
Coherence Protocol for Transparent Management of Scratchpad Memories in
Shared Memory Manycore Architectures

Lluc Alvarez†§ Lluís Vilanova†§ Miquel Moreto† Marc Casas† Marc Gonzàlez§

Xavier Martorell†§ Nacho Navarro†§ Eduard Ayguadé†§ Mateo Valero†§

†Barcelona Supercomputing Center §Departament d’Arquitectura de Computadors
{first.last}@bsc.es Universitat Politècnica de Catalunya

Abstract
The increasing number of cores in manycore architectures

causes important power and scalability problems in the mem-
ory subsystem. One solution is to introduce scratchpad memo-
ries alongside the cache hierarchy, forming a hybrid memory
system. Scratchpad memories are more power-efficient than
caches and they do not generate coherence traffic, but they
suffer from poor programmability. A good way to hide the
programmability difficulties to the programmer is to give the
compiler the responsibility of generating code to manage the
scratchpad memories. Unfortunately, compilers do not suc-
ceed in generating this code in the presence of random memory
accesses with unknown aliasing hazards.

This paper proposes a coherence protocol for the hybrid
memory system that allows the compiler to always generate
code to manage the scratchpad memories. In coordination
with the compiler, memory accesses that may access stale
copies of data are identified and diverted to the valid copy of
the data. The proposal allows the architecture to be exposed to
the programmer as a shared memory manycore, maintaining
the programming simplicity of shared memory models and
preserving backwards compatibility. In a 64-core manycore,
the coherence protocol adds overheads of 4% in performance,
8% in network traffic and 9% in energy consumption to enable
the usage of the hybrid memory system that, compared to a
cache-based system, achieves a speedup of 1.14x and reduces
on-chip network traffic and energy consumption by 29% and
17%, respectively.

1. Introduction
Future generations of multicore and manycore architectures
are expected to include a significant number of cores. As an

This paper is published in Proceedings of the 42nd Annual International
Symposium on Computer Architecture (ISCA’15), 2015, pp. 720-732. The
final publication is available at http://dx.doi.org/10.1145/2749469.2750411.

immediate consequence, the memory system that connects
these computing elements needs to be revisited in order to
satisfy the inherent requirements of future chips and, at the
same time, avoid the inefficiencies of current schemes when
cores are replicated beyond certain levels [31, 35, 39].

Cache coherent shared memory has traditionally been the
favorite memory organization for multicore chips. The major
reason for the success of this approach is its high programma-
bility, that is achieved by moving data and keeping it coherent
between all the caches of the system without any intervention
from the programmer. Unfortunately, the cost of performing
these actions becomes an obstacle to scaling up the number of
cores, being the primary concerns the power consumption orig-
inated in the caches and the increasing amount of coherence
traffic in the Network on-Chip (NoC).

Scratchpad memories [9] (SPMs) are a well-known alter-
native to cache hierarchies. The simplicity of SPMs allows
them to serve memory accesses as fast as caches but in a much
more power-efficient way and without originating coherence
traffic. However, SPMs suffer from poor programmability as
the software is responsible of explicitly transferring data and
keeping different copies of the data in a coherent state.

A recent trend in the High Performance Computing (HPC)
domain is to combine caches and SPMs in the memory hierar-
chy, forming a hybrid memory system. Architectures such as
the Cell B.E. [26] or GPUs [21] have successfully adopted this
scheme in different forms, but always at the cost of breaking
backwards compatibility and imposing complex programming
and memory consistency models that move away from the
shared memory paradigm. Unfortunately, this approach can-
not be easily adopted by shared memory manycores, where
backwards compatibility has a big importance and the wide
majority of programming models heavily rely on strict mem-
ory models and cache coherence protocols [3].

Still, the characteristics of HPC applications [36, 44] make
appealing the adoption of the hybrid memory system in shared
memory manycores. HPC applications are dominated by
strided accesses, which are a natural fit for SPMs because
they can be efficiently managed by software thanks to their
predictability. Random accesses, on the other hand, are diffi-
cult to manage by software because of their unpredictability,
so they greatly benefit from the ability of caches to automati-

cally request data and keep it coherent. A promising solution
to exploit these characteristics in shared memory manycores
is to introduce the hybrid memory system and to give the
compiler the responsibility of generating code to manage the
SPMs, so that the added programming complexity is not ex-
posed to the programmer. Even though compilers succeed in
generating code for the SPMs when the computation is based
on predictable memory access patterns [22], in the presence
of unpredictable memory accesses they encounter important
limitations. Due to the incoherence between the SPMs and
the cache hierarchy, the compiler cannot generate code for the
SPMs if it cannot ensure that there is no aliasing between two
memory references that may target copies of the same data in
the SPMs and in the cache hierarchy. This memory aliasing
problem greatly restricts the ability of the compiler to generate
code for the hybrid memory system in non-trivial cases.

This paper proposes a coherence protocol for hybrid mem-
ory systems that allows the compiler to always generate code
for the SPMs, even in the presence of memory aliasing hazards.
In a hardware/software co-designed mechanism, the compiler
identifies memory accesses that may access incoherent copies
of data, and the hardware diverts these accesses to the memory
that keeps the valid copy. The proposal allows the compiler
to always generate correct code to manage the SPMs, so the
hybrid memory system can be exposed to the programmer as a
shared memory multiprocessor, maintaining the programming
simplicity of shared memory models. Results show that the
hybrid memory system, compared to cache hierarchies, pro-
vides an average speedup of 1.14x and reduces the network
traffic and the consumed energy by respective averages of 29%
and 17% in a 64-core manycore.

The main contributions of this paper are:
• A hardware coherence protocol for the hybrid memory

system that, complemented with compiler support [5, 6],
achieves that all memory accesses are served by the cache or
the SPM that keeps the valid copy of the data. This solution
solves the memory aliasing problem to the compiler.

• Modifications to the architecture of the hybrid memory
system so that, together with the coherence protocol, it
implements the memory consistency model assumed in
most shared memory programming models.

• A detailed evaluation of a manycore architecture with the
hybrid memory system, especially focusing on performance,
on-chip network traffic and energy consumption.
This paper is organized as follows: Section 2 explains the

architecture of the hybrid memory system together with its
compiler and runtime support, the coherence problem it ex-
poses and the compiler support for the coherence protocol.
Section 3 presents the coherence protocol and the resulting
memory consistency model. Section 4 summarizes the pro-
posal and discusses the OS support to maintain backwards
compatibility. Section 5 evaluates the resulting system, which
is then compared with the related work in Section 6. Finally,
Section 7 remarks the main conclusions of this work.

Figure 1: Architecture of the hybrid memory system. Every
core is extended with a SPM and a DMA controller (DMAC).

2. Background and Motivation

This section explains the hybrid memory system, its main
architectural details and its compiler and runtime support.
Then it describes the coherence problem of the architecture
and the compiler support for the proposed coherence protocol.

2.1. Hybrid Memory System Architecture

The architecture of the hybrid memory system consists of
extending every core of a multiprocessor with a SPM and a
DMA controller (DMAC), as shown in Figure 1.

The SPMs are added alongside the L1 cache of every core,
and they are accessible by all the cores. The system reserves a
range of the virtual and physical address spaces for each SPM
of the chip, and direct-maps the virtual ranges to the physical
ones, as shown in Figure 2. Every core keeps the address
space mapping in eight registers, four to store the starting and
the final virtual addresses of the local SPM and of the global
range of the SPMs, and four to keep the physical address space
of all the SPMs and of the local SPM. These registers are used
to identify virtual addresses that access the SPMs and to do
the virtual-to-physical address translation, allowing all the
cores to access any SPM by issuing loads and stores to their
virtual address ranges. At every memory instruction, before
any Memory Management Unit (MMU) action takes place, a
range check is performed on the virtual address. If the virtual
address is in the range of some SPM, the MMU is bypassed
and a physical address that points to the SPM is generated.
Apart from the simplicity of the implementation, an important
advantage of this way of integrating the SPMs [5, 6, 11, 15]
is that no pagination is used, so memory accesses to them do
not need to lookup the Translation Lookaside Buffer (TLB),
minimizing the energy consumption and ensuring determinis-
tic latency. In addition, the typical size of SPMs is orders of
magnitude smaller than the size of the RAM and the virtual
address space of a 64-bit machine, so the virtual and physical
address ranges reserved for the SPMs occupy a very minor
portion of the whole address spaces.

