
COMMUNICATIONS OF THE ACM May 1998/Vol. 41, No. 5 81

T
his article discusses these problems
and presents both management and
technical techniques to address them.
Some of these solutions are already
being used by software developers,
even though they may not be widely

known. This article proposes a multilevel regression
testing framework that can be easily adapted into a
software development and maintenance process in
which regression testing can play a key role in
improving and ensuring consistent software quality.
Our observations are based on our accumulated
experience in software development and mainte-

nance in the U.S. and Japan, including Hitachi Soft-
ware Engineering (HSK).

Regression testing has been extensively studied
by researchers [1, 3, 7, 10, 11] from a theoretical
point of view. However, there has been little discus-
sion on applying regression testing in industrial
environments. While researchers are mostly con-
cerned with reducing the number of test cases for
retesting, there are other important issues in using
regression testing in an industrial environment.
Some of our observations include:

• Regression testing is used extensively. In fact,

Issues such as test case revalidation, test exe-

cution, failure identification, fault identifica-

tion, modification dependency, fault

mitigation and test case dependency are essen-

tial for an industrial environment in applying regression testing. Most of

these issues are easy to address if one is dealing with small programs, but

in a large software house where multiple large programs are being devel-

oped and maintained, they suddenly become complicated and costly. Some

of these issues are also related to general software testing, however, these

problems become acute in regression testing because test cases are repeat-

edly exercised in case of regression testing.

Akira K. Onoma,
Wei-Tek Tsai,
Mustafa H. Poonawala,
and Hiroshi Suganuma

Progress is attained
by looking backward.

Regression Testing
in an

Industrial
Environment

http://crossmark.crossref.org/dialog/?doi=10.1145%2F274946.274960&domain=pdf&date_stamp=1998-05-01

other than functional testing (or black-box test-
ing) and software inspection, regression testing is
probably the most commonly used software test-
ing technique.

• The frequent and extensive use of regression test-
ing has led several companies to develop in-house
regression testing tools to automate the process.

• In some companies, all existing test cases are
rerun in regression testing. In other words, mini-
mizing test cases for rerun has not been a critical
issue for these companies. This is true for sites
that develop real-time software (such as safety-
critical applications) as well as sites that develop
other kinds of software.

Even though regression testing is generally useful
for software development and maintenance, it is
especially useful for companies with one or more of
the following characteristics:

• Companies developing a family of similar
products by reusing products or test cases they
had developed before;

• Companies developing mission-critical,
safety-critical, or real-time systems because they
need to test and retest their software frequently;

• Companies maintaining large programs over
extended periods of time, such as 20 years, because
regression testing can be used as a sanity check;

• Companies developing software that is under
constant evolution as the market or technology
changes;

• Companies developing software not using formal
or semiformal processes used by those companies
that develop code only;

• Companies that do not use software inspection as
one of their quality assurance techniques.

Regression Testing Process in Practice

D
ifferent companies use different
processes to develop and maintain
software, such as the waterfall
model and the spiral model. How-
ever, most of the companies use
similar processes for software test-

ing. Specifically, they use the following steps in
regression testing:

Modification request: The software can be changed
if a bug has been found or there is a change in spec-
ification or design.

Software artifact modification: The software arti-
facts—such as requirement documents, design doc-
uments and the code—must be changed to meet the

new requirements or to remove bugs. Often the
source code is the central focus [5].

Test case selection: Test cases must be selected to run
regression testing. Sometimes test cases are revali-
dated at this time to ensure that the test cases are
valid with respect to the changes. The goal is to
obtain the right test cases instead of minimizing the
number of test cases. Sometimes testers reuse all the
existing test cases without any revalidation.

Test execution: After test cases are selected, they
will be scheduled to run. Since the number of test
cases is often large, this step is usually automated.
Sometimes, test execution history, such as paths tra-
versed and procedures called, is also recorded for
each test case for future reference.

Failure identification by examining test results: Test
results must be examined to see if the modified soft-
ware behaves as expected. This is often done by com-
paring the test output with the expected output. If
they are consistent, the requisite existing functional-
ity may not be changed. If not, it is necessary to
examine whether the test case, the code, or both are
faulty. If test cases have not been revalidated earlier,
they will be revalidated at this time, especially the
ones that failed.

Fault identification: If the source code is suspected
to be faulty, the programmer needs to examine the
component of the software that caused the test case
to fail. Fault identification can be a difficult problem
if there are many modules with multiple versions
and many modifications submitted for regression
testing. It is necessary to identify precisely which
components, versions, and modifications caused the
failure.

