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In our  last episode, our hero was trying desperately to 

slay a quadratic  by strangling it with his mouse-cord,  but  

instead he tr ipped over a root. Yes, I know, this is a surd... 

One graphical  solution for a quadratic x 2 + B x  + C  = 0 

is attributed to Thomas Carlyle [Barbeau89]. Construct 
the line segment from the point (0, 1) and the point 
( - B ,  C). Construct the circle through these two points 
having this line segment as its diameter. Then xl ,  x2, 
such that the points (Xl, 0), (x2, 0) are the points of inter- 
section of  this circle with the x-axis, are the roots of  the 
given quadratic equation. Here are the details: 

2 C + i  + 1 
x +  + Y 2 = 4 -  2 

x 2 + B x + y  2 - ( C +  1)y = - C -  1 +  1 

x 2 + B x  + C = ( C  + 1 ) y -  y2 

Setting y = 0 gives us the points of  intersection with the 
x-axis, which is the equation x 2 + B x  + C = O. 

Suppose now that we wish to solve the quadratic equa- 
tion x 2 + B x  + C = 0, but don ' t  know the quadratic for- 
mula. Or perhaps we know the formula, but don ' t  know 
how to find square roots. Out of  idle curiosity we start 
playing with iterative processes to see if we can find roots 
of  the quadratic in this way. 

One possibility that might occur to us is to divide the 
whole equation by x, to produce the equation x + B + 
C / x  = 0. We can then put x by itself on the left, giv- 
ing the equation x = - B  - C / x .  I f  we now make an 
initial guess for x, say x0, we can produce a (hopefully 
improved) Xa by choosing x l  = - B  - C / x o ,  or more 
generally, given a guess xi, we can produce the next guess 
x i+l  = - B  - C / x i .  Obviously, if xo 7 ~ 0 already is a 

root, then xl = Xo, so the sequence immediately con- 
verges. Of course, this will not work with an initial guess 
of  xo = 0. In the case where one of the roots is zero, how- 
ever, C = 0, so that our iteration immediately produces 
the other root x l  = - B  - C / x o  = - B  - O/xo  = - B .  

On the other hand, if B = 0, then X~+l = - C / x i ,  so we 
get the alternating sequence 

x o , - C / x o , - C / ( - C / x o )  = Xo, - C / x o ,  etc. 

that never converges. 

In order to get more experience with this iteration pro- 
cess, we try this process on the equation (x - 1)(x - 2 ) =  
x 2 - 3x + 2 = 0, and start choosing initial guesses at ran- 
dom. Since x/+l = 3 - 2 / x i ,  we can readily calculate 
the following sequences with a pocket calculator. 

3, 2.33, 2.14, 2.07, 2.03, 2.02, 2.01, ... 

4, 2.5, 2.2, 2.1, 2.04, ... 

0.5, - 1 ,  5, 2.6, 2.2, 2.1, ... 

1.5, 1.7, 1.8, 1.9, 1.94, 1.97, ... 

- 5 ,  3.4, 2.4, 2.17, 2.08, 2.04, ... 

- 0 . 5 ,  7, 2.7, 2.26, ... 

So, in all these cases, our iteration does  converge, and to 
the larger root (x = 2). This is a bit peculiar, since if 
we happen to pick the smaller root (=  1), the iteration 
converges on this smaller root. This leads us to investi- 
gate what happens if we pick a number very close to the 
smaller root - -  e.g., Xo = 1 + e. We get 

2 
z l  = 3 -  - -  ~ 3 - 2 ( 1 - e )  = 1 + 2 e  

l + e  

Aha! We now see that if we start even a little bit away 
from the smaller root, then we will move twice as far 
away on the very first iteration. In other words, for this 
iteration, the starting point xo = 1 is a metastable state, 
whereas the starting point x0 = 2 is apparently a stable 

state. 

We are now ready to investigate the general  case, to 
try to characterize under what conditions and how fast 
this iterative process will converge on a root. 