The DMACs transfer data between the SPMs and the global
memory (GM, which includes caches and main memory).
They support three operations: (1) dma-get transfers data

Figure 2: Address space mapping for the SPMs.

from the GM to a SPM, (2) dma-put transfers data from a
SPM to the GM and (3) dma-synch waits for the completion
of certain DMA transfers. Every DMAC exposes a set of
memory-mapped I/O registers to the software so it can explic-
itly trigger the DMA operations. DMA transfers are integrated
in the cache coherence protocol of the GM [10, 29]. The bus
requests generated by a dma-get look for the data in the caches
and read the value from there if it exists, otherwise they read
it from the main memory. The bus requests of a dma-put copy
the data from the SPM to the main memory and invalidate the
cache line in the whole cache hierarchy.

2.2. Compiler and Runtime Support

The main drawback of the hybrid memory system is its pro-
grammability, since it is the software that must explicitly man-
age the SPMs. A good way to hide this complexity from the
programmer is to give the compiler the responsibility of gen-
erating code that manages the SPMs using a runtime library.

The first step is to identify data suitable to be mapped to the
SPMs. In shared memory programming models the compiler
uses analyses and code annotations provided by the program-
mer to decide how the data and the computation is distributed
among the threads. Based on this distribution, it identifies ar-
ray sections [37] that are sequentially traversed and private to
each thread. These array sections are the preferred candidates
to be mapped to the SPMs because the strided accesses used
to traverse them are highly predictable and their privateness
avoids costly data synchronization mechanisms on the SPMs.

After identifying the array sections to be mapped to the
SPMs the compiler does the code transformations, inserting
calls to a runtime library that will manage the data transfers
at execution time. For a computational loop the code is trans-
formed into a two-nested loop that uses tiling to do the compu-
tation [19, 20, 22, 41], as shown in Figure 3. Each iteration of
the outermost loop executes three phases: (1) a control phase
that maps chunks of the array sections to the SPMs, (2) a syn-
chronization phase that waits for the completion of the DMA
transfers, and (3) a work phase that performs the computation
for the currently mapped chunks of data. These phases repeat
until the whole iteration space is computed.

Before entering the loop, the runtime divides the size of
the SPM in equally-sized buffers in order to minimize com-
plexity and overheads. One buffer is allocated for each

Figure 3: Code transformation for the hybrid memory system.

memory reference that is mapped to the SPM. In Figure 3,
ALLOCATE_BUFFERS allocates two buffers to map chunks of
a and b, and each buffer occupies half the size of the SPM.

The control phase moves chunks of array sections between
the SPM and the GM. At every instance of the control phase,
in the MAP statement for each array section, the chunk of data
for the next work phase is mapped to its corresponding SPM
buffer with a dma-get, and the previously used chunk is written
back to the GM if needed with a dma-put. Each call to MAP

also sets a pointer to the first element of the buffer that has
to be computed (_a and _b), updates the number of iterations
that can be performed with the current mappings (iters) and
sets the tags associated to the DMA transfers (tags).

After waiting for the DMA transfers to finish in the synchro-
nization phase, the work phase takes place. This phase does
the same computation as the original loop, but with two dif-
ferences. First, the memory references to the array sections (a
and b) are substituted with their corresponding SPM mappings
(_a and _b). Second, the iteration space of the work phase is
limited to the number of iterations that can be performed with
the chunks of data currently mapped to the SPM.

2.3. Coherence Problem

The hybrid memory system opens the door to incoherences
between copies of data in different coherence domains. When
a chunk of data is mapped to some SPM, a copy of the data
is created in its address space, and the coherence between the
copy in the SPM and the copy in the GM has to be explicitly
maintained because there is no hardware coherence between
the two memory spaces. This issue restricts the compiler from
performing the code transformation in non-trivial cases.

Once the compiler has identified the array sections to be
mapped to the SPMs, it changes the memory references in the
work phase so that they access the copy in the SPM, while
the rest of memory references access the GM. This causes
that two incoherent copies of the same data can be accessed
simultaneously during the computation, one via strided ac-
cesses to the SPM and the other via random accesses to the
GM, resulting in an incorrect execution. In order to ensure the

correctness of the code transformation, the compiler has to ap-
ply alias analyses [18, 30, 45] between the memory references
that target the SPMs and the rest of memory references in the
loop body and ensure there is no aliasing. In the example in
Figure 3 this implies predicting if any instance of the accesses
to c or ptr aliases with any instance of the accesses to a or b.
This problem, that also affects compiler auto-vectorization and
auto-parallelization [24], has not been solved in the general
case, especially in the presence of pointers.

A good way to solve the memory aliasing problem for
the hybrid memory system is to adopt a lightweight hard-
ware/software co-designed coherence protocol [5, 6] that en-
sures the compiler can always generate correct and efficient
code. The task of the compiler in the coherence protocol is to
identify potentially incoherent accesses. A potentially incoher-
ent access is a memory access that the compiler cannot ensure
it will never access data in the GM that is mapped to some
SPM. The compiler marks these accesses and the hardware,
at execution time, checks if the data that is being accessed is
mapped to some SPM and diverts the access to it.

2.4. Compiler Support for the Coherence Protocol

The compiler support for the coherence protocol consists on
identifying memory instructions that may access data in the
GM that is mapped to some SPM so that the hardware diverts
them to the correct copy of the data. This section gives an
overview of how the compiler performs this identification. The
details of all the compiler phases and analyses used in this
process can be found in [5, 6].

The compiler starts by classifying the memory references
of the code based on their access patterns and the possible
memory aliasing hazards between them. Then, for the memory
references that do not present aliasing problems, it generates
memory instructions that will directly access the GM or the
SPMs while, for potentially incoherent accesses, the compiler
generates guarded memory instructions that will be diverted to
the appropriate memory at execution time. The categorization
of the memory references is:
• SPM accesses are those that traverse array sections private

to each thread with a strided access pattern. Normal as-
sembly memory instructions are emitted for them, using
as source operands a base pointer to a SPM buffer and an
offset, so they directly access the SPMs.

• GM accesses are those that do not sequentially traverse array
sections and do not alias with any SPM access. Normal
assembly memory instructions are emitted for them, using
as source operands a base pointer to a GM address and an
offset, so they directly access the GM.

• Potentially incoherent accesses are those that do not se-
quentially traverse array sections and alias or may alias
with some SPM access. Guarded memory instructions are
emitted for them, using as source operands a base pointer
to a GM address and an offset. When it is executed, the
guarded memory instruction is identified by the hardware,

that checks if the resulting GM address is mapped to some
SPM and diverts the access to the corresponding memory.
This paper assumes an x86_64 architecture that implements
the guard for the memory instructions with an instruction
prefix that can be added to any instruction that accesses
memory.
In the example in Figure 3 the accesses to a and b are SPM

accesses because they traverse private array sections using a
strided access pattern, so they are respectively emitted with
a normal store and a normal load. The source operands of
the instructions are the pointers to the SPM buffers (_a and
_b) and the offset (_i). The computation of the address at
execution time will result in an address that is in the virtual
address space of the local SPM, so it will be accessed.

Random accesses to c and ptr are classified as GM or
potentially incoherent accesses depending on the outcome of
the alias analysis. In the example, the alias analysis succeeds
in ensuring that c does not alias with any SPM access, so it is
categorized as a GM access and a normal store is emitted with
c as a base address and the content of _b[_i] as offset, so the
resulting GM address will guide the access to the L1 cache.
For ptr the example assumes the alias analysis specifies it may
alias with some SPM access, so it is classified as a potentially
incoherent access. The compiler emits a guarded load, an
increment and a guarded store. The base address of these
two guarded memory instructions is ptr and the offset is
the content of _a[_i], which will result in an address in the
GM virtual address space. At execution time this GM virtual
address will be used to check if the chunk of data is mapped
to some SPM, and will be diverted to the appropriate memory.

