skip to main content
10.1145/2750858.2807520acmconferencesArticle/Chapter ViewAbstractPublication PagesubicompConference Proceedingsconference-collections
research-article

Discovery of everyday human activities from long-term visual behaviour using topic models

Authors Info & Claims
Published:07 September 2015Publication History

ABSTRACT

Human visual behaviour has significant potential for activity recognition and computational behaviour analysis, but previous works focused on supervised methods and recognition of predefined activity classes based on short-term eye movement recordings. We propose a fully unsupervised method to discover users' everyday activities from their long-term visual behaviour. Our method combines a bag-of-words representation of visual behaviour that encodes saccades, fixations, and blinks with a latent Dirichlet allocation (LDA) topic model. We further propose different methods to encode saccades for their use in the topic model. We evaluate our method on a novel long-term gaze dataset that contains full-day recordings of natural visual behaviour of 10 participants (more than 80 hours in total). We also provide annotations for eight sample activity classes (outdoor, social interaction, focused work, travel, reading, computer work, watching media, eating) and periods with no specific activity. We show the ability of our method to discover these activities with performance competitive with that of previously published supervised methods.

References

  1. Barger, T. S., Brown, D. E., and Alwan, M. Health-status monitoring through analysis of behavioral patterns. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 35, 1 (2005), 22--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Begole, J. B., Tang, J. C., and Hill, R. Rhythm modeling, visualizations and applications. In Proc. UIST (2003), 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Blei, D. M., Ng, A. Y., and Jordan, M. I. Latent dirichlet allocation. The Journal of Machine Learning Research 3 (2003), 993--1022. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bulling, A., and Roggen, D. Recognition of Visual Memory Recall Processes Using Eye Movement Analysis. In Proc. UbiComp (2011), 455--464. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bulling, A., Ward, J. A., and Gellersen, H. Multimodal Recognition of Reading Activity in Transit Using Body-Worn Sensors. ACM Transactions on Applied Perception 9, 1 (2012), 2:1--2:21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bulling, A., Ward, J. A., Gellersen, H., and Tröster, G. Robust recognition of reading activity in transit using wearable electrooculography. In Proc. Pervasive 2008 (2008), 19--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bulling, A., Ward, J. A., Gellersen, H., and Tröster, G. Eye Movement Analysis for Activity Recognition Using Electrooculography. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 4 (2011), 741--753. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bulling, A., Weichel, C., and Gellersen, H. EyeContext: Recognition of High-level Contextual Cues from Human Visual Behaviour. In Proc. CHI 2013 (2013), 305--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chen, S., Epps, J., and Chen, F. Automatic and continuous user task analysis via eye activity. In Proc. IUI (2013), 57--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Chuk, T., Chan, A. B., and Hsiao, J. H. Understanding eye movements in face recognition using hidden markov models. Journal of Vision 14, 11 (2014).Google ScholarGoogle ScholarCross RefCross Ref
  11. Csurka, G., Dance, C., Fan, L., Willamowski, J., and Bray, C. Visual categorization with bags of keypoints. In Proc. ECCVW, vol. 1 (2004), 1--2.Google ScholarGoogle Scholar
  12. Dempere-Marco, L., Hu, X.-P., MacDonald, S. L., Ellis, S. M., Hansell, D. M., and Yang, G.-Z. The use of visual search for knowledge gathering in image decision support. IEEE Transactions on Medical Imaging 21, 7 (2002), 741--754.Google ScholarGoogle ScholarCross RefCross Ref
  13. Elhelw, M., Nicolaou, M., Chung, A., Yang, G.-Z., and Atkins, M. S. A gaze-based study for investigating the perception of visual realism in simulated scenes. ACM Transactions on Applied Perception 5, 1 (2008), 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Farrahi, K., and Gatica-Perez, D. What did you do today?: Discovering daily routines from large-scale mobile data. In Proc. MM (2008), 849--852. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Gu, T., Chen, S., Tao, X., and Lu, J. An unsupervised approach to activity recognition and segmentation based on object-use fingerprints. Data & Knowledge Engineering 69, 6 (2010), 533--544. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hofmann, T. Unsupervised learning by probabilistic latent semantic analysis. Machine learning 42, 1--2 (2001), 177--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., and Van de Weijer, J. Eye tracking: A comprehensive guide to methods and measures. Oxford University Press, 2011.Google ScholarGoogle Scholar
