
Robust Satisfiability of Systems of Equations ∗

PETER FRANEK
Institute of Computer Science, ASCR Prague

MAREK KRČÁL
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Abstract

We study the problem of robust satisfiability of systems of nonlinear
equations, namely, whether for a given continuous function f : K → Rn

on a finite simplicial complex K and α > 0, it holds that each function
g : K → Rn such that ‖g − f‖∞ ≤ α, has a root in K. Via a reduction to
the extension problem of maps into a sphere, we particularly show that
this problem is decidable in polynomial time for every fixed n, assuming
dimK ≤ 2n−3. This is a substantial extension of previous computational
applications of topological degree and related concepts in numerical and
interval analysis.

Via a reverse reduction we prove that the problem is undecidable when
dimK ≥ 2n − 2, where the threshold comes from the stable range in
homotopy theory.

For the lucidity of our exposition, we focus on the setting when f
is piecewise linear. Such functions can approximate general continuous
functions, and thus we get approximation schemes and undecidability of
the robust satisfiability in other possible settings.

1 Introduction

In many engineering and scientific solutions, a highly desired property is the
resistance against noise or perturbations. We can only name a fraction of the
instances: stability in data analysis [9], robust optimization [3], image process-
ing [27], or stability of numerical methods [29]. Some of the most crucial tools
for robust design come from topology, which can capture the stable properties
of spaces and maps. Famous concepts using topological methods in computer

∗This is an extended and revised version of a paper that appeared in the proceedings of
the ACM-SIAM Symposium on Discrete Algorithms 2014. This research was supported by
the Center of Excellence – Inst. for Theor. Comput. Sci., Prague (project P202/12/G061 of
GA ČR), by the Project LL1201 ERCCZ CORES and by institutional support RVO:67985807.
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science are fixed point theory [13], fair division theory [14], persistent homol-
ogy [16], or discrete Morse theory [19].

In this paper, we take the robustness perspective on solving systems of non-
linear equations, a fundamental problem in mathematics and computer science.
The tools of algebraic topology will enable us to quantify and compute the ro-
bustness of a solution—its resistance against perturbations of a given system of
equations. The robustness of a root is a favourable property as the system may
come from imprecise measurements or from a model with inherent uncertainty.1

In case that the system is given by arithmetic expressions, we can use less pre-
cise but fast floating point operations and still identify the root, if it is a robust
one.

Much research has been done in this direction, and as far as we know, the
topological degree has always been the essential core of the approaches. The
topological degree is indeed a powerful and practically usable tool for proving
the existence of robust solutions of systems of the form f = 0 for (nonlinear)
continuous functions f : Rn → Rn. Developing techniques for such proofs is
a major theme in the interval computation community [37, 31, 24, 22, 12],
although the emphasis is usually not put on the completeness of the tests,2 but
on their usability within numerical solvers. Particularly, efficient formulas for
topological degree has been devised in the case where the map f is polynomial
[18, 46].

Our contribution. The main ingredient of our results is the replacement of
the topological degree by the extendability of maps into spheres. The extension
problem is given by a continuous map g defined on a subspace A of a topo-
logical space X (in our case the map will always take values in a sphere Sd)
and the question is whether g can be continuously extended to whole of X.3

Extendability provides a solution that combines the following three properties:

1. We quantify the robustness of the roots. Formally, for a given α > 0
we say that f : K → Rn on a compact domain K ⊆ Rm has an α-robust
root whenever every α-perturbation g of f—that is, a function g : K → Rn
with ‖f − g‖ := maxx∈K |f(x)− g(x)| ≤ α—has a root.

2. We show that the extendability is a complete criterion that verifies or
disproves that a given function f : K → Rn has an α-robust root for some
given α > 0 (see Lemma 3.3).

3. Our solution includes underdetermined equations,4 that is, the case
with dimK > n. On the positive side, we show an algorithm that works

1For example, settings of a problem may evolve over time and we would like to know if the
problem has a solution also tomorrow.

2See [22, 21] for some incompleteness results.
3The topological degree can be understood as a solution for a special case of the extension

problem: namely, the degree of a map ∂Bd+1 → Sd from the boundary of a (d+ 1)-disk to a
d-sphere is zero if and only if the map can be extended to whole of the disk.

4Formally, our solution also includes overdetermined systems, but such systems never have
a robust solution.
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Figure 1: Illustration of one-dimensional functions with and without an α-robust
root.

for dimK ≤ 2n − 3 (here the running time is polynomial when dimK
is fixed) or n even (see Theorem 1.2). On the negative side, we prove
undecidability when dimK ≥ 2n− 2 and n is odd (see Theorem 1.3).

The core of the algorithm and the undecidability depends on recent computa-
tional complexity studies of the extension problem [7, 8, 47]. We will state the
relevant results in Section 2.

The computational setting. In this paper, we assume the simple yet useful
setting where the function f : K → Rn is piecewise linear (PL) on a finite
simplicial complex K.5 That means, f is linear on every simplex of K. Every
such function f is uniquely determined by its values on the vertices of K—as
the linear interpolation on every simplex of K. The usefulness of the PL setting
can be seen in the facts that

• such functions f can be naturally obtained for instance from measurements
in every vertex of a grid or every vertex of a triangulation of a domain of
interest, and,

• arbitrary continuous function can be approximated arbitrarily precisely
by a PL-function and thus our results in the PL setting yield analogous
results in other possible settings, see Section 5.

For easy computational representation of the input, we assume that our algo-
rithms are given only PL functions with rational values on the vertices.6 We
emphasize that the above mentioned set of α-perturbations of a given function

5A (geometric) simplicial complex K is a collection of simplices in some Rd such that for
every two simplices ∆,∆′ ∈ K their intersection ∆∩∆′ is also a simplex of K or an empty set.
The underlying topological space |K| :=

⋃
K will be also denoted by K when no confusion

can arise.
6We could use arbitrary subset of real numbers where the computations of absolute values

and comparisons are possible in polynomial time.
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f : K → Rn contains continuous functions that are neither PL nor have rational
values on the vertices.

Every simplicial complex can be encoded as a hereditary set system K on
a set of vertices V (K)—such K is called abstract simplicial complex [25, p.
359]. Every abstract simplicial complex can be realized as a geometric simplicial
complex uniquely up to a homoemorphism.7 We will use the notation K for
both the abstract simplicial complex and its geometric realization where no
confusion is possible.

Throughout this paper, | · | will denote a fixed norm on Rn. Its choice can
be arbitrary for the undecidability results. For the algorithmic results we will
need that

for every rational point y ∈ Qn, the value |y| can be compared
to any given rational number α, and,

(1)

for every PL map f : ∆→ Rn with rational values on the vertices
of a simplex ∆, the point arg minx∈∆|f(x)| can be computed.