3. Coherence Protocol
The goal of the hardware support for the coherence protocol
is to check if the data accessed by a potentially incoherent
access is mapped to some SPM and, in case it is, divert the
access to the SPM. With this approach the architecture does
not maintain the different copies of the data in a coherent state,
but ensures that the valid copy of the data is always accessed.

The proposed hardware design aims to exploit a key char-
acteristic of the applications: it is extremely rare that, in the
same loop, the same data is accessed at the same time using
strided and random accesses. The data of a program is kept in
data structures, and the internal organization of the data struc-
tures is what defines the way the data is accessed, thus defines
what kind of memory accesses are used to do so. Moreover,
although some data structures (e.g., arrays) can be accessed
in different ways, it is unnatural to access the same data using
strided and random accesses in the same computational par-
allel loop. This implies that SPM accesses almost never alias
with potentially incoherent accesses, although the compiler is
unable to ensure it. For this reason, the hardware coherence
protocol is designed to not penalize the latency of potentially
incoherent accesses that do not access data mapped to the
SPMs, which is the most common case.

Figure 4: Hardware support for the coherence protocol. Every
core is extended with a SPMDir and a Filter, and a FilterDir is
added to the cache directory of the cache coherence protocol.

The hardware support for the coherence protocol consists
on tracking what data is mapped to the SPMs and what data is
known to be not mapped to the SPMs. Figure 4 shows the hard-
ware extensions in one core and in one slice of the directory of
the cache coherence protocol. Every core tracks what data is
mapped to its SPM in its SPMDir, so all the data mapped to all
SPMs is tracked in a distributed way. Chunks of data that are
not mapped to any SPM and that have been recently accessed
by guarded memory instructions are tracked in a hierarchy of
filters. Every core has a filter that tracks chunks of data not
mapped to any SPM and the filterDir tracks the contents of
all the filters. Placing the filters and the SPMDirs close to
the core allows fast access to the information needed to divert
guarded accesses.

The next subsections explain the implementation of these
hardware structures, how they are operated in the execution of
potentially incoherent accesses and how they track what data
is mapped to the SPMs and what data is not mapped.

3.1. Implementation of Hardware Structures

The hardware additions are implemented as follows:
• The SPMDir is a CAM array that tracks the base GM ad-

dress of the chunks of data mapped to the SPM of the core.
• The filter is a CAM array that keeps base GM addresses not

mapped to any SPM.
• The filterDir is an extension of the cache directory that

consists of a CAM array that keeps base GM addresses and
a RAM array with a bitvector of sharer cores that tracks
which cores have the address in their filters.
Note that the hardware structures track data at a fixed gran-

ularity using 64-bit virtual base addresses. This can be done
because, in fork-join parallelism, all threads work with the
same SPM buffer size. As explained in Section 2.2, prior to
the execution of a loop, the size of the SPM is divided among
equally-sized SPM buffers. This buffer size is notified to the
hardware, that sets the values of the Base Mask and Offset
Mask internal configuration registers that are used to decom-
pose any address into a base address and an address offset.
This allows that, first, base addresses can be used to operate

(a) No mapping (b) Mapping in local SPM

(c) No mapping with filter miss

(d) Mapping in remote SPM

Figure 5: Casuistic of guarded memory accesses.

all the hardware structures and, second, the SPMDir does not
need a RAM array to store the SPM base addresses for every
entry, since the index of the entry is equivalent to the buffer
number and, thus, the base address of the SPM buffer. In
other forms of parallelism (e.g, region- or task-based) differ-
ent threads can simultaneously execute parts of the code that
require managing the SPMs at different granularities, so range
lookups would be required in the hardware structures.

3.2. Diverting Potentially Incoherent Accesses

The hardware design of the coherence protocol tracks all the
data that is mapped to the SPMs in the SPMDirs, and the
data that has been recently accessed by potentially incoherent
accesses that is not mapped to any SPM is tracked in the
hierarchy of filters. The next paragraphs explain how this
information is used in the execution of guarded accesses.

When a guarded memory instruction is executed, the TLB
and the L1 cache are accessed as in a normal memory instruc-
tion for the GM. Additionally, the GM base address is looked
up in the filter and the SPMDir. Different situations can arise
depending on the results of the lookups, as shown in Figure 5.

In Figure 5a the data accessed by the potentially incoherent
access is not mapped to any SPM, so the lookup in the SPMDir
misses and the lookup in the filter hits 1 . The TLB translates
the address and the L1 cache is accessed normally to serve the
memory access 2 .

In Figure 5b the data is mapped to the SPM of the local core.
The lookup in the SPMDir hits 1 and the SPM base address
corresponding to the entry that returned the hit is added to the
offset of the address of the guarded instruction, resulting in the
SPM address where the data is mapped. This address is used
to access the SPM 2 . In addition, if the guarded instruction
is a load, the result of the cache access is discarded 3 . Note
that guarded store instructions always write the data in the L1
cache because, if they alias with a read-only SPM buffer, it
is not guaranteed that the software will write-back the SPM
buffer to the GM, so the modifications done by guarded store
instructions could be lost.

In Figure 5c the data is not mapped to any SPM, though the
address is not cached in the filter. The lookup in the SPMDir
misses and the lookup in the filter misses 1 , so the data may
be mapped to a remote SPM. A request is sent to the filterDir
and, if the guarded instruction is a load, the L1 cache access is
buffered in the MSHR. When the filterDir receives the request
it looks up the address 2 . If the lookup hits the address is
not mapped to any SPM, so the directory responds to the
local core. If the lookup misses the request is broadcast to all
the remote cores to check if the address is in their SPMDirs
3 . The lookup misses in all the cores because the data is
not mapped to any SPM, so the remote cores respond to the
filterDir and this to the local core. When the local core receives
the response the GM base address is inserted in the filter 4
and, if the guarded instruction is a load, the buffered cache
access is used to serve the memory access 5 .

In Figure 5d the data is mapped to the SPM of a remote core.
Like in the previous situation, both lookups in the filter and in
the SPMDir miss 1 , so the L1 cache access is buffered if it is
a guarded load and a request is sent to the filterDir, which also
misses 2 and broadcasts the request to all the remote cores.
In this case, one of the remote cores has the data mapped to its
SPM, so the lookup in its SPMDir hits 3 . The SPM address
is calculated using the entry index and the offset of the remote
access, and it is used to access the SPM, that serves the remote
access. If the remote access is a load, the remote core sends the
data to the local core while, if it is a remote store, the remote
core writes the data to its SPM and responds with an ACK to
the local core. When the response arrives to the local core, if
it is a guarded load, the buffered cache access is discarded 4
and the data from the remote core is forwarded to the CPU.

(a) Filter invalidation (b) Filter update

Figure 6: Filter invalidation and update.

3.3. Tracking SPMs Contents

The contents of the hardware structures of the coherence pro-
tocol are used to divert the guarded accesses. The next para-
graphs explain how all the information of the contents of the
SPMs is tracked in the SPMDirs, the filters and the filterDir.

When a core maps data to its SPM, its SPMDir is updated
and the filters are invalidated. The source GM address and the
destination SPM address of the dma-get are used to calculate
the GM base address and the SPM base address, and the
SPMDir entry associated to the SPM base address is updated
with the GM base address. Figure 6a shows how the filters are
invalidated. First, an invalidation message is sent for the GM
base address to the filterDir 1 , which triggers a lookup of the
address. If the address is not found no core has the address
in its filter, so no more actions take place. If the GM base
address is in the filterDir, a filter invalidation message is sent
to all the cores in the sharers list 2 . When the sharer cores
receive the invalidation message they look up the address in
their filter and invalidate the entry.