  18. Hoppe, S., Morey, S., Loetscher, T., and Bulling, A. Recognition of curiosity using eye movement analysis. In Adj. Proc. UbiComp (2015). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Huynh, T., Fritz, M., and Schiele, B. Discovery of activity patterns using topic models. In Proc. UbiComp (2008), 10--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ishiguro, Y., Mujibiya, A., Miyaki, T., and Rekimoto, J. Aided eyes: eye activity sensing for daily life. In Proc. AH (2010), 25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ishimaru, S., Weppner, J., Kunze, K., Kise, K., Dengel, A., Lukowicz, P., and Bulling, A. In the Blink of an Eye - Combining Head Motion and Eye Blink Frequency for Activity Recognition with Google Glass. In Proc. AH (2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Just, M. A., and Carpenter, P. A. Eye fixations and cognitive processes. Cognitive psychology 8, 4 (1976), 441--480.Google ScholarGoogle Scholar
  23. Kassner, M., Patera, W., and Bulling, A. Pupil: an open source platform for pervasive eye tracking and mobile gaze-based interaction. In Adj. Proc. UbiComp (2014), 1151--1160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kunze, K., Bulling, A., Utsumi, Y., Yuki, S., and Kise, K. I know what you are reading -- recognition of document types using mobile eye tracking. In Proc. ISWC (2013), 113--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kunze, K., Kawaichi, H., Yoshimura, K., and Kise, K. Towards inferring language expertise using eye tracking. In Ext. Abstr. CHI (2013), 217--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kunze, K., Kawaichi, H., Yoshimura, K., and Kise, K. The wordometer--estimating the number of words read using document image retrieval and mobile eye tracking. In Proc. ICDAR (2013), 25--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Marshall, S. P. The index of cognitive activity: Measuring cognitive workload. In Proc. Human factors and power plants (2002), 7--5.Google ScholarGoogle ScholarCross RefCross Ref
  28. Niebles, J. C., Wang, H., and Fei-Fei, L. Unsupervised learning of human action categories using spatial-temporal words. International Journal of Computer Vision 79, 3 (2008), 299--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Palinko, O., Kun, A. L., Shyrokov, A., and Heeman, P. Estimating cognitive load using remote eye tracking in a driving simulator. In Proc. ETRA (2010), 141--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Salvucci, D. D., and Anderson, J. R. Automated eye-movement protocol analysis. Human-Computer Interaction 16, 1 (2001), 39--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Salvucci, D. D., and Goldberg, J. H. Identifying fixations and saccades in eye-tracking protocols. In Proc. ETRA (2000), 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Schleicher, R., Galley, N., Briest, S., and Galley, L. Blinks and saccades as indicators of fatigue in sleepiness warnings: looking tired? Ergonomics 51, 7 (July 2008), 982--1010.Google ScholarGoogle ScholarCross RefCross Ref
  33. Seiter, J., Amft, O., Rossi, M., and Tröster, G. Discovery of activity composites using topic models: An analysis of unsupervised methods. Pervasive and Mobile Computing 15 (2014), 215--227.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Shiga, Y., Toyama, T., Utsumi, Y., Kise, K., and Dengel, A. Daily Activity Recognition Combining Gaze Motion and Visual Features. In Adj. Proc. UbiComp (2014), 1103--1111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Steichen, B., Carenini, G., and Conati, C. User-adaptive information visualization: using eye gaze data to infer visualization tasks and user cognitive abilities. In Proc. IUI (2013), 317--328. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Steyvers, M., and Griffiths, T. Probabilistic topic models. Handbook of latent semantic analysis 427, 7 (2007), 424--440.Google ScholarGoogle Scholar
  37. Tessendorf, B., Bulling, A., Roggen, D., Stiefmeier, T., Feilner, M., Derleth, P., and Tröster, G. Recognition of Hearing Needs From Body and Eye Movements to Improve Hearing Instruments. In Proc. Pervasive (2011), 314--331. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Vidal, M., Turner, J., Bulling, A., and Gellersen, H. Wearable Eye Tracking for Mental Health Monitoring. Computer Communications 35, 11 (2012), 1306--1311. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Discovery of everyday human activities from long-term visual behaviour using topic models

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        UbiComp '15: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing
        September 2015
        1302 pages
        ISBN:9781450335744
        DOI:10.1145/2750858

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 September 2015

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        UbiComp '15 Paper Acceptance Rate101of394submissions,26%Overall Acceptance Rate764of2,912submissions,26%

        Upcoming Conference

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader