

Edinburgh Research Explorer

Manycore Network Interfaces for In-Memory Rack-Scale
Computing

Citation for published version:
Daglis, A, Novakovic, S, Bugnion, E, Falsafi, B & Grot, B 2015, Manycore Network Interfaces for In-Memory
Rack-Scale Computing. in The 42nd International Symposium on Computer Architecture (ISCA 2015).

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
The 42nd International Symposium on Computer Architecture (ISCA 2015)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://www.research.ed.ac.uk/en/publications/0c183999-32f1-4b9d-ab5d-1e213fa29a33

Manycore Network Interfaces for In-Memory Rack-Scale Computing

Alexandros Daglis Stanko Novaković Edouard Bugnion Babak Falsafi Boris Grot†
EcoCloud, EPFL †University of Edinburgh

{alexandros.daglis,stanko.novakovic,edouard.bugnion,babak.falsafi}@epfl.ch

†boris.grot@ed.ac.uk

Abstract
Datacenter operators rely on low-cost, high-density tech-

nologies to maximize throughput for data-intensive services
with tight tail latencies. In-memory rack-scale computing
is emerging as a promising paradigm in scale-out datacen-
ters capitalizing on commodity SoCs, low-latency and high-
bandwidth communication fabrics and a remote memory ac-
cess model to enable aggregation of a rack’s memory for
critical data-intensive applications such as graph processing
or key-value stores. Low latency and high bandwidth not only
dictate eliminating communication bottlenecks in the software
protocols and off-chip fabrics but also a careful on-chip in-
tegration of network interfaces. The latter is a key challenge
especially in architectures with RDMA-inspired one-sided op-
erations that aim to achieve low latency and high bandwidth
through on-chip Network Interface (NI) support. This paper
proposes and evaluates network interface architectures for
tiled manycore SoCs for in-memory rack-scale computing.
Our results indicate that a careful splitting of NI functionality
per chip tile and at the chip’s edge along a NOC dimension
enables a rack-scale architecture to optimize for both latency
and bandwidth. Our best manycore NI architecture achieves
latencies within 3% of an idealized hardware NUMA and
efficiently uses the full bisection bandwidth of the NOC, with-
out changing the on-chip coherence protocol or the core’s
microarchitecture.

1. Introduction
The information revolution of the last decade has been fueled
by rapid growth in digital data. IDC estimates a 300-fold in-
crease in the size of the digital universe in the span of 15 years,
totaling over 40 zettabytes by the year 2020 and doubling
every 18 months [17]. Such rapid growth in data volumes
has challenged datacenter operators that host latency-sensitive
online services.

Existing datacenters are built in a scale-out fashion using
commodity servers that provide cost efficiency and expan-
sion friendliness. However, a number of emerging application
classes, such as those that rely on graph-based data representa-
tions, are not directly amenable to sharding and intrinsically
require inter-node transfers once the dataset size exceeds the
memory of a single node [13, 35]. In contrast, cache-coherent

NUMA machines seamlessly scale the memory capacity and
latency with the number of sockets, but are notoriously diffi-
cult to scale to large configurations, are expensive to acquire,
and present a fault-containment challenge [11].

Driven by these observations, researchers and system ven-
dors have sought to coarsen the basic unit of compute in a
way that would afford low-latency and high-bandwidth access
to large amounts of memory without losing the benefits of
the scale-out deployment model. As a result, rack-scale com-
puting has emerged as a promising paradigm that combines
direct remote memory access technology with lossless inte-
grated fabrics and light-weight messaging in a rack-scale form
factor [4, 38, 39]. A recent rack-scale system proposal demon-
strated remote memory access latency of 300ns and ability to
stream at full memory bandwidth of the remote socket [38].

Given the server technology trends, rack-scale systems will
soon feature ARM-based SoCs with dozens of cores (e.g.,
Scale-Out Processors [10, 34] or Tiled Manycores [14]), high-
bandwidth memory interfaces supplying well over 100GBps
of DRAM bandwidth per socket, and SerDes or photonic chip-
to-chip links, allowing for low-latency and high-bandwidth
intra-rack communication. A rack-scale system features many
such servers, tightly integrated in a supercomputer-like fabric.
A key emerging challenge in such systems is a manycore
SoC network interface (NI) architecture that would enable
effective integration of on-chip resources with supercomputer-
like off-chip communication fabrics to maximize efficiency
and minimize cost.

Many have proposed on-chip NIs including designs inte-
grated into the cache hierarchy of lean SoCs with one [38]
or a few cores [26] by simply placing the NIs at the edge of
the chip. Unfortunately, placing NIs at the chip’s edge in a
manycore SoC incurs prohibitively high on-chip coherence
and NOC latencies on accesses to the NI’s internal structures.
As this work shows, on-chip latency is particularly high (up
to 80% of the end-to-end latency) for fine-grain (e.g., cache
block size) accesses to remote in-memory objects. Because
of the demand for low remote access latency in rack-scale
systems, such edge-based NI placements are not desirable.

Alternatively, there are manycore tiled processors with lean
per-tile NIs directly integrated into the core’s pipeline [7].
While per-tile designs optimize for low latency, they primarily
target fine-grain (e.g., scalar) communication and are not suit-
able for in-memory rack-scale computing with coarse-grain
objects from hundreds of bytes to tens of kilobytes. Moreover,

current per-tile designs are highly intrusive in microarchitec-
ture, which is undesirable for licensed IP blocks (e.g., ARM
cores) used across many products. Finally, these designs have
primarily targeted single-chip systems rather than rack-scale
systems, which rely on a remote memory access model.

This paper is, to the best of our knowledge, the first to
evaluate the design space of manycore NIs for in-memory
rack-scale systems. We study systems with RDMA-inspired
one-sided operations (e.g., read/write) to enable low latency
and high bandwidth for variable-size objects and make the
following observations: (1) there is a need for per-tile NI
functionality to eliminate unnecessary coherence traffic for
fine-grain requestor-side operations, (2) given high coherence-
related NOC latencies, the software overhead to trigger one-
sided operations is amortized, obviating the need for direct
remote load/store operations in hardware to accelerate them,
(3) bulk transfer operations overwhelm the NOC resources
and as such are best implemented at the chip’s edge, and (4)
response-side operations (i.e., remote requests to a SoC’s local
memory) do not interact with the cores and are therefore best
handled at the chip’s edge.

We use these observations and propose three manycore NI
architectures: (1) NIedge, the simplest design, with NIs along
a dimension of the NOC at the chip’s edge, optimizing for
bandwidth and low on-chip traffic, (2) NIper−tile, the most
hardware-intensive design, with an NI at each tile to optimize
for lower access latency from a core to NI internals, and (3)
NIsplit , a novel manycore NI architecture with a per-tile fron-
tend requestor pipeline to initiate transfers, and a backend
requestor pipeline for data handling plus a response pipeline
servicing remote accesses to local memory, both integrated
across the chip’s edge. The NIsplit design optimizes for both
latency and bandwidth without requiring any modifications to
the SoC’s cache coherence protocol, the memory consistency
model or the core microarchitecture.

We assume a 512-node 3D-torus-connected rack with 64-
core mesh-based SoCs, and use cycle-accurate simulation to
compare our three proposed manycore NI architectures to a
NUMA machine of the same size and show that:
• On-chip coherence and NOC latency dominate end-to-end

latency in manycore SoCs for in-memory rack-scale sys-
tems, amortizing the software overhead of one-sided opera-
tions. As such, intrusive core modifications to add hardware
load/store support for remote operations are not merited;

• An NIedge design can efficiently utilize the full bisection
bandwidth of the NOC while incurring 16% to 80% end-to-
end latency overhead as compared to NUMA;

• An NIper−tile design can achieve end-to-end latency within
3% of NUMA, but can only reach 25% of the bandwidth
that NIedge delivers for large (8KB) objects, due to extra
on-chip traffic;

• An NIsplit design combines the advantages of the two base
designs and reaches within 3% of NUMA end-to-end la-
tency, while matching NIedge’s bandwidth.

2. Background

2.1. Application and Technology Trends

Today’s networking technologies struggle to satisfy the heavy
demands of datacenter applications that query and process
massive amounts of data in real time. User data is growing
faster than ever, and providing applications with fast access
to it is fundamental. Because datasets commonly exceed the
capacity of a single cache-coherent NUMA server, distributing
data and computation across multiple servers (a.k.a., scale-out)
has become the norm.

Unfortunately, most such applications must address large
amounts of data in little time [6], with implications in terms
of both latency and bandwidth. Many datacenter applications
are hard to partition optimally as they rely on irregular data
structures such as graphs, making the poor locality of refer-
ence a fact of life. Other applications, such as distributed
key-value stores, force clients to go over the network in order
to access just a few bytes of user data. Most key-value stores
today operate on object sizes between 16 and 512 bytes, which
are typical of datacenter applications [5, 43]. Similarly, Face-
book’s Memcached pools typically have objects close to 500
bytes in size [5]. Accesses to such small objects are bound
by the network latency (up to 100µs), which can increase the
overall latency as compared to local memory access latency
(<100ns) by three or more orders of magnitude.

The corresponding bandwidth requirements are equally dra-
matic for datacenter applications. Lim et al. [32] measure
object sizes in file servers, image servers and social networks
varying in size from a few to tens of KBs. Many graph process-
ing and MapReduce applications require more coarse-grained
accesses and thus are mostly bound by the bisection band-
width. In such applications, bandwidth requirements grow
with the size of the system, as the fraction of data local to a
given node is inversely proportional to the number of nodes.

