copy Read , and its identifier inserted into ToRead ids (lines 43-45). The removal of
deleted does not violate the path continuity property since deleted cannot have any child
in Cache l+1 (see Theorem 8.3).
Case 2: node n is not in cache. Node n can be a node in the path to a cover, say
cover value[i]. If cover value[i] follows promoted value, the node in the path to the cover
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1: EVALUATE NODES SPLIT
2: Copy Read := Read
3: Copy Cache := Cachel

4: for each n∈Read∪Cachel do
5: randomly extract a value rnd from uniform distribution U(0, 1)
6: if rnd<℘(n) then /* decide whether to split n using function ℘(n) */
7: /* split n adding a new node n′ */
8: n′.id := GetFreeIdentifier(S) /* returns a logic identifier not used by the nodes of the shuffle index */

9: split :=
⌊

Length(n.values)
2

⌋

/* split position */

10: promoted value := n.values[split + 1] /* promote the split value to the parent of n */
11: if l = h then /* n is a leaf node and all the values are reported in the two leaves */
12: move n.values[split + 1, . . . ,Length(n.values)] to n′.values[1, . . . ,Length(n.values) − split ]
13: move n.data[split + 1, . . . ,Length(n.values)] to n′.data[1, . . . ,Length(n.values) − split ]
14: else /* n is an internal node */
15: move n.values[split + 2, . . . ,Length(n.values)] to n′.values[1, . . . ,Length(n.values) − split − 1]
16: move n.pointers[split + 1, . . . ,Length(n.values)] to n′.pointers[0, . . . ,Length(n.values) − split − 1]
17: /* update the parent of node n to point to n′ */
18: let parent be the node in Non Cached P∪Cachel−1 s.t. n.id∈parent .pointers
19: i := Length(parent .values) + 1
20: while parent .values[i − 1]>promoted value do
21: parent .values[i] := parent .values[i − 1]
22: parent .pointers[i] := parent .pointers[i − 1]
23: i := i − 1
24: parent .values[i] := promoted value
25: parent .pointers[i] := n′.id
26: /* update the pointer to the node in the path to target value */
27: if n.id = target id AND target value≥promoted value then target id := n′.id
28: /* update the cache at level l */
29: if n∈Copy Cache then /* Case 1: n is in Copy Cache */
30: let deleted be the least recently used node in Copy Cache
31: N := {ni∈Cachel+1 s.t. ni.id∈n.pointers OR ni .id∈n′.pointers} /* N=∅ when l + 1> h */
32: if ((n.pointers ∩ N = ∅) AND (N ̸= ∅ OR n′.id=target id)) then
33: remove n from Copy Cache
34: Copy Read := Copy Read ∪ {n} /* necessary to include the node in the shuffling */
35: ToRead ids := ToRead ids ∪ {n.id}
36: else
37: set the timestamp of n to the timestamp of the MRU node ni in N∩n.pointers, if it exists
38: if ((n′.pointers ∩ N ̸= ∅) OR (N = ∅ AND n′.id = target id)) then
39: insert n′ into Copy Cache with the timestamp of the MRU node in N∩n′.pointers, if it exists; n otherwise
40: else
41: Copy Read := Copy Read ∪ {n′} /* necessary to include n′ in the shuffling */
42: ToRead ids := ToRead ids ∪ {n′.id}
43: if n,n′∈Copy Cache then
44: Copy Read := Copy Read ∪ {deleted} /* necessary to include deleted in the shuffling */
45: ToRead ids := ToRead ids ∪ {deleted .id}
46: /* update the nodes in the paths to cover searches */
47: else /* Case 2: n is not in Copy Cache and could be a cover */
48: for i=1, . . . ,num cover do
49: if n.id = cover id[i] AND cover value[i]≥promoted value then cover id[i] := n′.id
50: Copy Read := Copy Read ∪ {n′}
51: ToRead ids := ToRead ids ∪ {n′.id}
52: Read := Copy Read
53: Cachel := Copy Cache

Fig. 16. Procedure that possibly splits nodes visited at level l>0 of the shuffle index

is n′ and the procedure then sets cover id [i] to n′.id (lines 48-49), adds n′ to Copy Read ,
and inserts n′.id into ToRead ids (lines 50-51).