The filters and the filterDir are updated when the execution
of a potentially incoherent access triggers a lookup of a GM
base address in a filter and misses (Figures 5c and 5d). The
mechanism to update the filters and the filterDir is shown in
Figure 6b, and is very similar to how caches operate on a
cache miss. When a lookup of a GM base address misses in
a filter, it has to check if the GM base address is mapped to
some SPM. First, a request for the GM base address is sent
to the filterDir 1 , which looks up the address. If the address
is in the filterDir it means it is not mapped to any SPM, so
the requestor core is added to the sharers list and an ACK is
sent as a response 2 . When the requestor core receives the
ACK it inserts the GM base address in its filter. If the lookup
in the filterDir after 1 misses, the GM base address may be
mapped to some SPM. The filterDir broadcasts a request of the
address to all the cores 3 . When the cores receive the request,
they lookup the address in their SPMDir 4 and respond to
the filterDir with an ACK or a NACK depending if the lookup
hit or missed 5 . If all the cores respond NACK, the data is
not mapped to any SPM, so the filterDir inserts the GM base

address, sets the local core in the sharers list and sends it a
response with ACK 2 . When the local core receives the ACK
it inserts the GM base address in its filter. If a remote core
responds to the broadcast request with an ACK 5 it means
it has the data mapped to its SPM, so the address cannot be
filtered. The filterDir responds with a NACK to the local core
and this does not update its filter.

Note that the filter of every core and the filterDir are asso-
ciative buffers with a replacement policy so, when they are
updated, an older entry can be evicted. When an entry of the
filter of a core is evicted, a message is sent to the filterDir to
notify the eviction, and this removes the core from the sharers
list. When the filterDir is updated and an older entry is evicted,
an invalidation message is sent to all the sharer cores, which
invalidate their filter, like in step 2 of Figure 6a.

3.4. Memory Consistency Model

Another important problem that affects the ability of the com-
piler to generate code for the SPMs of the hybrid memory
system is the memory consistency model provided by the ar-
chitecture. The memory consistency model defines what is the
expected behaviour of a sequence of memory operations. The
vast majority of shared memory programming models rely on
sequential consistency models [3] that ensure that a sequence
of memory operations will happen in program order inside
the same thread, while a sequence of memory operations from
different threads can happen in any order. For this reason, the
programmer has to use synchronization mechanisms to avoid
data races between the threads, but not between the mem-
ory accesses of each thread. In order to allow the compiler to
transform the code for the hybrid memory system, the memory
subsystem has to ensure these conditions are fulfilled.

The coherence protocol for the hybrid memory system
breaks the sequential consistency rules between potentially
incoherent accesses and SPM accesses of the same thread. The
virtual address of potentially incoherent accesses is initially a
GM address that is changed to a different SPM virtual address
if the data is mapped to the SPM. This causes that, when a
thread accesses the same data using strided and potentially
incoherent accesses, an out-of-order core can re-order the in-
structions and the Load/Store Queue (LSQ) will not detect an
ordering violation has happened because the virtual addresses
of the two accesses are different. When the potentially inco-
herent access is sent to memory and its address is changed to
point to the SPM it results in the same address of the strided
access so, if at least one of the two accesses was a store, the
re-ordering breaks the sequential consistency rules. In order to
solve this problem, when a potentially incoherent access hits
in the SPMDir, the new SPM address is notified to the LSQ to
re-check the ordering for the new address, and the pipeline is
flushed if a violation is found. Note that if the guarded access
aliases with the contents of a remote SPM it is responsibility
of the programmer to synchronize the accesses between the
threads, just like it is done for any other type of accesses.

4. Summary and Discussion

The architecture and the system organization proposed in this
paper achieve that transparently managed SPMs can be added
to the memory hierarchy of shared memory manycore archi-
tectures. The compiler categorizes the memory accesses of
a conventional parallel loop. For strided accesses to private
array sections, the compiler transforms the code so that a run-
time library maps the data to the SPMs. Random accesses
are served by the cache hierarchy if the compiler can ensure
they do not alias with the contents of some SPM. When the
compiler is unsure of the aliasing of a random access, it gen-
erates a guarded memory instruction. At execution time, the
hardware support of the coherence protocol decides if these
accesses are served by some SPM or by the cache hierarchy.

Although the hardware support of the coherence protocol
resembles the operation of a directory-based cache coherence
protocol, it does not undermine the benefits of the hybrid
memory system compared to a cache hierarchy. The wide
majority of memory accesses in HPC applications are strided
accesses to array sections, and these are served by the SPMs
in a very energy efficient way, without any CAM lookup in the
TLB nor in the tags of the caches nor in any hardware structure
of the coherence protocol. In addition, SPM accesses do not
suffer performance penalties due to cache misses, and the
coherence traffic for them is reduced because accesses to the
SPMs do not generate coherence traffic and the DMA transfers
allow to move data in a very efficient way. Random accesses
to the cache behave like in a conventional cache coherent
system, without any overhead. Potentially incoherent accesses
can suffer performance penalties if the filter misses, and are
always a bit less power efficient due to the lookups in the
filter and in the SPMDir. Since these accesses are a minority,
the number of CAM lookups and the coherence traffic added
by the filters are overweighted by the CAM lookups and the
coherence traffic saved for the SPM accesses, preserving the
benefits of the hybrid memory system.

4.1. OS Support and Backwards Compatibility

The hybrid memory system can be made backwards compat-
ible with minor operating system (OS) changes and without
impacting performance. The OS process structure is extended
with the fields necessary to manage the registers for the virtual-
to-physical address mapping of the SPMs at context switch.
By default, processes execute with this mapping disabled, so
the SPMs are not accessible. Whenever a SPM-enabled appli-
cation starts, the OS configures the registers for the address
spaces of the SPMs and stores their values in the process struc-
ture. Whenever a process is scheduled, the registers are set to
the values stored in the process structure.

Since multiple concurrent applications can be using the
SPMs, the OS must also save and restore the contents of the
SPMs whenever a process is scheduled for execution. In order
to keep these overheads low, SPM contents can be switched

Table 1: Main simulator parameters.

Cores 64 cores, Out-of-order, 6 instructions wide, 2GHz
Pipeline 13 cycles. Branch predictor 4K selector, 4K G-share,
front end 4K Bimodal. 4-way BTB 4K entries. RAS 32 entries

ROB 160 entries. IQ 64 entries. LQ/SQ 48/32 entries.
Execution 3 INT ALU, 3 FP ALU, 3 Ld/St units.

256/256 INT/FP RegFile. Full bypass.
L1 I-cache 2 cycles, 32 KB, 4-way, pseudoLRU
L1 D-cache 2 cycles, 32 KB, 4-way, pseudoLRU, stride prefetcher

L2 cache Shared unified NUCA 16MB, sliced 256KB/core
15 cycles, 16-way, pseudoLRU

Cache Real MOESI with blocking states, 64B line size
coherence distributed 4-way cache directory 64K entries

NoC Mesh, link 1 cycle, router 1 cycle

SPM 2 cycles, 32 KB, 64B blocks

DMAC DMA command queue 32 entries, in-order
Bus request queue 512 entries, in-order

SPMDir 32 entries
Filter 48 entries, fully associative, pseudoLRU

FilterDir Distributed 4K entries, fully associative, pseudoLRU

lazily, similar to how the Linux kernel does for the floating
point register file [1]. Additionally, a register that contains a
single bit for each SPM in the system is added to each core.
The Nth bit of this register identifies whether the Nth SPM can
be accessed, and accessing a SPM without that bit set raises
an exception. This mechanism allows the OS to accurately
control which SPMs are available to the running processes,
making possible that multiple processes that use the SPMs can
be safely executed concurrently.

These OS modifications provide backwards compatibility
and can also be used by the OS to improve energy consumption
by powering down the SPMs that are not being actively used.
As a result, the only overhead when running in compatibility
mode is the unused area of the SPMs, the DMACs and the
hardware structures of the coherence protocol.

5. Evaluation
This section evaluates the overheads of the proposed coher-
ence protocol and then compares the resulting hybrid memory
system with a cache-based system.

5.1. Experimental Framework

The proposal has been evaluated with Gem5 [12], using its
x86 cycle-accurate detailed out-of-order core model and its de-
tailed memory hierarchy model. The energy consumption has
been evaluated with McPAT [32] using a process technology
of 22nm and the default clock gating scheme of the tool. Both
simulators are extended with the SPMs, the DMACs and the
hardware support for the coherence protocol. Table 1 shows
the main configuration parameters of the simulators.