Fault mitigation: Once the components that caused
the failure are identified, programmers must miti-
gate the fault.
Test Case Revalidation. Test case revalidation is a
largely manual activity aimed at identifying test
cases that are no longer valid for the modified soft-
ware. A test case consists of a test input and its
expected output, and both must be examined during
revalidation. In case the input is no longer valid, the
test case may be discarded or considered as a nega-
tive test case [2]. It is possible that the test input is
valid, but its expected output is no longer valid. In
this case, the tester must redevelop the correspond-
ing expected output. Even if both the input and
expected output are valid for all the test cases, new
test cases may need to be developed. This is true, for
example, when a specific testing strategy is used.

Test case revalidation requires the tester to exam-
ine specifications, testing strategies and existing test
cases. These are usually manual activities and can be

82 May 1998/Vol. 41, No. 5 COMMUNICATIONS OF THE ACM

quite expensive. Fortunately, test case revalidation
can be efficient for functional testing if traceability
between functional requirements and test cases is
maintained.

Test case revalidation for white-box testing can be
problematic because once the software is changed, its
design is changed, and depending on the test tech-
niques used to generate test cases, new test cases need
to be developed and/or existing test
cases eed to be changed to meet the cov-
erage criteria.

Failure Identification by Examin-
ing Test Results. After the test results
have been accumulated, they will be
compared with their corresponding
expected outputs. Automated tools are
usually used to compare the results and
log this information which is later
inspected by the tester.

If the test cases used have been vali-
dated earlier, any significant deviation
from the expected output indicates a potential soft-
ware fault. If the test cases have not been validated,
any test case failure may mean either the test case or
the program is incorrect, or both.1 As revalidation
requires human intervention, this may take consid-
erable time. Revalidation at this time usually
requires examination of only the failed test cases.
This is not a safe procedure, but it may reduce the
time required for revalidation.

Fault Identification. After examining the failed
test cases, the tester may declare the software has a
bug. Then it is necessary to identify the software
components that failed. Some development sites
annotate test cases with requirement statements and
the modules that the test cases are supposed to test.
In this case, if a test case fails, the modules that are
listed in the annotation are the potential targets.
While this may help identify the faulty parts, this is
not a fail-safe procedure. A group of modules may
work perfectly in isolation, but when integrated
with other components of the software, the inte-
grated group may fail the same test cases that passed
when the modules were tested in isolation.

It is possible to take advantage of different soft-
ware versions that are available in identifying the
faulty parts. Assume that a program has five compo-
nents2 A through E (see Figure 1), and through ear-
lier testing there is a trusted version for each
component. Assume that components A, B and C get

changed while D and E remain unchanged. Further
assume that the new software fails several test cases
and the faulty component(s) need to be found. We
may run the failed test cases again using the new
component A with old, trusted components B, C, D
and E to see if this configuration fails the test case.
We can repeat the same experiments for component
B (with old, trusted components A, C, D and E) and

so on. In this way, we can determine whether any of
the new components A, B or C is faulty.

It is possible to repeat the test run to pinpoint the
specific modules that failed the test cases. Although this
process is not safe, it can be automated and has been
found to be useful [8]. In fact, this is an application of
group testing or combinatorial group testing [14].

Dependency. In practice, usually several people
will be working on the same software components at
the same time. It is even possible that multiple pro-
grammers will be working on the same part but with
different versions, and each version depends on its
earlier version. This is rather common in industry
and often the parties involved may not know that
they are working on the same programs or on pro-
grams that depend on each other. This phenomena
can require special care in regression testing. Specif-
ically, all the parties involved may submit their pro-
grams or modification requests3 for evaluation,
which is usually done by regression testing. If a fault
has been found in a particular version of a module, it
is necessary to remove all the modules and program
modification cards (PMCs)4 that depend on the par-
ticular module.

There are at least the following two kinds of depen-
dency: in module dependency a software module depends
on other modules because it uses other modules to

COMMUNICATIONS OF THE ACM May 1998/Vol. 41, No. 5 83

Original version:
All tests passed.

New version:
Several tests failed.

Run failed test case with
new component A only.

Run failed test case with
new component B only.

A B

B

C D E

A'

A'

B'

B'

C ' D E

C D E

A C D E

Figure 1. Fault identification

1A list of possible scenarios is available at www.cs.umn.edu/~tsai/regression.
2A component as used in the text can represent anything from a combination of
modules to a single function. We use component to represent any of these, to
illustrate the fact that this process can be applied at different levels of granularity.

