
Development of an Open and Scalable Web-based Information
Publishing System *

Chung-Min Chen, Naphtali Rishe
High-Performance Database Research Center

School of Computer Science
Florida International University

Miami, FL 33199

Abstract- This paper describes the design principles of the
Web-based Information Publishing System (WIPS) that is
currently under development at the Florida International
University. The goal of the project is to facilitate efficient
querying of databases through the Web and rapid applica-
tion development. We examine several design issues related
to performance and functionality. We highlight an important
technique called query packing, which is used to improve the
performance under heavy loads. The ultimate goal of W’IPS
is to serve the need of the Regional Application Center @AC!)
at the Florida International University (FIU), a collaborative
effort of NASA and FIU, in disseminating and enabling search
of large volumes of scientific data to a diverse community of
earth and environmental researchers through the Internet.

1 Publishing Database Data on
the Web

The World Wide Web (the Web for short) has been
growing explosively and becoming the most popu-
lar means for information dissemination and discovery
through the Internet [l]. Publishing data through the
Web is of great interest to many organizations, because
of the Web’s ease-to-use interface and the Internet as
a cost-effective communication infrastructure. However,
as the Web was originally designed for delivering data

*This research was supported in part by NASA (under grants
NAGW-4080, NAG5-5095, and NRA-97-MTPE05), NSF (CDA-
9711582, IRI-9409661, and HRD-9707076), AR0 (DAAH0496-
l-0049 and DAAH0496-l-0278), Do1 (CA-5280-49044), NATO
(HTECH.LG 931449), and State of Florida.

Permission to make digitaL/hard copy of all or part of this work for
personal or classroom use is granted without fee provided that copies are.
not made or distributed for profit or commercial advantage, the copyright
notice, the title of the pubkation and its date appear, aad notice is given
that copying is by permission of ACM. Inc. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Q 1998 ACM l-58113-030-9/98/0004 $3.50

stored in flat ties, it provides no direct support to access
structured data stored in database systems, which host
a large portion of the world’s business data. To bridge
the connection gap between the Web and the back-end
database servers, various software solutions have been
proposed.

One of the solutions is based on the Common Gate-
way Interface (CGI) - a standard interface through
which a Web server may invoke an external program [S].
Using this approach one must write a CGI program that
performs the following jobs: interpret the user request
passed over from the Web server, form the correspond-
ing SQL query and deliver it to the database server, and
return the results to the user. A CGI program can be
written in a programming language (e.g. C++) as well
as in a script language (e.g. Perl). The major tier-
ence between a CGI and a regular program is that the
standard input and output of a CGI program is the Web
server, rather than a terminal.

CGI-based .connections are simple to develop and
can be ported to work with virtually all kinds of Web
and database servers. However, CGI systems have long
been criticized for their non-optimal use of system re-
sources: each request will invoke a separate CGI pro-
cess with its own address space. And usually a separate
connection is established between each CGI process aud
the database server. During a heavy load of requests,
the communication overhead, especially the connection
set-up and initialization cost, may cause contention and
become the performance bottleneck.

In recognition of the performance problem of CGI,
some commercial Web and database vendors have pr*
vided alternative solutions: either by extending the Web
server with an API set (e.g., Netscape’s NSAPI and Mi-
crosoft’s ISAPI) or by enabling the database server to
handle the HTTP protocols (e.g. Oracle’s Web Appli-
cation Server). Products of thii kind eliminate the re-
source problem of CGI and are expected to yield better

163

http://crossmark.crossref.org/dialog/?doi=10.1145%2F275295.275353&domain=pdf&date_stamp=1998-04-01

performance. However, they gave up the nice property of
openness: the development of the applications is either
subject to the proprietary APIs or the server architec-
ture. The consequence is that an application program
developed on one vendor’s APIs or servers can not run
on another vendor’s server platform.

Another alternative is to use the Java Applet [3].
Using this approach, the Web server will, in response
to a request, dispatch a client program (written as a
Java Applet) to the requesting user. After arriving at
the user’s computer, the client program establishes di-
rection connection with the database server for further
interactions. While this approach eases application de-
velopment (as it goes by the Web server and CGI), it
incurs Applet dispatch overhead. Although such over-
head may pay off for long user transactions, it causes
unnecessary response time delay for single-query trans-
actions.

In the rest of the paper, we overview the Web-based
Information Publishing System (WIPS): our implemen-
tation towards an open architecture for Web-based pub-
lishing systems that offers scalable performance. In par-
ticular, we examine a query packing mechanism that is
devised to improve the system performance.

Figure 1 shows the system architecture of the WIPS. The
openness requirement motivates us to adopt the CGI
mechanism since it is the only standard. In the WIPS,
the CGI processes interact indirectly with the database
server through a database gateway software. The only
job of a CGI process is to pass parameters to and receive
results from the database gateway, thereby consuming
much less resources than the pure CGI approach.

The overall performance of a Web-enabled database sys-
tem depends not only on the DBMS’s query optimizer
but also on the scheduling of queries and results . To
lessen WIPS’s performance degradation under heavy re-
quest loads, we have incorporated a query packing mech-
anism in the DBAM module. Instead of sending queries
in separate messages to the database server for process-
ing, the query packing mechanism dynamically packs
multiple queries in a single message. The benefit is that
the message transfer overhead is now amortized among
several queries. For example, if we pack 100 requests into
one query, then only two messages need to be exchanged
between the DBAM and the database server (one for the
query, the other for the returned result). Without pack-
ing, a total of 2*100 message exchanges, two for each
request, will be needed.

There are three major components in the database
gateway. The Application Repository (AR) hosts a col-
lection of applications. The applications can be brought
up on-demand and terminated in absence of pending
requests. A running application is called an applica-
tion server. The Request Manager (RM) is a daemon
process that awaits requests from the CGI processes.
It parses the request and passes associated parameters
to the target application server. The Database Access
Module (DBAM) maintains an all-time connection with
the back-end database server. It issues and optimizes ac-
cesses (in SQL) to the database server on behalf of the
application servers.

The query packing idea can be further extended to
combine several selection queries that are issued against
the same table into a single selection query (called the
packed pew). The packed query will have a selection
condition that is a disjunction of those of the composing
queries. A Result Multiplexer (RX) is therefore needed
to evaluate the records in the result set of the packed
query and direct them to the corresponding CGI pro-
cesses.

Consider for example the following two independent
queries:

The reason for using a three-tier approach (CGI,
database gateway, and database server) is twofold: First,
it eases application development by isolating business
logic from the CGI programs and thus avoids dupli-
cated application images. Second, with a centrally con-

164

&I: select * from books
where book.title = “Calculus”

Q2: select * from books
where book.author = “Eric Johnson”

They can be packed into a single query as:

Q: select * from books
where book.title = “Computers” or

book.author = “Eric Johnson”

2 System Architecture of WIPS

er
host machine

Figure 1: System Architecture of WIPS

trolled rather than multiple independent connections to
the database server, the DBAM incurs less communi-
cation overhead and enables optimization on query and
result delivery scheduling.

3 The Query Packing Mechanism

20

15

10

5

0
0 10 20 30 40 50 60 70 80 so loo

No. of Queries

Figure 2: Query Response Time vs. Request Loads

Let R(Q) be the result for query Q, the Result Multi-
plexer must perform the following after receiving R(Q)
from the database server:

for each record T in R(Q) do {
if r.titZe = “Calculus” then add T to R(&);
if r.author = “Eric Johnson” then add r to R(Qz)}

In the following we provide a preliminary experi-
mental result, which shows the performance benefit of
the query packing technique. The experiment compares
the elapsed time of running a sequence of Web requests
using three different architectures:
LOCAL: pure CGI model, Web and database servers
on the same machine
DISTR: WIPS model without query packing, Web and
database servers on diierent machines
DISTR-PACK: WIPS model with query packing, Web
and database servers on different machines

All requests correspond to an SQL query of the
form “select * from R where R.A = c+” against an
ORACLE database. Table R is indexed on attribute
R.A. The search value ci is generated randomly. For the
DISTR-PACK configurati&, all queries are packed into
a single SQL query with a “where R.A in (cl,. . . , cn)”
clause. Figure 2 shows the results. The significant in-
crease in elapsed time from LOCAL to DISTR is at-
tributed to the communication overhead. However, by
applying the query packing technique, DISTR-PACK
managed to constrain the communication overhead to a
minimw amount. Note that since both DISTR-PACK
and DISTR transfer the same amount of data, the su-
perior of DISTR-PACK is actually attributed to the re-
duction in the total number of messages transferred. It
is also interesting to see that DISTR-PACK yields even
better elapsed time than LOCAL. The explanation is
that by packing several queries into one, the query pro-
cessing and database access overhead is also reduced.

4 Related and Future Work

A brief survey and taxonomy on database gateway archi-
tectures were first, given in [5]. Work addressing efficient
architectural design for Web-Database connection can be
found in [2, 41. Our work differs from those systems in
that we provide a generic framework for application de-
velopment and-perform optimization at query scheduling
level.

The WIPS is an ongoing project with more func-
tions to be added over the course of the development.
Currently we have implemented an operational proof-of-
concept prototype that incorporates a primitive query
packing mechanism. There are several functions that we
plan to add to the WIPS prototype in the next stage:

l Load Control: refining the query packing mecha-
nism to determine the most e.t&ient packing size
and scheduling of queries.

l Caching: Exploring caching technique to cache data
& the database gateway so as to reduce data access
and movement cost.

l Support of ‘&nsactional Applications: Incorporat-
ing a State Monitor (SM) into the DBAM to keep
track of the state of a user transaction that requires
successive services from the database servers. This
mechanism is needed as the HTTP protocol is state-
1esS.

References
[l] T. Berners-Lee, R. Cailliau, J.-F. Groff, and

B. Pollermann. World Wide Web: The information
universe. Electronic Networking: research, applica-
tions and policy, l(2), 1992.

[2] D. Eichmann, T. McGregor, and D. Danley. Integrat-
ing structured databases into the Web: the MORE
system. In ‘Proc. of the 1st Int’l WWW Confenznce,
1994.

[3] James Gosling, Frank Yellin, and The Java Team.
The Java Application Progmmming Interface VoL
ume 2: Window’,TooMt and Applets. Addison Wes-
ley, 1996.

[4] S. Hadjiefthymiades a&D. Martakos. Improving the
performance of CGI compliant database gateways. In
Proc. of the 6th Int’l World Wide Web Conference,
Santa Clara, CA, 1997.

[S] P.-C. Kim. A taxonomy on the architecture of
database gateways for the web. In Pm. of The
13th Int’l Conf. on Advanced Science and Technol-
ogy (ICAST97), Schaumburg, IL, 1997.

[6] D. Robinson. The WWW Common Gateway Inter-
face ~1.1, 1996. Internet draft.

165