Six representative memory intensive HPC benchmarks from
the NAS benchmark suite [8] are used for the evaluation. They
have been compiled using GCC 4.7.3 with the -O3 optimiza-
tion flag on. The code transformations for the hybrid memory
system have been done manually and the alias analysis report
of GCC has been used to identify the potentially incoherent

Table 2: Benchmarks and memory access characterization.

Benchmark SPM refs Guarded refs
Name Input Kernels # Data Size # Data Size

CG ClassB 1 5 109 MB 1 600 KB
EP ClassA 2 3 1 MB 1 512 KB
FT ClassA 5 32 269 MB 4 1 MB
IS ClassA 1 3 67 MB 2 2 MB

MG ClassA 3 59 454 MB 6 64 B
SP ClassA 54 497 2 MB 0 0 B

accesses. For the memory references that GCC is not able
to determine the aliasing, an assembly macro is added to the
source code to add the x86 instruction prefix that implements
the guard for potentially incoherent accesses.

The runtime library that manages the SPMs is a modified
version of a software cache for the Cell B.E. [22] that has been
ported to the hybrid memory system and optimized. Double
buffering is not used.

5.2. Benchmark Characterization

Table 2 shows the main characteristics of the benchmarks.
For each benchmark it is shown the input class, the number
of kernels, the number of strided and potentially incoherent
memory references and the sizes of the data sets accessed by
each type of accesses. These benchmarks allow to study many
different scenarios regarding the number of memory accesses
of each type and the sizes of the data sets they access. CG and
IS use few strided references to traverse big input sets and few
guarded references to access a smaller data set, so the ratio of
guarded accesses with respect to the total number of accesses
is high. In EP the amount of references of each type is low
and the data sets are small and, in addition, its kernels use
many scalar temporal values that cause register spilling, so
the majority of memory accesses are to the stack. FT and MG
traverse big input sets with many strided references and use
a few guarded references to access much smaller parts of the
data set, while SP traverses a small input set in a series of 54
different kernels that only use SPM accesses.

Like in real HPC applications [36, 44], the characteristics
of the benchmarks fulfill the motivation for the introduction
of SPMs. In all benchmarks the number of strided memory
references is higher than the number of guarded references,
and the data set accessed by SPM accesses is much bigger
than the one accessed by guarded accesses. Furthermore, the
data sets accessed by SPM and guarded accesses are disjoint,
though the compiler is unable to ensure it using alias analyses.

5.3. Coherence Protocol Overheads

This section evaluates the overheads of the coherence protocol
in a 64-core manycore. In the study, the proposed coherence
protocol is compared with an ideal coherence protocol that
diverts guarded accesses to the correct copy of the data without
the need of SPMDirs, filters, the filterDir nor any traffic to
maintain them. Figure 7 shows the overheads in performance,
energy and network traffic of the hybrid memory system aug-

CG EP FT IS MG SP
0.8

0.9

1.0

1.1

1.2

1.3

1.4

O
ve

rh
e

a
d

 (
x
)

Execution time Energy NoC traffic

Figure 7: Overhead in execution time, energy consumption
and NoC traffic added by the coherence protocol.

CG EP FT IS MG SP
0

10
20
30
40
50
60
70
80
90

100
110

H
it
 r

a
ti
o

 (
%

)

Figure 8: Filter hit ratio.

mented with the proposed coherence protocol with respect to
the hybrid memory system with ideal coherence.

The coherence protocol adds performance overheads of
1% to 11%. These overheads are caused by the increase in
network traffic and by filter misses at the execution of guarded
accesses. The filter hit ratio for each benchmark is shown
in Figure 8. In SP the performance overhead is negligible
because no guarded accesses are generated and very few DMA
transfers are issued, so the filters are not used and the overhead
in network traffic is only 2%. CG, EP, FT and MG present
performance overheads between 2% and 7%. Although the
filter hit ratio is at least 97%, the network traffic added by the
coherence protocol, between 4% and 11%, slightly penalizes
performance. In IS the performance overhead is 11% because
the filter hit ratio is lower, 92%, which penalizes the latency of
guarded accesses and adds higher overheads in network traffic,
15%. In all benchmarks the contention in the filterDir is very
low due to the low rate of DMA transfers and filter misses. In
addition, guarded accesses never alias with SPM accesses and
the filterDir can track the whole data set accessed by guarded
accesses, so filter invalidations and pipeline squashes due to
ordering violations never happen.

In terms of energy consumption, the overheads range from
3% to 14%. In SP the overhead is only 3% because the filters
are gated off and only the SPMDirs and the filterDir consume
some extra energy at every DMA transfer. In the rest of bench-
marks the overheads range between 7% and 14%. Almost half
of the overhead is due to static energy consumption, where
SPMDirs, filters and the filterDir add overheads of less than
3% and the performance overheads add another 2% to 5% in
the whole chip. In dynamic energy the SPMDirs add up to 3%
overhead, while less than 2% is added by the filters and the
filterDir. The extra traffic causes overheads of less than 1% in
the NoC in all cases except in IS, where it adds 3%.

In terms of area, the SPMDirs, the filters and the filterDir
add an overhead of less than 4%.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 c

y
c
le

s

C H C H C H C H C H C H

CG EP FT IS MG SP

Control

Sync

Work

Figure 9: Performance of the cache-based system (C) and the
hybrid memory system (H).

In conclusion, the proposed coherence protocol introduces
very low overheads in performance, energy consumption and
network traffic. The overheads are caused by the extra traffic
added at DMA transfers, and also due to filter misses in IS.
The average overheads in performance, energy consumption
and network traffic are 4%, 9% and 8%, respectively.

5.4. Comparison with Cache-Based Systems

The immediate result of the coherence protocol is that any
computational loop can be executed on the hybrid memory
system without any programming effort. In order to demon-
strate the benefits of this accomplishment, in this section the
hybrid memory system is compared with a cache-based system
in terms of performance, energy consumption and network
traffic in a 64-core manycore. The studied hybrid memory and
cache-based systems have the same characteristics, shown in
Table 1, but with one difference. For fairness, the L1 D-cache
of the cache-based system is augmented to 64KB without af-
fecting access latency, matching the 32KB L1 D-cache plus
the 32KB SPM of the hybrid memory system.

Figure 9 shows the performance of the two systems. Both
bars are normalized to the cache-based system execution time
and show the time spent in each execution phase. The figure
shows that the hybrid memory system reduces the execution
time with respect to the cache-based system for all bench-
marks, achieving execution time reductions between 3% and
18% (or speedups of 1.03x to 1.22x). EP is dominated by
cache accesses to the stack and a very small data set is mapped
to the SPMs, so both systems have practically the same be-
haviour and the performance differences are negligible. In the
rest of benchmarks speedups of 1.12x to 1.22x are achieved
due to the ability of the hybrid memory system to serve mem-
ory accesses more efficiently than the cache-based system.
In FT, MG and SP, which have a lot of strided accesses, the
hybrid memory system always serves these accesses with the
SPMs without performance penalties while, in the cache-based
system, it is observed that cache misses happen because the
prefetchers are not able to provide all the data required by
all the strided references on time, and also the big amount of
data brought and prefetched to the L1 caches causes conflict
misses. In benchmarks that use guarded accesses, especially
IS and CG but also FT and MG, performance benefits come
from exploiting their temporal locality. The hybrid memory
system serves most of the memory accesses with the SPMs so

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 p

a
c
k
e
ts

C H C H C H C H C H C H

CG EP FT IS MG SP

CohProt

DMA

WB-Repl

Write

Read

Ifetch

Figure 10: NoC traffic of the cache-based system (C) and the
hybrid memory system (H).

the data brought to the L1 cache is much less often evicted,
while in the cache-based system it is quickly evicted to bring
and prefetch data for the strided accesses. In addition, Figure 8
shows that the filters of the coherence protocol also present
very high hit ratios, more than 92% in all cases, so the latency
of guarded memory accesses is not penalized neither. These
factors allow the hybrid memory system to serve data more ef-
ficiently than the cache-based system, reducing the execution
time of the work phase by 25% to 43%. These speedups in the
work phase overweight the overheads added in the control and
synchronization phases in all cases, resulting on an average
speedup of 1.14x across all benchmarks.