When all the nodes in Read and in Cache l have been checked for split, procedure
EvaluateNodesSplit sets Read to Copy Read and Cache l to Copy Cache and termi-
nates (lines 52-53).

Example C.1. Figure 17 illustrates an example of execution of the algorithm in
Figure 13, extended to manage possible updates to the data collection for the insert
operation described in Example 7.4. The table has the same structure as the one in
Figure 14 and its columns represent: the level of the shuffle index (l ); the content of
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the first column includes original nodes downloaded from the server, while the second
and the third columns include the nodes possibly resulting from a split operation.

D. CORRECTNESS AND COMPUTATIONAL COMPLEXITY

THEOREM 8.1 (RETRIEVAL CORRECTNESS). Let S be a shuffle index built on candi-
date key K with domain D and target value be a value in D. The algorithm in Figure 2
returns the unique leaf node where target value is (or should be) stored.

PROOF. To prove the theorem, we need to show that at each iteration l of the for
loop traversing the shuffle index (line 16, Figure 13), variable target id always contains
the identifier of the node in the path to target value. To this purpose, we first show
that function EvaluateRootSplit and procedure EvaluateNodesSplit preserve this
property, and we then show that also the algorithm in Figure 13 preserves this prop-
erty.

Function EvaluateRootSplit. Before calling function EvaluateRootSplit (after
line 14, Figure 13), variable target id is initialized to the identifier of the root node
of the shuffle index S, and therefore it correctly stores the identifier of the node in
the path to target value. When function EvaluateRootSplit is called, two cases may
occur. In the first case, the root node is not full and the function immediately ter-
minates without making any change. Variable target id therefore stores the identi-
fier of the root node when the function returns. In the second case, the root node
is full and the function splits it by creating a new root node with num shares chil-
dren {n0, . . . , nnum shares−1}. It is easy to see that the identifiers of all the children
of the new root are stored in new root .pointers (line 6 and line 15, Figure 15), and
that the re-distribution of the values in n0.values among the new root node and the
other num shares−1 children as well as the re-distribution of the pointers in n0.pointers
among the other num shares−1 children of the new root satisfy Definition 7.1. The split
of node n0 results therefore in num shares+1 nodes that contain the same information
stored in n0. When function EvaluateRootSplit updates variable target id (line 30,
Figure 15), the new value of target id will correspond to the identifier of a node ni at
level 1 that is the node that contains the values and pointers originally stored in n0

such that target value∈ [ni.values[1],ni.values[Length(ni.values)]]. It follows that when
function EvaluateRootSplit terminates, target id contains the identifier of the node
in the path to target value.

Procedure EvaluateNodesSplit. At each iteration l of the for loop (line 16, Fig-
ure 13), before calling procedure EvaluateNodesSplit, variable target id is set to
ChildToFollow(n,target value), where n is the node in the path to target value at level
l − 1 (lines 17-18, Figure 13). As a result of function ChildToFollow, target id is the
identifier of a child of n and therefore belongs to level l of the shuffle index. Since
target id is determined through function ChildToFollow(n,v ), which identifies the
only subtree rooted at n where v can appear, when procedure EvaluateNodesSplit
is called (after line 31, Figure 13) variable target id represents the identifier of the
node at level l in the path to target value. When procedure EvaluateNodesSplit is
called, two cases can occur. First, the procedure splits nodes that do not correspond
to target id . In this case, variable target id does not change (the condition of the if in-
struction on line 27 in Figure 16 evaluates to false) and therefore when the procedure
terminates it still corresponds to a node at level l in the path to target value. Second,
the procedure splits a node n that corresponds to target id . In this case, a new node
n′ is created according to Definition 7.2. Therefore, if node n is the node in the path
to target value, after its split either n or n′ is still the node in the path to target value.
The procedure then updates variable target id accordingly (line 27, Figure 16). We can
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then conclude that after the call to procedure EvaluateNodesSplit, variable target id
corresponds to the node in the path to target value.

