
Implementing the Complex Arcsine and
Arccosine Functions Using Exception
Handling

T. E. HULL
University of Toronto
THOMAS F. FAIRGRIEVE
Ryerson Polytechnic University
and
PING TAK PETER TANG
Lawrence Berkeley National Laboratory

We develop efficient algorithms for reliable and accurate evaluations of the complex arcsine
and arccosine functions. A tight error bound is derived for each algorithm; the results are
valid for all machine-representable points in the complex plane. The algorithms are presented
in a pseudocode that has a convenient exception-handling facility. Corresponding Fortran 77
programs for an IEEE environment have also been developed to illustrate the practicality of
the algorithms, and these programs have been tested very carefully to help confirm the
correctness of the algorithms and their error bounds. The results of these tests are included in
the article, but the Fortran 77 programs are not (these programs are available from
Fairgrieve). Tests of other widely available programs fail at many points in the complex plane,
and otherwise are slower and produce much less accurate results.

Categories and Subject Descriptors: G.1.0 [Numerical Analysis]: General—error analysis;
Numerical algorithms; G.1.2 [Numerical Analysis]: Approximation—elementary function
approximation; G.4 [Mathematics of Computing]: Mathematical Software—algorithm anal-
ysis; reliability and robustness; verification

General Terms: Algorithms, Design

Additional Key Words and Phrases: Complex elementary functions, implementation

This work was supported by the Natural Sciences and Engineering Research Council of
Canada, by the Information Technology Research Centre of Ontario, and by the Applied
Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of
Energy under contract W-31–109–Eng-38, and by the STARS Program Office, under AF Order
RESD-632. The work of T. Fairgrieve was performed while at the University of Toronto.
Professor Emeritus T. E. Hull of the Department of Computer Science, University of Toronto,
died on August 15, 1996.
Authors’ addresses: T. F. Fairgrieve, Department of Mathematics, Physics and Computer
Science, Ryerson Polytechnic University, 350 Victoria Street, Toronto, Ontario M5B 2K3,
Canada; email: tfairgri@scs.ryerson.ca; P. T. P. Tang, National Energy Research Scientific
Computing Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1997 ACM 0098-3500/97/0900–0299 $5.00

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997, Pages 299–335.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F275323.275324&domain=pdf&date_stamp=1997-09-01

1. INTRODUCTION

Our purpose is to develop efficient algorithms, along with error bounds, for
reliable and accurate evaluations of the complex arcsine and arccosine
functions. These functions can be expressed mathematically in terms of
formulas involving only real arithmetic and real elementary functions;
complex arithmetic is not needed. However, serious cancellation or instabil-
ity can arise during a straightforward evaluation of these formulas. But,
with care, they can be rearranged so that such difficulties do not arise.

The remaining difficulties in such evaluations are that overflow or
underflow might occur. Such exceptions are always “spurious” for the two
functions considered in this article, in the sense that the final mathemati-
cal result can be accurately approximated by a machine-representable
complex number. In these circumstances, the algorithms must provide for
alternative calculations which are able to circumvent the spurious excep-
tional situations.

Section 2 provides a summary of the basic definitions and assumptions,
especially with regard to the error analysis, that are used for the develop-
ment of the algorithms in Sections 3 and 4. The algorithms are expressed in
terms of a pseudocode with a convenient exception-handling facility.

Extensive testing of the algorithms, with Fortran 77 [ANSI 1978] ver-
sions of the programs running on a machine using IEEE binary arithmetic
[IEEE 1985], is described in Section 5. The results help to confirm the
correctness of the error bounds and show that the bounds are quite tight.
Corresponding results for other available programs are also discussed.
Then it is shown in Section 6 how the programs can be extended to be valid
even for the rare case of a system which fails to satisfy one of our
assumptions because its exponent range is too narrow. Concluding remarks
are given in Section 7.

We assume throughout that the complex argument z of each of the two
functions is exact. If this is not the case in a particular application, the
additional error must be accounted for separately.

2. DEFINITIONS AND ASSUMPTIONS

The purpose of this section is primarily to introduce the basic material
needed in carrying out error analyses of the algorithms and to specify the
assumptions we make about the computing environment in which the
algorithms can be successfully implemented. A brief explanation of the
exception-handling facility is also included. Some of this material was
presented in our earlier article on complex elementary functions [Hull et al.
1994a; 1994b], but it is extended here, especially in developing the tech-
nique for analyzing errors.

2.1 Analyzing Errors

We assume that all input and output values of the two functions dealt with
in this article are normalized complex floating-point numbers, including
numbers with one or both components equal to 0. Once the real and

300 • T. E. Hull et al.

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

imaginary parts of these arguments have been identified at the beginning
of each algorithm, it is arranged that all subsequent operations will operate
only on normalized real floating-point numbers.

The main assumption we make about the real arithmetic is that, if x and
y are normalized real floating-point numbers, and op is one of the four
basic arithmetic operations, then there is a relative roundoff error bound
E such that

f l~x op y! 5 ~x op y!~1 1 e!,

for some e where ?e? # E, provided no exception occurs. Here f l~x op
y! is a floating-point approximation to x op y produced by the machine. We

also assume that f l~x op y! 5 x op y whenever x op y is machine-repre-
sentable.

And we assume that corresponding error bounds exist for the machine
implementations of the real elementary functions. For example, we assume
there is a bound E log such that

f l~log~x!! 5 log~x!~1 1 elog!,

for some e log where ?e log? # E log. E log should be at most some small
multiple of E.

With these assumptions we can derive expressions for errors and error
bounds for the calculations that arise in the next two sections. For example,
we can conclude that

f l~xy log~x!! 5 xy log~x!~1 1 e!~1 1 e!~1 1 elog!,

so that a relative error bound for the calculation is ~1 1 E!2~1 1
E log!21. Note that the different occurrences of e do not generally
represent the same value; each is simply some quantity that is bounded in
magnitude by E.

For practical purposes, results like these need to be simplified. The
relative error in evaluating xylog~x! is

2e 1 elog

if we neglect terms that are small multiples of products of e terms. And a
bound for the error is

2E 1 Elog

if we neglect small multiples of products of E terms.
It is convenient to introduce an e-notation, where ea is the relative error

in evaluating the expression a, neglecting small multiples of products of
e terms (such as e and e log). With this understanding, we can then write

Implementing the Complex Arcsine and Arccosine Functions • 301

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

exy log~x! 5 2e 1 elog

when we mean that the relative error in evaluating xy log~x! is
2e 1e log. In the next two sections the small multiples are usually less
than 100 or so. The approximations we use are therefore good enough for
practical purposes, since we know that the E terms (E, E log, etc.) are
extremely small; for single precision in IEEE binary arithmetic [IEEE
1985] E 5 2224. Of course the notation can be used only when no
exceptions occur.

With the e-notation, we not only have obvious results such as 3e 1
e 5 4e, but also not quite so obvious results such as 3e 2 e 5 4e. We
will also write ea , eb if Ea , Eb, where a and b are expressions, and
similarly for #, ., and $.

Here is another example, which is typical of what occurs quite a few
times in the next two sections. Consider determining the value of

eÎ~x11!21y2,

where x $ 0. We begin with

ex11 5 e,

and continue with

e~x11!2 5 3e

and

ey2 5 e,

so that

e~x11!21y2 5 4e.

(This last step follows from the “max” rule that if a and b are of the same
sign, then ea1b 5 max~ea, eb! 1 e, which in turn follows from the
general rule for sums given below.) Then, if we also use the rule for
functions given below, we end up with

eÎ~x11!21y2 5 2e 1 esqrt,

since the error propagation factor (epf) for sqrt (as defined below) is 1/2.
The general rule for handling sums and differences is

ea1b 5
a

a 1 b
ea 1

b

a 1 b
eb 1 e,

302 • T. E. Hull et al.

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

where a and b are expressions and provided that a 1 b Þ 0. The rule for
handling sums can be strengthened if we know something about the
relative magnitudes of a and b. For example, if a and b are of the same
sign, and ?a? $?b? but ea # eb, we can derive

ea1b 5 0.5~ea 1 eb! 1 e,

which cannot be greater than, but may be smaller than, what was provided
by the general rule; we take advantage of this “average” rule once, in the
detailed error analysis of Section 3.4. Otherwise, the simpler “max” rule
used in the preceding paragraph turns out to be all that is needed in most
of the analysis of Section 3.4.

The general rule for products and quotients is simply

ea3b 5 ea/b 5 ea 1 eb 1 e.