3Modification requests are known by different acronyms in the industry—some of
the more common are MOD, MR, and PMC. HSK uses the acronym PMC to
represent modification requests, which we will use in this article.
4PMC is the acronym used by HSK to represent modification requests.

complete its task; modification dependency occurs when
the software organization keeps track of PMCs.

Module dependency requires a reverse engineer-
ing tool to identify the dependence relationships. It
is not only necessary to keep track of direct depen-
dencies but also indirect dependencies.

A typical PMC contains the PMC ID, the module
number, versions number, the line numbers of soft-
ware that need to be changed, and the statements
that will be incorporated in the change. Thus the
PMC ID can be used to track modification depen-
dency. We have seen some software groups that keep
track of PMC dependency by asking the program-
ming team to write down the dependency. However,
this solution is not safe.

We have seen some software development groups
use line numbers to track dependency. For example,
suppose PMC 5 changed lines 2, 3, and 5, and PMC
7 changed lines 5 and 8, then PMC 7 depends on
PMC 5. However this approach does not take care of
direct and indirect data or control dependency. We
have also seen some groups that keep track of depen-
dency by time-stamping. For example, if PMC 5 is
submitted before PMC 7, then PMC 7 depends on
PMC 5. This is a conservative approach and may cre-
ate unnecessary dependencies. This is not a safe
approach either.

However, many practical approaches are proposed
that are not safe but are still used in the industry as
a safe approach may be theoretically impossible or its
cost may be high.

Fault Mitigation. When a fault is detected in a
software component, various actions may be taken to
correct that fault. The most commonly used mitiga-
tion actions are:

• Submitting a new PMC to correct the fault. If we
submit a new PMC to correct the fault, essen-
tially we create a new PMC to correct an existing
PMC. This new PMC should be annotated to
indicate the fault that it is meant to correct.

• Removing the PMC that caused the fault. Instead
of correcting the faulty PMC, we may just
remove the PMC from the software. This
approach is difficult in case of large number of
dependencies on this PMC. As in this case, if the
PMC is removed, all the dependent PMCs must
be removed.

• Ignoring the fault. Ignoring a fault is not com-
mon but has been observed [8]. When the dead-
line is close, an engineer tends to say that some
bugs are either not important or will rarely hap-
pen, thus there is no need to fix it. This is a dan-
gerous practice, but it does happen. HSK

depends on program managers to solve this prob-
lem. The program managers must give approval
before a fault can be waived.

Regression Test Case Acquiring Strategies. Soft-
ware companies use various means to acquire test
cases. Most of the test cases developed in-house, and
since they were acquired from third party vendors
they can be subject to test case minimization. How-
ever, the following test cases are often not subject to
minimization:

Application environment simulation: This is a popu-
lar and effective approach. Before shipping, a realis-
tic application environment is built and often the
potential users are invited to test the ready-to-release
product for some period. These simulations are then
used as test cases for subsequent releases. These test
cases are often not subject to minimization as they
represent the customers’ view of the software.

Acceptance test or test cases supplied by users: Often,
the users of a computer program provide a good set
of test cases based on bugs encountered in practice.
They report the bugs to the software developer and
the bugs then become test cases. As customer satis-
faction is of utmost importance, most software orga-
nizations will not skip any test cases supplied by the
customers.

A large software house usually has a good history of
testing—the tester knows which test cases are most
likely to detect bugs and which other test cases
rarely catch any bug. Those that frequently catch
bugs should always be run in regression testing,
while those that rarely catch any bugs may be sub-
ject to minimization.

Test Case Dependency and Sequencing. In prac-
tice, test cases are often not completely or properly
defined. A set of test cases is considered properly
defined if the input and output environment specifi-
cation is complete. Sometimes it is not practical to
specify the inputs and outputs of the test cases com-
pletely. Theoretically, it is always possible, but to do
so may require excessive effort. This is because of the
extremely large size of the input/output environ-
ments. This incompleteness may result in test case
dependency and may cause the testing process to fail.
In addition, incomplete output specification results
in test cases being declared as passed when they may
have affected the output environment in an undesir-
able manner.