Recently, server performance and energy considerations
have led to the emergence of highly integrated chassis- and
rack-scale systems, such as HP Moonshot [22], Boston
Viridis [8], and AMD’s SeaMicro [12]. These systems in-
terconnect a large number of servers, each with an on-chip NI,
using a supercomputer-like lossless fabric. NI integration and
short intra-rack communication distances help reduce commu-
nication delays. Unfortunately, these benefits are offset by the
deep network stacks of commodity network protocols. More-
over, the deep stacks’ effect on performance is exacerbated by
the lean cores in these servers.

Similarly, augmenting rack-scale systems with PCIe-
attached RDMA controllers [21] can bring latency down to
the microseconds range. However, remote access latency is
still over 10x of local memory, limited by the PCIe bus and
the delay of a complex RDMA-compliant ASIC. The PCIe
bus also limits the bandwidth to 40Gbps (5GBps) in most con-
figurations, which is grossly mismatched with local DRAM
bandwidth that is approaching 20GBps per DDR channel.

core% local%NI% remote%NI% memory%

CQ%read%

WQ%write%

Request%
Genera9on%

WQ%read%

Request%%
Comple9on%%
&%CQ%write%

Figure 1: QP-based remote read.

This work focuses on low-latency and high-bandwidth re-
mote memory access in rack-scale systems. We identify two
attributes in tomorrow’s servers that drive our design choices.
First, we observe that research results and industry trajectory
are pointing in the direction of server processors with dozens
of cores per chip [10, 14, 34]. Thus, remote memory architec-
tures will have to cope with realities of a fat node with many
cores and non-trivial on-chip communication delays. Second,
the emerging System-on-Chip (SoC) model for server proces-
sors favors features that can be packaged as separate IP blocks
and eschews invasive modifications to existing IP (e.g., most
licensees of ARM cores cannot afford an ARM architectural
license that would allow them to modify core internals).

2.2. QP-based Remote Memory Access

Recent research [38] advocates in-memory rack-scale comput-
ing for low latency and high bandwidth using RDMA-inspired
one-sided memory operations with architectural support in a
specialized NI. In such implementations, the cores communi-
cate with the NI via in-memory control structures, typically
Queue Pairs (QPs), to schedule remote operations and get
notified of their completion. The QP-based communication
of RDMA introduces a non-trivial scheduling overhead for
remote operations, as illustrated in Fig. 1. Each remote read
or write requires the execution of multiple instructions on the
core to create an entry in the Work Queue (WQ). The local NI
polls on the WQ and upon the creation of a new request, the
NI reads the corresponding WQ entry, generates a request and
injects it into the network. Upon the response’s arrival, the
local NI takes protocol-specific actions to complete the request
and notifies the application by writing to a Completion Queue
(CQ). The QP-based approach is clearly more complex from
the programming perspective than a pure load/store model, but
is highly flexible and does not require modifying the core.

The underlying technology and mechanisms used to connect
the controller to the cores play a significant role for the end-
to-end latency and bandwidth. Most existing RDMA-based
solutions rely on PCIe to connect the NI, introducing signifi-
cant interaction overhead. While integrated on-chip solutions
leverage cache coherence to make this interaction as cheap as

NI#

NI#

NI#

NI#

NI#

NI#

NI#
GetRO#

A
GetX#1#

Invalidate#

MC#

MC#

MC#

MC#

MC#

MC#

MC#

MC#

N
etw

o
rk#R

o
u
ter#

N
etw

o
rk#R

o
u
ter#

MissNo:fy#
2# B#

2#

NI#
InvACK#3#

ReadReply#3#

ReadFwd#
2#

B#
1#

A(a) Core A writing a new WQ entry.

NI#

NI#

NI#

NI#

NI#

NI#

NI#
GetRO#

A
GetX#1#

Invalidate#

MC#

MC#

MC#

MC#

MC#

MC#

MC#

MC#

N
etw

o
rk#R

o
u
ter#

N
etw

o
rk#R

o
u
ter#

MissNo:fy#
2# B#

2#

NI#
InvACK#3#

ReadReply#3#

ReadFwd#
2#

B#
1#

A

(b) NI polling for a new WQ entry.

Figure 2: Core and NI WQ interactions.

possible, they still introduce non-negligible overhead due to
sequences of coherence-related on-chip messages, triggered
by each cache block transfer.

QP-based communication at rack scale has the potential to
drive remote access latency down to a small factor of DRAM
latency. The QP-based approach is appealing because it does
not require modifying the instruction set to support remote
reads/writes. By using memory-mapped queues, applications
can interact with the NI directly and bypass the OS kernel,
which is a major source of overhead. A cache-coherent NI can
provide applications with a remote access latency of just 300ns
and the capability of streaming from remote memory at full
DDR3 memory bandwidth [38]. However, current proposals
are not applicable to manycore SoCs as they only evaluate
single-core nodes. In this paper, we identify the challenges
of NI placement and core-NI communication in a QP-based
remote memory access model for manycore chips.

3. Manycore Network Interfaces

In this section, we investigate the design space for scalable
network interfaces for manycore SoCs, their latency and band-
width characteristics, and the costs and complexities associ-
ated with their integration.

3.1. Conventional Edge-Based NI

Recent high-density chassis- and rack-scale systems are based
on server processors with a few cores and an on-chip NI [9,
12, 26]. Although integrated, the whole NI logic is still placed
at the chip’s edge, close to the pins that connect the chip to the
network. We refer to this NI architecture as NIedge.

Emerging scale-out server processors [34] (e.g., Cavium’s
ThunderX [10]), and tiled manycores (e.g., EZChip’s TILE-
Mx [14]) already feature from several dozens to up to 100
ARM cores. Because of this trend toward fat manycores,

NIedge may not be optimal for chips that feature fast remote
memory access powered by a QP-based model. In particular,
the QP-related traffic between the cores and the NIs must
traverse several hops on the NOC, and as the NOC grows with
the chip’s core count so does the number of hops to reach the
chip’s edge. Moreover, every cache block transfer triggers the
coherence protocol, which typically requires several messages
to complete a single transfer. Thus, the QP-related traffic (i.e.,
WQ/CQ read/write in Fig. 1) becomes a significant fraction of
the end-to-end latency.

Fig. 2a and 2b illustrate the critical path for reads and writes,
respectively, in an example manycore chip with NIedge. With-
out loss of generality we assume a manycore chip with a mesh
NOC and a statically block-interleaved shared NUCA LLC
with a distributed directory and a 3-hop invalidation-based
MESI coherence protocol. As such, a block’s home tile lo-
cation on the chip is only a function of its physical address.
The NI also includes a small cache to hold the QP entries,
which is integrated into the LLC’s coherence domain [38] and
is bypassed by all of the NI’s data (non-QP) accesses.

Fig. 2a shows the sequence of coherence transactions re-
quired for core A to write to a WQ entry. The core sends
a message to request an exclusive copy (GetX) of the cache
block where the head WQ entry resides. The message goes to
the requested block’s home directory, which happens to be at
core B 1 . Because the NI polls on the WQ head, the directory
subsequently invalidates NI’s copy of the cache block, and
concurrently sends the requested block to core A, notifying
it (MissNotify) to wait for an invalidation acknowledgement
from the NI 2 . The NI then invalidates its copy of the re-
quested block and sends an acknowledgement (InvACK) to
resume core A 3 . Once core A resumes, it also sends an
acknowledgement concurrently to the directory to conclude
the coherence transaction (not shown for brevity).

Fig. 2b shows the sequence of coherence transactions re-
quired for the NI to read a new WQ entry. The NI requests
a read-only copy (GetRO) of the block from the directory 1 .
Because the block is modified in core A’s cache, the directory
sends a forward request to core A 2 . Core A forwards a read-
only copy of the modified block to the NI 3 , downgrading its
own copy, and resuming the NI. Once the NI resumes, it also
sends an acknowledgement to the directory with a copy of the
block to keep the data in the LLC up to date and conclude the
coherence transaction (not shown for brevity).

The on-chip coherence overhead in terms of message count
is similar in the case of CQ interactions. The only difference
is that the roles of the core and the NI are reversed, with the
NI writing entries in the CQ, and the core polling on the CQ
head.