The rule required when functions are involved is

ef ~a! 5 epf~ f ~a!!ea 1 ef 5
af 9~a!

f ~a!
ea 1 ef,

where e f is the relative error in evaluating f, and provided of course that
ea is small enough. For an error bound in such a situation we need a bound
for the error propagation factor for f, epf~ f~a!!, which needs to be deter-
mined over the range of values of a that can occur in the circumstances
being analyzed.

It is convenient to introduce an “approximately equal” ' notation,
defined as follows:

A ' a if A 5 a~1 1 se!,

where se is some small multiple of e. It is helpful to use this notation in
motivating the development of algorithms in the next two sections, leaving
the actual quantification of se to the associated error analyses. We also use
,' (for “less than or ‘approximately equal’ to”) and .' (for “greater
than or ‘approximately equal’ to”). And to distinguish mathematical num-
bers from machine-representable approximations, we use lowercase Greek
and Roman letters for the former, and we substitute a single uppercase
Roman letter to indicate the latter. Thus, in the above, A is an approxima-
tion to a; and later on, for example, we let Am1 denote the machine
approximation to the mathematical value am1 (where am1 is used to
denote the expression a 2 1), and we let Sqrt stand for the machine
approximation to the true square root function sqrt.

Implementing the Complex Arcsine and Arccosine Functions • 303

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

2.2 The Overall Relative Error Bound

The technique described in the Section 2.1 is used to find the errors, er and
e i, and then the error bounds, Er and Ei, for the calculated values of the
real and imaginary parts, fr and fi, of the complex functions f considered in
the next two sections. If F is the calculated value of f, and Fr and Fi are the
calculated values of its real and imaginary parts, the magnitude of the
overall relative error in F is

UF 2 f

f
U5 *

Fr 2 fr

fr

fr 1 i
Fi 2 fi

fi

fi

fr 1 ifi

*
5 Îe r

2 f r
2 1 e i

2 f i
2

f r
2 1 f i

2

max~Er, Ei!,

assuming f Þ 0.
However, it can happen that the relative error in one part is very large,

while the corresponding absolute error is so small in comparison with the
absolute error in the other part that it can be neglected with only a
negligible effect on the overall relative error bound. There are three such
instances in the programs that follow in which the absolute error ?erfr? can
be neglected in comparison with ?e if i?, as will be pointed out. The overall
relative error bound is then simply

UF 2 f

f
U # Ei,

assuming f Þ 0.
These results will be used in the next two sections, and the resulting

error bounds will be tabulated in Section 5 along with the corresponding
test results for comparison.

2.3 The Pseudocode and Exception Handling

The exception-handling construct used in Sections 3 and 4 is shown in
Figure 1. The calculations in the enable block normally produce the
required result, but if an exception occurs in the course of these calcula-
tions, control is transferred to the handle block, or handler, where action is
taken to circumvent or otherwise cope with the situation. The transfer of
control can take place at any time after the exception has occurred, up to
the end of the enable block.

We do not assume that any indication of what exceptions occurred is
available to the handler. Exception-handling constructs can be nested

304 • T. E. Hull et al.

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

within handlers. Otherwise we believe our pseudocode is reasonably self-
explanatory.

If no such exception-handling facility is available, the programs can be
modified to produce comparably accurate results, but in a more complicated
and slower way, as indicated later in Section 7.

In a previous article [Hull et al. 1994a; 1994b] we described the conven-
tions we have adopted about what to do if either the real or the imaginary
part of the result should overflow or underflow. The only such situation
that can occur in the two examples considered in this article is that the real
part can underflow. However, this can happen only when the imaginary
part is so large that the real part can be replaced by zero without affecting
the overall relative error bound by any significant amount, as indicated in
the previous subsection.

2.4 The Computing Environment

We assume that the smallest and largest positive normalized floating-point
numbers, represented by u and M respectively, satisfy 1 / 257 , uM
, 4 (of course u ,, 1 and M .. 1). The product uM is just less than 4 for
IEEE binary arithmetic, just less than 1/2 for VAX arithmetic, and just less
than 1/256 for IBM 360/370 arithmetic. (The assumptions about uM are
satisfied by all the systems tested by Cody [1988, p. 309], except for the
Cyber 180/855; the xmax and xmin that he gives for IEEE arithmetic have
been rounded to three figures, and their product is greater than 4; but
without the rounding their product would be just less than 4.) We also
assume that E2 $ 4u and E2 $ M21. This is easily satisfied by all the
systems tested by Cody.

Throughout most of this article we also require that E2 . 4 Îu
(rounding arithmetic) or E2 . 8 Îu (chopping arithmetic). This would
rule out VAX D arithmetic, for example, because its exponent range is too
narrow. But we show, later on (in Section 6), how to cope if this require-
ment is not satisfied.

In Sections 3 and 4 we need the function

Fig. 1. The exception-handling construct. The enable block normally produces the desired
result, but the handle block is executed if an exception occurs in the enable block.

Implementing the Complex Arcsine and Arccosine Functions • 305

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

sign~x! 5 H 1 1, x $ 0,
2 1, x , 0.

We also need the real elementary functions arcsin, arccos, arctan, log, and
log1p, where log1p~x! 5 log~1 1 x!. (If the log1p function is not
available in the system being used, it can be created quite easily with the
help of the log function; for details, see Hull et al. [1994a; 1994b].)

Binary arithmetic is assumed throughout. If this is not the case the
theoretical error bounds would be increased by an E or so. It is also
assumed that computations are carried out in the order prescribed by
parentheses. If this is not the case it is possible that serious cancellation
can occur so that a useful error analysis would be impossible; but, even
when no serious cancellation occurs, the error bounds would be larger than
what we derive.

Certain constants are used in the programs, namely Foursqrtu, Log2,
Piby2, and Pi. We assume they approximate 4 Îu, log~2!, p / 2, and p,
respectively, as accurately as possible, that is, to within a relative error
bounded by E.

3. COMPLEX ARCSINE FUNCTION CARCSIN

In this section we present and analyze an algorithm in the form of a
pseudocode program for the complex arcsine function. The enable block is
developed in Section 3.1. A safe region in the complex plane is identified in
Section 3.2; this is a region in which we are able to prove that the enable
block encounters no difficulties with overflow or underflow. The handle
block is developed, for regions outside the safe region, in Section 3.3. And
the error analysis is carried out in Section 3.4.

3.1 Enable Block

The complex inverse sine function arcsin~z!, where z 5 x 1 iy, can be
defined by

arcsin~z! 5 arcsin~b! 1 i sign~y!log~a 1 Îa2 2 1!,

where

a 5 0.5~Î~x 1 1!2 1 y2 1 Î~x 2 1!2 1 y2!,

b 5 0.5~Î~x 1 1!2 1 y2 2 Î~x 2 1!2 1 y2!,

and where the log function is the natural log. The branch cuts are on the
real line from 2` to –1 and from 1 to `. The real and imaginary parts are
based on those given by Abramowitz and Stegun [1972, pp. 80–81], but we
have chosen the sign of the imaginary part to provide what is generally
considered to be the principal value of this function. We note that a is the

306 • T. E. Hull et al.

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

average of the distances from z to the points (1,0) and (–1,0) in the complex
z-plane, and in particular that a $ 1. Also b is in [–1,1].

We also note that the sign of the real part is the same as the sign of x.
This fact, along with the rule for determining the sign of the imaginary
part, is used to determine the signs of the real and imaginary parts at the
end of the program in Figure 2. Then the calculations in the program need
be done only for values of x and y which are nonnegative; x and y are
therefore redefined to be ?x? and ?y? as the first step in carrying out the
calculations. We assume that x and y are nonnegative in the remaining
text of this section.

Fig. 2. A program for calculating an approximation to the complex arcsine function. We use
Acrossover 5 1.5 and Bcrossover 5 0.6417, but these values could be adjusted to give a
slightly better theoretical error bound, depending on the system being used.

Implementing the Complex Arcsine and Arccosine Functions • 307

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

Then we try, in an enable block, to evaluate approximations to a and b,
and the real and imaginary parts of the answer, in as straightforward a
manner as possible, but ignoring any possible overflows or underflows; we
leave such exceptions to be taken care of in the handler. However, we
cannot use the formulas exactly as they stand, since there lurk within them
major pitfalls, which do not themselves raise exceptions, but which could
cause serious loss of accuracy if they are not avoided.

We begin the enable block by first determining approximations to

r 5 Î~x 1 1!2 1 y2

and

s 5 Î~x 2 1!2 1 y2.