Search Algorithm. Before entering the for loop, variable target id corresponds to the
node in the path to target value at level 0 (if EvaluateRootSplit does not split the
root) or at level 1 (if EvaluateRootSplit splits the root), as we showed above. Con-
sequently, the for loop starts at level 1 or level 2. As already shown above, at each
iteration l of the for loop (line 16, Figure 13), both before and after calling procedure
EvaluateNodesSplit, variable target id correctly represents the identifier of the node
at level l in the path to target value. The block identified by target id is then down-
loaded from the server, if the corresponding node (identified by target id ) is not in
Cache l (lines 20-21, Figure 13). Since all the leaves of an unchained B+-tree are at
level h, at the end of the for loop, target id is the identifier of the only leaf node where
target value is stored, if it belongs to the data collection. Therefore, if node target id
does not contain v=target value, then target value does not belong to the dataset. Note
also that the integrity of the blocks in the path to target value is guaranteed by the use
of a MAC function in the definition of block (see Appendix A).

THEOREM 8.2 (SHUFFLE INDEX CORRECTNESS). Let S be a shuffle index represent-
ing an unchained B+-tree built on candidate key K defined over domain DK , D⊂DK

be the set of key values stored in the unchained B+-tree, and target value be a value
in DK . After the execution of an access operation on S by the algorithm in Figure 2
with target value target value, S is a shuffle index representing an unchained B+-tree
defined on D possibly extended with target value if the access is inserting target value.

PROOF. We first prove that the direct ancestor of every node in Read and Cache l ,
l = 1, . . . , h, always belongs to either Cache l−1 or Non Cached P (i.e., the path con-
tinuity property is satisfied considering the cache and Non Cached P ). When the al-
gorithm is called for the first time, Cache l−1 contains the direct ancestors of all the
nodes in Cache l , l = 1, . . . , h, since the data owner is assumed to correctly initialize
the cache at the time of outsourcing. We now prove that the path continuity property
between Read∪Cache l and Non Cached P∪Cache l−1 is preserved by function Evalu-
ateRootSplit and procedure EvaluateNodesSplit, and also by the search algorithm
in Figure 13.

Function EvaluateRootSplit. When the function is called, both Non Cached P and
Read are empty, therefore the path continuity property holds between nodes in cache.
Two cases may then occur. In the first case, the root node is not full and the function
immediately terminates without making any change. The path continuity property re-
mains satisfied. In the second case, the root is full, it is split, and the cache structure
is changed accordingly. More precisely, the function first moves Cache l−1 to Cache l ,
l = h, . . . , 1, without compromising the path continuity between nodes in contiguous
levels of the cache structure (line 21, Figure 15). Then, it inserts into Cache0 the new
root (line 23, Figure 15) and into Cache1 all the children of the new root that have at
least one child in Cache2; all the other children of the new root are instead inserted into
Non Cached P (lines 24-27, Figure 15). Note that if the resulting nodes in Cache1 are
less than num cache, the procedure moves some nodes from Non Cached P to Cache1
(line 28, Figure 15). Also, the procedure possibly inserts into Cache1 the node in the
path to target value and consequently moves the least recently used node from Cache1
to Non Cached P (lines 32-36, Figure 15) . At this point, the path continuity prop-
erty of the cache has been restored since the new root in Cache0 is the parent of the
nodes in Cache1, and nodes in Cache1∪Non Cached P are the parents of the nodes in
Cache2∪Read (Read is empty and node deleted removed from Cache1 has been inserted
into Non Cached P ).
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Procedure EvaluateNodesSplit. We assume that the path continuity property
is satisfied before calling procedure EvaluateNodesSplit. In particular, we as-
sume that when the procedure is called, the path continuity property between
Cache l−1∪Non Cached P and Cache l∪Read , and between Cache l and Cache l+1 holds.
Clearly, we are interested in showing that the split of a node does not violate such a
property. We therefore consider a node n∈Cache l∪Read that is split. In this case, the
procedure updates the parent node parent of n (lines 18-25, Figure 16), which is a node
in Cache l−1∪Non Cached P , so that it correctly refers to the split node n and the new
node n′ (i.e., parent is extended to include value promoted value and the pointer to n′).
The value of variable target id is then possibly updated to guarantee that it always
corresponds to the node at level l that is in the path to target value (line 27, Figure 16).
Then, two cases may occur.