(2)

When the dimension of ∆ is fixed, the computation can be done in polynomial
time for `1, `∞ (the simplex method for linear programming) and `2 norms
(Lagrange multipliers). As already introduced above, for a function f : K → Rn,
the notation ‖f‖ stands for the L∞ norm of f , that is, ‖f‖ := maxx∈K |f(x)|.
The algorithmic results. The next definition introduces the main problem
we study.

Definition 1.1. Assume that a norm on Rn is fixed. The Robust Satisfiability
Problem (ROB-SAT) is the problem of deciding, for a given continuous function
f : |K| → Rn on a simplicial complex K and a number α > 0, whether each
α-perturbation of f has a root.

Let E be a set of functions with some agreed upon encoding. We say that the
ROB-SAT problem for E is decidable, if there exists an algorithm that correctly
decides the above problem for each f ∈ E and α > 0.

Theorem 1.2. Let E be the set of all PL functions f : K → Rn where K is
a finite simplicial complex, n ∈ N and either dimK ≤ 2n− 3 or n ≤ 2. Assume
that a norm | · | on Rn is fixed and that we have an oracle for (1) and (2).8

Then the ROB-SAT problem for E is decidable. Moreover, for each fixed n > 0,
the running time is polynomial.

Additionally, ROB-SAT is decidable for all PL-functions f : K → Rn for n
even without any restriction on the dimension of the simplicial complex K.

The decision procedure involves recent algorithmic results from computa-
tional homotopy theory, namely the algorithms for the extension problem [8, 47].

7Every such a realization is given by a convenient embedding of the set of vertices in some
Rd. Then the collection of abstract simplices of K determines the collection of the geometric
simplices of the realization. The required condition is that the intersection of arbitrary two
geometric simplices of the realization also belongs to the realization or is empty.

8As we mentioned above, such an oracle can be implemented in polynomial time in the
case of `1, `2 and `∞ norms.
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The limit for the dimension of K comes from so-called stable range in homotopy
theory.

Locating a robust root. In fact, our algorithm yields approximations of one
or more connected components within K such that every α-perturbation of f
has a root in each of the components. Conversely, for every point x of each of the
components, there is an α-perturbation with a root in x. Thus the algorithm
approximately localizes the roots within the precision that the parameter α
allows.

Computing the robustness of a root. Let f : K → Rn be a PL function.
It is easy to show that the set of all α ≥ 0, such that every α-perturbation
of f has a root, is either empty, or a closed and bounded set. Let us denote,
if it is nonempty, the maximum of this set by rob(f)—the robustness of the
root of f . We will prove that for any PL function f : K → Rn that has a
root, its robustness rob(f) is equal to minx∈∆ |f(x)| for some simplex ∆ ∈
K. Consequently, by a simple binary search, we can compute the exact value
rob(f).9

It is worthwhile to identify other natural classes E of functions on a compact
domain for which the robustness of the roots can be computed exactly. How-
ever, we omit this direction in this paper. Arbitrary continuous functions on a
compact domain can be approximated by piecewise linear ones up to arbitrary
level of precision, and thus the robustness of their roots can be approximated
arbitrarily precisely as well, see Section 5.

Inequalities. We can generalize our results to systems of equations and in-
equalities. Such system can be formally described by f = 0 ∧ g ≤ 0 for some
(f, g) : K → Rn×Rk. An α-perturbation of this system is a system f̃ = 0∧ g̃ ≤ 0
such that ‖f − f̃‖ ≤ α and ‖g − g̃‖ ≤ α. Expectably, the robustness of a satis-
fiable system f = 0 ∧ g ≤ 0 is defined to be the maximal α > 0 such that every
α-perturbation of the system has a solution.

If we assume that we use the max-norm in Rn, then we will derive as a corol-
lary of Theorem 1.2, that the following problem is decidable: given PL functions
(f, g) : K → Rn × Rk such that dimX ≤ 2n− 3 or n ≤ 2, decide whether each
α-perturbation of f = 0 ∧ g ≤ 0 is satisfiable or not. This will be discussed at
the end of Section 3.

Undecidability. The main question now is what happens in the remaining
case when dimK ≥ 2n − 2 and n is odd. We claim that no approximation of
the robustness of roots is algorithmically possible here. The formal statement
follows:

Theorem 1.3. Let n > 2 be odd and |·| be an arbitrary norm in Rn. Then there
is no algorithm that, given a finite simplicial complex K of dimension 2n − 2
and a PL function f : K → Rn, correctly chooses at least one of the following
answers:

9Here we use the fact that if | · | is the max-norm, then |f | takes the minimum on each
simplex in a computable rational point x∗ ∈ Qd. The same is true for the Euclidean norm
| · |2, but the minimum min∆ |f |2 is a square root of a rational number.
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• rob(f) > 0

• rob(f) < 1

In particular, ROB-SAT for PL-functions is undecidable. Furthermore, it is
easy to see that we have similar undecidability result for any class of functions
E such that, for any PL function f and ε > 0, we might algorithmically find
g ∈ E such that ‖g − f‖ < ε. For instance, the robustness of the roots cannot
be approximated up to any constant factor for systems of polynomial equations,
which is quite surprising in light of the fact that the first order theory (R,≤
) is decidable. While we can always decide the root existence problem for
polynomials, we cannot, in general, decide, whether the robustness of the root
is greater than ε or less than 1.

The proof of Theorem 1.3 is based on a recent undecidability result for the
topological extension problem [8].

If we consider systems of equations and inequalities, an analogous undecid-
ability result holds even for homotopically trivial domains. Let n > 2 be odd.
Then there is no algorithm that, given m, k ∈ N, a triangulation T of [−1, 1]m

and a pair of PL functions (f, g) : T → Rn × Rk, correctly chooses at least one
of the following:

• the robustness of f = 0 ∧ g ≤ 0 is greater than 0, or,

• the robustness of f = 0 ∧ g ≤ 0 is less than 1.

An immediate consequence is that the ROB-SAT problem is undecidable for
systems of polynomial equations and inequalities, if all variables are from the
interval [−1, 1] and no other constraint on the domain is given. The details are
at the end of Section 4.

Related work. By the famous result of Tarski, the first order theory of real
number is decidable. On the countrary, in the unbounded case, the root exis-
tence problem is undecidable even for functions f : R → R that are expressed
in closed forms containing polynomials and the sin function. A carefull exam-
ination of the proof in [48] shows that also the ROB-SAT problem for such
functions is undecidable.

As we mentioned, topological methods have been extensively used to identify
roots of systems of equations, particularly in numerical and interval analysis [39,
15, 23, 2, 24, 44].

