
A Coarse-Grained FPGA Architecture for
High-Performance FIR Filtering

James R. Anderson
Intel Corporation

2200 Mission College Blvd.
Santa Clara, CA 95052

(408)765-0097

james_r_anderson@ccm.sc.intel.com

Siddharth Sheth
Intel Corporation

2200 Mission College Blvd.
Santa Clara, CA 95052

(408)765-6968

ssheth@td2cad.intel.com

Kaushik Roy
School of Electrical Engineering

Purdue University
West Lafayette, IN 47907

(765)494-2361

kaushik@ecn.purdue.edu

1. ABSTRACT
This paper introduces a coarse-grained FPGA
architecture that is specialized for high-
performance Finite Impulse Response (FIR)
filtering. The proposed architecture provides
the flexibility of a DSP processor with per-
formance and area efficiency similar to that of
a custom ASIC design, while allowing all of the
basic FIR design parameters, including coef-
ficient precision, to be configured. Previous
research has already shown that FPGAs can
provide a high-performance alternative to
DSP processors. Experimental comparisons in
this paper show that the performance and area
efficiency of the proposed architecture is
similar to that of custom approaches across a
wide range of filter sizes and configurations.
1.1 Keywords
Field Programmable Gate Array (FPGA), architecture,
Finite Impulse Response (FIR) filtering, digital signal
processing (DSP)

2. INTRODUCTION
Digital signal processing systems are generally computa-
tionally intensive and require tremendous I/O bandwidth.
In order to meet the performance demands of DSP sys-
tems, many custom hardware systems rely on ASICs.

However, ASICs are inherently inflexible, and develop-
ment of such systems is costly and time-consuming. DSP
processors provide a flexible, low-cost alternative, but are
performance-limited.

FPGAs provide a third alternative that maintains the flexi-
bility of the DSP processor via re-programming while pro-
viding performance levels significantly beyond that of DSP
processors. Because of the flexibility and performance
characteristics, FPGAs have already been considered for
implementing DSP systems [3]. One recent study found
that an order of magnitude performance increase over that
of a DSP processor is possible for an FPGA-based DSP
system [6]. Other special purpose systems, such as the
reconfigurable Splash [2] and PAM [4] systems, have also
been implemented using FPGAs for custom applications.
DSP systems based on programmable architectures de-
signed for low power dissipation have also been studied
[1], [7].

In this paper we target the application of FIR filtering,
which has widespread use in many DSP systems. We pres-
ent a specialized cell which can be arranged in a variety of
topologies to provide an FPGA architecture targeted for
FIR filtering. The objective of our cell-based approach is to
provide an architecture that allows all of the basic FIR
filter design parameters to be configured, yet provides the
performance and area efficiency of custom designed ASIC
approaches.

The next section gives an overview of FIR filtering and
discusses two custom design approaches that provide upper
and lower guidelines on performance and implementation
area. Section 4 introduces the cell-based approach by first
describing a basic cell for 8-bit precision, and then de-
scribing an enhanced cell which can be used for 8, 16, or
24-bit precision. Section 5 compares the performance and
layout area of several sizes of cell-based implementations
with the two custom design approaches discussed in Sec-
tion 3. Section 6 concludes the paper.

3. CUSTOM APPROACHES
3.1 Overview
In mathematical terms, a sampled data FIR filter can be
represented by the convolution sum,

() () () ()y n h x n h x n h x n NN= + − + + −0 1 1 K (1)
where y(n) is the filtered output at sample n, x(n) is the
input at sample n, hi are the impulse response coefficients,

and N is the order of the filter [5]. A straight-forward
method of implementing an FIR filter is to directly evalu-
ate the sum of products in the convolution sum. This
method requires storing the most recent N samples of the
input, multiplying each sample by the corresponding filter
coefficient, and summing the products. Figure 1 shows a
block diagram of a 4-tap FIR filter, where each filter tap
consists of a delay element, an adder, and a multiplier.

x

y

tap0 tap1 tap2 tap3

h0 h1 h2 h3

Figure 1. 4-tap FIR filter.

FIR filter characteristics, such as passband ripple, stop-
band attenuation, and transition bandwidth, depend on the
value of the coefficients, the precision of the coefficients
and input data, and the length of the filter (number of
taps). The cutoff frequency depends on the sample rate, or
the rate at which input samples enter the filter. Thus, other
than the actual values used for the filter coefficients, there
are only three basic design parameters: precision, filter
length, and sample rate. As will be discussed later, our
method allows each of these design parameters to be re-
configured.

The FIR implementation shown in Figure 1 is referred to
as a tapped delay line structure. However, many imple-
mentation topologies exist for FIR filtering. In an alterna-
tive implementation, the delay elements could be placed
between the adders in the taps. Also, if the coefficients are
known to be symmetric, h-n=hn, which is usually the case

in a linear phase filter, only one multiplier is required for
every two taps, reducing the number of multipliers by a
factor of two [8]. It is also often the case that every other
coefficient is zero, allowing the multiplier and adder in
every other tap to be eliminated.

For the purposes of this paper we will not assume any a
priori knowledge of the filter coefficients, other than their
precision. Thus, all the following approaches to FIR fil-
tering use the tapped delay line method shown in Figure 1.