The approximations are denoted by R and S in the program; they are
needed later on. Then an approximation to

a 5 0.5~r 1 s!

is determined; it is denoted by A in the program. Then we approximate b.
The original formula for b is 0.5~r 2 s!, but, as it stands, this expression
contains a major pitfall, which is the possibility of serious cancellation
error. However, we can get around this difficulty by considering instead

b 5 0.5~r2 2 s 2! / ~r 1 s!,

which gives us

b 5 x / a,

and its approximation is denoted by B in the program.
An approximation to the real part of the answer can then be obtained

immediately, except for one more pitfall. This pitfall arises when B is near
1, for then even a rounding error or two in B can induce very large errors in
the approximation to arcsin~b!. A way around this difficulty is to deter-
mine an accurate approximation to a 2 x and then use

arctan~b / Î1 2 b2! 5 arctan~x / Î~a 1 x!~a 2 x!!

in place of arcsin ~b!. To develop a formula for a 2 x, we write

a 2 x 5 0.5~r 1 s! 2 x

5 0.5~r 2 ~x 1 1! 1 s 1 ~1 2 x!!

308 • T. E. Hull et al.

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

5 0.55
y2

r 1 ~x 1 1!
1 s 1 ~1 2 x!, x # 1

y2S 1

r 1 ~x 1 1!
1

1

s 1 ~x 2 1!
D, x . 1 6.

Because of the way in which the above has been rewritten, and because of
the parentheses around 1 2 x and x 2 1, there can be no serious loss of
accuracy due to cancellations in this formula. The extra parentheses
surrounding S 1 ~1 2 x! in the program when x # 1 and the extra
parentheses surrounding x 1 1 in the above formula make the error
bound in Section 3.4 smaller than it would otherwise have been. When
substituting into arctan~x / Î~a 1 x!~a 2 x!! it is important in the case
when x . 1 to replace the y2 factor inside the square root with a y factor
outside the square root to reduce the risk of underflow or overflow.

These calculations are required only if B is too close to 1, specifically
when B . Bcrossover. We have chosen 0.6417 as the crossover value of
B because in carrying out the (later) error analysis we discovered that
beyond about this point the extra error introduced by the complexity of
arctan~b / Î1 2 b2! becomes less than the extra error introduced by the
sensitivity of arcsin~b! to small errors in b.

We turn now to the evaluation of the imaginary part, and we encounter
one more pitfall, this time when the argument of the log function is near
1. If it is near 1, even if it itself is quite accurate, the value of its log may be
very inaccurate. A way around this difficulty is to determine an accurate
approximation to am1 5 a 2 1 and then use log1p~am1 1

Îam1~a 1 1!! in place of log~a 1 Îa2 2 1!. If am1 is accurate, the
argument of log1p will be accurate and so will the resulting value of log1p.
Our technique for approximating am1 accurately is to rewrite the formula
for am1 as follows:

am1 5 0.5~r 1 s! 2 1

5 0.5~r 2 ~x 1 1! 1 s 1 ~x 2 1!!

5 0.55
y2

r 1 ~x 1 1!
1

y2

s 1 ~1 2 x!
, x , 1

y2

r 1 ~x 1 1!
1 s 1 ~x 2 1!, x $ 1 6.

Its approximation is denoted by Am1 in the program. There can be no loss
of accuracy due to cancellations in these formulas. (In the program, extra
parentheses surround S 1 ~x 2 1! when x $ 1; otherwise the error
bound derived in Section 3.4 would be larger.)

Implementing the Complex Arcsine and Arccosine Functions • 309

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

Since the calculation of Am1 in this situation is more costly than the
calculation of A, we do it only when A is near 1, specifically when A #

Acrossover. We have chosen 1.5 as the crossover value of A because in
carrying out the (later) error analysis we discovered that the overall error
bound would have to be increased if any cut-off lower than 1.5 is used.

The enable block of the program in Figure 2 is based in a straightforward
manner on the formulas developed so far. The formulas are more compli-
cated than those used at the beginning of this section to provide the
mathematical specification of the complex arcsine function, but this is in
order to avoid possible losses of accuracy in the real part due to cancella-
tion, or to the sensitivity of arcsin~b! to errors in b when B .
Bcrossover, or to avoid possible loss of accuracy in the imaginary part
when the argument of the log function is near 1. Our later error analysis
will show that the computed results can be guaranteed to be within
acceptably small error bounds.

The remaining computational problems have to do with possible over-
flows or underflows. There are many opportunities for such exceptions to
arise. Before considering the details of a handler for coping with these
exceptional cases it is helpful to identify a “safe” region.

3.2 A Safe Region

The region of the complex plane, which we identify as “safe,” is to be safe in
the sense that we are able to prove that the enable block produces a
function value for each point in the region without raising any overflow or
underflow exception. It will be very useful in the next two subsections to
have identified such a region.

The part of our safe region in the first quadrant is the square in Figure 3
defined by 4 Îu # x, y # ÎM / 8, where u and M are the underflow
and overflow levels respectively. Our assumptions about u and M were
given earlier, in Section 2.4.

The scale of the diagram in Figure 3 is severely distorted. This is
necessary in order to highlight the different circumstances that must be
taken into account in designing the handler in the next subsection. The
dashed lines in Figure 3 indicate where the lines x 5 4 Îu and y 5

4 Îu could be for a “bad” machine, a “bad” machine being one in which the
exponent range is unreasonably small, as is the case with the VAX D
format, for example. As indicated in Figure 3, a portion of the complex
plane in the first quadrant (the inverted triangular region centered on the
line x 5 1), other than what is on the line x 5 1, can then be outside
the safe region, i.e., below the line y 5 4 Îu and above the lines y 5

E?x 2 1?. Thus a machine is “bad” if E2 , 4 Îu (rounding arithmetic) or
E2 , 8 Îu (chopping arithmetic), as mentioned earlier in Section 2.4.
Special provision must be made for this possibility, but we postpone to

310 • T. E. Hull et al.

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

Section 6 an explanation of how the program of this section can be modified
to cope with “bad” machines.

To prove that the region is safe, we show that points in the square cannot
cause overflow or underflow at any stage in the calculations of the enable
block. We have immediately that

~x 1 1!2, ~x 2 1!2, and y2 ,' M / 64,

so no overflow exception can be raised at these stages of the calculations in
the region. It follows easily that no overflow can be raised in calculating
R, S, and A, and that

R, S, and A ,' ÎM / 32.

Fig. 3. The safe region in the first quadrant is the square defined by 4 Îu # x,y
ÎM / 8, where u and M are the underflow and overflow levels respectively. The scale is
severely distorted to highlight the different circumstances that must be taken into account.
The dashed lines indicate where the lines x 5 4 Îu and y 5 4 Îu could be for a “bad”
machine. The dots are the floating-point numbers in the neighborhood of ~1,0!; notice that, for
a “good” machine, no such points lie below y 5 4 Îu and above y 5 E?x 2 1?, except for
points on the line x 5 1.

Implementing the Complex Arcsine and Arccosine Functions • 311

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

We note also that the calculations of ~x 1 1!2, ~x 2 1!2, and y2 cannot
cause underflow to be raised either, and we end up with

R, S .' Î32u and A .' 1.

The latter inequality follows from the fact that a $ 1. Thus the
calculations of R, S, and A cannot raise an exception in the safe region.

As for B, we know that A .' 1 and x # ÎM / 8, so that the
calculation of B cannot overflow. Moreover,

B ' x / A .' 4Îu / ÎM / 32 5 16Î2u / ÎMu . 8Î2u,

because of our assumption that uM , 4, so the calculation of B cannot
underflow. Thus the calculation of B cannot raise an exception in the safe
region.

We turn now to the calculation of the real part. If B # Bcrossover, the
calculation of arcsin~B! cannot raise an exception in the safe region.
However, if B . Bcrossover the situation is more complicated. We
consider x # 1 and x . 1 separately. If x # 1, we have

y2 / ~R 1 ~x 1 1!! ,' y2 / y # ÎM / 8,

and then

y2 / ~R 1 ~x 1 1!! 1 S 1 ~1 2 x! ,' ÎM / 8 1 ÎM / 32 , ÎM,

so no overflow can arise in evaluating this expression. Multiplying by
0.5~A 1 x! leads to an upper bound ' M / ~8 Î2! for the argument of
the square root function. Taking the square root and dividing into x leads
to a lower bound greater than 6u for the argument of arctan, since uM
, 4, so the arctan function cannot underflow if B . Bcrossover and
x # 1. With regard to possible overflow in this case, we have

y2 / ~R 1 ~x 1 1!! . ' y2 / ~Î4 1 y2 1 2! .' 4u,

since the middle expression is an increasing function of y and y $ 4 Îu.
Then multiplying by 0.5~A 1 x! leads to a lower bound approximately
equal to 2u for the argument of the square root, since A .' 1. Then
taking the square root and dividing into x leads to an upper bound
approximately equal to 1 / Î2u for the argument of the arctan function,
since x # 1. Since u . 1 / ~257M!, this bound is only slightly more
than 8 Î2M, so the argument of the arctan function cannot overflow. Thus
calculating the real part cannot cause an exception to occur in the safe
region when B . Bcrossover and x # 1.