Our work was motivated by preceding papers [12, 21, 20], where the topo-
logical degree was proved to be a complete criterion for detecting infinitesimally
robust roots (i.e., the roots corresponding to the case rob(f) > 0) of nonlinear
systems of n equations over n variables. The approach extends to formulas ob-
tained from systems of equations by adding the inequalities and the universal
quantifiers.

The quantification of the robustness of the roots in our sense already ap-
peared in the theory of well groups [17]. Well groups measure in some sense the
robustness of intersection of the image of a function f : X → Y with a closed
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subdomain A ⊆ Y . As a special but important case with X = Rm, Y = Rn and
A = {0}, the zero-dimensional well group capture the robustness of a root of a
function f . Particularly, Theorem 1.3 implies incomputability of the well groups
in the above special case with m ≥ 2n− 2 and n odd. However, the algorithms
for computing well groups described in [4, 10] do not reach beyond the case
m = n, that is, the case with the same number of equations and variables. See
[43, 11] for some of the follow-up work.

We also mention the concept of Nielsen root number which is a computable
number defined for maps between manifolds of the same dimension. It approx-
imates a lower bound of the number of different solutions of f(x) = c [5, 6, 26].
Like the topological degree, it is a homotopy invariant and does not change
under small perturbations of f . For pairs of maps f1, f2 : Mm → Nn between
compact manifolds of different dimensions m,n, Nielsen theory has been ap-
plied to compute a lower bound for the number of connected components of
the coincidence set f ′1 = f ′2, where f ′i ' fi are homotopic for i = 1, 2 [32, 33].
Surprisingly, the author of [32] shows that under the condition m ≤ 2n−3—the
same as our stable dimension range—a computable number N(f1, f2) coincides
with the minimal number of connected components of {f ′1 = f ′2} for f ′1 resp. f ′2
homotopic to f1 resp. f2.

Open problems.

• To what extent can be the present algorithms implemented and used on
concrete instances? So far only the computation of the degree has been
implemented and practically used for detecting robust roots10 [20]. Can
higher non-extendability tests via Steenrod squares and Adem’s opera-
tion11 be practically used?

• The undecidability result in Theorem 1.3 applies to a general class of func-
tions whose domains may have very complicated topology. If we restrict
the function space to functions defined on boxes (products of compact in-
tervals), then the decidability of the ROB-SAT problem for such functions
is open.

• A natural generalization of the ROB-SAT problem is to consider first-
order formulas, obtained from PL (in)equalities by adding conjunctions,
negations and quantifiers. For a rigorous statement see [21]. Our current
solution covers the existentially quantified (conjunctions of) equations.

• In the cases where we are able to verify the existence of a robust solution
of f = 0, a natural problem is to describe the zero set. It is worth
investigating the computable topological invariants of the solution set that

10The topological degree gives a complete criterion in the case dimK = n but it can detect
robust roots in other cases as well.

11The general algorithm for deciding extendability can be seen as a hierarchy of subsequent
tests such that dimK − n of them is needed to get a complete answer. This algorithm has
not been implemented yet, but in the case of a sphere, the second and the third tests can be
obtained via Steenrod squares and Adem’s operation [36]. Here the formulas are known and
it might be relatively easy to get an efficient implementation.
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are robust with respect to perturbations of f . In particular, can well
groups be computed for m ≤ 2n− 3?

2 Topological preliminaries

In this section we introduce some definitions from algebraic topology that we
need throughout the proofs. The details can be found in standard textbooks,
such as [28, 34, 45].

We remind that for a simplicial complex K, |K| will refer to the underlying
topological space, that is, the union of the simplices in K. If no confusion can
arise, we will denote by K both the space and the simplicial complex itself. All
simplicial complexes are assumed to be finite, without explicitly saying it.

Star, link and subdivision. Let A ⊆ K be simplicial complexes. We de-
fine the star(A,K) to be the set of all faces of all simplices in K that have
nontrivial intersection with A, and link(A,K) := {σ ∈ star(A,K) |σ ∩ |A| =
∅}. Both star(A,K) and link(A,K) are simplicial complexes. The difference
star◦(A,K) := |star(A,K)| \ |link(A,X)| is called open star. A simplicial com-
plex K ′ is called a subdivision of K whenever |K ′| = |K| and each ∆′ ∈ K ′ is
contained in some ∆ ∈ K. If a ∈ |K|, than we may construct a subdivision of
K by replacing the unique ∆ containing a in its interior by the set of simplices
{a, v1, . . . , vk} for all {v1, . . . , vk} that span a face of ∆, and correspondingly
subdividing each simplex containing ∆. This process is called starring ∆ at a.
If we fix a point a∆ in the interior of each ∆ ∈ K, we may construct a derived
subdivision K ′ by starring each ∆ at a∆, in an order of decreasing dimensions.

Homotopy extension property. We say that f, g : X → Y are homotopic, if
there exists a map H : X×[0, 1]→ Y such that H(·, 0) = f and H(·, 1) = g. The
map H is called a homotopy. Let A ⊆ X and Y be topological spaces. A map
F : X → Y is called an extension of f : A → Y , if the restriction F |A = f .
The problem of deciding, whether there exists an extension F of f : A→ Y , is
called the topological extension problem. Let H : A× [0, 1]→ Y be a homotopy.
We say that the pair (X,A) has the homotopy extension property (HEP) with
respect to Y , if for any homotopy h : A×[0, 1]→ Y and an extension F : X → Y
of h(·, 0), there exists a homotopy H : X × [0, 1]→ Y that is an extension of h.
The majority of common pairs (X,A) possess this property with respect to any
Y [1, p. 76] and if Y is finitely triangulable (e.g. the sphere), then any closed
subspace A of a metric space X has the HEP with respect to Y [30, p. 14]. If
follows that the existence of an extension F of f : A→ Y depends only on the
homotopy class of f .

Extendability of maps into a sphere. A map between simplicial complexes
X and Y is called simplicial, if the image of each simplex is a simplex and its
restriction to each simplex is a linear map.12 Every simplicial map f : X → Y

12This means, f(
∑

j ajvj) =
∑

j ajf(vj) within a simplex with vertices vj , aj ≥ 0 and∑
j aj = 1.
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is uniquely defined by a mapping from the vertices of X to the vertices of
Y (and thus can easily be described combinatorially). Each continuous map
f : |K| → |L| between simplicial complexes K and L can be approximated by
a simplicial map f∆ : K ′ → L, where K ′ is a subdivision of K. In particular, if
f(|star◦(v)|) ⊆ |star◦(f∆(v))|, then f and f∆ are homotopic [40, p. 137].

A space Y is called (d− 1)-connected iff every map Si → Y for i ≤ d− 1 is
homotopic to a constant map. Every d-sphere Sd is (d−1)-connected. The core
of the proofs of Theorems 1.2 and 1.3 depends on the following recent results
from computational homotopy theory.