For custom designed FIR filters, there are two approaches
which provide guidelines for comparisons of performance

and hardware requirements among different FIR imple-
mentations: parallel and sequential. The parallel approach
seeks maximum performance with no constraint on hard-
ware. In contrast, the sequential approach minimizes the
hardware requirements while yielding the poorest per-
formance. Both approaches will be discussed in the fol-
lowing sections.

3.2 Parallel Approach
In order to maximize the sample rate of an FIR filter, we
must reduce the length of the critical path. Referring to
Figure 1, if the delay elements are implemented as regis-
ters, then clearly the critical path runs from the output of
the first register to the sample output y. In order to mini-
mize the critical path length, the amount of computation
performed in parallel should be maximized. This can be
accomplished by performing all coefficient multiplications
in parallel and organizing the adders in a binary tree
structure. Using registers for the delay elements and
latches to store the coefficients, Figure 2 shows the parallel
implementation of a 4-tap FIR filter. Note that
shift_register contains four registers connected in series,
and latch_file contains four latches.

d

clk

q0

shift_register

h0
h1
h2
h3

h load

y

x

clk q1
q2
q3

d0

clk
latch_file

q0
q1
q2
q3

d1
d2
d3

Figure 2. Parallel implementation.

Assuming coefficient precision is fixed, the sample rate
and hardware area requirements of a parallel im-
plementation for an N-tap FIR filter are,

 ()SampleRate DelayMult DelayAdd N= + ⋅
−

log2

1

(2)

()
()

Area N AreaReg AreaLatch AreaMult

N AreaAdd

= + +

+ − ⋅1 (3)

Of course, we have neglected register setup and hold times
in (2) and interconnect area in (3). However, these equa-
tions are adequate for our purposes, since all design com-
parisons in following sections will be based on experi-
mental data. The sample rate decreases inverse logarithmi-
cally and the hardware area increases linearly as the num-
ber of taps grows. Thus, in the comparisons of following
sections, the parallel approach will provide an upper
guideline for both performance and implementation area.

3.3 Sequential Approach
With the goal of minimizing hardware area requirements,
the sequential approach seeks to reuse as much hardware
as possible. Since multipliers and adders are area-costly,

only one of each is used. Each product term in (1) is com-
puted sequentially and added to the accumulated sum in an
adder/register combination. However, in order to sequen-
tially select the input sample and coefficient to be multi-
plied, tri-state buffers and simple control logic are re-
quired. Figure 3 shows the sequential implementation of a
4-tap FIR filter. The controller simply counts from 0 to (N-
1) and enables the next tri-state buffer, which allows the
next q-output of the shift_register and latch_file to be
multiplied at each count. On each 0th count, the dshift is
activated to shift the data samples and zero is activated to
set the register of the accumulator to zero.

d

clk

q0

shift_register

h0
h1
h2
h3

h load

y

x

clk

q1
q2
q3

d0

clk
latch_file

q0
q1
q2
q3

d1
d2
d3

d q

clk register

clk
dshift
select

control
4

reset

zero

tri-state buffer

Figure 3. Sequential implementation.

Although the critical path for this approach is shorter than
that of the parallel approach, the circuit must be cycled N
times to produce a single output sample. Thus, the sample
rate and hardware area of an N-tap sequential implemen-
tation are,

()[]SampleRate N DelayBuffer DelayMult DelayAdd= + +
−1

(4)

()

 

Area N AreaReg AreaLatch AreaBuffer

N AreaControl AreaMult

AreaAdd AreaReg

= + + ⋅

+ ⋅ +

+ +

2

2log

(5)

Once again, register setup and hold times as well as inter-
connect area have been neglected. The value of AreaCon-
trol is the area for the control circuitry for a 2-tap FIR.
This area grows by a factor of log2N as the number of taps

grows. Of course, this is a rough approximation, but it is
adequate for our purposes.

The sample rate now decreases inverse linearly as the
number of filter taps is increased. Thus, the performance
of the sequential approach degrades more quickly than that
of the parallel approach. The area of the sequential ap-
proach increases linearly with N. However, since the mul-
tiplier and adder area do not change with N and the buffer
area is not significant, the area of the parallel approach
grows much quicker than that of the sequential approach
as N increases. Thus, the sequential approach provides a
lower guideline for both performance and implementation
area.

4. CELL-BASED APPROACH
The objective of the cell-based approach is to provide an
FPGA architecture for FIR filtering applications that has
performance and implementation area similar to that of
custom-designed circuits. Specifically, the architecture is
intended to provide the high performance of a custom par-
allel approach or the area efficiency (in terms of filter taps
per unit area) of a custom sequential approach. In addition,
the architecture is designed to allow the circuit to be easily
configured for design points at or between these two ex-
tremes. The following section discusses the basic re-
configurable cell which meets these objectives and serves
as an introduction to the enhanced reconfigurable cell,
which is discussed in the next section.

4.1 Basic Reconfigurable Cell
The basic cell is a simple extension of the sequential im-
plementation of a 4-tap FIR shown in Figure 3. The exten-
sion allows cells to be connected in a topology that enables
the number of filter taps and data sample rate to be user-
configurable. Figure 4 shows the basic cell. We assume
that the filter coefficients and input samples are 8-bit sin-
gle precision.

d

clk

q0

shift_register

h0
h1
h2
h3

h load

y

x

clk

q1
q2
q3

d0

clk
latch_file

q0
q1
q2
q3

d1
d2
d3

d q
clk register

clk

dshift
select

control

accsel

tri-state buffer

8

8

8

8

8

4ntapntap 2

yprev 16

168

8
16

16

d q
clk register

xnext8

Figure 4. Basic cell.