312 • T. E. Hull et al.

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

That leaves the case of x . 1 to be considered. Arguing as in the case of
x # 1, it is easy to show that the calculations A 1 x,
R 1 ~x 1 1!, and S 1 ~x 2 1! cannot overflow or underflow in the
safe region when x . 1. Nor can the quotients ~A 1 x! / ~R 1
~x 1 1!! and ~A 1 x! / ~S 1 ~x 2 1!!, or the multiplication by
0.5, or taking the square root. It therefore remains only to show that
multiplying by y and then dividing into x cannot cause overflow or
underflow to occur.

To do this we take advantage of the fact that

arcsin~b! 5 arcsin~~2x! / ~Î~x 1 1!2 1 y2 1 Î~x 2 1!2 1 y2!!

is a decreasing function of y for each fixed x. It follows that the rewrite in
terms of the arctan function must also be a decreasing function of y for
each fixed x. This means that the argument of the arctan function, namely

x

y
/ Î0.5S A 1 x

R 1 ~x 1 1!
1

A 1 x

S 1 ~x 2 1!
D

must also be a decreasing function of y for each fixed x. An upper bound for
the computed value of that argument in the safe region is therefore
approximately the value of the argument at y 5 4 Îu. But for this value,
we have y2 5 16u, and 16u can be neglected in comparison with ~x 1
1!2 and ~x 2 1!2, since the smallest value of x 2 1 when x . 1 is
2E (rounding arithmetic) or E (chopping arithmetic). An upper bound then
works out to be approximately

S x

4ÎuÎ0.5
D / SÎ x

x 1 1
1

x

x 2 1D ¶ S ÎM / 8

4ÎuÎ0.5
D / Î2 5

ÎM

32Îu
,

for each fixed x. This cannot overflow, since uM . 1 / 257, so 1 / Îu
, Î257M, and an upper bound is therefore approximately M Î257 / 32.

Similarly a lower bound for the computed value of the argument of the
arctan function is approximately the value of the argument at y
5 ÎM/8 for each fixed x. This lower bound is, therefore, approximately

S 8x

Î2M
D / Î A 1 x

R 1 ~x 1 1!
1

A 1 x

S 1 ~x 2 1!
,

where now, since x . 1, we have

A 1 x 5 0.5~Î~x 1 1!2 1 M / 64 1 Î~x 2 1!2 1 M / 64! 1 x

, Î~x 1 1!2 1 M / 64 1 x,

Implementing the Complex Arcsine and Arccosine Functions • 313

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

R 1 ~x 1 1! 5 Î~x 1 1!2 1 M / 64 1 ~x 1 1!,

and

S 1 ~x 2 1! 5 Î~x 2 1!2 1 M / 64 1 ~x 2 1!.

We note that

A 1 x

R 1 x 1 1
1

A 1 x

S 1 ~x 2 1!
, 1 1

Î~x 1 1!2 1 M / 64 1 x

Î~x 2 1!2 1 M / 64 1 ~x 2 1!
,

where the second term in this sum is a decreasing function of x and is
therefore a maximum near x 5 1. But this maximum value is approxi-
mately 1, so a lower bound for the computed value of the argument of the
arctan function works out to be approximately

4x / ÎM,

for each fixed x. Since x . 1, we can set x 5 1 in this expression, and,
noting that uM , 4 so that 1 / ÎM . Îu / 2, we see that

2Îu

is, approximately, a lower bound for the argument of the arctan function
when x . 1. Thus underflow cannot occur. All cases related to the
calculation of the real part have now been covered, and we can conclude
that the calculation cannot raise an exception in the safe region.

Now for the imaginary part. We have already shown that the calculation
of A cannot raise an exception in the safe region. It is then easy to see that
the calculation of the imaginary part cannot raise an exception when A
. Acrossover. When A # Acrossover we need to calculate Am1. In this
case arguments analogous to those given above can be used to determine
that Am1 cannot raise an exception, and consequently that the calculation
of the imaginary part cannot raise an exception when A # Acrossover.

Altogether then, we have established the safety of the proposed safe
region. Of course many points outside the safe region will also not raise
exceptions and will not cause a transfer of control to the handler. The point
in identifying a safe region is that we have to make provision for coping
with exceptions only for points that are not in the safe region.

3.3 Handle Block

The main handle block in the program looks after all x, y pairs lying
outside the safe region that cause overflow or underflow to occur in the
enable block. This is accomplished in Figure 4 by treating separately six
cases that define regions in Figure 3 which together cover all of the points

314 • T. E. Hull et al.

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

that lie outside the safe region. The regions are numbered 1,2, . . . , 6
according to the cases to which they correspond.

Case (1): y 5 0. The corresponding region consists of all points lying
on the line y 5 0. It is convenient to deal with this case separately,
mainly because the formulas involved are distinctive and especially simple.

If y 5 0 then

a 5 0.5~x 1 1 1 ?x 2 1?!

5 H 1, if x , 1,
x, if x $ 1,

so that

Fig. 4. Handle block for the program in Figure 2 that calculates an approximation to the
complex arcsine function. The elsif clause for Case (3) has to be modified for “bad” machines,
as explained later in Section 6.

Implementing the Complex Arcsine and Arccosine Functions • 315

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

b 5 H x, if x , 1,
1, if x $ 1,

and the real part is approximated accordingly, noting that arcsin ~1! 5
p / 2.

For the imaginary part,

a 2 1 1 Îa2 2 1 5 H 0, if x , 1,
x 2 1 1 Î~x 2 1!~x 1 1!, if x $ 1.

This is in a form that avoids serious cancellation error in x2 2 1.
However, x 2 1 1 Î~x 2 1!~x 1 1! might still overflow; however,
when that happens, it is approximately 2x, and the imaginary part can be
approximated by log~2! 1 log~x!.

Case (2): y # E?x 2 1?. The corresponding region consists of all
points on or below the lines y 5 E?x 2 1?, except for the points on y
5 0. This region is shaded in Figure 3.

Here we have y Þ 0, and consequently x Þ 1, so we can write

a 5 0.5~~x 1 1!Î1 1 ~y / ~x 1 1!!2 1 ?x 2 1?Î1 1 ~y / ~x 2 1!!2!

' H 1, x , 1,
x, x . 1,

since ~ y / ~x 1 1!!2 and ~ y / ~x 2 1!!2 can be neglected in comparison
with 1. For b 5 x / a we have to be more careful. In the first expression
for a we can expand in powers of y2 / ~x 1 1!2 and y2 / ~x 2 1!2 and
this leads to

b ' H x~1 1 0.5y2 / ~x2 2 1!!, x , 1,
1 2 0.5y2 / ~x2 2 1!, x . 1.

We then have

b ' H x, x , 1,
1, x . 1.

However, it is important to notice that the relative error in this approxima-
tion is a small multiple of E2, and not just a small multiple of E. (This is
crucial in the error analysis of Case (2).) We now set the real part to
arcsin~x! when x , 1 and to p / 2 when x . 1, which is the same as
what was done in Case (1). In Case (1) the argument of arcsine is exact, but
in Case (2) it is only approximate.

For the imaginary part when a , Acrossover we need

316 • T. E. Hull et al.

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

am1 ' H 0.5y2 / ~~1 1 x!~1 2 x!!, x , 1,
x 2 1, x . 1,

and we use log1p, with the argument

am1 1 Î~am1!~a 1 1! ' H y / Î~1 1 x!~1 2 x!, x , 1,

x 2 1 1 Î~x 2 1!~x 1 1!, x . 1.

Here the expression for x , 1 is so small that

log1p~y / Î~1 1 x!~1 2 x!! ' y / Î~1 1 x!~1 2 x!,

while the expression for x . 1 might overflow, in which case the
imaginary part can be approximated by log~2! 1 log~x!.

For the imaginary part when a $ Acrossover either

log~x 1 Î~x 2 1!~x 1 1!!

or

log1p~x 2 1 1 Î~x 2 1!~x 1 1!!

can be used. We choose the latter expression because it coincides with the
expression used when a , Acrossover, as long as x . 1. We also note
that all the results in Cases (1) and (2) are the same, except for the
imaginary parts when x , 1, but even then the result in Case (2) reduces
to the result in Case (1). The two cases can therefore be merged as
indicated in Figure 4.