If  we take the iterative formula xi+ 1 = --B - C / x i  and 
arrange the right-hand side as a fraction, we get Xi+l = 
( - B x ~  - C ) / x i .  This suggests that we generalize the 
process slightly to produce not just a new xi+t ,  but a new 

ratio x~+l /Y i+l  = - B  - C ( y i / x i ) ,  i.e., 

x i+ l  - B x i  - C y i  

y i+l  x i  
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Since both the top and bottom of the right-hand side of  
this equation are linear functions of  x~ and yi, we are led 
to consider the matrix equation 

Yi+l = 1 0 Yi 

An enormous amount is known about matrices 
[Golub96], and we can bring it all to bear on our prob- 
lem. Those of you who have had linear algebra and 
have sharp eyes will instantly recognize our square matrix 
(call it ' M ' )  as the companion matrix of the polynomial 
x 2 + B x  + C. The companion matrix of  a polynomial is 
a matrix that is trivially constructed from the given poly- 
nomial, such that the 'characteristic polynomial '  of the 
matrix is equal to that given polynomial. Thus, the char- 
acteristic polynomial of  our 2 x 2 square matrix M is 
x 2 + B x  + C. 

After reformulating our iteration process as a matrix 
iteration process, we see that we are looking for a vector 

such that M V  = AV, i.e., 

1 0 Yn Yn = Ay,, 

This scalar number A ¢ 0 will cancel from both the nu- 
merator Ax~ and the denominator Ayn, leaving us with 
a 'stationary'  value x~ /y~ .  Such a vector V is called an 
eigenvector (rough German translation: 'own vector ') ,  so 
the solution to our iteration problem is an eigenvector for 

the matrix M .  

The iteration process described above has the effect of  
computing the n-th power of  our 2 x 2 matrix M and 
applying it to the initial guess xo/Yo. How can we char- 
acterize the M n - - t h e  n-th power of this matrix M ?  We 
have the full power of  linear algebra at our fingertips. 

Suppose, for the moment,  that our matrix M is 
'd iagonal izable ' - - i .e . ,  there exists an invertible matrix 
T such that T - 1 M T  = D,  and D is diagonal. 1 
Then M ~ = ( T D T - 1 )  n = T ( D n )  T - l ,  so if D = 

1 Note that we are not interested in actually computing this 'factored' 
form of M, but only in using it to better understand the meaning of the 
matrix power M n. 

diag(A1, A2), then D ~ = diag(A~, A~). In other words, 

M ~ = (T ~2 

0 ) n T - 1  

Let us now make sure that the determinant of T is 1, 
i.e., IT[ = 1, which we can always arrange by dividing 
any other diagonalizing T '  by [T'[, i.e., T = T ' / IT ' I .  
Now let the elements of  T be a, b, c, d, i.e., 

T = (  a ~ )  c , and IT[ = ad - be. 

Since ITI = 1, the inverse of  T is thus 

ITI 

and M n = T D n T  -1 can be written out as: 

(-1 o 
= T D ' ~ T  -1 

: (:  :) 
{aA~ bA~' 

( adA~ - bcA~ -abA~  + abA~ 
- \ c d A ~  cdA~ - b e A t  + adA~ ] 

= cd(ar  - a~) -bc~,r + adA~ 

Now consider the absolute values IA11, [A21 of A1, A2. 
If  IAiI > IA2I, then IA~I > >  IA~I for sufficiently large 
n, so that the terms involving A~ will completely domi- 
nate those terms involving A~. Let n be sufficiently large. 

Then 

M ~ (Bi 
_ i / adA~ - bcA~ - a b ( A [  - A~) "~ 
- \ c d ( A ~ - A ~ )  - b c A ~ + a d A ~ ]  

'~ edA~ - b e A t  

= A~ ad 
cd - b e  
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We can now ignore the factor A~, because when com- 

puting xn/y~ this factor will cancel out. Let us denote 
Mn/A~ by Moo, i.e., Moo = Mn/A~. Then 

- a b )  ad 
Moo = cd -bc 

Now applying Moo to an initial guess xo/Yo, we have 

(x0) o 
(ad  - a b )  ( x o )  

= cd -be Yo 
{ adxo - abyo 

= \ cdxo bcyo J 

{ a( xo - byo) 
= \ c(dxo - bVo) ] 

= ( dxo - byo) ( ac ) 

But the number dxo - byo is cancelled out in the ratio 
xn/Yn, and thus x~/yn = a/c, independent of the initial 
guess xo/Yo! In short, the iterative process we developed 
is a way to compute the ratio a/c, where a and c are the 
first column entries in the invertible matrix T. But what 
is this ratio a/c? 