The cell of Figure 4 is designed to implement between one
and four filter taps, depending on the value of the ntap
input on the control block. In order to extend the sequen-
tial implementation, a mux and a register have been added
and the control block has been changed to include some
additional functionality. The addition of the mux allows an
initial value to be loaded into the accumulator register be-
fore the summation of the products begins. This mux and
the addition of the register connected to xnext output al-
lows cells to be placed in series to create chains of cells
implementing FIR filters with a large number of taps. This
will be discussed in more detail shortly. Let us first look at
the operation of a single cell.

Table 1 shows the operation of a single cell, if the cell is
used to implement four taps (ntap=3). Assume each line of
the table is a clock period and a new data sample, labeled
d0, d1, etc., arrives at input x once every four clocks. Also,
assume that the yprev input has a value of zero and that
the filter coefficients h0 through h3 have already been
loaded into the latch_file. Table 1 lists the values held by
the shift_register, the values on the select output of the

control block, and output y. The acc_reg column denotes
the value held by the 16-bit accumulator register.

Table 1. Single cell operation (refer to Fig. 4).
Smp# sel shift_reg acc_reg y
0 0001 d0,0,0,0 0 0+h0⋅d0

0 0010 d0,0,0,0 h0⋅d0 h0⋅d0+h1⋅0

0 0100 d0,0,0,0 h0⋅d0 h0⋅d0+h2⋅0

0 1000 d0,0,0,0 h0⋅d0 h0⋅d0+h3⋅0

1 0001 d1,d0,0,0 0 0+h0⋅d1

1 0010 d1,d0,0,0 h0⋅d1 h0⋅d1+h1⋅d0

1 0100 d1,d0,0,0 h0⋅d1+h1⋅d0 h0⋅d1+h1⋅d0+h2⋅0

1 1000 d1,d0,0,0 h0⋅d1+h1⋅d0 h0⋅d1+h1⋅d0+h3⋅0

2 0001 d2,d1,d0,0 0 0+h0⋅d2

2 0010 d2,d1,d0,0 h0⋅d2 h0⋅d2+h1⋅d1

2 0100 d2,d1,d0,0 h0⋅d2+h1⋅d1 h0⋅d2+h1⋅d1+h2⋅d0

2 1000 d2,d1,d0,0 h0⋅d2+h1⋅d1

+h2⋅d0

h0⋅d2+h1⋅d1+h2⋅d0

+h3⋅0

3 0001 d3,d2,d1,d0 0 0+h0⋅d3

3 0010 d3,d2,d1,d0 h0⋅d3 h0⋅d3+h1⋅d2

3 0100 d3,d2,d1,d0 h0⋅d3+h1⋅d2 h0⋅d3+h1⋅d2+h2⋅d1

3 1000 d3,d2,d1,d0 h0⋅d3+h1⋅d2

+h2⋅d1

h0⋅d3+h1⋅d2+h2⋅d1

+h3⋅d0

4 0001 d4,d3,d2,d1 0 0+h0⋅d4

As shown by the table, the sum of the four products be-
comes available after the fourth clock edge. This value can
be passed as output to the user or as input to yprev of the
next cell in the chain. The ntap input can be adjusted to
zero, in which case the cell would only implement a single
tap and a new data sample would arrive on each clock. In
this case, only the first register and latch in the
shift_register and latch_file, respectively, are used (select
is always 0001), and a new data output is available on each
clock.

The basic cells can be arranged in a topology that allows
for a variety of configurations. Figure 5 shows a topology
that could be used for eight cells. For the sake of clarity,
the filter coefficient inputs to the basic cells have been
omitted. Depending on the mux settings and the number of
taps implemented by each cell, some of the possible con-
figurations for the circuit are,

1. Four independent filters (2 cells each) with 2 to 8
taps each (sel1=1, sel2=1, sel3=1);

2. Two independent filters (4 cells each) with 4 to
16 taps each (sel1=0, sel2=1, sel3=0); or

3. One filter (8 cells) with 8 to 32 taps (sel1=0,
sel2=0, sel3=0).

For the first configuration, all x inputs and y outputs are
used. However, for the second configuration, x0 and x2 are
the inputs and y1 and y3 are the outputs, respectively. For

the third configuration, x0 is the filter input and y3 is the
filter output. The variety of configuration possibilities al-
lows the same hardware to be used in many different de-
sign situations.

yprev

clk
ntap

x
y

xnext

Basic_Cell

yprev

clk
ntap

x
y

xnext

Basic_Cell

clk
ntap

yprev

clk
ntap

x
y

xnext

Basic_Cell

yprev

clk
ntap

x
y

xnext

Basic_Cell

yprev

clk
ntap

x
y

xnext

Basic_Cell

yprev

clk
ntap

x
y

xnext

Basic_Cell

yprev

clk
ntap

x
y

xnext

Basic_Cell

yprev

clk
ntap

x
y

xnext

Basic_Cell

16

8

16

8

16

8

16

8x0

x1

x2

x3

16

8

16

8

16

8

16

8

y0

y1

y2

y3

sel1

sel2

sel3

0
1

0
1

0
1

0
1

0
1

0
1

Figure 5. Example of a basic cell topology.