The NoC traffic of the cache-based and the hybrid memory
systems is shown in Figure 10. The two bars are normalized to
the traffic in the cache-based system and categorize the type of
traffic in groups: instruction fetch requests (Ifetch), data cache
reads (Read), data cache writes (Write), which include data
requests, prefetch requests, data and acknowledgment packets;
write-back and replacements of cache lines (WB-Repl), which
includes write-back requests, replacements, invalidations, data
and acknowledgment packets; DMA transfers (DMA), which
includes DMA requests, data and acknowledgment packets;
and coherence traffic introduced by the coherence protocol
(CohProt), which includes all the traffic explained in Section 3.
Results show that the hybrid memory system reduces the net-
work traffic by 20% to 34% in all benchmarks except EP. In
these benchmarks traffic is reduced because most of the data
set is mapped to the SPMs and moved using DMA transfers,
so many cache accesses, misses and prefetches and their as-
sociated NoC traffic are eliminated. On the one hand, this
eliminates between 71% and 83% of the traffic due to data
cache reads, between 61% and 74% of the traffic due to data
cache writes, and between 41% and 71% of the traffic in the
WB-Repl group. On the other hand, the DMA transfers re-
quired to move the data set to the SPMs add 32% to 37% to
the total network traffic. In addition, the code transformations
for the hybrid memory system and the code of the runtime
library cause a higher number of instruction fetches, adding an
extra overhead of up to 3%. The proposed coherence protocol
also adds NoC traffic, 1% in SP where there are no guarded
accesses, 4% to 7% in CG, FT and MG and up to 10% in
IS where traffic is introduced at DMA transfers and at filter
misses. EP maps a very small data set to the SPMs and does
an intensive utilization of the cache hierarchy, so the small

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 e

n
e
rg

y

C H C H C H C H C H C H

CG EP FT IS MG SP

CohProt

SPMs

Others

NoC

Caches

CPUs

Figure 11: Energy consumption of the cache-based system (C)
and the hybrid memory system (H).

traffic reductions achieved by mapping data to the SPMs are
compensated with the small overhead added by the coherence
protocol and the extra code. On average, the hybrid memory
system reduces the network traffic by 29%.

Another benefit of the hybrid memory system is that it con-
sumes less energy than a cache-based system, as shown in
Figure 11. The bars show the energy consumption of both
systems, normalized to the one of the cache-based system,
and they also show how the consumed energy is distributed
between the CPUs, the caches (including MSHRs and prefetch-
ers), the NoC, other components such as the cache coherence
protocol structures, DMACs and memory controllers (Oth-
ers), the SPMs, and the structures of the proposed coherence
protocol (CohProt). CG, FT, IS, MG and SP present energy
savings of 13% to 24%. Important energy savings come from
the cache hierarchy, which contributes with more than 35%
of the total energy consumed in the cache-based system and
is reduced by a factor of 2.5x to 6.1x in the hybrid memory
system. This is because most memory accesses are served
by the SPMs, which consume between 12% and 16% of the
total energy to do so. The hardware structures of the proposed
coherence protocol consume between 6% and 12% of the total
energy except in SP, where it represents only 1% because no
guarded accesses are used. The energy consumed in the CPUs
is reduced between 5% and 23%, depending on how many in-
struction re-executions due to cache misses are avoided, while
the reduction in NoC traffic also reduces by 18% to 42% the
energy consumed in this component. In EP the SPMs of the
hybrid memory system are underutilized and the static energy
of the added structures causes an overhead of 3%. The energy
saved in all benchmarks is, on average, 17%.

In conclusion, the ability of the hybrid memory system to
serve memory accesses with the SPMs and to efficiently move
the data with DMA transfers provides important benefits when
compared to a cache-based systems. An average speedup of
1.14x is achieved due to the efficiency on serving memory
accesses without performance penalties. In addition, using
DMA transfers leads to an average reduction in network traffic
of 29%, and serving most of the memory accesses with the
SPMs instead of the L1 caches is the biggest factor to reduce
the energy consumption by 17%, on average.

6. Related Work

6.1. SPM Management in Hybrid Memory Systems

Several forms of hybrid memory systems have been proposed
in the past. Although the architecture details of every solution
are similar, the way of managing the SPMs changes from one
proposal to another. Two big families of approaches can be
used: static or dynamic mappings.

Static mapping schemes allocate data in the SPMs at the
beginning of the execution and the contents of the SPMs do
not change during the computation. This model is used in
the embedded domain, where the compiler identifies data to
be mapped to the SPMs [7, 38, 42], and in GPUs, where
the programmer uses keywords [2] to declare what data is
allocated in the SPMs. On the one hand, static mappings do
not allow to map big amounts of data to the SPMs due to their
limited size. The dynamic approach is better suited for HPC
applications because it allows to map big inputs sets to the
SPMs in chunks, thus serving most memory accesses with the
SPMs and maximizing the benefits. On the other hand, static
methods do not encounter the coherence problem of dynamic
mappings because data is not replicated in the two storages.

Some works propose hybrid memory systems where the
SPMs are managed with a dynamic approach like the one
assumed in this paper (explained in Section 2.2). Bertran et
al. [11] propose to add a SPM alongside the L1 cache of a
single core processor and give the compiler the responsibility
of doing the code transformations, but they do not solve the
coherence problem between the two storages. Instead, the
compiler discards the code transformations in case of unknown
memory aliasings, restricting the effective utilization of the
SPM. The authors of Virtual Local Stores [15] (VLSs) allow
to configure parts of the caches as virtual SPMs, and they offer
the programmer a high-level API to dynamically map data
to the VLSs. The coherence protocol proposed in this paper
could be adopted by these two works to allow the compiler
to always generate code to manage the SPMs, improving the
programmability of the resulting systems.

Alvarez et al. [5, 6] propose a hardware/software co-
designed coherence protocol to add a SPM alongside the L1
cache of a single core. Although the compiler support for the
coherence protocol proposed in [5, 6] is exactly the same as
the one assumed in this paper, in the rest of aspects there are
important differences. At the architecture level, a key differ-
ence is that this paper allows every core to access any SPM,
while in [5, 6] they discuss that, in a multicore, every core
would only have access to its SPM. Regarding the hardware
design for the coherence protocol, in [5, 6] every core tracks
the data mapped to its SPM independently, but there is no way
to make this information globally visible to the other cores, so
the execution of a potentially incoherent access cannot check
if the data is mapped to the SPM of a remote core. These dif-
ferences make the coherence protocol in [5, 6] not applicable
to manycore architectures. If the SPMs and the SPMDirs are

not globally visible, the hardware cannot divert potentially
incoherent accesses to remote cores. Instead, the compiler has
to wrap the potentially incoherent accesses with a piece of
code that does a software lookup to check if some SPM has a
copy of the data, triggers a fine-grained DMA transfer to bring
the data to the SPM of the local core, accesses it, and triggers a
DMA transfer back if the data is modified. This solution adds
huge overheads, as observed in previous works in the area of
software caches [22]. This paper avoids these overheads by
allowing all the cores to access all the SPMs and by proposing
a hierarchy of directories and filters that efficiently tracks the
contents of all SPMs and diverts the potentially incoherent
accesses to any SPM of the chip. Moreover, this paper eval-
uates a hybrid memory manycore and solves two important
problems for the adoption of the hybrid memory system in
manycore architectures: the sequential consistency rules in the
memory model and the backwards compatibility.

Some architectures [25, 33, 40] offer the possibility to con-
figure the memory hierarchy as a combination of SPMs and
caches. These works focus on the hardware details that allow
the configurability, but do not discuss how the resulting config-
uration would be exposed to the upper layers of the system. A
promising solution to hide the complexity of the these hybrid
reconfigurable memory hierarchies to the programmer is to
manage them using compiler and runtime system techniques
in a hardware/software co-designed fashion [3, 43]. In this
direction, the software layers and the coherence protocol pro-
posed in this paper could be adopted by these architectures to
transparently reconfigure and manage the memory hierarchy.