Theorem 2.1 ([7, Theorem 1.4]). Let d ≥ 2 be fixed. Then there is a polynomial-
time algorithm that, given finite simplicial complexes X, Y , a subcomplex A ⊆
X, and a simplicial map f : A→ Y , where dim(X) ≤ 2d− 1 and Y is (d− 1)-
connected, decides whether f admits an extension to a (not neccessarily simpli-
cial) map X → Y .

The bound dim(X) ≤ 2d − 1 might seem too restrictive but it cannot be
removed for even dimensional spheres, for example.

Theorem 2.2 ([8, Theorem 1.1 (a)]). Let d ≥ 2 be even and Sd be a simplicial
complex representing the d-sphere. Then the following problem is undecidable:
given a simplicial pair (X,A) such that dimX = 2d and a simplicial map f :
A → Sd, decide whether there exists a continuous extension F : X → Sd of f
or not.

We remark that in the case of (d − 1)-connected spaces with d odd, the
undecidability holds for the wedge of two spheres Sd ∨ Sd [8, Theorem 1.1
(b)]. The interesting question on the complexity of the case of odd dimensional
spheres, where homotopy groups πn(Sd), n > d are all finite, was solved recently
by Vokř́ınek [47].

Theorem 2.3 ([47, Theorem 1]). There exists an algorithm that, given a pair
of finite simplicial sets (X,A), a finite d-connected simplicial set Y , d ≥ 1,
with homotopy groups πn(Y ) finite for all 2d ≤ n ≤ dimX and a simplicial
map f : A→ Y , decides the existence of a continuous extension g : X → Y of
f .

We remark that there is no running time bound in Theorem 2.3 even for fixed
dimensions of X. We also believe that there is much more hope for practical
implementations in the stable situation (Theorem 2.1) than in the unstable
situation (Theorem 2.3).

We will need a slight extension of Theorem 2.1 for maps to low-dimensional
spheres S1 and S0. The results of [7] do not formally cover these cases mainly
because they are too particular and not difficult at the same time. We will need
some basic terminology and facts from algebraic topology in the proof, such
as homotopy and cohomology theory. We point the interested reader to the
textbooks [28, 38].

9



Lemma 2.4. There is a polynomial-time algorithm that, given a simplicial
complex X (of any dimension), k ≤ 1 and a simplicial map f : A → Sk from
a subcomplex A of X, decides whether there exists a continuous extension (not
necessarily simplicial) F : X → Sk of f .

Proof. First consider the case k = 0. We identify the connected components
X1, X2, . . . , Xj of the complex X and the subcomplexes A1, . . . , Aj ⊆ A such
that Ai = Xi ∩ A for i = 1, . . . , j. It is straightforward that a simplicial map
f : A → S0 can be extended to X iff f is constant on every subcomplex Ai for
i = 1, . . . , j.

Now let k = 1. It is well known fact that the circle S1 is the Eilenberg–
MacLane spaceK(Z, 1) and13 that there is a natural bijection [A,S1]→ H1(A;Z).14

The bijection sends the homotopy class of a continuous map f : A→ S1 to the
cohomology class f∗(ξ) where f∗ : H1(S1;Z)→ H1(A;Z) is the homomorphism
induced by f and ξ ∈ H1(S1;Z) is a certain distinguished cohomology class.
In our case where S1 = |Σ1|, the cohomology class ξ can be represented by a
cocycle that assigns 1 to the directed edge (ordered simplex) −−→e1e2 of a simplicial
complex Σ1 and assigns 0 to all the remaining directed edges. Thus f∗(ξ) can
be represented by a cocycle that assigns 1 to every directed edge −→uv such that
f(u) = e1 and f(v) = e2 and 0 to all the remaining ones. In the end, the
question of extendability of a map f : A → S1 reduces to extendability of the
cocycle on A representing f∗(ξ) to a cocycle on X. This problem reduces to a
system of linear Diophantine equations that can be solved in polynomial time
[42, Chapter 5].

3 Decidability

Realization of the sphere. Let us represent the sphere Sn−1 as the boundary
of the cross polytope, i.e., the convex hull of 2n coordinate ± unit vectors
±e1, . . . ,±en. This coincides with the set of unit vectors in Rn with respect to
the `1-norm |x|1 :=

∑
i |xi|. Let

r : Rn \ {0} → Sn−1, x 7→ x

|x|1
.

This map is a homotopy equivalence and the embedding i : Sn−1 ↪→ Rn \ {0} is
its homotopy inverse. This implies that, for any simplicial complex pair (X,A),
there exists an extension F : X → Rn \ {0} of f : A→ Rn \ {0} iff there exists
an extension F̃ : X → Sn−1 of r ◦ f : A→ Sn−1.

We choose the triangulation Σn−1 of Sn−1 consisting of all simplices spanned
by subsets of the 2n vertices {±ei} that do not contain a pair of antipodal
points {ei,−ei}. For each index i and sign s, star(sei) is a triangulation of the
hemisphere {x ∈ Sn−1 | s xi ≥ 0}.

13The Eilenberg–MacLane space K(Z, 1) is defined by π1(K(Z, 1)) = Z and πi(K(Z, 1)) = 0
for every i 6= 1.

14For spaces X and Y , we let [X,Y ] denote the set of homotopy classes of of maps X → Y .
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Robustness of the root. Let K be a compact space, f : K → Rn be
a continuous function and g be an α-perturbation of f with no root. Then
minK |g| > 0, so there exists an ε > 0 such that εf + (1 − ε)g has no root.
However, ‖εf+(1− ε)g−f‖ = (1− ε)‖f−g‖ ≤ (1− ε)α, so the set of all α′ such
that there exists an α′-perturbation of f with no root, is an open set. It follows
that the set of α such that each α-perturbation of f has a root, is a closed set.
It is clearly bounded, which justifies the following definition.

Definition 3.1. For a compact space K and a continuous f : K → Rn that has
a root in K, we define

rob(f) := max{α | each α-perturbation of f has a root}.

For the purposes of this paper, we will need the following definition.

Definition 3.2. Let K be a simplicial complex and f : K → Rn be a PL
function. We will call a ∈ R a critical value of f , if a = minx∈∆ |f(x)| for some
∆ ∈ K.

We will show later that rob(f) is always a critical value of f .

Reduction of the ROB-SAT problem to the extension problem. As-
sume that f : K → Rn is an arbitrary continuous function on a compact space
K. There is the following general criterion for the existence of a robust root.