Table 2. Operation of two cells in series (Fig. 5).
Smp# y0 y1
0 h0⋅d0 0

1 h0⋅d1+h1⋅d0 h0⋅d0

2 h0⋅d2+h1⋅d1+h2⋅d0 h0⋅d1+h1⋅d0

3 h0⋅d3+h1⋅d2+h2⋅d1+h3⋅d0 h0⋅d2+h1⋅d1+h2⋅d0

4 h0⋅d4+h1⋅d3+h2⋅d2+h3⋅d1 h0⋅d3+h1⋅d2+h2⋅d1+h3⋅d0

5 h0⋅d5+h1⋅d4+h2⋅d3+h3⋅d2 h0⋅d4+h1⋅d3+h2⋅d2+h3⋅d1

+h4⋅d0

6 h0⋅d6+h1⋅d5+h2⋅d4+h3⋅d3 h0⋅d5+h1⋅d4+h2⋅d3+h3⋅d2

+h4⋅d1+h5⋅d0

7 h0⋅d7+h1⋅d6+h2⋅d5+h3⋅d4 h0⋅d6+h1⋅d5+h2⋅d4+h3⋅d3

+h4⋅d2+h5⋅d1+h6⋅d0

8 h0⋅d8+h1⋅d7+h2⋅d6+h3⋅d5 h0⋅d7+h1⋅d6+h2⋅d5+h3⋅d4

+h4⋅d3+h5⋅d2+h6⋅d1+h7⋅d0

9 h0⋅d9+h1⋅d8+h2⋅d7+h3⋅d6 h0⋅d8+h1⋅d7+h2⋅d6+h3⋅d5

+h4⋅d4+h5⋅d3+h6⋅d2+h7⋅d1

The operation of a filter implemented using two cells in
series, as with the top two cells of Figure 5, is illustrated in
Table 2. The columns y0 and y1 represent the value on the
y output for the first and second cell, respectively. Thus, y0
is connected to yprev of the second cell. Assume that both
cells are configured to implement four taps, so the two-cell
filter has a total of eight taps. Unlike Table 1, each line of
Table 2 represents four clock cycles, or a single sample
period. The values shown are those at the end of the sam-

ple period (every fourth clock). Assume that filter coeffi-
cients h0 through h3 and h4 through h7 have already been
loaded into the latch_file of the first and second cell, re-
spectively. Once again, d0, d1, etc., represent the input
data samples.

Although we have a chain of two cells implementing eight
taps, the sample period is the same as that of the single
cell implementing four taps, which was illustrated in Table
1. Although the number of taps has doubled, the sample
period has remained at four clock cycles. Indeed, the per-
formance of the cell-based approach does not depend on
the number of cells in a chain. This characteristic is one of
the primary strengths of using the cell-based approach,
and allows designs to be easily scaled for larger filters
without sample rate penalties.

Note in Table 2 that when a new input sample enters the
filter, the filtered output is not available at the end of the
sample period. Rather, the filtered output becomes avail-
able at the end of the following sample period. Thus, this
approach has introduced an extra cycle of latency. Using
the parallel or sequential approaches discussed earlier, the
filtered output becomes available at the end of the same
sample period during which the input arrived -- a latency
of one sample period. Using the cell-based approach, an
extra cycle of latency is added for each additional cell
which is placed in the chain.

The additional latency is the primary drawback of the cell-
based approach. For a very long filter that requires many
cells in series, the latency may be too long for certain la-
tency-critical, real-time applications. However, most appli-
cations can tolerate an increase in latency in exchange for
a higher sample rate and greater data throughput. Of
course, this drawback could be eliminated by implement-
ing a binary tree of adders to globally sum the results from
each cell at the end of each sample period. However, this
type of approach would introduce a tremendous amount of
hardware complexity and eliminate the ease with which
the cell-based approach can be scaled.

For the cell shown in Figure 4, the critical path is from the
controller through the tri-state buffers to the multiplier,
adder, mux, and finally the accumulator register. Thus, the
clock period of the cell is,

CellPeriod DelayBuffer DelayMult

DelayAdd DelayMux

= +

+ + (6)
Again, setup and hold times have been neglected.

Each cell must cycle once for each of the filter taps it im-
plements and each cell in a chain adds an additional sam-
ple period of latency. For a particular chain of cells, the
sample rate and latency are given by,

 ()SampleRate Taps Cells CellPeriod= ⋅
−1

(7)

 ()Latency Cells Taps Cells CellPeriod= ⋅
(8)

where Cells ≤ Taps ≤ 4⋅Cells for both (7) and (8).

If each cell is used to implement only one tap, the cell-
based approach will have a sample rate similar to that of
the parallel approach. As each cell is used to implement
more taps, the sample rate will approach that of the se-
quential approach. Thus, not only does the ability to im-
plement different numbers of taps using the same cell pro-
vide great configuration flexibility, it also provides per-
formance flexibility.

When interconnection area is neglected, the area of the
cell-based approach is approximately the area of a cell
multiplied by the number of cells. Since a particular num-
ber of cells or given area can be configured to implement
different sizes of filters, the efficiency with which the area
is used can be configured. Thus, area efficiency can be
traded for higher performance.