Case (3): y , 4 Îu. The corresponding region consists of all points
below the line y 5 4 Îu which have not been dealt with in Cases (1) and
(2). This case is quite simple if x 5 1, which is the only situation in
which Case (3) can arise on “good” machines.

Since x 5 1, we have

a 5 0.5~Î4 1 y2 1 y! 5 1 1 y / 2 1 y2 / 8 1 · · ·

and

b 5 1 / a 5 1 2 y / 2 1 y2 / 8 1 · · ·.

Since b is near 1 we need to use arctan~b / Î1 2 b2! for the real part. We
have 1 2 b ' y / 2 and 1 1 b ' 2, while b ' 1, so that

b / Î1 2 b2 ' 1 / Îy.

The real part then becomes, approximately,

Implementing the Complex Arcsine and Arccosine Functions • 317

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

arctan~1 / Îy! 5 p / 2 2 Îy 1 ~Îy!3 / 6 2 · · ·

' p / 2 2 Îy.

Since a is also near 1, we need

am1 ' 0.5y

and

am1 1 Î~am1!~a 1 1! ' Îy 1 y / 2

for the imaginary part. The imaginary part then becomes, approximately,

log1p~Îy 1 y / 2! 5 ~Îy 1 y / 2! 2 1 / 2~Îy 1 y / 2!2 1 · · ·

' Îy.

Case (4): y $ ~x 1 1! / E. The test in the program is in the form
Ey 2 1 $ x to avoid possible overflow if ~x 1 1! / E were to be
computed. (Ey cannot underflow since E2 $ 4u and y $ 4 Îu.) The
corresponding region consists of all points on or above the line y 5 ~x
1 1! / E. Here y is so much larger than x 1 1 that ~x 1 1!2 and ~x
2 1!2 can be neglected in comparison with y2. Then we have

a ' y

and

b ' x / y.

In this case b is certainly less than Bcrossover. In fact it is so small that
arcsin~b! ' b. However, b might underflow, but then the real part is so
small compared to the imaginary part that the real part can be set to 0
without having more than a negligible effect on the overall relative error
bound, as explained in Section 2.2.

Also in this case a and y are so large that

a 1 Îa2 2 1 ' 2y,

and the imaginary part is approximately log~2! 1 log~ y!.

Case (5): x . 1. The corresponding region consists of all points to the
right of x 5 ÎM / 8 or above y 5 ÎM / 8 which have not already been
dealt with in Cases (2) and (4). In this case x and y are both very large, so
that

318 • T. E. Hull et al.

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

a ' Îx2 1 y2

and

b ' x / Îx2 1 y2.

Then, for the real part,

arcsin~b! ' arctan~x / y!.

Since x and y cannot differ by more than a factor of E, x / y cannot
overflow or underflow.

For the imaginary part, we need only

a 1 Îa2 2 1 ' 2a,

so the imaginary part is close to

log~2a! 5 log~2! 1 0.5log~x2 1 y2!

5 log~2! 1 0.5log~y2~1 1 ~x / y!2!!

5 log~2! 1 log~y! 1 0.5log1p~~x / y!2!,

and here ~x / y!2 cannot overflow or underflow (because of our assumption
that E2 $ 4u and E2 $ M21).

Case (6): Otherwise. The corresponding region consists of all points to
the left of x 5 4 Îu which have not already been dealt with in Cases (2)
and (4). Thus, the only remaining possibility is that x is very small. In fact
x , 4 Îu, so it is negligible in comparison with 1, while E ,' y
,' E21.

Then we have

a ' Î1 1 y2,

a2 2 1 ' y2,

and

b ' x / Î1 1 y2.

Here b is so small that the real part is simply x / Î1 1 y2, except that this
might underflow, in which case it turns out that the real part can be set to
0, with only a negligible effect on the overall relative error bound.

For the imaginary part we need

Implementing the Complex Arcsine and Arccosine Functions • 319

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

a 1 Îa2 2 1 ' Î1 1 y2 1 y.

We can then rewrite log~a 1 Î~a2 2 1!! as follows:

log~a 1 Îa2 2 1! 5 0.5log~~a 1 Îa2 2 1!2!

5 0.5log~a2 1 2aÎa2 2 1 1 a2 2 1!

5 0.5log1p~2~a2 2 1 1 aÎa2 2 1!!

' 0.5log1p~2y~y 1 a!!.

3.4 Error Analysis

We turn now to the error analysis, and we begin by considering only the
paths through the enable block, i.e., we assume for the time being that no
exceptions occur. Based on Section 2.1 we have

er 5 2e 1 esqrt

and

es 5 2e 1 esqrt,

so that

ea 5 3e 1 esqrt

and

eb 5 4e 1 esqrt.

Further,

epf~arcsin~b!! 5 b / ~Î1 2 b2arcsin~b!!,

so that the relative error for the real part when b is not close to 1 is

eanswer.realpart 5
b

Î1 2 b2arcsin~b!
~4e 1 esqrt! 1 earcsin.

This is an increasing function of b and can become unacceptably large as
b becomes close to 1.

If b is close to 1 the program uses alternative formulas to approximate
the real part. For their analysis we need

ea1x 5 4e 1 esqrt,

320 • T. E. Hull et al.

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

as well as

er1~x11! 5 3e 1 esqrt

and

es1~12x! 5 3e 1 esqrt, if x # 1,

and

es1~x21! 5 3e 1 esqrt, if x . 1.

The parentheses around x 1 1, 1 2 x, and x 2 1 in these formulas
are important; without them each error would be larger by another e.
Applying these results to the argument of the sqrt function when x # 1,
we obtain

eargofsqrt 5 ea1x 1 ~max~ey2 1 er1~x11! 1 e, es1~12x!! 1 e! 1 e

5 4e 1 esqrt 1 ~6e 1 esqrt! 1 e

5 11e 1 2esqrt,

so that the resulting error in the real part becomes

eanswer.realpart 5 epf~arctan~b / Î1 2 b2!!~ex 1 eÎargofsqrt 1 e! 1 earctan

5 ~bÎ1 2 b2 / arcsin~b!!~0 1 ~0.5~11e 1 2esqrt! 1 esqrt! 1 e!

1 earctan

5 ~bÎ1 2 b2 / arcsin~b!!~6.5e 1 2esqrt! 1 earctan

when b is close to 1 and x # 1.
Otherwise, when b is close to 1, and x . 1, we have

eargofsqrt 5 max~ea1x 1 er1~x11! 1 e, ea1x 1 es1~x21! 1 e! 1 e

5 ~4e 1 esqrt 1 3e 1 esqrt 1 e! 1 e

5 9e 1 2esqrt,

so that the resulting error in the real part becomes

eanswer.realpart 5 epf~arctan~b / Î1 2 b2!!~ex 1 ~ey 1 eÎargofsqrt 1 e! 1 e!

1 earctan

Implementing the Complex Arcsine and Arccosine Functions • 321

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

5 ~bÎ1 2 b2 / arcsin~b!!~0 1 ~0 1 ~4.5e 1 esqrt 1 esqrt! 1 e! 1 e!

1 earctan

5 ~bÎ1 2 b2 / arcsin~b!!~6.5e 1 2esqrt! 1 earctan,

which is the same as in the case when b is close to 1 but x # 1. So this is
the relative error for the real part when b is close to 1. Note that it is a
decreasing function of b.

The remaining task regarding the real part is to decide what crossover
value to use for b. The error when b is not close to 1 is an increasing
function of b, but the error when b is close to 1 is a decreasing function of
b. So the best choice for the crossover value of b is when these two errors
are equal. Equating the two, and assuming that Earcsin 5 Earctan and that
Esqrt 5 E, the crossover value of b satisfies the equation

5b / ~Î1 2 b2 arcsin~b!! 5 8.5bÎ1 2 b2 / arcsin~b!,

which leads to our choice of Bcrossover 5 0.6417.
Our assumptions about Earcsin, Earctan, and Esqrt will not be true in general,

but as a reasonable compromise for a variety of systems, we use 0.6417 as
the crossover value. In any case the larger of the resulting two error
bounds, namely

max~4.804E 1 1.201Esqrt 1 Earcsin, 4.592E 1 1.413Esqrt 1 Earctan!,

is a bound on the relative error in the real part of the complex arcsine
function. This bound would be slightly smaller if the crossover value were
to be adjusted to make it appropriate for a particular system.