The first case happens when node n belongs to Cachel . In this case, since the original
node n has been split in two, we need to verify whether n and/or n′ have at least a
child in Cachel+1 or whether one of them is the node in the path to target value. More
precisely, if neither node n nor n′ have a child in Cachel+1 and n′ is not the node in the
path to target value, the procedure keeps node n in Cachel. Otherwise, if node n′ has
at least a child in Cachel+1 or it is the node in the path to target value, the procedure
replaces n with n′. Note that both n and n′ are in Cachel only if both of them have at
least one child in Cachel+1 . In this case, since each level of the cache contains the same
number of nodes, we have the guarantee that there is at least one node in Cachel that
does not have a child in Cachel+1 . This node must be the least recently used in Cache l
as the timestamp of each node is refreshed any time it is visited. This implies that
when both n and n′ are in Cachel, the removal of the least recently used node deleted
does not violate the path continuity property between Cache l and Cache l+1. The node
between n and n′ that is not inserted into Cache l is inserted into Read (lines 33-35
and lines 41-42, Figure 16). Therefore, the procedure preserves the path continuity
property between Cache l−1∪Non Cached P and Cache l∪Read .

The second case happens when node n does not belong to Cachel. In this case, Cachel
is not updated and therefore the path continuity property between Cache l and Cache l+1

remains valid. We also observe that node n already belongs to Read and the procedure
then adds node n′ to Read (line 50, Figure 16), thus maintaining the path continuity
property between Cache l−1∪Non Cached P and Cache l∪Read . Note also that if node n
is a cover, the procedure verifies whether the corresponding identifier has to be fixed
(lines 48-49, Figure 16).

Search Algorithm. When the algorithm is called for the first time, Cache l−1 contains
the direct ancestors of all the nodes in Cache l , l = 1, . . . , h. We now prove, by induction,
that at the beginning of each iteration of the for loop traversing S (line 16, Figure 13),
Cache l−1∪Non Cached P contains the direct ancestors of all the nodes in Cache l∪Read .
At the beginning of the first iteration, Cachel∪Non Cached P contains the direct an-
cestors of all the nodes in Cachel+1∪Read , with l = 0 or l = 1, since function Eval-
uateRootSplit guarantees the path continuity between Cachel and Cachel+1 (both
when the root node is not split and when the root node is split). We now assume that
Cache l−1∪Non Cached P contains the direct ancestors of all the nodes in Cache l∪Read
at the beginning of the l -th iteration. We prove that this property holds also at the
beginning of the (l + 1)-th iteration.

Procedure EvaluateNodesSplit, as shown above, preserves the path continuity
property between Cache l and Cache l+1. After procedure EvaluateNodesSplit termi-
nates, the content of Cache l is updated by possibly inserting a new node and removing
the least recently used node. The node inserted into Cache l (lines 45-46, Figure 13)
belongs to Read that contains nodes whose identifiers have been determined by calling
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function ChildToFollow on a node in Cache l−1∪Non Cached P (lines 18 and 28, Fig-
ure 13) and by possibly splitting them through procedure EvaluateNodesSplit. The
node removed from Cache l (line 44, Figure 13), deleted , is inserted into Non Cached
(line 47, Figure 13) and Non Cached is used to initialize Non Cached P for the follow-
ing iteration. If deleted is a direct ancestor of a node in Cache l+1, say n′, at the next
iteration (l + 1) the direct ancestor of n′ in Cache l+1 belongs to Non Cached P . We
can then conclude that the direct ancestor of every node in Cache l belongs to either
Cache l−1 or Non Cached P .