We now quantify these interactions through a case study.
Table 1 presents a breakdown of the average end-to-end latency
for a remote read operation under zero load in a QP-based rack-
scale architecture featuring 64-core SoCs with a mesh NOC
and NIedge. In this breakdown, we assume communication

Latency(Component NI_edge Latency(Component NI_per3tile Latency(Component NI_split Latency(Component
NUMA(

projection
WQ#write#software#overhead 104 WQ#write#software#overhead 13 WQ#write#software#overhead 13

WQ#entry#transfer 5 WQ#entry#transfer 5
RGP#Processing 7 RGP#frontend#processing 4

Transfer#request#to#RGP#backend 23
RGP#backend#processing 4

IntraErack#network#(1#hop) 70 IntraErack#network#(1#hop) 70 IntraErack#network#(1#hop) 70 IntraErack#network#(1#hop) 70
RRPP#servicing 208 RRPP#servicing 208 RRPP#servicing 208 RRPP#servicing 208

IntraErack#network#(1#hop) 70 IntraErack#network#(1#hop) 70 IntraErack#network#(1#hop) 70 IntraErack#network#(1#hop) 70
RCP#backend#processing 4

Transfer#reply#to#RCP#frontend 23
RCP#processing 11 RCP#frontend#processing 8
CQ#entry#transfer 5 CQ#entry#transfer 5

CQ#read#software#overhead 84 CQ#read#software#overhead 10 CQ#read#software#overhead 10
Total((2GHz(cycles) 710 Total((2GHz(cycles) 445 Total((2GHz(cycles) 447 Total((2GHz(cycles) 395

Overhead(over(NUMA 79.7% Overhead(over(NUMA 12.7% Overhead(over(NUMA 13.2%

Latency(Component
QP3based(
model

Latency(Component NUMA(

A1)#WQ#write#(core) 104 B1)#Exec.#of#load#instruction 1
A2)#WQ#read#(NI) 95 B2)#Transfer#req.#to#chip#edge 23
A3)#IntraErack#network#(1#hop) 70 B3)#IntraErack#network#(1#hop) 70
A4)#Read#data#from#memory 208 B4)#Read#data#from#memory 208
A5)#IntraErack#network#(1#hop) 70 B5)#IntraErack#network#(1#hop) 70
A6)#CQ#write#(NI) 79
A7)#CQ#read#(core) 84

Total((2GHz(cycles) 710 Total((2GHz(cycles) 395
Overhead(over(NUMA 79.7%

WQ#read#and#RGP#processing

RCP#processing#and##############
CQ#entry#write

Transfer#request#to#chip#edge 23

Transfer#reply#to#RCP 23

B6)#Transfer#reply#to#core 23

95

79

Remote#read#issuing##########
(single#load)

1

Transfer#request#################
to#chip#edge

23

Transfer#reply##to#
requesting#core

23

E

E

Table 1: Latency comparison of a QP-based model and a pure
load/store interface.

between two directly connected chips (i.e., one network hop
apart). The details of the modeled configuration can be found
in §5. The table also includes the latency breakdown for a
base NUMA machine (e.g., Cray T3D [27, 41]), which does
not incur any QP-related on-chip communication overheads,
as a point of comparison.

Table 1 indicates that the overhead of the core writing a new
WQ entry and the NI reading it can measure up to∼200 cycles
(entries A1 & A2), while the overhead for NUMA to send a
request to the chip’s edge is only 24 cycles (B1 & B2). The
network and memory access at the remote node incur the same
latency in both systems. Finally, the QP-based model requires
∼160 cycles to complete the transfer via a CQ entry that is
written by the NI and read by the core (A6 & A7), while for
NUMA the response is sent directly to the issuing core (B6).

The overall overhead of the QP-based model over a NUMA
machine is almost 80%. The QP-based interactions that re-
quire multiple NOC transfers dominate the end-to-end latency.
Moreover, in this example, the software overhead of creating
a WQ entry for a RISC core is roughly a dozen arithmetic
instructions plus two stores to the same cache block. Simi-
larly, reading the CQ involves four instructions including a
load. Therefore, the software overhead of reading/writing the
QP structures is negligible compared to the overall on-chip
latency. These results suggest that supporting a load/store
hardware interface for remote accesses as in NUMA machines
is an overkill because its impact would be negligible on the
end-to-end latency for manycore chips.

NIedge becomes competitive, however, with an increase
in transfer size. The QP-based model allows for the core
to issue a request for multi-cache-block objects through a
single WQ entry. Such a request is subsequently parsed by the
NI and “unrolled” directly in hardware, completing multiple
block transfers before having to interact with the core again,
thus amortizing the QP-related overheads over a larger data
transfer. The net result is that NIedge exhibits robust bandwidth
characteristics with the QP-based remote access model. In
contrast, a NUMA machine primarily supports a single cache
block transfer and, without specialized NI support, it would
suffer in performance from prohibitive on-chip traffic.

3.2. Per-Tile NI

An alternative NI design is to collocate the NI logic with
each core (NIper−tile, Fig. 3a). Such a design would mitigate
QP-related traffic, thereby using the NOC only for the direct
transfer of network packets between each tile and the network
router at the chip’s edge. To eliminate the coherence traffic
between the core and NI, while precluding changes to the core
or the LLC coherence controllers, the NI cache must be placed
close to the core with care. We discuss the details of the NI
cache design in §3.4.

Unfortunately, while NIper−tile minimizes the initiation la-
tency for small transfers, it suffers from unnecessary NOC
traversals for large transfers. To access a large object in remote
memory, the NI issues a separate pair of request and response
messages for each cache block. Thus, a large request is trans-
formed into a stream of cache-block-sized requests, which
congests the NOC on its way to the chip’s edge. Similarly,
the responses congest the NOC because every single response
message must be routed to the NI, which the request originated
from, before its payload is sent to its corresponding home LLC
tile. Therefore, in contrast to NIedge, NIper−tile optimizes for
latency, while suffering from lower bandwidth. We compare
and contrast the latency and bandwidth characteristics of these
two NI designs in §6.

3.3. Split NI

To overcome the limitations of the NIedge and NIper−tile de-
signs, we propose a novel design that optimizes for both low
latency and high bandwidth. Our design is based on the funda-
mental observation that an NI implements two distinct func-
tionalities that are separable: (i) a frontend component in-
cluding the NI cache, which interacts with the application to
initiate a remote memory access operation, and (ii) a backend
component, which accesses data. We therefore split each NI
into these two components. We replicate the NI’s frontend
at each tile, so that each frontend is collocated with the core
it is servicing to minimize the QP coherence overhead. The
backend is replicated across the chip’s edge, close to the net-
work router. The split NI design (NIsplit , Fig. 3b) achieves
the best of both NIedge and NIper−tile worlds. It provides low
QP interaction latency without generating unnecessary NOC
traffic and optimizes for both fine-grained and bulk transfers.

3.4. NI Cache

In the NIedge design, each NI is attached to an edge tile,
extending the mesh as shown in Fig. 2. Each NI includes a
small cache that holds the QP entries and acts like a core’s L1
data cache participating in the LLC’s coherence activity. The
NI cache has a unique on-chip tile ID, which is tracked by the
coherence protocol much like a core’s L1 cache.

In contrast, NIper−tile and NIsplit collocate their NI cache
with a core at each tile to mitigate coherence traffic induced
by QP interactions. Unfortunately, a naive collocation of the

!!C
2
C
!R

o
u
t
e
r
!

NI!

NI!

NI!

NI!

NI!

NI!

NI!

NI!

NI!

NI!

NI!

NI!

NI!

NI!

NI!

NI!

Frontend!logic! Backend!logic!

NI!

NI!

NI!

NI!
Dir.!lookup!

Fwd.!WQ!block!

Fwd.!to!owner!

1!

3!

2!

N
etw

o
rk!R

o
u
ter!

N
etw

o
rk!R

o
u
ter!

MC!

MC!

MC!

MC!

MC!

MC!

MC!

MC!

(a) NIper−tile design.

!!C
2
C
!R

o
u
t
e
r
!

NI!

NI!

NI!

NI!

NI!

NI!

NI!

NI!

NI!

NI!

NI!

NI!

NI!

NI!

NI!

NI!

Frontend!logic! Backend!logic!

NI!

NI!

NI!

NI!
Dir.!lookup!

Fwd.!WQ!block!

Fwd.!to!owner!

1!

3!

2!

N
etw

o
rk!R

o
u
ter!

N
etw

o
rk!R

o
u
ter!

MC!

MC!

MC!

MC!

MC!

MC!

MC!

MC!

(b) NIsplit design.

Figure 3: NI design space for manycore chips.

NI cache at each core does not eliminate the traffic because
all QP interactions require consulting with the home directory
in the LLC for the corresponding cache blocks. To guarantee
that the traffic remains local, the system must migrate the
home directories for the QP entries to their corresponding NI
tile requiring additional architectural and OS support (e.g., as
in R-NUCA [19]). Alternatively, sharing the L1 data cache
between the core and NI would eliminate all traffic but is
highly intrusive because the L1 data cache is on the critical
path of the pipeline. Moreover, commodity ARM cores are
licensed as an entire IP block and making changes to the core
would be prohibitively expensive.

Instead, the cache for these two NI designs is attached di-
rectly to the back side of L1, at the boundary of the core’s
IP block. Unlike the NIedge cache, this cache directly snoops
all traffic from the L1’s back side (e.g., as in a write-back or
victim buffer). The NI cache and the core’s L1 at each tile
collectively appear as a single logical entity to the LLC’s coher-
ence domain while physically decoupled. Such an integration
obviates the need to modify the on-chip coherence protocol
and guarantees preserving the base memory consistency model
(e.g., Reunion vocal/mute cache pair [44], FLASH/Typhoon
block buffers [20, 28, 40]).

In this work, without loss of generality, we assume a non-
inclusive MESI-based invalidation protocol with an inexact
directory (i.e., non-notifying protocol). Exact directories are
also implementable but would require a more sophisticated
finite-state machine to guarantee that a single shared copy is
tracked by the directory between the NI cache and the L1 data
cache. For brevity, we omit the state transition diagram of
the controller, and instead describe the basic principles of its
operation.

Much like typical L1 back-side buffers, the NIper−tile (or
NIsplit) cache snoops all traffic from both L1 and the directory.

The cache can provide a block upon a miss in L1 as long as
the request message conforms with the cache state. Otherwise,
the request is forwarded to the directory. Similarly, if the
directory requests a block that is currently shared by the cache,
the cache acts on the message, forwards it to L1, waits for a
response from L1, and responds back to the directory.