A tester usually executes several test cases consec-
utively from one test driver. If the expected output
of the first test case and the input of the subsequent

84 May 1998/Vol. 41, No. 5 COMMUNICATIONS OF THE ACM

test cases are not properly defined, the behavior of
the subsequent test cases may be affected by the exe-
cution of the previous test case. This is test case
dependency and will occur if the software is a state
machine such as an object where values are stored as
states. It is possible to systematically test a state
machine but sometimes in large programs, it may be
difficult to capture all states.

In regression testing, this test case dependency
can introduce additional problems especially if we
try to reduce the number of test cases for retest.5

Many development and maintenance sites do not
determine test case dependency due to the com-
plexity and cost. In this case, it is important that
all test cases should be rerun during regression
testing.

Note that the presence of these dependencies
among the test cases lead to the necessity that certain
test cases be executed in a particular sequence. Many
times the output from a test case sequence will not
be proper if the individual test cases in the sequence
did not execute in the required order.6 The presence
of test sequences also impacts the selection of test
cases by selective retest. If any test case in a sequence
is selected, then all the test cases in that sequence
must be selected.

Regression Testing Process Cost Analysis
Here we emphasize the cost of testers rather than the
cost of machine time. The cost of machine time may
still be high and sometimes must be accounted for so
that it can be properly charged.

• Time spent developing test cases to test the new
functionality. Typically from about 10 minutes for
each test case to a couple of hours or even weeks.

• Time spent revalidating the original test suite. Typ-
ically from few minutes to a few hours or days.
However, due to large number of test cases, the
total time is considerable. In addition, the neces-
sity of revalidation makes revalidating a critical
activity in the testing process. In case of functional
tests, this revalidation is necessary only when the
functional requirements change.

• Time spent in the execution of the test suite. The
amount of machine time spent in executing a test
suite could be large, especially if the suite requires
a dedicated mode. However, as the executions are
usually done during non-peak hours, the time
spent in this phase is less critical than the time
spent in the other phases. Thus, if this step is auto-
mated, the cost will not be too high.

• Time spent comparing the results obtained from
executing all the test cases in the test suite. Typi-
cally a few minutes for each test case. However,
again due to the immense number of test cases, the
total time may be large. Often this process is auto-
mated, in this case the cost is low but manual
inspection may be required depending on the
extent of the revalidation performed.

• Time spent in tracking a failure to the appropriate
module or modification (fault identification). Typ-
ically ranges from 10 minutes to a few hours. The
amount of time spent in this phase also depends on
the person performing the failure tracking.

If we have automated regression testing, the bottle-
neck will come from the inspection of the test results
for the test cases that have failed and test case reval-
idation either at the time of selection or at the time
of result comparison because they are predominantly
manual activities.

Multi-Level Regression Testing

L
arge programs are usually developed in
stages by teams of developers, testers and
managers using a development model
such as waterfall, or prototyping. Each
large program is decomposed into compo-
nents, and each component can be further

decomposed. During the process, the software is
being tested or inspected at various stages, such as at
requirement stage, design stage. Testing is divided
into unit testing, multiple levels of integration test-
ing, functional testing, reliability testing, usage test-
ing, stress testing, acceptance testing and field
testing.

Regression testing should be used whenever there
is any change in the software, and it should be embed-
ded in the software development and maintenance process. It
should not be an independent stage of a software
development and maintenance process, instead
regression testing should be performed at each stage
whenever there is a change. For example, if a module
has been changed, it must be submitted to unit
regression testing before it is submitted for integra-
tion with other modules. This is a simply an appli-
cation of divide-and-conquer strategy commonly
used in software engineering. We call this approach
Multi-Level Regression Testing (MLRT).

In MLRT, test cases may be run multiple times
during the process because a test case designed for
unit testing may be rerun again at an integration
level. This is so because at the time the concerned
module is linked with other modules its faults may
be detected using exactly the same test cases for unit

COMMUNICATIONS OF THE ACM May 1998/Vol. 41, No. 5 85

5,6 An illustration of this is available at www.cs.umn.edu/~tsai/.

testing. Thus, some test cases may be rerun as a qual-
ity assurance procedure.

MLRT has many advantages. First, test suites can
attached to each software component at different
level of granularity. At the module level, test cases
for unit testing will be attached. At an integration
level, test cases for integration testing will be
attached. This helps in configuration control. Also,
multiple components can be tested concurrently at
the same time by different groups of programmers,
reducing the time required to perform regression
testing.