Lemma 3.3 (Extendability criterion). A continuous function f : K → Rn has
an α-robust root if and only if its restriction to |f |−1{α} cannot be extended to
a map |f |−1[0, α]→ Rn \ {0}.
Proof. We will prove the equivalent statement that there exists an α-perturba-
tion of f with no root iff there exists an extension F : |f |−1[0, α]→ Rn \ {0} of
f ||f |−1{α}.

Assume that f̃ : |f |−1[0, α] → Rn \ {0} is an α-perturbation of f with no
root and let H(x, t) := tf̃(x) + (1− t)f(x) be a straight-line homotopy. We will
show that H(x, t) 6= 0 for (x, t) ∈ |f |−1{α} × [0, 1]. Using |f̃(x)− f(x)| ≤ α,

|H(x, t)| = |tf̃(x) + (1− t)f(x)|
= |f(x) + t(f̃(x)− f(x))|
≥ |f(x)| − t|f̃(x)− f(x)|
≥ α− tα = (1− t)α.

This is positive for t < 1. For t = 1, |H(x, 1)| = |f̃(x)| > 0, because f̃ has
no root. So, f ||f |−1{α} and f̃ ||f |−1{α} are homotopic maps from |f |−1{α} to

Rn \ {0}. The map f̃ : |f |−1[0, α] → Rn \ {0} is an extension of f̃ ||f |−1{α} and
due to the homotopy extension property of the pair (|f |−1[0, α], |f |−1{α}) wrt.
the sphere, there exists an extension F : |f |−1[0, α]→ Rn \ {0} of f ||f |−1{α}.

Conversely, assume that there exists an extension F : |f |−1[0, α]→ Rn \ {0}
of f ||f |−1{α}. Let U be an open neighborhood of |f |−1{α} in |f |−1[0, α] such
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that for x ∈ U , |F (x) − f(x)| < α/2. Due to the compactness of |f |−1[0, α],
there exists ε ∈ (0, α/2) such that |f |−1[α − ε, α] ⊆ U (otherwise, there would
exist a sequence xn /∈ U , |f(xn)| → α and a convergent subsequence xjn → x0,
whereas x0 ∈ |f |−1{α} ⊆ U , contradicting xjn /∈ U). The map F ||f |−1{α−ε} is
an α/2-perturbation of f ||f |−1{α−ε}, and an elementary calculation shows that
they are homotopic as maps from |f |−1{α− ε} to Rn \ {0} by the straight-line
homotopy. The homotopy extension property implies that f|f |−1{α−ε} can be
extended to a map F1 : |f |−1[0, α] → Rn \ {0}. Without loss of generality, we
may assume that F1(x) = f(x) for x ∈ |f |−1[α− ε, α].

Let g : |f |−1[0, α] → (0, 1] be a scalar function such that g(x) = 1 on
|f |−1{α} and g(x) < ε

2|F1(x)| on |f |−1[0, α − ε). Define the function F2(x) :=

g(x)F1(x) from |f |−1[0, α] to Rn \ {0}. If x ∈ |f |−1[α− ε, α], then

|F2(x)− f(x)| = |f(x)g(x)− f(x)| = |f(x)| |g(x)− 1|
≤ |f(x)| < α

and if x ∈ |f |−1[0, α− ε), then

|F2(x)− f(x)| ≤ |F2(x)|+ |f(x)| ≤ |F1(x)| ε

2|F1(x)|+

+ α− ε = α− ε

2
< α

which shows that F2 is an α-perturbation of f . By definition, F2(x) = f(x) for
x ∈ |f |−1{α}, so the function F3 : K → Rn defined by

F3(x) :=

{
F2(x) for x ∈ |f |−1[0, α]

f(x) for x ∈ |f |−1(α,∞)

is a continuous α-perturbation of f with no root.

The straightforward aim would be to apply the algorithm of Theorem 1.2 to
the extension problem from the previous lemma. We would need to triangulate
the spaces |f |−1(α) and |f |−1[0, α]—a feasible goal in the case | · | = | · |∞.
However, we prefer a solution that covers larger class of norms, and in particular,
the Euclidean norm. There it is less obvious how to work with the relevant
spaces and maps. But we can use the fact that extendability is invariant under
homotopy equivalence. It will be enough to apply the algorithm of Theorem 1.2
on “combinatorial approximations” of the spaces and maps from the previous
lemma.

Let f : K → Rn be a PL function and assume, in addition, that for each
∆ ∈ K, the function |f | takes both the minimum and maximum on ∆ in a
vertex. This can be achieved for an arbitrary PL function by taking a derived
subdivision of K. (The procedure will be detailed in the proof of Theorem 1.2.)
We define an auxiliary PL function χ : K → R by

χ(v) :=


0 when |f(v)| < α;

1/2 when |f(v)| = α;

1 when |f(v)| > α.

12



Let us put X := χ−1[0, 1/2] and A := χ−1(1/2).

Lemma 3.4 (Combinatorial approximation). Let X and A be defined as above.
Then there is a homeomorphism h : X → |f |−1[0, α] such that h|A is a homeo-
morphism A→ |f |−1{α}. Moreover, there is a homotopy H : h ∼ id such that
f ◦H has no root on A.

Proof. The homeomorphism h and the homotopy H are defined simplexwise.
Let ∆ be a simplex of K. Let the face of ∆ spanned by vertices v with χ(v) = 0,
resp. χ(v) = 1 , χ(v) = 1/2 be denoted by σ, resp. τ, ρ. First, if τ is empty,
we define H constant on every point of ∆ = ∆∩X. Second, if σ is empty, then
∆∩X = ρ = ∆∩ |f |−1{α}, as α is the minimum of |f | on ∆ and is attained in
every point of ρ. In this case we define H constant as well. Note that if both ρ
and σ were empty, the minimum of |f | of ∆ would be greater than α and thus
X ∩∆ = ∅.

Assume that σ, τ are nonempty and x ∈ ∆ ∩X. If x ∈ σ or x ∈ ρ, then we
define the homotopy H(x, t) = x consistently with the above description of H
on the faces τ , ρ. Assume that x is neither in σ nor in ρ. If ρ is empty, then
there exist unique numbers a, b > 0, a+b = 1 such that x = ay+bz for uniquely
defined points y ∈ σ and z ∈ τ . Similarly, if σ, τ, ρ are all nonempty, then there
exist unique coefficients a, b, c > 0, a+ b+ c = 1 such that x = ay+ bz + cw for
uniquely defined y ∈ σ, z ∈ τ , w ∈ ρ.

We define a line segment s by s(t) = (1− c)(ty+ (1− t)z) + cw for t ∈ [0, 1].
It is the segment in ∆ parallel to yz passing through x. Let y′ := s(0) denote
the starting point and z′ := s(1) denote the endpoint of s. We observe that

• s intersects A in a unique point xA := s(1/2);

• s intersects |f |−1{α} in a unique point x∂ . This holds because |f | is convex
on ∆, |f(y′)| < α and |f(z′)| > α.