A frequent case that occurs under normal system opera-
tion is the NIper−tile (or NIsplit) cache holding a block in the
modified state because of a CQ write, and the core polling
on that block, requesting a read-only copy. Under a MESI-
based protocol, the cache cannot respond with a dirty block
to a read-only request, so it would have to write it back to the
LLC first. To optimize for this common case, we introduce an
owned state, only visible to the NI cache controller. This way,
the cache can directly forward a clean version of the requested
block to L1, while keeping track of its modified state, so that
the block eventually gets written back in the LLC upon its
eviction.

4. A Case Study with Scale-Out NUMA
To illustrate the design points of the previous section, we use
Scale-out NUMA (soNUMA), a state-of-the-art rack-scale
architecture that features a QP-based model for remote mem-
ory access operations. We begin with a brief overview of
soNUMA, and then materialize the discussed NI design ap-
proaches as a case study.

soNUMA is a programming model, architecture, and com-
munication protocol for low-latency and high-bandwidth in-
memory processing and data serving. An soNUMA cluster
consists of multiple SoC server nodes connected by an exter-
nal fabric. Nodes communicate with each other via remote
read and write operations, similar to RDMA. The latter al-
lows application processes to directly access the memory of an
application running on another node at high speed using vir-
tual memory, effectively creating a partitioned global address
space across the cluster. Remote accesses spanning multiple
cache blocks are unrolled into cache-block-sized requests at
the source node. Prior evaluation results using cycle-accurate
simulation of uniprocessor nodes show that soNUMA can
effectively provide access to remote memory at only a 4x
multiple of local DRAM latency [38].

4.1. soNUMA NI Overview

In soNUMA, the NI is an architecturally exposed block called
the Remote Memory Controller (RMC). Every request in
soNUMA goes through three distinct stages: it is generated at
the requesting node, serviced at a remote node, and completed
upon its return to the requesting node. These three logical
stages are handled by three independent RMC pipelines: the
Request Generation Pipeline (RGP), the Request Completion
Pipeline (RCP), and the Remote Request Processing Pipeline
(RRPP). Request generations and completions are commu-
nicated between the cores and the RMC pipelines through a
QP-based protocol with memory-mapped queues.

We now briefly describe the three pipelines; a more detailed
description of their functionality can be found in [38].

Request Generation Pipeline. The RGP (Fig. 4a) periodi-
cally polls all the WQs that are registered with it to check for
new enqueued requests. Each request is converted into one or
more network packets, with large requests (i.e., those spanning
multiple cache lines) unrolled by the RGP into a sequence of
cache-block-sized transfers. For write requests, the RGP loads
the write data from the local node’s memory hierarchy prior
to injecting the packet into the network router.

Request Completion Pipeline. The RCP (Fig. 4b) receives
responses from the network, matches them to the original
requests, stores the received data into the local node’s mem-
ory (for reads only), and notifies the application upon each
request’s completion by writing in the appropriate CQ.

Remote Request Processing Pipeline. The RRPP is the
simplest pipeline in terms of protocol processing complex-
ity. It services incoming remote requests by reading or writing
local memory and responding appropriately.

4.2. soNUMA NI Scaling and Placement

Given the functional overview of soNUMA’s NI pipelines, we
proceed to illustrate how they can be mapped to the different
NI designs presented in §3.

The RRPP pipeline is the only pipeline that does not interact
with the cores. Therefore, in all the designs we consider in
this work, it lies at the chip’s edge nearest to the network
router. In order to fully utilize the NOC bandwidth, multiple
independent RRPPs are spread out along the edge (e.g., one
per edge tile in a tiled CMP as shown in Fig. 2).

In an NIedge design, the RGP/RCP scales like the RRPP –
one pair per edge tile along a chip edge. In an NIper−tile design,
a full RGP/RCP pair is replicated per tile and collocated with
each core to minimize QP traffic. As described in §3.2, an
essential requirement to reap the benefits of such a collocation
is the proper integration of the NI cache with the chip’s default
coherence protocol and the core’s L1 cache.

Both NIedge and NIper−tile are suboptimal: the former
latency-wise and the latter bandwidth-wise. We next discuss
how to overcome the limitations of these designs in soNUMA
with the NIsplit design, which physically splits the RGP and
RCP into a frontend and a backend.

RGP Frontend/Backend Separation. The fron-
tend/backend split comes naturally in the RGP by separating
the stages that interact with the WQs (frontend) from those
that act on WQ requests by generating network packets
(backend).

Fig. 4a details the functionality of RGP in stages. The RGP
frontend selects a WQ among the registered QPs, computes
the address of the target WQ, loads the WQ head, and checks
if a new entry is present. The RGP backend initializes the
NI’s internal structures to track in-flight requests, unrolls large

Frontend(
)(

Backend((
Interface(

FRONTEND(BACKEND(
WQ(Entry((
Load(

QP((
Selec@on(

Request((
Ini@aliza@on(

Request((
Verifica@on(

Request((
Unrolling(

Address(
Genera@on(

WQ(Address(
Computa@on(

Packet((
Injec@on(

FRONTEND(BACKEND(
CQ(Entry(
Write(

Memory((
Write(

QP(Selec@on(and(
CQ(Head(Update(

Address(
Genera@on(

Request((
Status(Update(

Frontend(
)(

Backend((
Interface(

Memory((
Read(

(a) Request Generation Pipeline.

Frontend(
)(

Backend((
Interface(

FRONTEND(BACKEND(
WQ(Entry((
Load(

QP((
Selec@on(

Request((
Ini@aliza@on(

Request((
Verifica@on(

Request((
Unrolling(

Address(
Genera@on(

WQ(Address(
Computa@on(

Packet((
Injec@on(

FRONTEND(BACKEND(
CQ(Entry(
Write(

Memory((
Write(

QP(Selec@on(and(
CQ(Head(Update(

Address(
Genera@on(

Request((
Status(Update(

Frontend(
)(

Backend((
Interface(

Memory((
Read(

(b) Request Completion Pipeline.

Figure 4: Scale-Out NUMA RGP and RCP pipelines.

requests into cache-block-sized transactions, computes and
translates the address of the target data and reads it from
memory (for writes), and finally injects a request packet in the
network.

In the figure, the Frontend-Backend Interface is the bound-
ary between the frontend and the backend. In the NIedge and
NIper−tile designs, it is simply a pipeline latch. For the NIsplit
design, the Frontend-Backend Interface is an additional stage
that generates and sends a NOC packet containing a valid WQ
entry from the RGP frontend to its corresponding backend.

RCP Frontend/Backend Separation. The RCP fron-
tend/backend split follows a similar separation of concerns as
that of RGP. The RCP backend receives network packets and
accesses local application memory to store the remote data.
Once all of the response packets for a given request have been
received, the frontend notifies the application of the request’s
completion by writing to the CQ.

Fig. 4b shows the RCP frontend and backend. The backend
is responsible for updating the status of in-flight requests, com-
puting the target virtual address at the local node, and storing
the remote data at the translated address. The RCP frontend
updates the CQ head pointer in RCP’s internal bookkeeping
structures and writes a new CQ entry at the CQ’s head.

Similar to the RGP, the Frontent-Backend Interface is a
latch in NIedge and NIper−tile designs. For NIsplit , it is an
additional stage that packetizes and pushes a new CQ entry
into the NOC from the RCP’s backend to its corresponding
frontend.

In the NIsplit soNUMA design, we integrate the RGP and
RCP frontends in each tile (Fig. 3b), thus minimizing the
overhead of transferring the QP entries between the NI and
the core. The interaction between the core and the frontend
logic is handled through the mechanism described in §3.4. The
RGP and RCP backends are replicated across the chip’s edge
nearest to the network router. Scaling the backend across the
edge allows utilization of the NOC’s full bisection bandwidth
by locally generated requests.

4.3. Other Design Issues

Mapping of Frontends to Backends. There is no inherent
limitation in the binding of a pipeline frontend to a backend. In

this work, we consider a simple mapping, whereby all the fron-
tends of a NOC row map to that row’s backend, minimizing
frontend-to-backend distance.

Mapping of Incoming Traffic to RRPPs. Distribution of
incoming requests to the chip’s RRPPs is address-interleaved
to minimize the distance to the request’s destination tile. This
functionality can be trivially supported in the network router
by inspecting a few bits of each request’s offset field in its
soNUMA header under the following assumptions: (i) the
directory and LLC are statically address-interleaved across the
chip’s tiles, and (ii) the address bits that define a block’s home
location in the tiled LLC are part of the physical address (i.e.,
these bits fall within the page offset), so this location can be
determined prior to translation. Such traffic distribution mini-
mizes on-chip traffic and latency, as it guarantees a minimal
number of on-chip hops for each request to reach its home
location in the LLC.

On-chip Routing Implications. In our evaluated chip de-
signs, we place NIs (RRPPs and RGP/RCP backends) on one
side of the chip and memory controllers (MCs) on the oppo-
site side. We found that on-chip routing is critical to effective
bandwidth utilization, and conventional dimension-order rout-
ing, such as XY or even O1Turn [42], can severely throttle
the peak data transfer bandwidth between the chip’s NI and
MC edges. This occurs because most packets originating at
a remote node (i.e., remote requests as well as responses to
this node’s requests) end up as DRAM accesses, since the
requested or delivered data is typically not found in on-chip
caches. Under XY routing, all memory requests are first routed
to the edge columns, where the MCs reside, and then turn to
reach their target MC. The NOC column interfacing to the
MCs turns into a bottleneck, reducing the overall bandwidth.
If YX routing is used instead, a similar problem arises with
responses originating at the MC tiles.