6.2. Coherence Domains

Some works propose to deactivate coherence in cache hier-
archies to eliminate the unnecessary coherence traffic. The
technique consists on identifying private and shared data and
deactivating the cache coherence protocol for the private data.

Cuesta et al. [16] propose to deactivate cache coherence at
the granularity of virtual memory pages, using OS support at
TLB misses to identify private pages and tracking the private-
ness with a bit in the page table and in the TLB. Very similar
schemes are used to deactivate coherence for shared read-only
pages [17], to filter snoop requests [28] and to optimize data
placement in NUCA caches [23].

Other authors propose to deactivate cache coherence at
the granularity of regions of arbitrary size, tracking them at
the microarchitecture level with hardware support. Cantin
et al. [13] propose to identify and track private regions in
a hardware structure that directly interacts with an ad-hoc
coherence protocol. RegionScout [34] identifies private and
shared memory regions and uses additional hardware support
to filter broadcasts in snoop-based cache coherence protocols.
Alisafaee [4] identifies regions where coherence is not needed
and introduces the temporal dimension in the region classifica-
tion, allowing to transition from shared to private when two
cores do not access a shared region at the same time.

Some works use the information provided by the program-
mer or the programming model. Cohesion [27] offers an API
to the programmer to dynamically register memory regions
in hardware- or software-managed coherence domains, and
also proposes a mechanism to allow the transition between
domains. With different motivations, DeNovo [14] exploits
the data-race-freedom of disciplined programming models to
eliminate the transient states of cache coherence protocols.

In general, these works aim to decrease the coherence traffic
and the size of the directory of the coherence protocol. In the
hybrid memory system, mapping data to the SPMs can be con-
sidered a form of deactivating the cache coherence protocol,
but in this case the goal is not only to minimize the cache
coherence protocol overheads but also to reduce the energy
consumed by memory accesses. The code transformations
required to map data to the SPMs forces the identification
of private data to happen at compile time, and the proposed
coherence protocol is required to do it in non-trivial cases.

7. Conclusions

The increasing number of cores in manycore architectures
causes severe power consumption and scalability problems in
the cache hierarchy. A good solution is introducing SPMs in
the memory subsystem but, for the success of this solution, it
is key to hide from the programmer the programmability dif-
ficulties inherent to SPMs. Although compilers can generate
code for the SPMs in trivial cases, they are unable to do so in
the presence of pointers with unknown memory aliases.

This paper proposes a hardware coherence protocol that
allows the compiler to mark potentially incoherent memory ac-
cesses, leaving the responsibility to the hardware of diverting
them to the correct copy of the data. The coherence protocol
consists of a set of directories and filters that track what data is
mapped to the SPMs and what data is not mapped to any SPM.
This information is used to divert the potentially incoherent
accesses to the SPMs or to the cache hierarchy, ensuring the
valid copy of the data is always accessed.

With the coherence protocol the compiler can always gen-
erate code for the hybrid memory system, so the architecture
can be exposed to the programmer as a shared memory many-
core with a sequential consistency memory model that is fully
backwards compatible. In a 64-core manycore, compared to
a cache hierarchy, the hybrid memory system achieves an av-
erage speedup of 1.14x and average reductions in NoC traffic
and energy consumption of 29% and 17%, respectively.

Acknowledgments

This work has been supported by the Spanish Government
(grant SEV-2011-00067 of the Severo Ochoa Program), by
the Spanish Ministry of Science and Innovation (contract
TIN2012-34557), by Generalitat de Catalunya (contracts 2014-
SGR-1051 and 2014-SGR-1272), and by the RoMoL ERC Ad-
vanced Grant (GA 321253). Miquel Moreto has been partially

supported by the Ministry of Economy and Competitiveness
under Juan de la Cierva postdoctoral fellowship number JCI-
2012-15047, and Marc Casas is supported by the Secretary
for Universities and Research of the Ministry of Economy
and Knowledge of the Government of Catalonia and the Co-
fund programme of the Marie Curie Actions of the 7th R&D
Framework Programme of the European Union (Contract 2013
BP_B 00243).

References
[1] Intel 64 and IA-32 Architectures Software Developer’s Manual, 2011.
[2] NVIDIA CUDA C Programming Guide. Version 4.2, 2012.
[3] S. V. Adve and H.-J. Boehm, “Memory Models: A Case for Rethink-

ing Parallel Languages and Hardware,” Communications of the ACM,
vol. 53, no. 8, pp. 90–101, 2010.

[4] M. Alisafaee, “Spatiotemporal Coherence Tracking,” in MICRO 45:
Proceedings of the 45th International Symposium on Microarchitecture.
IEEE Computer Society, 2012, pp. 341–350.

[5] L. Alvarez, L. Vilanova, M. Gonzàlez, X. Martorell, N. Navarro, and
E. Ayguadé, “Hardware-Software Coherence Protocol for the Coex-
istence of Caches and Local Memories,” in SC ’12: Proceedings of
the International Conference on High Performance Computing, Net-
working, Storage and Analysis. IEEE Computer Society, 2012, pp.
89:1–89:11.

[6] L. Alvarez, L. Vilanova, M. Gonzàlez, X. Martorell, N. Navarro, and
E. Ayguadé, “Hardware-Software Coherence Protocol for the Coexis-
tence of Caches and Local Memories,” IEEE Transactions on Comput-
ers, vol. 64, no. 1, pp. 152–165, 2015.

[7] O. Avissar, R. Barua, and D. Stewart, “An Optimal Memory Allocation
Scheme for Scratch-pad-based Embedded Systems,” ACM Transac-
tions on Embedded Computing Systems, vol. 1, no. 1, pp. 6–26, 2002.

[8] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga,
“The NAS Parallel Benchmarks,” in SC ’91: Proceedings of the 1991
Conference on Supercomputing. IEEE Computer Society, 1991, pp.
158–165.

[9] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad Memory: A Design Alternative for Cache On-chip Mem-
ory in Embedded Systems,” in CODES ’02: Proceedings of the 10th
International Symposium on Hardware/Software Codesign. ACM,
2002, pp. 73–78.

[10] T. B. Berg, “Maintaining I/O Data Coherence in Embedded Multicore
Systems,” IEEE Micro, vol. 29, no. 3, pp. 10–19, 2009.

[11] R. Bertran, M. Gonzàlez, X. Martorell, N. Navarro, and E. Ayguadé,
“Local Memory Design Space Exploration for High-Performance Com-
puting,” The Computer Journal, vol. 54, no. 5, pp. 786–799, 2010.

[12] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 Simula-
tor,” SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7,
2011.

[13] J. F. Cantin, M. H. Lipasti, and J. E. Smith, “Improving Multiproces-
sor Performance with Coarse-Grain Coherence Tracking,” in ISCA

’05: Proceedings of the 32nd International Symposium on Computer
Architecture. ACM, 2005, pp. 246–257.

[14] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “DeNovo: Rethink-
ing the Memory Hierarchy for Disciplined Parallelism,” in PACT ’11:
Proceedings of the 2011 International Conference on Parallel Archi-
tectures and Compilation Techniques. IEEE Computer Society, 2011,
pp. 155–166.

[15] H. Cook, K. Asanovic, and D. A. Patterson, “Virtual Local Stores: En-
abling Software-Managed Memory Hierarchies in Mainstream Comput-
ing Environments,” Electrical Engineering and Computer Sciences De-
partment, University of California at Berkeley, Tech. Rep. UCB/EECS-
2009-131, 2009.

[16] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato, “Increas-
ing the Effectiveness of Directory Caches by Deactivating Coherence
for Private Memory Blocks,” in ISCA’ 11: Proceedings of the 38th
International Symposium on Computer Architecture. ACM, 2011, pp.
93–104.

[17] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato, “Increas-
ing the Effectiveness of Directory Caches by Avoiding the Tracking
of Noncoherent Memory Blocks,” IEEE Transactions on Computers,
vol. 62, no. 3, pp. 482–495, 2013.