For the imaginary part, we first consider the situation when a is close to
1. There are two cases, but whether x , 1 or x $ 1, the error analysis
leads to the same result for eam1, namely

eam1 5 6e 1 esqrt.

The next stage is to determine the relative error in the argument of the
log1p function. This is also straightforward except that the final error
bound turns out to be somewhat smaller if we use the general rule for sums
in Section 2.1, rather than the max rule, when determining the relative
error in approximating a 1 1, so that

ea11 5 ~a / ~a 1 1!!ea 1 e.

This leads to

eam11Îam1~a11! 5 max~7e 1 esqrt, 5e 1 1.5esqrt 1 ~0.5a / ~a 1 1!!~3e 1 esqrt!!,

322 • T. E. Hull et al.

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

and we finally obtain

eanswer.imagpart 5 epf ~log1p!eam11Îam1~a11! 1 elog1p

5
a 2 1 1 Îa2 2 1

~a 1 Îa2 2 1!log~a 1 Îa2 2 1!

3 max~7e 1 esqrt, 5e 1 1.5esqrt 1 ~0.5a / ~a 1 1!!~3e 1 esqrt!!

1 elog1p.

It can be shown that this expression is bounded by its limiting value as a

3 11. To see that this is so it is simplest to plot the two relevant
expressions, first

~a 2 1 1 Îa2 2 1! / ~~a 1 Îa2 2 1!log~a 1 Îa2 2 1!!

and then

~a 2 1 1 Îa2 2 1! / ~~a 1 Îa2 2 1!log~a 1 Îa2 2 1!! 3 ~a / ~a 1 1!!.

Analytical proofs are also possible. For example, substitute u 5 a

2 11 Îa2 2 1 into the first expression and show that its derivative
with respect to u is positively proportional to log~1 1 u! 2 u, which is
negative for u . 0, i.e., for a . 1. The limiting value of the first
expression as a 3 11 is 1. The analysis for the second expression is more
complicated. Its limiting value as a 3 11 is 1/2.

We therefore have

eanswer.imagpart 5 max~7e 1 esqrt, 5.75e 1 1.75esqrt! 1 elog1p

as the desired result for the imaginary part when a is close to 1.
When a is not close to 1, we use ea 5 3e 1 esqrt and the rule for

differences in Section 2.1 to obtain

ea221 5
a2

a2 2 1
~7e 1 2esqrt! 1

2 1

a2 2 1
~0! 1 e

and

eÎa221 5
a2

a2 2 1
~3.5e 1 esqrt! 1 0.5e 1 esqrt.

Since a $ Îa2 2 1 and ea , e Îa221, we can use the “average” rule for
sums given in Section 2.1 to conclude that

Implementing the Complex Arcsine and Arccosine Functions • 323

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

ea1Îa221 5 S1.75a2

a2 2 1
1 2.75De 1 S 0.5a2

a2 2 1
1 1Desqrt.

Then

eanswer.imagpart 5 epf~log~a 1 Îa2 2 1!!ea1Îa221 1 elog

5 ~1 / log~a 1 Îa2 2 1!!

3 SS1.75a2

a2 2 1
1 2.75De 1 S 0.5a2

a2 2 1
1 1DesqrtD 1 elog

is the relative error in the imaginary part when a is not close to 1.
This second error expression for the imaginary part is a decreasing

function of a for a . 1. The best choice for the crossover value of a is
therefore the value of a which makes this error equal to the maximum of
the earlier one for the imaginary part. This is the value of a that minimizes
the overall error bound for the imaginary part and, at the same time,
ensures that the program uses the less costly of the two ways of approxi-
mating the imaginary part as often as is possible.

Assuming that Esqrt 5 E and that E log1p 5 E log, and equating the two
error expressions, we obtain an equation for the crossover value of a,
namely

8e 5 ~1 / log~a 1 Îa2 2 1!!~3.75 1 ~2.25a2 / ~a2 2 1!!!e.

The solution is 1.5088 . . . ; as a reasonable compromise for a variety of
systems, we have chosen Acrossover 5 1.5.

Using the value a 5 1.5, an error bound for the imaginary part, when
a is close to 1, is

max~7.000E 1 1.000Esqrt, 5.750E 1 1.750Esqrt! 1 Elog1p,

while the bound, when a is not close to 1, turns out to be

6.131E 1 1.975Esqrt 1 Elog.

The larger of these two bounds is therefore a relative error bound for the
imaginary part.

To complete the details of the error analysis we need to consider the
handler. There is only one special circumstance to mention. Otherwise it is
a tedious but straightforward matter to check that none of the cases in the
handler can have a bound which exceeds the largest bounds found so far
under the assumption that no exception occurs. The special circumstance is

324 • T. E. Hull et al.

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

in Case (2) where the real part, arcsin~b!, is set to arcsin~x! when x
, 1 and p / 2 when x . 1. The resulting error is

earcsin~b! 5
b

Î1 2 b2arcsin~b!
~eb! 1 earcsin,

and our concern here is that this might be too large when b is near 1.
However it was pointed out earlier that eb is only a small multiple of E2,
whereas Î1 2 b2 5 Î~1 2 b!~1 1 b! is a small multiple of ÎE. From
this we can conclude that earcsin~b! is only a small multiple of E3/ 2. It should
also be noted that many ' relationships used in deriving the formulas
for the handler involve errors which can be neglected because they are only
small multiples of E2, while others have to be taken into account because
they involve small multiples of E.

Combining this result with the earlier ones for the real and imaginary
parts leads to an overall relative error bound for the complex arcsine
function, namely

max~4.804E 1 1.201Esqrt 1 Earcsin,

4.592E 1 1.413Esqrt 1 Earctan,

7.000E 1 1.000Esqrt 1 Elog1p,

5.750E 1 1.750Esqrt 1 Elog1p,

6.131E 1 1.975Esqrt 1 Elog).

This bound is valid under the assumptions given in Section 2.4. The value
of this bound will vary from system to system, but if a system’s real
elementary functions are reasonably accurate, the value should be in the
range of about 9E to 11E. In the system we use for our tests in Section 5,
the bound turns out to be 9.488E.

4. COMPLEX ARCCOSINE FUNCTION CARCCOS

The complex inverse cosine function arccos~z!, where z 5 x 1 iy, can
be defined by

arccos~z! 5 arccos~b! 2 i sign~y!log~a 1 Îa2 2 1!,

where

a 5 0.5~Î~x 1 1!2 1 y2 1 Î~x 2 1!2 1 y2!,

b 5 0.5~Î~x 1 1!2 1 y2 2 Î~x 2 1!2 1 y2!,

Implementing the Complex Arcsine and Arccosine Functions • 325

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

and where the log function is the natural log. The branch cuts are on the
real line from 2` to –1 and from 1 to `. The real and imaginary parts are
based on those given by Abramowitz and Stegun [1972, pp. 80–81], but we
have chosen their signs to provide what is generally considered to be the
principal value of this function.

These formulas are similar to the formulas given for the arcsine function.
The real part becomes arccos~b! instead of arcsin~b!, and the sign of the
imaginary part has changed from 1sign(y) to –sign(y). Therefore, the
program we have developed for this function in Figures 5 and 6 is almost

Fig. 5. A program for calculating an approximation to the complex arccosine function. We use
Acrossover 5 1.5 and Bcrossover 5 0.6417, but these values could be adjusted to give
slightly better error bounds, depending on the system being used.

326 • T. E. Hull et al.

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

exactly the same as the program for the complex inverse sine function.
There are three differences. One is that the appearances of Arcsin must be
replaced by Arccos; as a consequence of this, the arguments of Arctan must
be inverted (in three places), and there is an occurrence of the real part
being assigned the value of Piby2 in the handler (in the merged Cases (1)
and (2)) which must be replaced by 0. (The real part can be set to 0 because
the absolute error in the real part is negligible compared to the absolute
error in the imaginary part.) There is also one occurrence of the real part
being assigned the value 0 (in Case (6)) which must be replaced by
Piby2, and finally there is a corresponding change in the real part of Case
(3). The second difference is in the real parts of Cases (4), (5), and (6). In
Case (4) of the arcsine program the real part is Arcsin~x / y!, but because
x / y is very small the real part is just x / y, whereas in the arccosine
program the real part is Arccos~x / y!, but because x / y is very small the
real part can be approximated by Piby2. In Case (5) the real part of the
arccosine program is changed to Arctan~y / x!. In Case (6) the real part of
the arcsine program is Arcsin~x / A! which can be replaced by x / A, but
the corresponding real part in the arccosine program must be Arccos~x /
A!; but, because x / A is very small the real part is accurately approxi-

Fig. 6. Handle block for the program in Figure 5 that calculates an approximation to the
complex arccosine function. The elsif clause for Case (3) has to be modified for “bad”
machines, as explained later in Section 6.