Since we have 5 equations in the 4 unknowns a, b, c, d 
(4 equations from M = T D T  -1 plus the equation ITI = 
1), and one of these equations is redundant, we can solve 
for the entries a, b, c, d of T as follows} 

At -A2 
T = = _!_ ~ 

A1 Xl -X2 

In other words, a/c = 1/(1/A1) = At, so our itera- 
tion does indeed produce the root of larger absolute value 
A1.3 Note that nowhere did we actually compute the fac- 
torization T D T  -1 of M by producing T and D, but we 
determined that we could extract the ratio of two entries 
of T by computing sufficiently large powers of the matrix 

M.  

We also note that since the ratio a/e is independent 
of the initial guess, we need not explicitly make an ini- 
tial guess at all, but merely compute the matrix powers 

2This solution also proves that T and the matrix factorization exist, 

so long as A1 # A2. 
3Note that the root of  smaller absolute value can also be trivially 

extracted from Moo as A2 = bid = - ( - a b ) / ( a d )  = - ( - b c ) / ( c d ) ,  
which is minus the ratio of the elements of either row, or as A2 = 

C/~1 = Ce/a. 

M i} We can thus compute A1 as A1 = a/c = ad/cd = 
(-ab)/(-bc)--i .e. ,  the ratio of either column of Moo. 

We have thus succeeded in modelling our simple iter- 
ative arithmetic process as a matrix power. This allowed 
us to characterize the conditions under which the simple 
iterative process would converge, and to what value. 

As we noticed when we performed the sequence of iter- 
ative calculations on the calculator, this iterative process 
doesn't converge very fast. Empirically, the number of 
correct digits in the result seems to be linearly related to 
the number of iterations. We would like to find an itera- 
tive process which converges more quickly than this. 

The budding computer scientist will instantly suggest 
that instead of iteratively computing the matrix powers, 
we would be better off successively squaring the matrix 

M,  thus producing the powers M 2~ . This process should 
get us to the answer we desire much more quickly. In- 
deed, with each squaring step, we might get twice as 
much precision as the previous step. 

The sequence of squarings for the companion matrix 
o f x  2 - 3x + 2is: 

- 3 0  
(31 ~ ' 2 ) , ( ~ - _ 6 2 ) , ( 3 1 1 5 - 1 4 ) '  

( 5 1 1 - 5 1 0 " ~  (131071 -1:5150:: ) 
255 - 2 5 4 ]  ' 65535 - ' ""  

and the ratios a/c for these matrices are: 

3, 2.333, 2.0667, 2.0039, 2.0000, ... 

which does converge significantly faster than the iteration 
x = 3 - 2/x. 

Let us now see what happens when the roots are 
identical--i.e., x 2 - 2Ax + A 2 = 0. In this case, 

SO 
M 2~ = ( ( 2 i  + 1)A 2~ _2iA2'+1 

2iA 2'-1 (1 - 2i)A 2' ] 

Thus, even when the roots are identical, the ratio of 
the entries in the first column of the n-th squaring will 
still converge to the value of the root. In such a case, 
however, the matrix squaring convergence will only be 

4We have thus 'M-powered'  our companion. Note that this has the 
effect of implicitly choosing the initial guess as - B / 1  = - B  = (A1 + 
A2)/2--i .e . ,  the mean average of the roots--since the first column of 

 is(7) 
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linear, as the ratio (2 i + 1) /2  i = 1 + 2 - i  converges to 1 
only a single bit per iteration. 

Let us now see what happens when one root is the neg- 
ative of  the other--i.e., )`1 = -Au, or x 2 - )`2 = 0. In 
this "square root" case, 

(0 
= 1 0 = 0 A 2 

so that the i-th iteration is 

0 A 2' 

In this case, the ratio of the entries in the first column 
is not possible to compute, but this will be obvious from 

the appearance of  the matrix M ~ . Although it works on 
many quadratic equations, this matrix-squaring process 
does not work for simple square roots. 