[18] A. Deutsch, “Interprocedural May-Alias Analysis for Pointers: Beyond
k-limiting,” in PLDI ’94: Proceedings of the ACM SIGPLAN 1994
Conference on Programming Language Design and Implementation.
ACM, 1994, pp. 230–241.

[19] A. E. Eichenberger, J. K. O’Brien, K. M. O’Brien, P. Wu, T. Chen, P. H.
Oden, D. A. Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang,
P. Zhao, M. K. Gschwind, R. Archambault, Y. Gao, and R. Koo, “Using
Advanced Compiler Technology to Exploit the Performance of the Cell
Broadband EngineTMArchitecture,” IBM Systems Journal, vol. 45,
no. 1, pp. 59–84, 2006.

[20] A. E. Eichenberger, K. O’Brien, K. O’Brien, P. Wu, T. Chen, P. H.
Oden, D. A. Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang,
P. Zhao, and M. Gschwind, “Optimizing Compiler for the CELL Pro-
cessor,” in PACT ’05: Proceedings of the 14th International Conference
on Parallel Architectures and Compilation Techniques. ACM, 2005,
pp. 161–172.

[21] P. N. Glaskowsky, NVIDIA’s Fermi: The First Complete GPU Comput-
ing Architecture, 2009, white paper.

[22] M. Gonzàlez, N. Vujic, X. Martorell, E. Ayguadé, A. E. Eichenberger,
T. Chen, Z. Sura, T. Zhang, K. O’Brien, and K. O’Brien, “Hybrid
Access-Specific Software Cache Techniques for the Cell BE Architec-
ture,” in PACT ’08: Proceedings of the 17th International Conference
on Parallel Architectures and Compilation Techniques. ACM, 2008,
pp. 292–302.

[23] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: Near-Optimal Block Placement and Replication in Distributed
Caches,” in ISCA ’09: Proceedings of the 36th International Sympo-
sium on Computer Architecture. ACM, 2009, pp. 184–195.

[24] L. J. Hendren, J. Hummell, and A. Nicolau, “Abstractions for Recur-
sive Pointer Data Structures: Improving the Analysis and Transforma-
tion of Imperative Programs,” in PLDI ’92: Proceedings of the ACM
SIGPLAN 1992 Conference on Programming Language Design and
Implementation. ACM, 1992, pp. 249–260.

[25] N. Jayasena, “Memory Hierarchy Design for Stream Computing,” Ph.D.
dissertation, Stanford University, 2005.

[26] J. Kahle, “The Cell Processor Architecture,” in MICRO 38: Proceed-
ings of the 38th International Symposium on Microarchitecture. IEEE
Computer Society, 2005, pp. 3–4.

[27] J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, and S. J. Patel,
“Cohesion: An Adaptive Hybrid Memory Model for Accelerators,”
IEEE Micro, vol. 31, no. 1, pp. 42–55, 2011.

[28] D. Kim, J. Ahn, J. Kim, and J. Huh, “Subspace Snooping: Filtering
Snoops with Operating System Support,” in PACT ’10: Proceedings
of the 19th International Conference on Parallel Architectures and
Compilation Techniques. ACM, 2010, pp. 111–122.

[29] M. Kistler, M. Perrone, and F. Petrini, “Cell Multiprocessor Commu-
nication Network: Built for Speed,” IEEE Micro, vol. 26, no. 3, pp.
10–23, 2006.

[30] W. Landi and B. G. Ryder, “A Safe Approximate Algorithm for Inter-
procedural Aliasing,” in PLDI ’92: Proceedings of the ACM SIGPLAN
1992 Conference on Programming Language Design and Implementa-
tion. ACM, 1992, pp. 473–489.

[31] J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian,
M. Horowitz, and C. Kozyrakis, “Comparing Memory Systems for
Chip Multiprocessors,” in ISCA ’07: Proceedings of the 34th Annual

International Symposium on Computer Architecture. ACM, 2007, pp.
358–368.

[32] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures,” in MICRO 42:
Proceedings of the 42nd International Symposium on Microarchitec-
ture. IEEE Computer Society, 2009, pp. 469–480.

[33] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz,
“Smart Memories: A Modular Reconfigurable Architecture,” in ISCA
’00: Proceedings of the 27th International Symposium on Computer
Architecture. ACM, 2000, pp. 161–171.

[34] A. Moshovos, “RegionScout: Exploiting Coarse Grain Sharing in
Snoop-Based Coherence,” in ISCA ’05: Proceedings of the 32nd In-
ternational Symposium on Computer Architecture. ACM, 2005, pp.
234–245.

[35] R. Murphy, “On the Effects of Memory Latency and Bandwidth on
Supercomputer Application Performance,” in IISWC ’07: Proceedings
of the 10th International Symposium on Workload Characterization.
IEEE Computer Society, 2007, pp. 35–43.

[36] R. C. Murphy and P. M. Kogge, “On the Memory Access Patterns of
Supercomputer Applications: Benchmark Selection and Its Implica-
tions,” IEEE Transactions on Computers, vol. 56, no. 7, pp. 937–945,
2007.

[37] Y. Paek, J. Hoeflinger, and D. Padua, “Efficient and Precise Array
Access Analysis,” ACM Transactions on Programming Languages and
Systems, vol. 24, no. 1, pp. 65–109, 2002.

[38] P. R. Panda, N. D. Dutt, and A. Nicolau, “Efficient Utilization of
Scratch-Pad Memory in Embedded Processor Applications,” in EDTC

’97: Proceedings of the 1997 European Conference on Design and Test.
IEEE Computer Society, 1997, p. 7.

[39] A. Ros, M. E. Acacio, and J. M. García, Parallel and Distributed
Computing. IN-TECH, 2010, ch. Cache Coherence Protocols for
Many-Core CMPs.

[40] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, N. Ran-
ganathan, D. Burger, S. W. Keckler, R. G. McDonald, and C. R. Moore,
“TRIPS: A Polymorphous Architecture for Exploiting ILP, TLP, and
DLP,” ACM Transactions on Architecture and Code Optimization,
vol. 1, no. 1, pp. 62–93, 2004.

[41] S. Seo, J. Lee, and Z. Sura, “Design and Implementation of Software-
Managed Caches for Multicores with Local Memory,” in HPCA

’09: Proceedings of the 15th International Conference on High-
Performance Computer Architecture. IEEE Computer Society, 2009,
pp. 55–66.

[42] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel, “Assigning Pro-
gram and Data Objects to Scratchpad for Energy Reduction,” in DATE

’02: Proceedings of the conference on Design, Automation and Test in
Europe. IEEE Computer Society, 2002, pp. 409–415.

[43] M. Valero, M. Moreto, M. Casas, E. Ayguadé, and J. Labarta, “Runtime-
Aware Architectures: A First Approach,” International Journal Super-
computing Frontiers and Innovations, vol. 1, no. 1, pp. 29–44, 2014.

[44] J. Weinberg, M. O. McCracken, E. Strohmaier, and A. Snavely, “Quan-
tifying Locality In The Memory Access Patterns of HPC Applications,”
in SC ’05: Proceedings of the 2005 ACM/IEEE conference on Super-
computing. IEEE Computer Society, 2005, pp. 50–62.

[45] R. P. Wilson and M. S. Lam, “Efficient Context-Sensitive Pointer
Analysis for C Programs,” in PLDI ’95: Proceedings of the ACM
SIGPLAN 1995 Conference on Programming Language Design and
Implementation. ACM, 1995, pp. 1–12.

	Introduction
	Background and Motivation
	Hybrid Memory System Architecture
	Compiler and Runtime Support
	Coherence Problem
	Compiler Support for the Coherence Protocol

	Coherence Protocol
	Implementation of Hardware Structures
	Diverting Potentially Incoherent Accesses
	Tracking SPMs Contents
	Memory Consistency Model

	Summary and Discussion
	OS Support and Backwards Compatibility

	Evaluation
	Experimental Framework
	Benchmark Characterization
	Coherence Protocol Overheads
	Comparison with Cache-Based Systems

	Related Work
	SPM Management in Hybrid Memory Systems
	Coherence Domains

	Conclusions