Recent work has proposed Class-based Deterministic Rout-
ing (CDR) [1] as a way of overcoming the MC column con-
gestion bottleneck. CDR leverages both XY and YX routing,
with the choice determined by the packet’s message class (e.g.,
memory requests use YX routing while responses XY).

In the soNUMA design, the MC-oriented policy employed
by CDR is insufficient, as edge-placed NIs (such as RGP/RCP
backends in the case of NIsplit) can also cause peripheral con-

gestion. To avoid the edge column with the NIs becoming a
hotspot, we modify CDR by defining a new packet routing
class for directory-sourced traffic; all messages of this class
are routed YX, while the rest follow an XY route. This results
in better utilization of the NOC’s internal links and reduced
pressure on the NOC’s edge links, as directory-sourced traffic
never turns at the chip’s edges.

5. Methodology

Simulation. We use Flexus [46], a full-system cycle-
accurate simulator, to evaluate our 64-core chip designs. The
parameters used are summarized in Table 2. The NIs for all
NI designs are modeled in full microarchitectural detail.

We focus our study on a single node, with remote ends
emulated by a traffic generator that matches the outgoing re-
quest rate of the node that is simulated by generating incoming
request traffic at the same rate. Incoming requests are address-
interleaved among RRPPs as described in §4.3.

We assume a fixed chip-to-chip network latency of 35ns
per hop [45] and monitor the average servicing latency of
local RRPPs that are simulated in detail. This RRPP latency
is added to the network latency (which is a function of hop
count), thus providing the roundtrip latency of a request once
it leaves the local node.

Interface Placement. We evaluate three different place-
ments of the RGP and RCP NIs: NIedge, NIper−tile, and NIsplit .
For all three placements, RRPP NIs are placed across a chip’s
edge, next to the network router. This provides the ensemble
of these NIs access to the full chip bisection bandwidth for ser-
vicing of incoming requests. Memory controllers are placed
on the opposite side of the chip.

Memory and Network Bandwidth Assumptions. The fo-
cus of this work is the investigation of the implications of NI
design on manycore chips. As such, we intentionally assume
high-bandwidth off-chip interfaces to both memory and the
intra-rack network that do not bottleneck our studied work-
loads. Technology-wise, high-bandwidth memory interfaces

Cores
ARM Cortex-A15-like; 64-bit, 2GHz, OoO,
3-wide dispatch/retirement, 60-entry ROB

L1 Caches
split I/D, 32KB 2-way, 64-byte blocks,
2 ports, 32 MSHRs, 3-cycle latency (tag+data)

LLC
Shared block-interleaved NUCA, 16MB total
16-way, 1 bank/tile, 6-cycle latency
Mesh: 1 tile/core, NOC-Out: 8 tiles in total

Coherence Directory-based Non-Inclusive MESI
Memory 50ns latency

Interconnect
16B links. 2D mesh: 3 cycles/hop
NOC-Out: Flattened Butterfly: 2 tiles/cycle

Tree Networks: 1 cycle/hop

NI
3 independent pipelines (RGP, RCP, RRPP)
one RRPP per row (8 in total)

Network Fixed 35ns latency per hop [45]

Table 2: System parameters for simulation on Flexus.

are emerging in the form of on-package DRAM [3] and high-
speed SerDes. For instance, Micron’s Hybrid Memory Cube
provides 160GBps (15x more than a conventional DDR3 chan-
nel) with a quad of narrow SerDes-based links [25]. On the
networking side, the recently finalized IEEE 802.3bj standard
codifies a 100Gbps backplane Ethernet running over a quad-
25Gbps interface, with Broadcom already announcing fully
compliant 4x25Gbps PHYs. Beyond that, chip-to-chip photon-
ics is nearing commercialization [24], with 100Gbps signaling
rates demonstrated and 1Tbps anticipated [4].

Network-on-chip. Since we do not throttle the network or
memory bandwidth, the NOC becomes the main bandwidth
limiter. We use a mesh as the baseline NOC topology and
apply CDR to route on-chip traffic, as described in §4.3. We
also validate the applicability of our observations on latency-
optimized NOCs through a separate case study with NOC-
Out [33], the state-of-the-art NOC for scale-out server chips.

Microbenchmarks. The goals of this work are to under-
stand the implications of NI design choices on the latency
and bandwidth of remote memory accesses in rack-scale sys-
tems. Toward that goal, our evaluation relies on microbench-
marks as a way of isolating software and hardware effects in
tightly-integrated messaging architectures such as soNUMA
while also facilitating a direct comparison to a hardware-only
scheme (i.e., a NUMA architecture with a load/store interface
to remote memory).

We use a remote read microbenchmark to measure the la-
tency and bandwidth behavior of the evaluated NI designs.
For latency, we study the unloaded case: a single core issuing
synchronous remote read operations. Bandwidth studies are
based on a remote read microbenchmark, in which remote
reads are issued asynchronously: as long as there is space left
in the WQ, the application keeps enqueueing new remote read
requests, while occasionally polling its CQ for completions.
If the 128-entry WQ is full, the application spins on the CQ
until an earlier request’s completion frees a WQ entry.

We vary the size of the remote reads from 64B to 16KB.
Both the soNUMA context, the memory region accessed by
remote requests, and local buffers, where requested remote
data are written to, are sized to exceed the aggregate on-chip
cache capacity, forcing all accesses to hit DRAM. We monitor
the metrics of interest (latency, bandwidth) in 500K-cycle win-
dows and run the simulation until the metric’s value stabilizes
(i.e., when the delta between consecutive monitoring windows
is less than 1%).

6. Evaluation

6.1. Latency Characterization

We first provide a tomography of the end-to-end latency for
a single block transfer and show where time goes for each
of the three evaluated NI designs. We then show the latency
sensitivity of a read request to the size of the transfer.

Latency(Component NI_edge Latency(Component NI_per3tile Latency(Component NI_split Latency(Component
NUMA(

projection
WQ#write#software#overhead 104 WQ#write#software#overhead 13 WQ#write#software#overhead 13

WQ#entry#transfer 5 WQ#entry#transfer 5
RGP#Processing 7 RGP#frontend#processing 4

Transfer#request#to#RGP#backend 23
RGP#backend#processing 4

IntraErack#network#(1#hop) 70 IntraErack#network#(1#hop) 70 IntraErack#network#(1#hop) 70 IntraErack#network#(1#hop) 70
RRPP#servicing 208 RRPP#servicing 208 RRPP#servicing 208 RRPP#servicing 208

IntraErack#network#(1#hop) 70 IntraErack#network#(1#hop) 70 IntraErack#network#(1#hop) 70 IntraErack#network#(1#hop) 70
RCP#backend#processing 4

Transfer#reply#to#RCP#frontend 23
RCP#processing 11 RCP#frontend#processing 8
CQ#entry#transfer 5 CQ#entry#transfer 5

CQ#read#software#overhead 84 CQ#read#software#overhead 10 CQ#read#software#overhead 10
Total((2GHz(cycles) 710 Total((2GHz(cycles) 445 Total((2GHz(cycles) 447 Total((2GHz(cycles) 395

Overhead(over(NUMA 79.7% Overhead(over(NUMA 12.7% Overhead(over(NUMA 13.2%

Latency(Component
QP3based(
model

Latency(Component NUMA(

A1)#WQ#write#(core) 104 B1)#Exec.#of#load#instruction 1
A2)#WQ#read#(NI) 95 B2)#Transfer#req.#to#chip#edge 23
A3)#IntraErack#network#(1#hop) 70 B3)#IntraErack#network#(1#hop) 70
A4)#Read#data#from#memory 208 B4)#Read#data#from#memory 208
A5)#IntraErack#network#(1#hop) 70 B5)#IntraErack#network#(1#hop) 70
A6)#CQ#write#(NI) 79
A7)#CQ#read#(core) 84

Total((2GHz(cycles) 710 Total((2GHz(cycles) 395
Overhead(over(NUMA 79.7%

WQ#read#and#RGP#processing

RCP#processing#and##############
CQ#entry#write

Transfer#request#to#chip#edge 23

Transfer#reply#to#RCP 23

B6)#Transfer#reply#to#core 23

95

79

Remote#read#issuing##########
(single#load)

1

Transfer#request#################
to#chip#edge

23

Transfer#reply##to#
requesting#core

23

E

E

Table 3: Zero-load latency breakdown of a single-block remote read.

6.1.1. Single-block Transfer Latency Breakdown

Table 3 shows the latency breakdown for a single-block
remote read request. The first three design points show the
performance for a messaging-based design, differing in the
placement of the NIs that interact with the cores. The last
column of the table is a projection of the performance of
an ideal NUMA machine, which can access remote memory
through its load/store interface without any of the overheads
associated with messaging. We optimistically assume that
issuing a load/store instruction only requires a single cycle.
The cost of traversing the NOC from the core to the edge,
network latency, and reading the data at the remote end are the
same as for the messaging interface.