We have shown a root-squaring process for finding 
the roots o f  some quadratics, because at every step, we 
square the roots from the preceding step: 

M i M  i = ( T D i T - 1 ) ( T D i T  -1  

= T D U i T - 1  

= T  0 i 

= M 2i 

But if we are merely interested in squaring roots, we 
might do it more directly as 

( x  - ) ` l ) ( x  - ) ` ~ ) ( x  + ) ` l ) ( x  + ) `~)  = ( x  ~ - ) ` ~ ) ( ~  - )`~) 
= ( y  - ) ` ~ ) ( y  - ),22) 

where y = x 2. I.e., given the equation p ( x )  = x u + 
B x  + C = 0, we can compute a new equation whose 
roots are the squares of the roots of  the given equation by 
computing 

p ( x ) p ( - x )  = (x  2 + B x  + C)(x  2 - B x  + C) 

= (x 2 + C + B x ) ( z  2 + C - B x )  

= ( z  2 + C)  2 - ( B z )  2 

= (y + C)  2 - B 2 y  

= yU + 2 C y  + C 2 - BUy 

= y2 + ( 2 C -  B U ) y + C  2 

This so-called Graeffe process produces a new quadratic 
equation in the variable y whose roots are the squares of 

the previous quadratic equation in the variable x. The 
point of  root squaring is that the linear term 2C - B 2 of 
the new equation is minus the sum of the squares of  the 
roots, i.e., -)`3 - A~. If the absolute values of  the roots 
differ, and this process is repeated,, then the root with 
larger absolute value will eventually dominate in the sums 
of  the squares of  the roots. Furthermore, if we continue 
this root-squaring process, the 2k-th power of  the larger 
root will so dominate the 2 k-th power of the smaller root 
in the coefficient of  the linear term of the k-th iteration, 
so that this coefficient is the 2k-th power of  the root of 
larger absolute value. Then by taking the 2k-th root of 
the absolute value of  this number, we can finally find the 
absolute value of  the larger root. 5 

While the root-squaring method works well for roots 
whose absolute values are different, it cannot handle the 
case where the absolute values are identical, which is al- 
ways the case when the roots are complex conjugates of 
one another. 

Another way to empower the roots of  the quadratic 
polynomial p ( x )  = x 2 + B x  + C is by means of  the 
'logarithmic derivative' power series expansion 

_ p ' ( x )  
(logp(x))'  p(x) 

2 x + B  

x2 + B x  + C 

(x - ),2) + (x - ~1) 

(x - ~ . ) ( x  - .X~) 

1 1 
- -  - -  " J C  - -  

x - )`1 x - )`2 

-i/)`~ - 1 / ) ` 2  

1 - x / ) ` l  1 - x / ) ` 2  

= - (sl + s2z  + s3 z  ~ + s~x 3 + ...) 

and here si = )`~-i +)`~-i. The point of  this expansion is to 
show that the coefficients o f  the power series for the ratio 
o f  polynomials p'  ( x ) / p ( x )  are the sums of  the powers of 
the root inverses. In other words, the coefficient of  x i in 
this power series expansion is 

1 + )`2 
- TTgi" 

If I)`11 > I)`2t, then 1/I)`11 < 1/l)`ul, so that as i in- 
creases, 1/)`~ will dominate 1/)`~ in the sum 1/)`~ +1/)`~. 
Thus, if we pick two successive coefficients large enough, 

5We can also use this Graeffe method to produce a tight upper bound 
on the size (absolute value) if the largest root [Zippe193,11.2]. 
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their ratio will tend towards A2, i.e., 

s i + l  A ~  i - 1  

~+~ 

= A2 

Ratios of  the form p'(x) /p(x)  are particularly interest- 
ing when finding roots, because any repeated roots will 

= (x - )02 , then p'(x) = cancel out. Thus, if p(x) 
2(x  - ~),so 

p'(x) 
;(x) 

2(x - ~,) 
(x  - ~ )2  

2 

x - - A  

- 2 / A  

1 - z/~x 

= - 2  (1/A + x / A  2 + x2/A 3 + x3/)~ 4 Jr" ...) 

and the ratio of successive coefficients converges to (ac- 
tually it already is) A. 