A simple situation with all σ, τ and ρ being singletons can be seen in Figure 2.
We define

H(x, t) := x+ t(x∂ − xA)
|y′ − x|
|y′ − xA|

.

This homotopy continuously stretches the segment s in such a way that y′ is fixed
and xA is sent to x∂ in t = 1. We have that H(·, 0) is the identity and the final
map h = H(·, 1) is a bijection—it bijectively stretches each segment y′xA onto
y′x∂ (see Figure 2). For each x ∈ ∆∩X, x /∈ σ ∪ ρ, there exist unique y′, z′, xA
and x∂ and they depend continuously on x. Moreover, it is routine to check
that the definition of H on each ∆ is compatible with its definition on every face
∆′ < ∆. This altogether proves that both H is continuous. So, the map H(t, ·)
is a continuous bijection of X and its image and the compactness of X implies
that H(t, ·)−1 is continuous as well. In particular, H(1, ·) = h is a continuous
bijection of X and |f |−1[0, α] and hence a homeomorphism. Properties h(|A|) ⊆
|f |−1{α} and h−1(|f |−1{α}) ⊆ |A| follow from the construction.

Finally, once σ is empty, then trivially f
(
H(x, t)

)
6= 0. Otherwise for x ∈ A

the value H(x, t) always belongs to the line segment xAx∂ that doesn’t contain
a root of f .

13



|f |−1(α)

A

X

y′

z′

xA

x∂

σ

τ

ρ

Figure 2: Illustration of the Lemma 3.4 in the case | · | = | · |2. The arrows
represent the map h = H(·, 1).

Corollary 3.5. There exists an extension F : |f |−1[0, α]→ Rn\{0} of f ||f |−1{α}
iff there exists an extension G : X → Rn \ {0} of f |A.

Proof. We proved that h = H(1, ·) is a homeomorphism of the pairs (X,A) and
(|f |−1[0, α], |f |−1{α}). It follows that there exists an extension F : |f |−1[0, α]→
Rn \{0} of f ||f |−1{α} iff there exists an extension G1 : X → Rn \{0} of (f ◦h)|A.

X
h
- |f |−1[0, α]

F

A

⊆

6

h- |f |−1{α}

⊆

6

f- Rn \ {0}
-

But f ◦H|A×[0,1] is a homotopy between f ◦ h|A : A→ Rn \ {0} and f |A : A→
Rn \ {0}, so there exists an extension G1 : X → Rn \ {0} of (f ◦ h)|A iff there
exists an extension G : X → Rn \ {0} of f |A.

Corollary 3.6. If f : K → Rn is satisfiable, then the robustness rob(f) is a
critical value of f .

Proof. Assume that α is not a critical value of f and each α-perturbation of
f has a root. There are only finitely many critical values, so there exists a
β > α such that [α, β] doesn’t contain any critical value of f . Assume that |f |
contains both the maximum and minimum on each simplex in a vertex, as in
the construction of Lemma 3.4. Then for each vertex v it holds that |f(v)| < α
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iff |f(v)| < β, |f(v)| > α iff |f(v)| > β and α 6= |f(v)| 6= β, so, the simplicial
sets A ⊆ X are identical for α and β. It follows from Lemma 3.3 and 3.4
f : A → Rn \ {0} cannot be extended to a map X → Rn \ {0}, and each
β-perturbation of f has a root as well. Thus α 6= rob(f).

The algorithm. It remains to show that the reduction from the α-robust
satisfiability of f = 0 to the extension problem as described in Theorem 2.1
can be done in an algorithmic way. In order to do this, we will need to convert
the spaces A ⊆ X constructed in Lemma 3.4 into simplicial complexes and
the PL function f |A : A → Rn \ {0} into an equivalent simplicial map to the
(n− 1)-sphere.

In Lemma 3.4 we assumed that |f | contains the minimum on each simplex in
some vertex. This can be achieved by a starring each simplex ∆ ofK at the point
arg min∆|f | whenever it belongs to the interior of ∆. The point arg min∆|f | can
be computed by the assumption (2).

Proof of Theorem 1.2. First we compute arg min∆|f | for each ∆ ∈ K and con-
struct a derived subdivision of K by starring each simplex ∆ in arg min∆|f |.
Then |f | contains the minimum on each simplex in a vertex. Due to the linearity
of f on each simplex ∆, |f(ax + by)| = |af(x) + bf(y)| ≤ a|f(x)| + b|f(y)| for
x, y ∈ ∆, a, b ≥ 0, and a+ b = 1, so |f | is a convex function and hence takes the
maximum on each simplex in a vertex too.

In Lemma 3.3 we reduced the ROB-SAT problem for f and α to the extend-
ability of f ||f |−1{α} : |f |−1{α} → Rn \ {0} to a function |f |−1[0, α]→ Rn \ {0}.
By Corollary 3.5, this is equivalent to the extendability of f |A : A→ Rn \{0} to
a function X → Rn \{0}, where X and A are constructed as in Lemma 3.4 with
the use of the assumption (1). We will construct a subdivision K ′ of K contain-
ing a triangulation of X and A. To this end, K ′ is constructed by starring each
simplex ∆ ∈ K that intersects χ−1(1/2) in a point x∆ ∈ ∆ ∩ χ−1(1/2). Now
χ is a PL function on K ′ that assigns values in {0, 1/2, 1} to the vertices and,
additionally, no simplex has a pair of vertices evaluated to 0 and to 1. Thus X
is spanned by vertices evaluated to 0 or 1/2, and A is a simplicial subcomplex
of X spanned by vertices evaluated to 1/2.

The extendability of f : A→ Rn \ {0} to a function X → Rn \ {0} is further
equivalent to the extendability of r ◦ f |A : A→ Sn−1 to a function X → Sn−1,
where r(x) := x/|x|1 is the homotopy equivalence Rn \ {0} → Sn−1.

Next, we can algorithmically construct a subdivision A′ ⊆ X ′ of A and X
such that for each v ∈ A′, there exists a pair (iv, sv) ∈ {1, . . . , n} × {+,−}
such that fiv has constant sign sv on star(v,A). Let Σn−1 be a simplicial
representation of the sphere, as defined at the beginning of Section 3. Let
f∆ : A′ → Σn−1 be a simplicial map that maps each vertex v ∈ A′ to sv eiv . This
map is well defined, because if a, b ∈ ∆ ∈ A′, then f∆(b) 6= −f∆(a), so f∆ maps
simplices to simplices. It follows that (r ◦ f)(star(v,A)) ⊆ star◦(f∆(v),Σn−1)
for each vertex v ∈ A′, so f∆ ' r◦f : A′ → Sn−1 are homotopic by the simplicial
approximation theorem. The pair (X ′, A′) has the homotopy extension property,
so there exists an extension X → Sn−1 of r ◦ f |A iff there exists an extension
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X ′ → Sn−1 of the simplicial map f∆. In the case dimK < 2n − 2 = 2(n − 1),
it is decidable by Theorem 2.1, in the case n ≤ 2, it is decidable by Lemma 2.4
and for n odd, it is decidable by Theorem 2.3.