Recall that two of the three basic design parameters for an
FIR filter are the number of taps and the sample rate. Both
parameters can be reconfigured for different applications
using the same hardware if a cell-based approach is used.
The third parameter, coefficient precision, which we have
assumed to be 8-bit single precision, cannot be adjusted
using the cell-based approach discussed in this section. To
make this parameter configurable, the basic cell must be
enhanced for double or triple precision coefficients.

4.2 Enhanced Reconfigurable Cell
The enhanced cell is an extension of the basic cell and
allows two or three cells to cooperate to form an FIR filter
with double or triple precision coefficients. In other words,
the same cells can be configured for 8, 16, or 24-bit filter
coefficients and sample data. In order to understand the
hardware additions which make this possible, let us first
briefly describe a double precision multiplication.

We have two signed 16-bit values, d and h, which can be
split into upper and lower bytes d1:d0 and h1:h0. The 16-
bit values can be multiplied together using two 8-bit mul-
tipliers, mult0 and mult1, and two 16-bit adders, add0 and
add1, in the manner shown by Figure 6. Note that sx
stands for sign-extend in the figure. Bytes d0 and h0 are
unsigned and bytes d1 and h1 are signed. Thus, the multi-
pliers must be capable of handling unsigned, signed, and
mixed-mode operands. Triple precision multiplication is a
relatively straight-forward extension of this approach,
which involves nine single precision multiplications.

d1

h1

d0

h0

d0xh00

d1xh0 0

0

0

d0xh1

sx

sx

d1xh1

x

mult0

mult1

add0add1

8-bits

Figure 6. Double precision multiply.

Let us implement a double precision, single-tap FIR cal-
culation using two simplified cells connected in the man-
ner shown in Figure 7. For clarity, some components such
as registers and control logic have been omitted. The 16-
bit data sample, d1:d0, and filter coefficient, h1:h0, are
split between the two 8-bit cells as shown. The box labeled
comb_logic in each cell implements combinational multi-
plexing, sign extension, and zero extension operations.
The control logic for the mux and comb_logic is not
shown.

y016

8h0

8d0

16 comb_logic

d q
clk register

16

y116

8h1

8d1

16 comb_logic

d q
clk register

16

carry

Figure 7. Double precision cell logic.

If we assume that the accumulator registers are initialized
to zero, Table 3 shows the values at the output of the mul-
tipliers and the outputs y1 and y0 after each clock cycle.
From the table, we can see that the double precision result
(d1:d0)⋅(h1:h0)=(y1:y0) can be generated in three clock
cycles. Thus, for double precision, three clock cycles are
required for each tap implemented by the filter. For exam-
ple, a cell implementing four taps would require twelve
clock cycles.

Table 3. Double precision cell operation.
Note: sx() is sign-extend, ub() is upper-byte,

lb() is lower-byte, and x is don't care.
clk# mult1 y1 mult0 y0
0 d1⋅h1 0+d1⋅h1 d0⋅h0 0+d0⋅h0

1 x sx(d1⋅h0):ub(d1⋅h0)

+d1⋅h1

d1⋅h0 lb(d1⋅h0):0

+d0⋅h0

2 d0⋅h1 sx(d0⋅h1):ub(d0⋅h1)

+sx(d1⋅h0):ub(d1⋅h0)

+d1⋅h1

x lb(d0⋅h1):0

+lb(d1⋅h0):0

+d0⋅h0

Using three 8-bit cells in an arrangement similar to that of
Figure 7, we can generate a triple precision result in five
clock cycles. Due to space limitations, we will for go the
detailed description of triple precision operation. However,
the final enhanced cell is shown in Figure 8. Note that the
multiplier performs signed, unsigned, or mixed-mode cal-
culations.

Depending on the nbyte and nclk settings, the cell can be
configured for any of the three possible precision configu-
rations. The ubm and lbm outputs are the upper and lower
bytes from the multiplier, respectively. Similarly, the ubpm
and lbnm inputs are the upper and lower bytes of the mul-

tipliers of the previous and next cells, in terms of byte or-
der, respectively. Inputs pxs and nxs are connected to the
xs outputs of the previous and next cells, in terms of byte
order, respectively. Inputs phs and nhs are similar. The ci
and co lines are required for carry propagation in the ad-
der when double or triple precision is used.

d

clk

q0

shift_register

h0
h1
h2
h3

hload

y

x

clk

q1
q2
q3

d0

clk latch_file

q0
q1
q2
q3

d1
d2
d3

d q
clk register

clk

dshift
select

control

accsel

8

8

8

8

8

4ntapntap 2

yprev 16

16

8

8
16

16

d q
clk register

xnext8

8

8

8

8

comb_logic

8

8

16

8

8

ubm
lbm

co

xsel
hsel

mode
ccntrl

nbyte

nclknclk 3

nbyte 2

2

2

2

3

pxs
nxs
phs
nhs

ubpm
lbnm

ci

xs8

hs8

Figure 8. Enhanced cell.

Cells can be arranged in a variety of topologies which al-
low the same hardware to be configured for different filter
applications. Figure 9 shows a small example of one such
topology. Many of the details have been omitted in Figure
9 for the sake of clarity. Some of the possible configura-
tions are described in Table 4.