Implementing the Complex Arcsine and Arccosine Functions • 327

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

mated by Piby2. The third difference is in the final determination of the
real and imaginary parts of the answer at the end of the program; their
signs have to be accounted for at this point, and this necessitates replacing
arccos~B! with Pi 2 Arccos?B? when x and consequently B , 0, which
in turn requires that Pi be declared and initialized at the beginning of the
program.

The only resulting change in the error analysis is that Earcsin must be
replaced by Earccos. The cancellation in Pi 2 Arccos?B? at the end of the
program does not increase the error bound for the real part, since Arccos
~?B?! ,' p / 2. Thus

max~4.804E 1 1.201Esqrt 1 Earccos,

4.592E 1 1.413Esqrt 1 Earctan,

7.000E 1 1.000Esqrt 1 Elog1p,

5.750E 1 1.750Esqrt 1 Elog1p,

6.131E 1 1.975Esqrt 1 Elog)

is an overall relative error bound for all input values of the argument z and
is valid under the assumptions given in Section 2.4.

5. FORTRAN IMPLEMENTATIONS AND TESTING

We have implemented the algorithms presented in Sections 3 and 4 in
Fortran 77 and run them on a Sun SPARCstation 5 (compiler version
SC3.0.1), in order to test their correctness, especially the correctness of
their error bounds. Both single- and double-precision versions are avail-
able. (Some care was necessary to make sure that the single-precision
versions did not make any use of higher precision, other than what is done
in the library functions they use, for that could have unfairly reduced the
observed errors.) The exception-handling constructs are implemented using
Sun’s math library routine “swapEX_” [Sun Microsystems 1991], for the
reasons given in our earlier paper [Hull et al. 1994a; 1994b].

We first present the results for the single-precision versions. For these
we need to have the values of Esqrt, Earcsin, etc. for single precision. These
relative error bounds were found by comparing the results of real Sqrt, real
Arcsin, etc., at all relevant single-precision arguments with their corre-
sponding “true” values (which we approximate with accurate double-preci-
sion values). The results, in units of E, are presented in Table I. (Four of
these bounds are simply 1.000; this is because, except for Sqrt, the
corresponding single-precision functions derive rounded single-precision
values from their double-precision versions.) These values are then substi-
tuted into the theoretical error bounds of Sections 3 and 4 to provide the

328 • T. E. Hull et al.

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

specific theoretical error bounds for the environment in which the tests
were carried out. The results are shown in column 2 of Table II.

To determine the errors in the results produced by the programs in
Sections 3 and 4, we need to know the “true” results. We therefore
developed separate programs, and to be especially convincing, we based
them on entirely different formulas, namely [Churchill et al. 1974, p. 70]

arcsin~z! 5 2i log~iz 1 Î1 2 z2!,

arccos~z! 5 2i log~z 1 iÎ1 2 z2!.

We first note that arcsin(–z) 5 –arcsin(z) and arcsin~z! 5 arcsin~z!, and
similarly for arccos, so we had to analyze these formulas for only one
quadrant.

The real part of Î1 2 z2 can be calculated very accurately in double
precision if one is careful about the order in which the operations in
1 2 x2 1 y2 are carried out. Then double-precision complex Sqrt and
Log functions can be used, being careful to use a real Log1p function when
the argument of Log is near 1 in modulus. The details of the analysis are
quite complicated and are not provided here.

This process provided us with the “true,” i.e., double-precision, values to
compare with the approximations produced by the programs in Sections 3
and 4. For each of CARCSIN and CARCCOS we generated approximately
900 million random numbers in a single quadrant, using random exponents
and random significands over the full ranges of these values, and similarly
another 900 million in the square 2224 # x, y , 22, since it is in this
region that larger errors are more likely to occur. The largest error
observed for each of CARCSIN and CARCCOS is shown in column 3 of
Table II, along with the points, in column 4, where they were observed. The
experimentally observed bounds are respectively about 53% and 56% of the
theoretical bounds, so the observed bounds are well within the theoretical
error bounds, but close enough to indicate that the theoretical bounds are
quite tight.

For the double-precision versions of CARCSIN and CARCCOS we did not
try to determine theoretical bounds. This was mainly because it would be
impractical to determine exactly the double-precision values of Esqrt,
Earcsin, etc. The three values, other than Esqrt, that are E in single precision
will be a little larger in terms of double-precision E; as a consequence the

Table I. Observed Error Bounds for Single-Precision Real Elementary Functions in the Sun
Library (version SC3.0.1) in Units of E, the Relative Error Bound for Single-Precision Real

Arithmetic

Esqrt Earcsin Earccos E log E log1p Earctan

1.000 1.000 1.000 1.382 1.000 1.326

Implementing the Complex Arcsine and Arccosine Functions • 329

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

theoretical error bounds for double-precision versions of CARCSIN and
CARCCOS will be correspondingly larger.

However, we can still use our technique for finding “true” values by
repeating what was done before in higher precision, double instead of
single, and quadruple instead of double. It did not seem to be worthwhile
testing as many random points as we did with the single-precision versions,
since the two versions are so similar. We generated only about 50 million
points for each of CARCSIN and CARCCOS. The observed error bounds in
terms of double-precision E are shown in Table III. The bounds are
somewhat smaller than the observed bounds in single precision. This is not
surprising, considering the relatively small number of random points used,
even despite the fact that the theoretical bounds in double precision would
be slightly larger.

It may be of some further interest to note that about 225 million of the
first 900 million or so random points we generated in single precision for
each function were in the safe region, but about 305 million went through
only the enable block. The others went through the handler, about 8
thousand in Case (1), 347 million in (2), only 1 in (3), 201 million in (4), 43
million in (5), and 4 million in (6). We generated about 1 million more for
Case (3), and the maximum observed bound for these inputs was only
0.477E.

What about other complex arcsine and arccosine programs that are
generally available? Some libraries (such as the NAG and PORT libraries)
do not provide such programs. Others that do include such programs are
FN, IMSL, and SLATEC, but they are all based on earlier work by
Fullerton. For this reason we tested only his programs from the FN
library.1

We first submitted his CASIN program to the same test described above
for our CARCSIN program. Our test program continues until it has found
about 900 million successful results, but it also counts the number of
unsuccessful results, i.e., results that have raised overflow, underflow, or
invalid. For CASIN more than 133 million unsuccessful results were
counted. The maximum overall relative error observed for the 900 million
or so successful results was almost 2, which, in units of E, is greater than
33,000,000 E. We repeated the test with random numbers restricted to the
safe region defined in Section 3.2. We generated only one million such

1Available via http://www.netlib.org/fn/

Table II. Comparison of Theoretical and Observed Relative Error Bounds for the Single-
Precision Sun Fortran 77 (version SC3.0.1) Implementations of the Complex Function

Programs of Sections 3 and 4, in Units of Single Precision E

Theoretical Bound Observed Observed at this
Function Based on Table I Bound Argument (in hex)

CARCSIN 9.488 4.982 3b04cc93 1 i3c80f0b7
CARCCOS 9.488 5.273 3fc68f6b 1 i3a006e09

330 • T. E. Hull et al.

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

numbers. As expected, no unsuccessful results were counted; but the
overall relative error bound did not change significantly. We repeated the
test again in what should be a “very safe” region with a million random
numbers restricted to the square in which 2210 # x, y , 210. Again no
unsuccessful results were counted, but the maximum observed error was
only 43.59E. These results are shown in the third line of Table IV. The
corresponding results for Fullerton’s CACOS are shown in the fourth line.
(The maximum error for CACOS in the “very safe” region is considerably
smaller than for CASIN. This is because CACOS is based on the formula
arccos~z! [p / 2 2arcsin~z!, and p / 2 dominates arcsin~z! when the
latter experiences its largest error.)

The corresponding results for our CARCSIN and CARCCOS programs
are shown in the first two lines of Table IV. And the last column shows the
times taken for one million random numbers in the safe region. To make
the timing comparisons fair, we made those runs separately from the ones
used to determine the maximum errors; we also removed the library
support routines from Fullerton’s programs which would otherwise have
increased overhead time not present in our programs. However we did not
remove provision for the handler from our programs, since the handler is a
necessary part of those programs.

The results are summarized in Table IV. They show that our programs
are both accurate and efficient. Even when the region is severely restricted
so that Fullerton’s programs are reasonably reliable, ours are both consid-
erably more accurate.