To prove that S represents an unchained B+-tree equivalent to the original one,
we then need to prove that: for each node n that has not been split, the pointers
n.pointers[i], i=0, . . . ,Length(n.values), represent the pointers to the children of n in
the original unchained B+-tree; for each node n that has been split, the pointers in
n.pointers ∪ n′.pointers (n.pointers ∪ . . . ∪ nnum shares−1.pointers , if n is the root node)
represent the pointers to the children of the original node n in the initial unchained
B+-tree.

First, we note that if function EvaluateRootSplit splits the root node n0 (Defini-
tion 7.1), the pointers in n0.pointers are redistributed among nodes n1, . . . , nnum shares−1

so that the pointers remaining in n0 along with n1.pointers ∪ . . .∪nnum shares−1.pointers
correspond to those stored in the original root node (see the proof of Theorem 8.1).
Analogously, if procedure EvaluateNodesSplit splits node n (Definition 7.2), the
pointers in the new node n′ (i.e., n′.pointers) along with those still stored in n corre-
spond to the pointers stored in the original node n (see the proof of Theorem 8.1).
At iteration l of the for loop scanning S (line 16, Figure 13), the identifier of each
node n∈Read∪Cache l is substituted with its permuted value, π(n.id ) (line 34, Fig-
ure 13). Since all the nodes resulting from the split of n belong to either Read
or Cache l as shown above, the split of node n does not affect the shuffling opera-
tion. For each node n′∈Cache l−1∪Non Cached P , the algorithm then substitutes the
value of n′.pointers[i], i=0, . . . ,Length(n.values), with its permutation π(n′.pointers[i])
(lines 36-37, Figure 13). Since all the direct ancestors of the nodes in Read∪Cache l
belong to Cache l−1∪Non Cached P as proved above, all the pointers to children are
correctly represented. The nodes in Cache l−1 and Non Cached P are then encrypted
and permanently stored at the server (line 38, Figure 13). At the end of the for loop
scanning S (line 16, Figure 13), the nodes in Cacheh and Non Cached P include the
node where target value is (or should be) stored (see the proof of Theorem 8.1). If the
access performs an insert operation, target value is written in the correct leaf node.
The nodes in Cacheh and Non Cached P are then encrypted and stored at the server
(line 50, Figure 13).

THEOREM 8.3 (CACHE CORRECTNESS). Let S be a shuffle index and
Cache0, . . . ,Cacheh be a cache (Definition 4.2). After the execution of an access op-
eration on S by the algorithm in Figure 2, Cache0, . . . ,Cacheh satisfies Definition 4.2.

PROOF. To prove the theorem, we need to prove that none of the properties in Def-
inition 4.2 is violated by the operations of the algorithm, of function EvaluateRoot-
Split, and of procedure EvaluateNodesSplit.

1) Cache0 contains the root node ⟨id0, n0⟩. The algorithm in Figure 13 updates Cache0
only if the root is split by function EvaluateRootSplit, which happens when the root
is full. In this case, function EvaluateRootSplit moves Cache l−1 to Cache l , l=1, . . . , h,
and empties Cache0 and Cache1 (lines 21-22, Figure 15). Then, it inserts node new root ,
which is the new node created by the function and representing the parent of the
num shares nodes resulting from the split of the old root, into Cache0 (line 23, Fig-
ure 15). Since neither the search algorithm in Figure 13 nor procedure EvaluateN-
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odesSplit in Figure 16 insert/remove nodes into/from Cache0, the first property in
Definition 4.2 is satisfied.

2) Cache l , l = 1, . . . , h, contains num cache nodes belonging to the l -th level of the un-
chained B+-tree. The update of the timestamp of one of the nodes in cache does not
violate this property. We then need to prove that split operation and the insertion (re-
moval, respectively) of a node into the cache do not violate this property.
First, we prove that the split of the root of the shuffle index by function Evaluate-
RootSplit does not violate the property. If the root node is full, function Evaluate-
RootSplit generates num shares nodes (a new root node and num shares−1 additional
nodes that, along with the old root, become the children of the new root). The function
moves Cache l−1 to Cache l for each l=h, . . . , 1 (lines 20-21, Figure 15). Since Cache l ,
l=2, . . . , h, is no more updated by the function, it includes num cache nodes that belong
to level l in the tree. The function then inserts a subset of the num shares nodes chil-
dren of the new root into Cache1, which are the nodes with at least one child in Cache2.
Since Cache2 stores num cache nodes and each node in the shuffle index (but the root)
has exactly one parent, the function will insert into Cache1 at most num cache nodes
(lines 24-27, Figure 15). Also, if Cache1 includes less than num cache nodes, the func-
tion inserts the nodes necessary to fill in the cache level among the nodes resulting
from the split that do not have a child in Cache2 (line 28, Figure 15). Therefore, we can
conclude that also Cache1 includes num cache nodes at level 1 in the shuffle index.

Second, we prove that also the split of a non-root node n by procedure EvaluateN-
odesSplit does not violate this property. If n is not in cache, procedure EvaluateN-
odesSplit does not update the cache. Consequently, if before calling procedure Eval-
uateNodesSplit the property is satisfies, then it holds also when the procedure ter-
minates. Otherwise, if n is in Cache l the procedure either keeps n in Cache l , replaces
n with n′, or keeps both n and n′ in Cache l (lines 29-45, Figure 16). Nodes n and n′ are
clearly nodes that belong to level l , and therefore Cache l contains only nodes at level l
also after the split. If only one of the two nodes n and n′ is kept in Cachel, then Cache l
clearly includes num cache nodes when procedure EvaluateNodesSplit terminates.
If both n and n′ are in Cache l , then the node least recently used in Cache l is removed,
and therefore again Cache l contains num cache nodes.

Finally, we prove by induction that the main search algorithm in Figure 13 satisfies
this property at each iteration of the for loop (line 16, Figure 13). At the first itera-
tion of the for loop, if l=1, Read contains only nodes that are children of the root of
the B+-tree, since their identifiers are obtained by calling function ChildToFollow
on the root node n0. Since the node inserted into Cache1 belongs to Read , after the first
iteration Cache1 contains exactly num cache nodes at level 1. If l=2 because the root
node has been split, both Read and Cache2 contain only nodes that are children of the
nodes resulting from the split of the root node. Indeed, when function EvaluateRoot-
Split terminates, Cache1 stores the nodes resulting from the split that have a direct
descendant in Cache2, and Non Cached P stores all the other nodes resulting from the
split. Since Read is defined by calling function ChildToFollow on a node that belongs
either to Cache1 or to Non Cached P , the nodes in Read are all at level 2. Assume now
by induction that, at iteration l−1, Cache l−1 contains num cache nodes at level l−1
and that Read contains only nodes at level l−1. We prove that at iteration l , Cache l
contains num cache nodes at level l and that Read contains only nodes at level l . The
nodes in Read are obtained by calling function ChildToFollow on a node that belongs
either to Cache l−1 or to Non Cached P . Since Non Cached P contains the nodes that
were in Read at iteration l−1, or the result of their split, the nodes in Read are direct
descendants of the nodes in Cache l−1 and in Non Cached P . Therefore, they belong to
level l of the unchained B+-tree. Since the node inserted into Cache l belongs to Read ,
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Cache l contains only nodes at level l . As already noted, the insertion of a node into
Cache l causes the removal of another node in cache. Therefore, the number of nodes in
cache is always num cache for each level l>0. We conclude that the second property in
Definition 4.2 is satisfied.

3) ∀n ∈ Cache l , l = 1, . . . , h, the parent of n in the unchainedB+-tree belongs to Cache l−1

(path continuity property). We now prove, by induction, that if the cache satisfies this
property, any update performed by the main search algorithm, by function Evalu-
ateRootSplit, and by procedure EvaluateNodesSplit to the cache does not violate
it. The path continuity property between Cache0 and Cache1 is always satisfied since
Cache1 includes only nodes at level 1 (by the second property in Definition 4.2 proved
above), and Cache0 stores the only node in the shuffle index at level 0 (i.e., the root
node), which is the direct ancestor of any node at level 1. Assume now that the path
continuity property is satisfied for any pair of sets in Cache0,. . .,Cache l−1. The split of
a node n in Cache l implies that the node after the split, the resulting new node n′ or
both of them are kept in Cache l . Their presence in Cache l does not violate the path
continuity property between Cache l−1 and Cache l . In fact, the parent of node n, which
belongs to Cache l−1, is modified by adding the pointer to n′. Therefore, the ancestor of
n and n′, possibly appearing in Cache l , belongs to Cache l−1. The split of node n also
preserves, as already noted (see the Proof of Theorem 8.2), the path continuity between
Cache l and Cache l+1. In fact, we have the guarantee that if node n, n′, or both of them
have at least one child in Cachel+1 , n, n′, or both are kept in Cachel . Note also that
if both n and n′ are in Cache l , node deleted is removed from Cache l . However, deleted
cannot have a descendant in Cache l+1 since deleted is the least recently used node in
Cache l and Cache l+1 includes at least one node descendant of node n and one node
descendant of node n′ (meaning that at least a node in Cache l does not have a child in
Cache l+1). If deleted has a child in Cache l+1, it cannot be the least recently used since
otherwise there would be another node n′′ in Cache l with a child at level l +1 that has
been pushed out from the cache to make space for the descendants of n and n′. The
timestamp of n′′ and its child are the same and would be older than the one associated
with deleted . When procedure EvaluateNodesSplit terminates the path continuity
property then holds. At iteration l , if cache hit is true, the timestamp associated with a
node in Cache l is updated. Then, the path continuity property is satisfied. Otherwise,
if cache hit is false, the oldest node in Cache l is removed from the cache and the node
with identifier target id is inserted into Cache l . It is easy to see that the removal of the
oldest node from Cache l does not affect the path continuity property between Cache l−1

and Cache l . We need therefore to prove that, if the node n with identifier target id is in-
serted into Cache l (line 46, Figure 13), its direct ancestor, say na, belongs to Cache l−1.
As shown by the proof of Theorem 8.2, na belongs to either Cache l−1 or Non Cached P .
Since at iteration l − 1 the node with identifier target id is, by definition, na either the
timestamp of na is updated or na is inserted into Cache l−1. However, if na is inserted
into Cache l−1, the oldest node in Cache l−1, say no, is removed from the cache. There
may exist a node in Cache l that does not have a direct ancestor in Cache l−1. However,
na is inserted into Cache l−1 only if cache hit is false. Since cache hit cannot become
true during the for loop (line 16, Figure 13), at iteration l cache hit is still false. Conse-
quently, n is inserted into Cache l while the oldest element is removed from the cache.
Since the timestamp of the nodes in cache is not affected by node split (the nodes
resulting from the split inherit the same timestamp of their most recently accessed
descendant when inserted into the cache, lines 37 and 39, Figure 16) and is updated
at each iteration, the node removed from Cache l is a descendant of no and the path
continuity property is satisfied.
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THEOREM 8.4 (COMPUTATIONAL COMPLEXITY). The algorithm in Figure 2 oper-
ates in O(F (num cover + num cache)2 logF (m)) time, where m is the number of blocks
in the shuffle index and F is its fan out.

PROOF. The for loop initializing array cover id (line 8, Figure 13) and the for loop
choosing cover searches (lines 10-14, Figure 13) cost O(num cover). The call to function
EvaluateRootSplit in Figure 15 costs O(F · num cache + h), as illustrated in the
following.