8x0

16 y0

8

yprev

x

y

xnext

Enhanced_Cell

16 y1

8

yprev

x

y

xnext

Enhanced_Cell

yprev

x

y

xnext

Enhanced_Cell

yprev

x

y

xnext

Enhanced_Cell

8x1

yprev

x

y

xnext

Enhanced_Cell

16 y2

8

yprev

x

y

xnext

Enhanced_Cell

8x2

yprev

x

y

xnext

Enhanced_Cell

16 y3

8

yprev

x

y

xnext

Enhanced_Cell

8x3

yprev

x

y

xnext

Enhanced_Cell

16 y4

8

yprev

x

y

xnext

Enhanced_Cell

8x4

yprev

x

y

xnext

Enhanced_Cell

16 y5

8

yprev

x

y

xnext

Enhanced_Cell

8x5

Figure 9. Example of enhanced cell topology.

Table 4. Some possible configurations of Figure 9.
Width Filters Taps Inputs/Outputs of Filters

8-bits 1 12 to 48 x0/y5

8-bits 2 6 to 24 x0/y2, x3/y5

8-bits 3 4 to 16 x0/y1, x2/y3, x4/y5

8-bits 6 2 to 8 x0/y0, x1/y1, x2/y2, x3/y3,

x4/y4, x5/y5

16-bits 1 6 to 24 x1:x0/y5:y4

16-bits 3 2 to 8 x1:x0/y1:y0,x3:x2/y3:y2,

x5:x4/y5:y4

24-bits 1 4 to 16 x2:x1:x0/y5:y4:y3

24-bits 2 2 to 8 x2:x1:x0/y2:y1:y0,

x5:x4:x3/y5:y4:y3

For a single precision configuration, the clock period for
the enhanced cell is roughly the same as that of the basic
cell from the previous section with additional delay for the
additional combinational logic. However, for double or
triple precision operation, the cell period must include the
time to propagate the carry signal across the adders of one
or two other cells, respectively. Thus, the cell has a differ-
ent period for each of the three different precision configu-
rations. In addition, double and triple precision require
three and five clock cycles to generate the results for each
tap. The same latency issues that were present for the basic
cell still apply to the enhanced cell. Thus, the sample rate
and latency for a particular chain of enhanced cells imple-
menting a filter are given by,

 ()SampleRate Taps Cells Cycles p CellPeriod p= ⋅ ⋅
−

() ()
1

(9)

 ()Latency Cells Taps Cells Cycles p CellPeriod p= ⋅ ⋅() ()

(10)
where, Cells ≤ Taps ≤ 4⋅Cells, p is precision (8, 16 or 24),
Cycles(p) is 1 if p=8, 3 if p=16, and 5 if p=24, and Cell-
Period(p) is the cell period for precision p. A wide variety
of possible sample rate and latency characteristics can be
obtained from the same chain of cells.

The area of the enhanced cell has grown significantly from
the basic cell due to the added complexity. However, all
three of the basic FIR filter parameters can now be config-
ured, allowing many possible FIR filters to be imple-
mented with the same hardware.

5. DESIGN COMPARISONS
As mentioned in the introduction, the objective of the cell-
based approach is to provide an FPGA architecture for FIR
filtering, which allows basic filter design parameters to be
reconfigured while performance and area efficiency fall
between the two custom approaches: parallel and sequen-
tial. In the previous sections, four different approaches to
implementing FIR filters have been discussed. In this sec-
tion we examine the relative performance and area char-

acteristics of the approaches across a range of filter lengths
and determine if the objective has been met.

The data for each of the filter implementations in the fol-
lowing sections was generated using Mentor Graphics
tools. After describing the hardware in VHDL, the circuit
description was either synthesized or hand-designed, and a
floorplan and layout were generated using automatic place
and route and the Mentor Graphics 1.2um standard CMOS
library. Although the 1.2um library is out of date by to-
day's standards, it is adequate for our purposes, since we
are only interested in relative, rather than absolute, per-
formance and area characteristics.

The different approaches were implemented in the manner
shown in the figures from previous sections. The parallel
and sequential implementations were scaled-up from the
circuits shown in the figures in order to implement filters
with more than four taps. For all designs, products are
generated using mixed-mode parallel array multipliers and
sums were generated with carry lookahead adders. All
other combinational logic was synthesized using Mentor
Graphics tools. For each implementation, the area of the
layout and the critical path delay including layout para-
sitics were measured. From the critical path measurement,
the sample rate of the design was calculated. To simplify
the comparisons, pin issues such as IO buffering were ig-
nored.

5.1 Area Comparisons
Figure 10 shows the layout area in square microns versus
the number of filter taps for single precision (8-bit) data
and filter coefficients. Plots for parallel and sequential
implementations are labeled "P" and "S", respectively. The
enhanced cell approach is plotted for six different imple-
mentation sizes: 1, 2, 4, 6, 8, and 12 cells. Each of the cell
implementations is labeled with the number of cells. For
each of the implementations, four of the different filter
sizes that can be configured (Taps=Cells, 2⋅Cells, 3⋅Cells,
and 4⋅Cells) are plotted. For clarity, the basic cell approach
is not included on the graph. However, the area of a basic
cell implementation is roughly 65% of the area of an en-
hanced cell implementation with the same number of cells.

Recall that we are using the parallel and sequential im-
plementations as guides to judge the efficiency of the cell
based approach. The parallel implementations represent
the upper guideline or least efficient use of area, while the
sequential implementations represent the lower guideline
or most efficient use of area. As can be seen from Figure
10, the cell implementations fall across the plot for the
parallel implementations. For instance, if we compare the
12-cell curve to the parallel curve, we see that when each
of the cells is configured for one tap, for a total of twelve
taps, the area requirement is roughly twice that of the par-
allel implementation of a 12-tap FIR. However, if each cell
is configured for four taps, for a total of 48 taps, then the

area requirement is roughly half that of the parallel 48-tap
filter. Thus, the area efficiency of the cell based approach
changes depending on the number of taps each cell is con-
figured to implement.

Since two of the points for each of the six different sizes
fall outside of the parallel curve, the enhanced cell based
approach is not area efficient for single precision data and
coefficients. However, this is expected since a significant
amount of the hardware in the enhanced cell is devoted to
allowing double or triple precision operation. For single
precision, this hardware is not used and acts as overhead.
Of course the basic cell implementation (not shown) com-
pares much more favorably with the parallel approach
since it does not contain the extra double and triple preci-
sion hardware.

Area comparisons for double precision (16-bit) data and
filter coefficients are shown in Figure 11. Four enhanced
cell implementation sizes are shown: 2, 4, 8, and 12. As
with the previous figure, the area of the custom parallel
and sequential implementations is plotted and labeled "P"
and "S", respectively.

For double precision, the enhanced cell implementations
fall almost entirely within the parallel and sequential
guidelines. Recall that for double precision, two cells co-
operate to implement between one and four taps. Thus the
maximum number of taps for a particular number of cells
used for double precision is half that of the same cells used
for single precision. For the 12-cell implementation of a 6-
tap filter, the area requirement shown in Figure 11 is
roughly the same as the parallel approach and 4.4 times
that of the sequential approach. If the same twelve cells are
used to implement a 24-tap filter, the area requirement is a
quarter of the parallel approach and only about 2.4 times
that of the sequential approach.

For double precision, the enhanced cell approach is rela-
tively area efficient, as most of the points for the four dif-
ferent sizes fall between the parallel and sequential guide-
lines. Indeed, for the 2 and 4-cell implementations, the
area requirements are very similar to that of the sequential
implementations.

Figure 12 shows area comparisons for triple precision (24-
bit) data and filter coefficients. Three implementation sizes
are shown for the enhanced cell approach: 3, 6, and 12. As
can be seen from the figure, for triple precision, the en-
hanced cell approach is quite area efficient. All of the
points for the cell approach fall within the parallel and
sequential guidelines, with most points closer to the se-
quential approach. For the 12-cell implementation, when a
16-tap filter is implemented, the area requirements are
roughly 0.23 and 1.9 times that of the parallel and se-
quential approaches, respectively. In the case of the 3-cell
implementation, the area requirements are less than that of
the sequential approach since the 3-cell approach imple-

ments a 24-bit multiplication using three 8-bit multipliers
and the sequential approach uses 12-bit multipliers.

0 10 20 30 40 50
0

2

4

6

8

10

12

14
x 10

7

Taps

A
re

a
(s

q.
 m

ic
ro

ns
)

P

S

12

8

6

4
2

1

Sequential
Parallel
Cell

Figure 10. Area comparison for 8-bits.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3
x 10

8

Taps

A
re

a
(s

q.
 m

ic
ro

ns
)

P

S

12

8

4
2

Sequential
Parallel
Cell

Figure 11. Area comparison for 16-bits.

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5
x 10

8

Taps

A
re

a
(s

q.
 m

ic
ro

ns
)

P

S

12

6
3

Sequential
Parallel
Cell

Figure 12. Area comparison for 24-bits.

Note that for the 12-cell implementation, for example, the
same hardware was used for each of the three area com-
parisons. As the precision was increased from 8-bits to 24-
bits, the hardware became more area efficient. Thus, de-
pending on the precision and the number of taps, the same
hardware can be configured for a variety of area efficien-
cies relative to a custom design. As we will see in the next
section, this is also true for performance.

5.2 Performance comparisons
Similar to the previous section, the enhanced cell-based
approach is compared to custom parallel and sequential
implementations across a range of filter lengths. However,
in this section we examine the relative performance of the
enhanced cell. In particular, the sample rate, or the rate at
which input samples may enter the filter, is considered. In
this case, the parallel implementations represent the upper
guideline on performance, while the sequential imple-
mentations represent the lower guideline on performance.

Figure 13 shows the sample rate in MHz versus the num-
ber of filter taps for single precision input data and filter
coefficients. The same implementations that were shown
in the area comparison of Figure 8 are also shown in Fig-
ure 13. From Figure 13, we see that the cell implementa-
tions fall across the plot for the parallel implementations,
with many cell points above or near the parallel points. For
example, for the 12-cell curve, when a 12-tap filter is im-
plemented, the sample rate is 1.6 times that of the parallel
approach. When a 48-tap filter is implemented using the
same hardware, the sample rate is only about half that of
the parallel approach.

Although for small numbers of cells (1 or 2) the perform-
ance is close to that of the sequential approach, as the
number of cells is increased the performance becomes
closer to that of the parallel approach. Thus, for single
precision operation the performance of the enhanced cell is
relatively close to that of the parallel approach. For the
basic cell approach, which is not shown in Figure 13 for
clarity, the relative performance is even better, since the
basic cell has a sample rate of 1.8 times that of the en-
hanced cell.