6. WHAT IF THE EXPONENT RANGE IS TOO NARROW?

In developing Case (3) of the main handler for the CARCSIN function
(Figure 4), the expressions for a, b, a 2 1, and 1 2 b were very much
simplified because x 5 1. However, x can be Þ 1 in Case (3) for “bad”
machines, and we must proceed more carefully.

We have

r ' x 1 1

and

s 5 ?x 2 1?Î1 1 ~y / ~x 2 1!!2.

Table III. Observed Relative Error Bounds for the Double-Precision Sun Fortran 77 (version
SC3.0.1) Implementations of the Complex Function Programs of Sections 3 and 4, in Units of

Double Precision E

Observed Observed at this
Function Bound Argument (in hex)

CARCSIN 4.813 3fe05586534aa5bb 1 i3eac11599418af5b
CARCCOS 4.554 3ff93adf91f6645d 1 i3fbf643281bf9cc7

Implementing the Complex Arcsine and Arccosine Functions • 331

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

There is no possibility of overflow or underflow if s is evaluated in this
form, since y , 4 Îu and ~x 2 1!2 $ E2 (rounding arithmetic) or
E2/4 (chopping arithmetic). Here ~ y / ~x 2 1!!2 is so small that

a ' 0.5~x 1 1 1 s! ' H 1, x , 1,
x, x . 1,

and

b 5 x / a ' H x, x , 1,
1, x . 1.

Both a and b are near 1, so we will need to use the arctan function to
compute the real part of arcsin~z! and the log1p function to compute its
imaginary part.

For x , 1, we obtain

a 2 x ' 0.5~s 1 ~1 2 x!!

and

a 1 x ' 1 1 x,

and the real part is approximately

arctan~x / Î0.5~1 1 x!~s 1 ~1 2 x!!!.

For the imaginary part, we note that

a 2 1 ' 0.25y2~1 / ~x 1 1! 1 2 / ~s 1 ~1 2 x!!!,

a 1 1 ' 2,

Table IV. Comparisons of Our Single-Precision CARCSIN and CARCCOS Programs with
Fullerton’s CASIN and CACOS Programs (observed maximum errors are in units of E; times

are in seconds)

900 Million
Successful Runs 1 Million Successful Runs

Programs
Number Not
Successful

Observed Max
Errors Entire

Quadrant

Number
Not

Successful

Observed Max
Errors Safe

Region

Observed
Max Errors
Very Safe

Region

Timing in
a Safe
Region

CARCSIN 0 4.982 0 3.657 4.534 14.5
CARCOS 0 5.273 0 3.736 4.047 12.9
CASIN 1.336 3 108 3.355 3 107 0 3.353 3 107 43.59 24.7
CACOS 1.336 3 108 3.355 3 107 0 3.355 3 107 18.44 26.4

332 • T. E. Hull et al.

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

and

Îa 2 1 ' 0.5yÎ1 / ~x 1 1! 1 2 / ~s 1 ~1 2 x!!.

The imaginary part is

log1p~Îa 2 1~Îa 2 1 1 Î2!!.

This expression cannot suffer intermediate underflow.
Similarly, for x . 1, we obtain

a 2 x ' 0.25y2~1 / ~x 1 1! 1 2 / ~s 1 ~x 2 1!!!

and

a 1 x ' 2x,

so the real part is approximately

arctan~x / ~yÎx / ~2~x 1 1!! 1 x / ~s 1 ~x 2 1!!!!.

For the imaginary part we note that

a 2 1 5 am1 ' 0.5~s 1 ~x 2 1!!

and

a 1 1 ' ~1 1 x!,

and the imaginary part is log1p~am1 1 Îam1~1 1 x!!.
As a result the elsif clause for Case (3) in the handler of Figure 4 for

CARCSIN should be replaced by what is shown in Figure 7, whereas the
corresponding clause in Figure 6 for the CARCCOS function should be
replaced by what is shown in Figure 8.

7. CONCLUDING REMARKS

We have presented algorithms for calculating approximations to the com-
plex arcsine and arccosine functions, along with theoretical error bounds.
Our implementations of these algorithms provide an approximation to
within a relative error of less than 9.5E for every machine-representable
point in the complex plane. The results of extensive testing help to confirm
the correctness of the error bounds, and also show that the bounds are
quite tight. We hope to publish a sequel to this article for the complex
arctangent function.

Our algorithms have been expressed using an exception-handling facility
which we have found to be very convenient and efficient. For each function
there is a fast way of calculating an accurate result which works most of
the time, so the handler needs to take over only in those cases, rare in

Implementing the Complex Arcsine and Arccosine Functions • 333

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

practice, when the fast way produces a spurious overflow or underflow. It is
to be hoped that convenient exception-handling facilities will become more
widely available than they are at present. (ADA [Intermetrics 1994] comes
close, but it does not recognize underflow. A similar system has been
proposed for Fortran [IFIP Working Group 2.5 1993].) In the meantime it is
possible to adapt our programs to work in environments without exception-
handling facilities. Essentially what needs to be done is to first check the
argument of the function to see if it lies within a safe region and, if it does,
calculate as in the enable block, but otherwise calculate as in the handler;
the exception handling within the main handler itself has to be imple-

Fig. 7. For “bad” machines, the elsif clause for Case (3) of the handler of Figure 4 should be
replaced by what is shown here. The real constant Sqrt2 should be declared and appropriately
initialized. The real variable SqrtAm1 also needs to be declared.

Fig. 8. For “bad” machines, the elsif clause for Case (3) of the handler of Figure 6 should be
replaced by what is shown here. The real constant Sqrt2 should be declared and appropriately
initialized. The real variable SqrtAm1 also needs to be declared.

334 • T. E. Hull et al.

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

mented by pretesting the arguments in appropriate places to determine
whether or not exceptions can occur.

Finally, we should acknowledge that we have made no special provision
for input and/or output of complex numbers with denormalized compo-
nents, or other components specified in the IEEE standard. Much more
would have to be done to make provision for all such possibilities. Some
possibilities involving denormalized numbers might be handled relatively
easily (although the convenience of tight relative error bounds could be
lost), but in general there is a major difficulty in that there is not even a
consensus about what specifications should be adopted, especially in cases
involving 6`, or in distinguishing between 10 and 20 [Tydeman 1992].

ACKNOWLEDGMENTS

We wish to thank P. G. Rooney for helpful discussions during the prepara-
tion of this article, and Fred Tydeman for reading an earlier version and
making many useful suggestions. We thank Vicky Shum for her assistance
with the typesetting of the article. A referee’s careful comments helped us
clarify the presentation.

REFERENCES

ABRAMOWITZ, M. AND STEGUN, I. 1972. Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. Applied Mathematics Series, vol. 55. 10th printing.
National Bureau of Standards, Washington, D.C.

ANSI. 1978. American National Standard programming language FORTRAN: ANSI X3.9-
1978. American National Standards Institute, New York, NY.

CHURCHILL, R. V., BROWN, J. W., AND VERHEY, R. F. 1974. Complex Variables and
Applications. 3rd ed. McGraw-Hill, Inc., New York, NY.

CODY, W. J. 1988. Algorithm 665: MACHAR: A subroutine to dynamically determine
machine parameters. ACM Trans. Math. Softw. 14, 4 (Dec.), 303–311.

HULL, T. E., FAIRGRIEVE, T. F., AND TANG, P. T. P. 1994a. Implementing complex elementary
functions using exception handling. ACM Trans. Math. Softw. 20, 2 (June), 215–244.

HULL, T. E., FAIRGRIEVE, T. F., AND TANG, P. T. P. 1994b. Corrigenda: Implementing
complex elementary functions using exception handling. ACM Trans. Math. Softw. 20, 4
(Dec.).

IEEE. 1985. ANSI/IEEE standard for binary floating point arithmetic: Standard 754-
1985. IEEE Press, Piscataway, NJ.

IFIP WORKING GROUP 2.5. 1993. The enable construct for exception handling in Fortran
90. SIGNUM Newsl. 28, 4 (Oct.), 7–16.

INTERMETRICS. 1994. Ada 9X reference manual. Intermetrics, Inc., Burlington, MA.
SUN MICROSYSTEMS. 1991. Numerical computations guide: Part number 800-5277-10, Revi-

sion A. Sun Microsystems, Incorporated, Mountain View, CA.
TYDEMAN, F. J. 1992. Merging complex and IEEE-754. Rep. 92-061 of ANSI X3J11.1

(NCEG). American National Standards Institute, New York, NY.

Received: January 1996; revised: February 1997; accepted: February 1997

Implementing the Complex Arcsine and Arccosine Functions • 335

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