A critical observation is that the actual software overhead
to issue and complete a remote read operation is mainly at-
tributed to microarchitectural aspects rather than the number
of instructions that need to be executed. While NIedge suggests
that the software overhead is as high as 188 cycles to issue
and complete a request (the sum of WQ write and CQ read
software overheads in Table 3), the other two designs show
that the actual instruction execution overhead is just 23 cycles.
The remaining 165 cycles are the result of bouncing a QP
block between the core’s and the NI’s caches via the normal
cache coherence mechanisms.

Although modern coherence mechanisms are considered to
be extremely efficient for on-chip block transfers, these results
indicate that high-performance NI designs should not rely
on the assumption that coherence-powered transfers are free
from a latency perspective. Coherence protocols intrinsically
introduce points of indirection, which can turn a single
transfer into a long-latency sequence of several multi-hop
chip traversals. These subtle interactions must be taken into
consideration when architecting a high-performance NI.

6.1.2. Scaling to More Network Hops

Fig. 5 projects the end-to-end latency for reading a single
cache block in a rack-scale system, accounting for multiple
network hops. The projection is based on Table 3’s breakdown,
accounting for 70 cycles (35ns) of network latency per hop,
per direction. To put the numbers in perspective, the average
and maximum hop counts between two nodes in a 512-node
3D torus deployment are 6 and 12 respectively.

Fig. 5 shows that the additional on-chip transfers related
to QP interactions that occur in the case of NIedge account
for a significant fraction of the end-to-end latency, inducing
a 28.6% overhead over NUMA for six network hops. In
comparison, NIsplit significantly reduces the time spent on
QP interactions, bringing the end-to-end latency within
4.7% of NUMA. Even in the worst case of traversing the
entire diameter of the modeled 3D torus, the difference in
the end-to-end latency overhead between NIedge and NIsplit
is still significant: 16.2% vs. 2.6% over NUMA. These
results indicate that a high-performance NI design must
consider the node’s microarchitectural features, but highly

6.3%% 5.3%%
4.7%% 4.1%%

3.7%% 3.4%%
3.1%% 2.8%%

2.6%%

58.6%%46.4%%
38.5%%32.8%%

28.6%%25.4%%
22.8%%20.7%%

19.0%% 17.5%%
16.2%%

400%
600%
800%

1000%
1200%
1400%
1600%
1800%
2000%
2200%

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%

E2
E#
la
te
nc
y#
(n
s)
#

Hop#Count#

NUMA% NI_split%

NI_edge%

0%%
10%%
20%%
30%%
40%%
50%%
60%%
70%%
80%%
90%%

0%

200%

400%

600%

800%

1000%

1200%

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%

O
ve
rh
ea
d#
ov
er
#N
U
M
A#
(%

)#

La
te
nc
y#
(n
s)
#

Hop#Count#

%%overhead%over%NUMA%(NI_split)%
%%overhead%over%NUMA%(NI_edge)%
NUMA%
NI_split%
NI_edge%

Figure 5: Projection of the end-to-end latency of a cache-block
remote read operation for multiple intra-rack network hops.
Bars map to the right y-axis, lines to the left y-axis.

100#

200#

400#

800#

1600#

64# 128# 256# 512# 1024# 2048# 4096# 8192# 16384#

La
te
nc
y(
(n
s)
(

Transfer(size((B)(

NI_edge#
NI_split#
NI_per78le#
NUMA#projec8on#

100#

200#

400#

800#

1600#

64# 128# 256# 512# 1024# 2048# 4096# 8192# 16384#

La
te
nc
y(
(n
s)
(

Transfer(size((B)(

NI_edge#
NI_split#
NI_per78le#
NUMA#projec8on#

Figure 6: End-to-end latency for synchronous remote reads.

invasive microarchitectural modifications (such as those
associated with a load/store interface to remote memory) are
not warranted.

6.1.3. Latency of Larger Requests

Fig. 6 shows the end-to-end latency of a synchronous re-
mote read operation in an unloaded system assuming a single
network hop per direction. We project the latency of an ideal
NUMA machine by subtracting the latencies associated with
QP interactions in the NIsplit design as shown in Table 3.

We observe that as the transfer size increases, the relative
latency difference between NIedge, NIsplit , and NUMA shrinks
because the cost of launching remote requests through QP
interactions is amortized over many cache blocks. However,
that is not the case for NIper−tile, which observes the highest
latency among all evaluated designs for the largest transfer
sizes. This behavior is caused by unrolls of large transfers into
cache-block-sized transactions which, in the NIper−tile design,
take place at the source tile. Because each network request
packet is encapsulated inside a NOC packet, it requires two
flits to transfer from the source tile to the network router at
the chip’s edge. Meanwhile, unrolls happen at a rate of one
request per cycle, resulting in queuing at the source tile. While
a wider NOC would alleviate the bandwidth pressure caused
by unrolling at the source tile, the cost-effective solution is to
provide hardware support for offloading bulk transfers to the
chip’s edge, as is done in the NIedge and NIsplit designs.

6.2. Bandwidth Characterization

For bandwidth measurements, we make all 64 cores issue asyn-
chronous requests of varying sizes. Fig. 7 shows the aggregate
application bandwidth for each of the three NI designs. The
bandwidth is measured as the rate of data packets written into
local buffers by RCPs for locally initiated requests, and the
rate of data packets sent out by RRPPs in response to remote
requests serviced at the local node. Because of the way remote
traffic is generated, these two rates are always balanced, and
the reported aggregate bandwidth is the sum of the two.

Both NIedge and NIsplit reach a peak bandwidth of 214GBps,
or 107GBps per direction. It is unlikely that the bandwidth
can be pushed any further using the same NOC; NOC traffic

32#

64#

128#

256#

64# 128# 256# 512# 1024# 2048# 4096# 8192#

Ap
pl
ic
a'

on
*b
an

dw
id
th
*

(G
Bp

s)
*

Transfer*size*(B)*

NI_edge#
NI_split#
Ni_per78le#

32#

64#

128#

256#

64# 128# 256# 512# 1024# 2048# 4096# 8192#
Ap

pl
ic
a'

on
*b
an

dw
id
th
*

(G
Bp

s)
*

Transfer*size*(B)*

NI_edge#
NI_split#
Ni_per78le#

Figure 7: Application bandwidth for async remote reads.

counters report an aggregate bandwidth of 594GBps, with
the bulk of it crossing the bisection whose bidirectional band-
width is 512GBps. The aggregate consumed bandwidth is 2.7x
higher than the application bandwidth demand; the difference
is attributed to a plethora of NOC packets that are not carry-
ing application data. These other packets include coherence
messages and evicted LLC blocks requiring a write-back to
memory.

While we don’t show this result, it is worth reporting that
without CDR, the bandwidth curves are qualitatively similar,
but the peak bandwidth any design can reach is less than half
(∼100GBps) of that achievable with CDR.

As Fig. 7 shows, NIper−tile and NIsplit reach higher band-
width than NIedge for small transfer sizes. NIedge suffers from
ping-ponging of the WQ and CQ entries between the cores
and the NIs, particularly when a cache block containing WQ
entries gets polled and transferred to the NI before the applica-
tion completely fills it with requests; a similar effect occurs
with CQ cache blocks that are invalidated by the core while
new completions are processed at the NI. With larger transfer
sizes, QPs are accessed less frequently, thus diminishing their
effect on performance.

Whereas NIedge is inefficient for small transfers, the per-
formance of the NIper−tile design degrades at large transfer
granularities. The reason is that the NIs in this design unroll
the requests inside the NOC, resulting in a flood of packets
streaming from the tiles to the edges. By the time the back-
pressure reaches the source tiles, the network is completely
congested. A similar problem occurs with responses: once
they arrive at the network router, they are first sent back to the
source NI, regardless of the final on-chip destination of the
payload, thus introducing an unnecessary point of indirection,
which further increases on-chip traffic. The congestion prob-
lems could be mitigated through smarter (e.g., source-based)
flow-control, but the aggregate bandwidth would still be in-
ferior to the other two designs because of the extra on-chip
traffic due to the per-tile NI placement.

Clearly, efficient handling of large unrolls requires having
a block handling engine at the edge, which receives a single
command, does the data transfers, and finally notifies the
requester upon completion. This observation is not limited to
messaging, but equally applies to load/store NUMA systems

N
etw

o
rk(R

o
u
ter(

MC(

MC(

MC(

MC(

N
etw

o
rk(R

o
u
ter(

MC(

MC(

Frontend(logic(Backend(logic(

NI(NI(NI(NI(
Fla7ened(Bu7erfly(

N
etw

o
rk(R

o
u
ter(

MC(

MC(
NI(NI(NI(NI(

NI(NI(NI(NI(

NI(NI(NI(NI(

NI(NI(NI(NI(

Fla7ened(Bu7erfly(

Fla7ened(Bu7erfly(

MC(

MC(

MC(

MC(

(a) NIedge design.

N
etw

o
rk(R

o
u
ter(

MC(

MC(

MC(

MC(

N
etw

o
rk(R

o
u
ter(

MC(

MC(

Frontend(logic(Backend(logic(

NI(NI(NI(NI(
Fla7ened(Bu7erfly(

N
etw

o
rk(R

o
u
ter(

MC(

MC(
NI(NI(NI(NI(

NI(NI(NI(NI(

NI(NI(NI(NI(

NI(NI(NI(NI(

Fla7ened(Bu7erfly(

Fla7ened(Bu7erfly(

MC(

MC(

MC(

MC(

(b) NIper−tile design.