The split of node n into num shares nodes (lines 6-18, Figure 15) costs O(F ) since
it is necessary to scan the values and pointers to children in n. The update of the
cache structure to insert a new layer costs instead O(h), since it is necessary to scan
all the levels in the cache (lines 20-21, Figure 15). The update of Cache1 (lines 24-28,
Figure 15) costs O(F · num cache), since it is necessary to determine which among the
num shares nodes generated from the split operation have a descendant in Cache2. In
fact, Cache2 includes num cache elements and the children of the original root node,
which are the same as the children of the nodes resulting from the split, are exactly
F . The update of variable target id costs O(F ), which is the cost of calling function
ChildToFollow that scans all the pointers and values in a node (line 30, Figure 15).
The cost of identifying the node in the path to target value among the num shares
nodes resulting from the split operation is O(num shares) (line 31, Figure 15). Finally,
the cost of updating the Cache1 to include the target node of the search operation
is O(num cache) (lines 32-36, Figure 15). The cost of function EvaluateRootSplit
is therefore O(F · num cache) + O(h) + O(num shares) = O(F · num cache + h), since
num shares≤F and therefore O(F · num cache) dominates O(num shares).

The for loop scanning the shuffle index level by level performs
1+num cover+num cache parallel searches (lines 16-48, Figure 13). Among the
operations executed within this for loop, the call to procedure EvaluateNodesS-
plit in Figure 16 and the two for each loops scanning the nodes in Read∪Cache l
(line 34, Figure 13) and Cache l−1∪Non Cached P (lines 36-38, Figure 13), respectively,
dominate the cost of each iteration. The call to procedure EvaluateNodesSplit in
Figure 16 costs O((num cover+num cache) ·(num cover+F ·num cache)), as illustrated
in the following. The for each loop is executed (1+num cover +num cache) times. The
split of node n (lines 5-16, Figure 16) costs O(F ), since it is necessary to scan the values
and pointers to children in n. The update of the parent parent of node n (lines 17-25,
Figure 16) costs O(num cover + num cache + F ), since it is necessary first to search
for parent in Cache l−1∪Non Cached (which includes (1 + num cover + num cache)
nodes) and then to scan the values and pointers to children in parent . The update
of variable target id costs O(1) (line 27, Figure 16). The update of Cache l if n is in
cache (lines 29-45, Figure 16) costs O(F · num cache), due to the scan of the nodes in
Cache l+1 against the pointers in n.pointers and n′.pointers . The update of variables
cover id [i = 1, . . . , num cover ] (lines 48-51, Figure 16) costs O(num cover ), due to the
scan of cover id [i = 1, . . . , num cover ]. The cost of procedure EvaluateNodesSplit
is then O((num cover + num cache) · ((num cover + num cache) + F · num cache)) =
O((num cover + num cache) · (num cover + F · num cache)).

The computational complexity of the two for each loops scanning the nodes in
Read∪Cache l (line 34, Figure 13) and Cache l−1∪Non Cached P (lines 36-38, Figure 13)
is O(num cover + num cache) and O(F · (num cover + num cache)). In fact, since both
Read∪Cache l and Cache l−1∪Non Cached P contain at most 1+num cover+num cache
nodes for every level l and the second loop scans all the pointers in each visited node.
The overall time complexity of the for loop scanning the shuffle index level by level is
therefore O(F · (num cover + num cache)2 · h). The for each loop writing on the server
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the nodes at level h (line 50, Figure 13) costs O(num cover + num cache), since it scans
the nodes in Cacheh∪Non Cached .

Overall, the time complexity of the algorithm is dominated by the for loop scanning
the shuffle index and is then O(F · (num cover + num cache)2 · h) = O(F · (num cover +
num cache)2 · logF (m)), since the shuffle index represents an unchained B+-tree with
m nodes and fan out F .
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