It remains to prove polynomiality for the cases dimK < 2n− 2 or n ≤ 2 for
fixed n. The input contains some encoding of the PL function f , which includes
the information about K. In the algorithm, we first subdivided K by starring
it in arg min∆|f | for each ∆ ∈ K and then again by triangulating the sets A
and X defined in 3.4.

Further, we construct a subdivision X ′, A′ of the pair X,A such that f can
be represented by a simplicial map from A′. This can be achieved as follows.
Let i ∈ {1, . . . , n}. For each edge ab of A that intersects f−1

i {0} in its interior
and is not contained in f−1

i {0}, we choose a point vab ∈ f−1
i (0) ∩ A, and then

star X in each of this point (in some order). Consequently, the open star of each
point in A′ is mapped by f into a star of some vertex in Sn−1. So for a fixed
dimension n, we need only a fixed number of subdivisions of (X,A) in order to
construct the simplicial approximation f∆ as in the proof of Theorem 1.2.

We reduced the ROB-SAT problem to the extension problem for f∆ : A′ →
Sn−1 and X ′ ⊇ A′ and the number of simplices in X ′ depends polynomially on
the number of simplices in the original simplicial complex K. Finally, we use the
fact that the decision procedure for the extension problem for maps to spheres
is polynomial in the number of simplices in X ′, assuming that the dimension of
X ′ is fixed (Theorem 2.1).

Note that if f has a root, then the robustness rob(f) can be computed
exactly by deciding, whether each α-perturbation of f has a root for α ranging
over the computable finite set of critical values. Moreover, if n is fixed, then
rob(f) can be computed in polynomial time.

Inequalities. Here we show, how to reduce the robust satisfiability of systems
of equations and inequalities to the ROB-SAT problem for a system of equations.
In this section, we assume that the norm ‖ ·‖ on Rn-valued functions (implicitly
used in the definition of α-perturbation) is derived from the max-norm in Rn,
i.e. ‖f‖ := supx∈K maxi |fi(x)|. Contrary to other parts of this paper, the
proof of the following lemma uses the choice of the norm.

Lemma 3.7. Let (f, g) : K → Rn × Rk and α > 0. Let U := {x ∈ K | g(x) ≤
−α} 15. Then each α-perturbation of f = 0 ∧ g ≤ 0 is satisfiable, iff each
α-perturbation h : U → Rn of f |U has a root.

Proof. The function g̃(x) := g(x) + α is an α-perturbation of g. So, if each
α-perturbation of f = 0 ∧ g ≤ 0 is satisfiable, then each α-perturbation f̃ of f
has a root in U = {x ∈ K | g̃ ≤ 0}.

For the other implication, suppose that each α-perturbation of f has a root
in U and let f̃ = 0 ∧ g̃ ≤ 0 be an α-perturbation of f = 0 ∧ g ≤ 0. Then
U ⊆ {x ∈ K | g̃(x) ≤ 0}, so f̃ = 0 has a solution on {x ∈ K | g̃(x) ≤ 0}.

15The notation g(x) ≤ −α means that gi(x) ≤ −α for each component gi of g.
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If f, g are PL function and dimK ≤ 2n− 3 or n ≤ 2, then we can construct
a triangulation of the set U = {x ∈ K | g(x) ≤ −α} and use Theorem 1.2 to
decide whether each α-perturbation of f has a root in U .

4 Undecidability

Here we show that the robustness of roots of a PL function cannot be ap-
proximated in general. We cannot algorithmically distinguish functions f with
rob(f) = 0 from functions g with rob(g) ≥ 1.

We will continue to represent the sphere Sn−1 as a triangulation of {x ∈
Rn | |x|1 = 1} as defined at the beginning of Section 3. All norms in Rn are
equivalent, so for the norm | · | there exist numbers κn > 0 and λn > 0 such that
|x|1 ≤ κn|x| and |x| ≤ λn|x|1 for all x ∈ Rn. For the case of the max-norm, κn
can be chosen to be n and λn can be chosen to be 1.

Proof of Theorem 1.3. The proof proceeds by reduction from the extension prob-
lem as stated in Theorem 2.2. Let X be a simplicial complex of dimension
2(n − 1) and let f : A → Σn−1 be a simplicial map from some A ⊆ X to the
(n− 1)-sphere. We assume that n− 1 ≥ 2 is even, so by Theorem 2.2, we can-
not algorithmically decide, given X,A and f , whether there exists an extension
X → |Σn−1| of f or not.

We will assume that A is full in X, that is, for each simplex ∆ it holds that
∆ ∈ A iff all vertices of ∆ are in A. (If A is not full in X, then X may be
algorithmically subdivided into a complex X ′ containing A, such that A is full
in X ′ [41, Lemma 3.3].)

Define a PL function f ′ : X → Rn given by its values on the vertices of X
as follows:

f ′(v) :=

{
κnf(v); when v ∈ A
0 when v /∈ A.

We will show the following statements:

A. if there exists a 1-perturbation of f ′ without a root, then f can be extended
to a function X → Sn−1,

B. if f has an extension F : X → Sn−1, then for every ε > 0 there exists an
ε-perturbation of f ′ without a root.

So, an algorithm defined in Theorem 1.3 could decide the topological extension
problem for f : A→ Σn−1 and X ⊇ A, which is impossible by Theorem 2.2.

It remains to show A. and B. We remind that for our realization of the sphere
Sn−1 ⊆ Rn, we have that |f ′(x)| = κn|f(x)| ≥ |f(x)|1 = 1 for each x ∈ |A|.

A. Let g′ be a 1-perturbation of f ′ without a root. It holds that g′|A is
homotopic to f ′|A = κnf as functions from A to Rn \{0} via the straight-

17



X

χ−1A [0,δ]

A

−→

r
y

z

x

r(x)

∆

Figure 3: Visualization of the map r used in the proof of Theorem 1.3.

line homotopy, because

|tg′(x)− (1− t)f ′(x)| = |f ′(x) + t(g′(x)− f ′(x))|
≥ |f ′(x)| − t|g′(x)− f ′(x)| ≥ 1− t

which is positive for t < 1 and for t = 1, g′(x) 6= 0 by assumption. Since
g′ is an extension of g′|A, the map f ′ can also be extended as a map into
Rn \ {0} and f can be extended to a map from |X| into |Σn−1| = Sn−1.