Performance comparisons for double precision are shown
in Figure 14. For double precision, the performance has
moved closer to that of the sequential approach, with all of
the cell points falling below the parallel points. For the 12-
cell implementation of a 6-tap filter, the sample rate is
0.92 times that of the parallel approach. For a 24-tap filter,
the sample rate is 0.32 times that of the parallel approach.
Depending on the number of taps in the filter, the per-
formance of the cell implementation can be configured to
be close to either the parallel or sequential implementa-
tion.

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

18

20

Taps

S
am

pl
e

R
at

e
(M

H
z)

P

S

1286421

Sequential
Parallel
Cell

Figure 13. Performance comparison for 8-bits.

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

Taps

S
am

pl
e

R
at

e
(M

H
z)

P

S

12842

Sequential
Parallel
Cell

Figure 14. Performance comparison for 16-bits.

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

Taps

S
am

pl
e

R
at

e
(M

H
z)

P

S
1263

Sequential
Parallel
Cell

Figure 15. Performance comparison for 24-bits.

Triple precision operation results in the worst performance
for cell implementations, as shown by Figure 15. The cell
points have moved much closer to the sequential points,

with some sizes (3 and 6) being at or below the perform-
ance of the sequential implementation. As previously dis-
cussed, a cell operating in triple precision requires five
clock cycles to generate the product and sum for one tap.
In addition, carry signals must propagate across three par-
allel cells requiring a longer clock period. These two char-
acteristics combine to produce the relatively low perform-
ance in the triple precision case.

As the precision of the input data and coefficients is de-
creased or the number of cells is increased, the perform-
ance of the cell approach moves toward that of the parallel
approach. Thus, the cell approach has the best perform-
ance characteristics when the cells are operating in single
precision mode. However, this is not surprising since in
this case the cell approach also has the worst area effi-
ciency. The cell approach allows one to easily trade area
efficiency for performance by configuring the same hard-
ware differently.

An excellent property of the cell approach is that the rela-
tive performance improves as the number of cells is in-
creased. However, the trade-off for the performance im-
provement is an increase in latency. Although the latencies
of the parallel and sequential approaches remain unity
with an increase in the number of filter taps, each addi-
tional cell in a chain of cells adds additional latency. For
very large filters used in latency-critical applications, the
cell-based approach may be inappropriate. However, most
applications do not require FIR filters of more than about
25 taps, for which the cell approach has a reasonable la-
tency.

6. Conclusion
The enhanced cell approach can be arranged in a variety of
topologies to provide an FPGA architecture which is spe-
cialized for FIR filtering. For different cell topologies, the
filter coefficients, data and coefficient precision, filter
length, sample rate, and area efficiency can each be recon-
figured for a particular application using the same hard-
ware. Depending on the particular configuration, perform-
ance and area efficiency can be similar to that of a custom
parallel or sequential implementation. Thus, we have a
coarse-grained FPGA architecture for FIR filtering which
has the flexibility of a DSP processor with performance
and area efficiency similar to that of an ASIC.

In future research we will extend the capabilities of the
enhanced cell to include other common DSP functions,

such as Infinite Impulse Response (IIR) filtering. In addi-
tion, we plan to develop heterogeneous architectures that
contain cells which can implement different functions or
numbers of taps. We also plan to consider grafting a num-
ber of cells onto a more traditional FPGA architecture to
develop a more general purpose DSP FPGA.

7. ACKNOWLEDGMENTS
This research is sponsored by DARPA under grant number
DAAH04-96-1-0222 and the Rockwell and Lucent Foun-
dations.

8. REFERENCES
[1] Abnous, A. and Rabaey, J. Ultra-low-power domain-

specific multimedia processors. in VLSI Signal Proc-
essing IX, IEEE Press, November 1996, 459-468.

[2] Arnold, J. M., Buell, D. A., and Davis, E. G. Splash 2.
in Proceedings of the 4th Annual ACM Symposium
on Parallel Algorithms and Architectures, June 1992,
316-324.

[3] Bergmann, N. W. and Mudge, J. C. Comparing the
performance of FPGA-based custom computers with
general-purpose computers for DSP applications. in
Proceedings of IEEE Workshop on FPGAs for Custom
Computing Machines, Napa, CA, April 1994, 164-
171.

[4] Bertin, P., Roncin, D., and Vuillemin, J. Programma-
ble active memories: a performance assessment. in
Research on Integrated Systems: Proceedings of the
1993 Symposium, 1993, 88-102.

[5] Oppenheim, A. V. and Schafer, R. W. Digital signal
processing. Prentice-Hall, Englewood Cliffs, N.J.,
1975.

[6] Petersen, R. and Hutchings, B. L. An assessment of
the suitability of FPGA-based systems for use in digi-
tal signal processing. in 5th International Workshop
on Field Programmable Logic and Applications, Ox-
ford, England, August 1995, 293-302.

[7] Rabaey, J. Reconfigurable computing: the solution to
low power programmable DSP. in Proceedings of the
1997 ICASSP Conference, Munich, April 1997.

[8] Weste, N. and Eshraghian, K. Principles of CMOS
VLSI design, Addison-Wesley, 1993.

	Main Page
	FPGA98
	Front Matter
	Table of Contents
	Session Index