N
etw

o
rk(R

o
u
ter(

MC(

MC(

MC(

MC(

N
etw

o
rk(R

o
u
ter(

MC(

MC(

Frontend(logic(Backend(logic(

NI(NI(NI(NI(
Fla7ened(Bu7erfly(

N
etw

o
rk(R

o
u
ter(

MC(

MC(
NI(NI(NI(NI(

NI(NI(NI(NI(

NI(NI(NI(NI(

NI(NI(NI(NI(

Fla7ened(Bu7erfly(

Fla7ened(Bu7erfly(

MC(

MC(

MC(

MC(

(c) NIsplit design.

Figure 8: NI design space for NOC-Out-based manycore CMPs. Striped rectangles represent LLC tiles.

100#

200#

400#

800#

1600#

64# 128# 256# 512# 1024# 2048# 4096# 8192# 16384#

La
te
nc
y(
(n
s)
(

Transfer(size((B)(

NI_edge#
NI_split#
NI_per78le#
NUMA#projec8on#

100#

200#

400#

800#

1600#

64# 128# 256# 512# 1024# 2048# 4096# 8192# 16384#

La
te
nc
y(
(n
s)
(

Transfer(size((B)(

NI_edge#
NI_split#
NI_per78le#
NUMA#projec8on#

Figure 9: Latency for synchronous remote reads on NOC-Out.

as well.

6.3. Effect of Latency-Optimized Topology

In this section, we show that trends and conclusions derived
from the mesh-based study are equally valid for latency-
optimized NOCs. To that end, we evaluate the various NI
design options using NOC-Out [33], a state-of-the-art latency-
optimized NOC for scale-out server chips. In the NOC-Out
layout, LLC tiles form a row in the middle of the chip and
are richly interconnected via a flattened butterfly. Cores lie
on both sides of the LLC row, and the cores of each column
are chained via a simple reduction/dispersion network that
connects them to their column’s corresponding LLC tile.

Fig. 8 illustrates the three NI design options in the context
of NOC-Out. The LLC tiles are spread across the middle
of the chip and are interconnected via the flattened butterfly
to each other, the MCs, and the network router. In all three
designs, the RRPPs (not shown) are placed across the chip’s
LLC tiles rather than the chip’s edge, as the rich connectivity
of these tiles provides access to the full bisection bandwidth.
For the same reason, the RGPs and RCPs in the case of NIedge
are collocated with the RRPPs. While NImiddle would be a
more accurate term for this placement, we continue using
NIedge for consistency. NIper−tile features full RGP and RCP
pipelines at each core, while NIsplit has an RGP/RCP frontend
per core and an RGP/RCP backend per LLC tile.

32#

64#

128#

256#

64# 128# 256# 512# 1024# 2048# 4096# 8192#

Ap
pl
ic
a'

on
*b
an

dw
id
th
*

(G
Bp

s)
*

Transfer*size*(B)*

NI_edge#
NI_split#
Ni_per78le#

32#

64#

128#

256#

64# 128# 256# 512# 1024# 2048# 4096# 8192#

Ap
pl
ic
a'

on
*b
an

dw
id
th
*

(G
Bp

s)
*

Transfer*size*(B)*

NI_edge#
NI_split#
Ni_per78le#

Figure 10: Application bandwidth for asynchronous remote
reads on NOC-Out.

6.3.1. Latency & Bandwidth Measurements

Fig. 9 shows the end-to-end latency of synchronous remote
read operations of various sizes for all three NI designs. For
small transfers, NOC-Out delivers up to 30% lower latency
than mesh (Fig. 6). Examining the sources of improvement, we
find that latency is reduced both at the source and remote nodes.
Improvements at the source node originate from accelerated
QP interactions and faster transfers of requests and responses
between the NIs and the network router. At the remote node,
the flattened butterfly speeds up the access latency to the LLC
and MCs by 37% compared to mesh-based designs.

Comparing the latency gap between NIedge and the other
two designs, we observe that it is narrowed compared to the
mesh topology, yet the latency of NIedge is still up to 30%
greater than that of NIsplit and NIper−tile. This result indicates
that on-chip QP interactions still account for a considerable
fraction of the end-to-end latency even in latency-optimized
NOC topologies.

Bandwidth results for NOC-Out appear in Fig. 10. The
general trends are identical to those observed in the mesh
(Fig. 7). However, the peak bandwidth achieved with NOC-
Out is significantly lower than that in mesh-integrated NIs.
The reason for the low throughput is the highly contended
LLC in the NOC-Out organization, which has significantly
fewer tiles and banks than its mesh-based counterpart.

7. Related Work

Some of the concepts and technologies mentioned in this work
have been around for quite some time, while others are more
recent. In this section, we focus on state-of-the-art NUMA
solutions, remote access primitives, and coherent NIs.

NUMA. In the 90’s, cache-coherent NUMA designs
emerged as a promising approach to scale shared-memory
multiprocessor performance by interconnecting thin sym-
metric multiprocessor server nodes with a low-latency and
high-bandwidth network. These machines provided a glob-
ally coherent distributed memory abstraction to applica-
tions and the OS. Examples include academic prototypes
such as Alewife [2], Dash [30], FLASH [20, 28], and Ty-
phoon [40], and products such as SGI Origin [29] and Sun
Wildfire [16, 18]. While most targeted coherence at cache
block granularity, machines with programmable controllers
also enabled support for bulk transfers [15, 20] broken down
into a stream of multiple cache blocks. Today’s multi-socket
servers are cache-coherent NUMA machines with a few thin
multicore sockets that use either Intel’s QPI or AMD’s HTX
technology. In this work we conclude that moving to fat
manycores has major implications on NI placement for both
fine-grained and bulk transfers, which were previously not
explored.

Remote Memory Access. Hardware support for remote
access has been commercialized in Cray supercomputers
[27, 41]. Cray T3D/T3E implemented put and get instruc-
tions that applications could use to directly access a global
memory pool. Manycore NIs presented in this work focus on
an RDMA-like programming model rather than a load/store
model. Our results indicate that the software overhead of
one-sided operations is likely to be a negligible fraction of
end-to-end latency and as such hardware load/store interfaces
would be an overkill. Modern RDMA-based NIs such as
Mellanox ConnectX-3 [36] provide remote read and write
primitives that applications can use to access remote memory
via in-memory QPs. Most such adapters are PCIe-attached
and therefore suffer from long latencies and low bandwidth.

Coherent NI. Coherent Network Interfaces (CNI) [37] use
cacheable queues to minimize the latency between the NI
and the processor. Such designs, however, do not assume
large manycore chips where the NOC latency represents a
significant fraction of the end-to-end latency. An NI can
leverage coherent shared memory also to optimize TCP/IP
stacks [7, 23, 31]. While previous proposals on NI optimiza-
tion were focused on traditional networking and were thus
inevitably engaged with expensive network protocol process-
ing, our work focuses on specialized NIs for RDMA-like
communication, in which execution of remote operations only
requires low-cost user-level interactions with memory-mapped
queues and minimal protocol processing.

8. Conclusion
The emergence of large manycore chips in the context of in-
tegrated rack-scale fabrics, where low latency and high band-
width between nodes is crucial, introduces new challenges in
the context of on-chip NI integration. Because of inherently
high on-chip latencies, initiation and termination of remote
operations that take place at the NIs can become a first-order
performance determinant for remote memory access, espe-
cially for emerging QP-based models. This work investigated
three different integrated NI designs for manycores. The clas-
sic NIedge integration approach, where the NIs are placed
across a chip’s edge, can utilize the full bisection bandwidth
of the NOC, but suffers from significant latency overheads due
to costly on-chip core-NI interactions. The NIper−tile design
integrates the NI logic next to each core, rather than the chip’s
edge, and delivers end-to-end latency for fine-grained remote
memory accesses that is within 3% of hardware NUMA’s la-
tency. However, the NIper−tile design generates excess traffic
that reduces the bandwidth for bulk data transfers significantly.
To achieve the best of both worlds, this work proposed an op-
timized manycore NI design, NIsplit , that delivers the latency
of NIper−tile and the bandwidth of NIedge.

Acknowledgements
The authors thank the anonymous reviewers for their precious
comments and feedback. We thank Javier Picorel, Pejman
Lotfi-Kamran, Stavros Volos and Sotiria Fytraki for fruit-
ful technical discussions about NOCs and manycore coher-
ence protocols, and Cansu Kaynak, Djordje Jevdjic, Nooshin
Mirzadeh and the rest of the PARSA group for their feedback
and support.

This work has been partially funded by the Workloads
and Server Architectures for Green Datacenters project of
the Swiss National Science Foundation, the Nano-Tera YINS
project, and the Scale-Out NUMA project of the Microsoft-
EPFL Joint Research Center.

References
[1] D. Abts, N. D. Enright Jerger, J. Kim, D. Gibson, and M. H. Lipasti,

“Achieving Predictable Performance Through Better Memory Con-
troller Placement in Many-Core CMPs,” in ACM SIGARCH Computer
Architecture News, vol. 37, no. 3, 2009, pp. 451–461.

[2] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. A. Kranz,
J. Kubiatowicz, B.-H. Lim, K. Mackenzie, and D. Yeung, “The MIT
Alewife Machine: Architecture and Performance,” in Proceedings of
the 22nd International Symposium on Computer Architecture (ISCA),
1995.