Another major reason for practicing MLRT is that
the delay in detecting faults is minimized. If a soft-
ware component is submitted for integration with
other components without thorough testing (includ-
ing new functional testing and regression testing),
its bug may be detected several weeks later by inte-
gration testing. If the fault is found during integra-
tion regression testing, the effort to correct the fault
may have increased tremendously.

Regression Testing Tools
If a software group is interested in using regression
testing, we recommend at least the following tools:

Test execution tool: This tool is a must because the
number of test cases required to be run is enormous
and it will be impossible without an automated test
execution tool;

Test result comparator: This tool is helpful in iden-
tifying test failures and can save significant time and
effort in regression testing;

Configuration tool: This tool will prove to be useful
if it can track both software modules and their asso-
ciated test cases, as well as software versions and soft-
ware architecture;

Test management tool: This tool should keep track of
status of testing including the failures identified so
far, the faults identified so far, actions taken for those
identified failures and faults, test case dependency
and modification dependency.

For those companies that will use regression testing
frequently, we recommend a group testing tool to
identify the faulty components.

Conclusion
In this article, we presented several important issues
regarding regression testing in an industrial envi-
ronment. We notice that although regression testing
is one of the most important and widely used testing
strategies in the industry today, many of its issues
have not been investigated by researchers. The issues

discussed have a major impact on regression testing,
quality assurance, configuration management, soft-
ware development and maintenance processes. We
also identified a testing technique that can be used
in software testing for large applications (group test-
ing). We also recommended some tools to automate
the regression testing process.

We know of companies that are well-known for
producing quality software but do not use software
inspection or have a formal software development
process. What is their secret in delivering quality
software? Regression testing. We know of some
companies where the machines work hard during
weekends. What are their machines doing? Regres-
sion testing.

References
1. Agrawal, H., Horgan, J.R., Krauser, E.W., and London, S.A. Incre-

mental regression testing. In Proceedings of the IEEE Software Maintenance
Conference (1993), pp. 348–357.

2. Beizer, B. Software Testing Techniques. Van Nostrand Reinhold, New
York, 2d. ed., 1990.

3. Chen, Y.F., Rosenblum, D.S., and Vo, K.P. TestTube: A system for
selective regression testing. In Proceedings of the IEEE Software Engineer-
ing Conference (1994), pp. 211–222.

4. Du, D.Z. and Huang, F. Combinatorial Group Testing. World Scientific,
1994.

5. Joiner, J., Tsai, W.T., Chen, X.P., Subramanian, S., Sun, J., and Gan-
damaneni, H. Data-centered program understanding. In Proceedings of
the IEEE Software Maintenance Conference (1994), pp. 272–273.

6. Kernighan, B. and Richie, D. The C Programming Language, 1988.
7. Leung, H.K.N. and White, L. Insights into regression testing. In Pro-

ceedings of the IEEE Software Maintenance Conference (1989), pp. 60–69.
8. Ness, B. and Ngo, V. Regression containment through source code iso-

lation. In Proceedings of the IEEE Computer Software and Applications Con-
ference (1997), pp. 616–621.

9. Onoma, A.K., Tsai, W.T., Tsunoda, F., Suganuma, H., and Subra-
manian, S. Software maintenance—Industrial experience. J. Software
Maintenance (1995), 333–375.

10. Rothermel, G. and Harrold, M.J. A safe, efficient algorithm for regres-
sion test selection. In Proceedings of the IEEE Software Maintenance Confer-
ence (1993), pp. 358–367.

11. Rothermel, G. and Harrold, M.J. A Comparison of Regression Test Selection
Techniques. Tech. Rep., Department of Computer Science, Clemson
University, Clemson, SC, Oct. 1994.

Akira K. Onoma (a.k.onoma@ieee.org) is a general manager
and director at Hitachi Software Engineering Company,
Yokohama, Japan.
Wei-Tek Tsai (tsai@cs.umn.edu) is a professor of Computer
Science and Engineering at the University of Minnesota,
Minneapolis.
Mustafa Poonawala (mustafa@cs.umn.edu) is currently a
Ph.D. candidate in the Department of Computer Science and
Engineering at the University of Minnesota, Minneapolis.
Hiroshi Suganuma (suga@computer.org) is a software
engineer at Hitachi Software Engineering, Yokohama, Japan.

Permission to make digital/hard copy of part or all of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission of ACM, Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior spe-
cific permission and/or a fee.

© ACM 0002-0782/98/0400 $3.50

c

86 May 1998/Vol. 41, No. 5 COMMUNICATIONS OF THE ACM