Isaac Newton developed a clever and quite general 
technique for finding roots. Suppose that f ( x )  is a 
function with a power series f ( x )  = f(O) + f'(O)x + 
f "  (0)x2/2!+ .... Then if xo is an initial guess for a root of 
f ( x ) ,  we can expand f ( x )  in another power series around 
the point x = x0: 

f ( x - x o )  = f ( x o ) + ( x - x o ) f  (Xo)+(X-Xo)2 f ' ( xo) /2!+. . .  

If  we now ignore the terms beyond the linear terms, then 
f ( x  - Xo) ~ f (xo)  + (x - xo)f '(xo).  Since we are 
looking for a root, where f ( x )  = 0, we assume that our 
approximation is reasonable, and solve it for x: 

f ( x o ) + ( x  - X o ) f ( X o ) = O  

f(x°-----~-+x - X o = 0  
]'(z0) 

X : X o  
f (xo)  

f'(~o) 

In general, of course, we are looking for an improvement 
xi+l of xi, so we make a sequence of linear approxima- 
tions: 

f(~) 
Xi +l  • X i  f t ( x i )  

Let us now consider Newton's method for the quadratic 
equation p(x) = x 2 - N = O, i.e., for finding the square 

root v / N  of N. In this case, 

Xiq_ 1 ~ X i -- _ _  

~- Xi  

p(xi)  
p'(xi)  

2 _  N x i  

2 x i  

2 x ~ -  x~ + N 
2 x i  

2 _ x i  + N  

2xi 
x~ + N / x i  

2 

In short, a better approximation to the square root of N 
can be had by averaging the current approximation with 
the quotient of N by the current approxmation. 6 

Newton's method usually converges very fast. Sup- 
pose, for example, that we have a current approximation 
v/N(1 + e) to the square root of  N.  Then 

xi + N / x i  
xi+l -- 2 

x /~(1  + e) + Nix~T(1  + e) 
2 

_ N ( 1  + e) 2 + N 

= ~ (1 + e) 2 + 1 

2(1 + e) 

= x / ~  l + 2 e + e 2  + 1 

2(1 + e) 
c 2 

2(1 

Thus, if e is small, then e 2 is considerably smaller, and we 
have a quadratically convergent algorithm for the square 
root--i.e., the number of  accurate bits in the result dou- 
bles with each iteration. 

Yet another way to appreciate Newton's iterative 
square root is to consider how it operates when finding 
the square root of  N = 1, considering each guess as a 

6[Garver321 attributes this square root method to Heron of  Alexan- 
dria circa 200 A.D. 
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ratio: 

xi+l xi/Yi + yi/xi  
Yi+l 2 

2 2 
_ x i  + Yi 

2xiyi 
cosh 2 ai + sinh 2 a~ 

2 cosh ai sinh ai 
cosh  2ai 
sinh 2ai 

=co th  2ai 

In other words, if 

cosh ai 
- -  - coth o~i, xi/yi - sinh ai 

then  

xi+l /Yi+t = coth 2ai, 

or, for general N, 

xi/yi = v/N coth 2ia0, 

where 
ao = atanh (v/N/(xo/Yo))  . 

(ao is real only when Ixo/Yo] > v/N.) Since 
I coth2i~l = 1/Itanh2~al approaches 1 very quickly 
with increasing i (assuming that a ¢ 0), we have another 
proof that Newton's iteration converges to the square 
root. This derivation also shows that if x0 > ~/N, then 
xi > ~/N for all i, i.e., xi converges monotonically to- 
wards x/~. 

Not only is Newton's method particularly pretty ([Peit- 
gen86]), but it is also enormously efficient. [Paterson72] 
shows that Newton's (Heron's) method has optimal effi- 
ciency for quadratic equations, where by "efficiency" he 
means the number of bits of precision gained per iteration 
relative to the number of operations performed per itera- 
tion. Herein we have show why Heron is our quadratic 
hero. 
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