[3] Anandtech, “Haswell: Up to 128MB On-Package Cache.”
[Online]. Available: http://www.anandtech.com/show/6277/
haswell-up-to-128mb-onpackage-cache-ulv-gpu-performance-estimates.

[4] K. Asanović, “A Hardware Building Block for 2020 Warehouse-Scale
Computers,” USENIX FAST Keynote, 2014.

[5] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Work-
load Analysis of a Large-Scale Key-Value Store,” in ACM SIGMET-
RICS Performance Evaluation Review, vol. 40, no. 1, 2012, pp. 53–64.

[6] L. A. Barroso, “Three Things to Save the Datacen-
ter,” ISSCC Keynote, 2014. [Online]. Available: http:
//www.theregister.co.uk/Print/2014/02/11/google_research_three_
things_that_must_be_done_to_save_the_data_center_of_the_future/.

[7] N. L. Binkert, A. G. Saidi, and S. K. Reinhardt, “Integrated Network
Interfaces for High-Bandwidth TCP/IP,” in Proceedings of the 12th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2006.

[8] Boston Limited, “Boston Limited Unveil Their
Revolutionary Boston Viridis,” 2011. [On-
line]. Available: http://www.boston.co.uk/press/2011/11/
boston-limited-unveil-their-revolutionary-boston-viridis.aspx.

[9] Calxeda Inc., “ECX-1000 Technical Specifications,” 2012. [Online].
Available: http://www.calxeda.com/ecx-1000-techspecs/.

[10] Cavium Networks, “Cavium Announces Availability of ThunderXTM:
Industry’s First 48 Core Family of ARMv8 Workload Opti-
mized Processors for Next Generation Data Center & Cloud
Infrastructure,” 2014. [Online]. Available: http://www.cavium.com/
newsevents-Cavium-Announces-Availability-of-ThunderX.html.

[11] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu, and
A. Gupta, “Hive: Fault Containment for Shared-Memory Multipro-
cessors,” in Proceedings of the 15th ACM Symposium on Operating
Systems Principles (SOSP), 1995.

[12] A. Dhodapkar, G. Lauterbach, S. Li, D. Mallick, J. Bauman, S. Kan-
thadai, T. Kuzuhara, G. S. M. Xu, and C. Zhang, “SeaMicro SM10000-
64 Server: Building Datacenter Servers Using Cell Phone Chips,” in
Proceedings of the 23rd IEEE HotChips Symposium, 2011.

[13] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro, “FaRM: Fast
Remote Memory,” in Proceedings of the 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2014.

[14] EZchip Semiconductor Ltd., “EZchip Introduces TILE-Mx100 World’s
Highest Core-Count ARM Processor Optimized for High-Performance
Networking Applications,” Press Release, 2015. [Online]. Available:
http://www.tilera.com/News/PressRelease/?ezchip=97.

[15] B. Falsafi, A. R. Lebeck, S. K. Reinhardt, I. Schoinas, M. D. Hill, J. R.
Larus, A. Rogers, and D. A. Wood, “Application-Specific Protocols for
User-Level Shared Memory,” in Proceedings of the 1994 ACM/IEEE
Conference on Supercomputing (SC), 1994.

[16] B. Falsafi and D. A. Wood, “Reactive NUMA: A Design for Unifying
S-COMA and CC-NUMA,” in Proceedings of the 24th International
Symposium on Computer Architecture (ISCA), 1997.

[17] J. Gantz and D. Reinsel, “The Digital Universe in 2020.” IDC, 2012.
[Online]. Available: http://www.emc.com/collateral/analyst-reports/
idc-the-digital-universe-in-2020.pdf.

[18] E. Hagersten and M. Koster, “Wildfire: A scalable path for smps,”
in Proceedings of the Fifth International Symposium on High-
Performance Computer Architecture (HPCA), 1999.

[19] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: Near-Optimal Block Placement and Replication in Distributed
Caches,” in 36th International Symposium on Computer Architecture
(ISCA), 2009.

[20] J. Heinlein, K. Gharachorloo, S. Dresser, and A. Gupta, “Integration
of Message Passing and Shared Memory in the Stanford FLASH Mul-
tiprocessor,” in ACM SIGPLAN Notices, vol. 29, no. 11, 1994, pp.
38–50.

[21] Hewlett - Packard Development Company, “HP ProLiant m400 Server
Cartridge,” 2014. [Online]. Available: http://www8.hp.com/h20195/
v2/GetDocument.aspx?docname=c04384048.

[22] Hewlett-Packard Development Company, “HP Moonshot System
Family Guide,” 2014. [Online]. Available: http://www8.hp.com/
h20195/v2/GetDocument.aspx?docname=4AA4-6076ENW.

[23] R. Huggahalli, R. Iyer, and S. Tetrick, “Direct Cache Access for High
Bandwidth Network I/O,” in Proceedings of the 32nd International
Symposium on Computer Architecture (ISCA), 2005.

[24] Intel, “Moving Data with Silicon and Light,” 2013. [On-
line]. Available: http://www.intel.com/content/www/us/en/research/
intel-labs-silicon-photonics-research.html.

[25] J. Jeddeloh and B. Keeth, “Hybrid Memory Cube New DRAM Ar-
chitecture Increases Density and Performance,” in 2012 International
Symposium on VLSI Technology (VLSIT), 2012.

[26] D. Kanter, “X-Gene 2 Aims Above Microservers,” Microprocessor
Report, vol. 28(9), pp. 20–24, 2014.

[27] R. Kessler and J. Schwarzmeier, “Cray T3D: A New Dimension for
Cray Research,” in Compcon Spring ’93, Digest of Papers, 1993.

[28] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Ghara-
chorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta,
M. Rosenblum, and J. L. Hennessy, “The Stanford FLASH Multi-
processor,” in Proceedings of the 21st International Symposium on
Computer Architecture (ISCA), 1994.

[29] J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA Highly
Scalable Server,” in Proceedings of the 24th International Symposium
on Computer Architecture (ISCA), 1997, pp. 241–251.

[30] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta,
J. L. Hennessy, M. Horowitz, and M. S. Lam, “The Stanford Dash
Multiprocessor,” IEEE Computer, vol. 25, no. 3, pp. 63–79, 1992.

[31] G. Liao, X. Zhu, and L. Bnuyan, “A New Server I/O Architecture
for High Speed Networks,” in Proceedings of the 17th International
Symposium on High Performance Computer Architecture (HPCA),
2011.

[32] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch,
“Thin Servers with Smart Pipes: Designing SoC Accelerators for Mem-
cached,” in Proceedings of the 40th Annual International Symposium
on Computer Architecture (ISCA), 2013.

[33] P. Lotfi-Kamran, B. Grot, and B. Falsafi, “NOC-Out: Microarchitecting
a Scale-Out Processor,” in Proceedings of the 45th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2012.

[34] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, Y. O. Koçberber,
J. Picorel, A. Adileh, D. Jevdjic, S. Idgunji, E. Özer, and B. Falsafi,
“Scale-Out Processors,” in Proceedings of the 39th International Sym-
posium on Computer Architecture (ISCA), 2012.

[35] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A System for Large-Scale
Graph Processing,” in Proceedings of the ACM International Confer-
ence on Management of Data (SIGMOD), 2010.

[36] Mellanox Corp., “ConnectX-3 Pro Product Brief,” 2012. [On-
line]. Available: http://www.mellanox.com/related-docs/prod_adapter_
cards/PB_ConnectX-3_Pro_Card_EN.pdf.

[37] S. S. Mukherjee, B. Falsafi, M. D. Hill, and D. A. Wood, “Coherent
Network Interfaces for Fine-Grain Communication,” in Proceedings of
the 23rd International Symposium on Computer Architecture (ISCA),
1996.

[38] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot, “Scale-
Out NUMA,” in Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2014.

[39] D. N. Paolo Costa, Hitesh Ballani, “Rethinking the Network Stack for
Rack-Scale Computers,” in Hot Topics in Cloud Computing (HotCloud).
USENIX, 2014.

[40] S. K. Reinhardt, J. R. Larus, and D. A. Wood, “Tempest and Typhoon:
User-Level Shared Memory,” in Proceedings of the 21st International
Symposium on Computer Architecture (ISCA), 1994.

[41] S. L. Scott and G. M. Thorson, “The Cray T3E Network: Adaptive
Routing in a High Performance 3D Torus,” in Hot Interconnects, 1996.

[42] D. Seo, A. Ali, W.-T. Lim, N. Rafique, and M. Thottethodi, “Near-
Optimal Worst-Case Throughput Routing for Two-Dimensional Mesh
Networks,” in Proceedings of the 32nd Annual International Sympo-
sium on Computer Architecture (ISCA), 2005.

[43] W. Shi, E. Collins, and V. Karamcheti, “Modeling Object Character-
istics of Dynamic Web Content,” Journal of Parallel and Distributed
Computing, vol. 63, no. 10, pp. 963–980, 2003.

[44] J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe, “Reunion:
Complexity-Effective Multicore Redundancy,” in Proceedings of the
39th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), 2006.

[45] B. Towles, J. Grossman, B. Greskamp, and D. E. Shaw, “Unifying
On-Chip and Inter-Node Switching within the Anton 2 Network,” in
Proceedings of the 41st International Symposium on Computer Archi-
tecture (ISCA), 2014.

[46] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi,
and J. C. Hoe, “SimFlex: Statistical Sampling of Computer System
Simulation,” IEEE Micro, vol. 26, pp. 18 –31, 2006.