B. We need the auxiliary PL function χA : X → R that is 1 on the vertices of
A and 0 on the remaining vertices ofX. We will perturb f ′ on a subdomain
where it is “tiny”, namely, on χ−1

A [0, δ] for δ := ε/(2κnλn) and leave f ′

unchanged on χ−1
A [δ, 1] where no root occurs. Indeed, for every point x

with χA(x) > 0 either x ∈ A (then f ′(x) 6= 0) or x belongs to a simplex
∆ /∈ A and then x lies in the interior of a segment yz where

y ∈ χ−1
A (0) and z ∈ |A|

(here we use that A is full in X). That means, x = cy + dz for d > 0 and
thus f ′(x) 6= 0.

To define the perturbation we need an auxiliary continuous “blow-up”
map r : χ−1

A [0, δ] → X defined on each x = cy + dz with c+ d = 1, d ≤ δ
and y and z as above (but here possibly d = 0) by

r(x) := c′y + (d/δ)z

where c′ + d/δ = 1. The points y and z depend continuously on x, so r is
continuous as well.

Let F : |X| → |Σn−1| be the extension of f . We define an ε-perturbation
g′ of f ′ by

g′(x) :=

{
δ κnF (r(x)) when x ∈ χ−1

A [0, δ];

f ′(x) otherwise.
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To see that g′ is continuous, it is enough to verify that δ κn F (r(x)) = f ′(x)
for x ∈ χ−1

A (δ), that is, when x = (1− δ)y+ δz for some y and z as above.
Indeed,

δ κnF (r(x)) = δ κnF (0y + 1z) = δ κnf(z), and

f ′(x) = (1− δ) f ′(y) + δf ′(z) = 0 + δ κn f(z).

Finally, we check that g′ is an ε-perturbation of f ′ by the following esti-
mation for every x = cy + dz ∈ χ−1

A [0, δ]:

|δ κnF (r(x))− f ′(x)| ≤ δ κn‖F‖+ |f ′(cy + dz)|
≤ δ κnλn + d|f ′(x)|δ κn λn + d κn|f(z)|
≤ δ κn λn + d κnλn ≤ 2δκnλn ≤ ε,

because necessarily d ≤ δ.

Inequalities. An immediate consequence is that for systems of equations and
inequalities, we get an undecidability result even for homotopically trivial do-
mains such as products of compact intervals. Formally, there is no algorithm
that, given a triangulation T of [−1, 1]d, PL functions f, g : T → Rn, correctly
chooses at least one of the following options:

• the robustness of f = 0 ∧ g ≤ 0 is greater than 0, or,

• the robustness of f = 0 ∧ g ≤ 0 is less than 1.

This is proved by a reduction from Theorem 1.3 as follows. Let K be a
simplicial complex and f : K → Rn a PL function. We can algorithmically
construct a PL embedding K ↪→ [−1, 1]d for some d and a triangulation T of
[−1, 1]d containing a subdivision K ′ of K [41, p. 16]. Furthermore, we assume
that K ′ is full in T (otherwise we would subdivide T once more). Define a
scalar valued PL function g : T → R to be −1 on the vertices of K ′ and 1 on
the vertices of T \K ′. We immediately see that {x | g(x) ≤ −1} = |K ′|. Extend
f to a PL function fT : T → Rn, by setting f(v) = 0 for each vertex T \K ′.

If some 1-perturbation of the system fT = 0 ∧ g ≤ 0 is not satisfiable, then
it follows that some 1-perturbation of f has no root. Conversely, assume that,
for some ε ∈ (0, 1), some ε-perturbation f̃ of f has no root. Then we can extend
f̃ to a function f̃T : T → Rn as follows:

• for x ∈ T \ star(K ′, T ), f̃T (x) := 0, and

• for x ∈ ∆ ∈ star(K ′, T ) \K ′, we have x = txK + (1 − t)xT for uniquely
determined xK ∈ ∆∩K ′, xT ∈ ∆∩ (star(K ′, T ) \K ′) and t > 0; then we
define f̃T (x) := tf̃(xK).
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The resulting function f̃T is an ε-perturbation of f̃ , nonzero on the open star
star◦(K ′, T ). Clearly, {x | g(x) ≤ 0} ⊆ star◦(K ′, T ) and thus f̃T = 0 ∧ g ≤ 0 is
an unsatisfiable ε-perturbation of fT = 0 ∧ g ≤ 0.

We reduced the problem of deciding, whether rob(f) is greater that 0 or less
than 1, to the problem of deciding, whether the robustness of fT = 0 ∧ g ≤ 0
is greater than 0 or less than 1. The former is undecidable by Theorem 1.3, so
it follows that the latter is undecidable as well.

5 Nonlinear functions

The decidability of the ROB-SAT problem for the class of PL functions defined
in Theorem 1.2 implies analogous results for larger function spaces that can
be uniformly approximated by PL functions. For example, any function f :
K → Rn containing expressions such as polynomials, division, sin, exp, log
and π can be uniformly approximated by a PL function up to any ε > 0 using
interval arithmetic [35]. This implies the existence of an algorithm that takes
such function f : K → Rn and two constants α, ε > 0, and correctly chooses at
least one of the following:

• Each α-perturbation of f has a root,

• There exists an (α+ ε)-perturbation of f with no root,

assuming that dimK ≤ 2n − 3. The decision procedure for this problem can
construct an ε/2-approximation PL approximation fPL of f , defined on a trian-
gulation K∆ of K, which reduces the above problem to the ROB-SAT problem
for fPL and α. Further, it can be shown that if n is fixed and f is smooth,
then the size of K∆ depends polynomially on J/ε, where J is the upper bound
on second partial derivatives ∂fi/∂xj . This yields an estimate on the algorithm
complexity. If |K| is an m-box (product of m compact intervals), than f = 0
represents a system of n equations in m variables, with a given upper and lower
bound for each variable.

Conversely, the undecidability result of Theorem 1.3 generalizes to any class
of nonlinear functions E such that any PL function can be algorithmically uni-
formly approximated by some g ∈ E . Given ε > 0, each PL function f can be
algorithmically approximated by a component-wise polynomial function p such
that ||f − p|| < ε, which immediately implies that the ROB-SAT problem is
undecidable for general systems of polynomial equations defined on simplicial
complexes, once we exceed the dimensions of the stable range. The undecidabil-
ity result can be slightly strengthened to functions defined on smooth manifolds,
because each pair of simplicial complexes (X,A) can be algorithmically embed-
ded to a pair of manifolds (Xm, Am) in some Rm with the same homotopical
properties. The interesting case of functions defined on m-boxes [−1, 1]m was
mentioned in the open problems paragraph at the end of Section 1.
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