
Generating Box-Constrained Optimization
Problems

FRANCISCO FACCHINEI
Università di Roma “La Sapienza”
and
JOAQUIM JÚDICE and JOÃO SOARES
Universidade de Coimbra

We present a method for generating box-constrained nonlinear programming test problems.
The technique allows the user to control some properties of the generated test problems that
are known to influence the behavior of algorithms for their solution. A corresponding set of
Fortran 77 routines is described in a companion algorithm (774).

Categories and Subject Descriptors: G.1.6 [Numerical Analysis]: Optimization; G.4 [Mathe-
matics of Computing]: Mathematical Software—certification and testing; verification

General Terms: Algorithms, Performance, Verification

Additional Key Words and Phrases: Nonlinear programming test problems, optimization, test
problems generation

1. INTRODUCTION
We consider box-constrained optimization problems of the form

min
x{K

f ~x!, (1)

where

K 5 $x { Rn : li # xi # ui, i 5 1, . . . , n%. (2)

We allow the bounds to be finite or infinite and assume that f : Rn 3 R is
twice continuously differentiable in an open set containing K. In particular,
if all the bounds are infinite then Problem (1) reduces to an unconstrained
optimization problem.

Authors’ addresses: F. Facchinei, Dipartimento di Informatica e Sistemistica, Università di
Roma “La Sapienza”, Rome, Italy; J. Júdice and J. Soares, Departamento de Matemática,
Universidade de Coimbra, Coimbra, 3000, Portugal.
Permission to make digital /hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1997 ACM 0098-3500/97/0900–0443 $5.00

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997, Pages 443–447.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F275323.275331&domain=pdf&date_stamp=1997-09-01

Box-constrained problems are probably the simplest kind of constrained
nonlinear programming problems, and they often arise in practice. Actu-
ally, most “unconstrained” problems encountered in applications are only
meaningful if the variables belong to some prefixed range of values and
should therefore be considered as box-constrained problems.
It is well accepted that the best way to assess the practical efficiency of

an algorithm to solve Problem (1) and its robustness is to test it at least on
a large set of test problems with different characteristics. Unfortunately,
such a set of test problems does not yet exist, especially if one considers
large-scale problems. For example, even in the huge collection CUTE
[Bongartz et al. 1995], there are only eight nonlinear (and nonquadratic)
box-constrained problems with more than 500 variables. Furthermore, it is
often difficult to know the characteristics of available test problems. On the
contrary, there exists a great number of test problems for unconstrained
optimization (see, for example, Averick et al. [1992], Bongartz et al. [1995],
Brown and Bartholomew-Biggs [1989], Hock and Schittkowski [1981], Moré
[1981], and Nash and Nocedal [1991]) whose characteristics are fairly well
understood. Thus, it seems natural to use these unconstrained test prob-
lems to generate, in a simple way, box-constrained test problems. Further-
more, one would like to be able to control as many factors as possible
among those which are known to affect the performance of box-constrained
optimization codes (e.g., number of constraints, shape of the box, number of
active constraints at the solution, degeneracy).
Existing generating techniques [Bartels and Mahdavi-Amiri 1986;

Lootsma 1985; Rosen and Suzuki 1965; Schittkowski 1980; 1992] aim at
generating general constrained optimization problems. Again, all the rele-
vant characteristics can be user controlled. However, it is not clear if they
are well suited for large-scale problems, and they have never been used to
test box-constrained optimization algorithms, possibly because of the lack
of available software.
In this work we present a simple method that can be used to generate

box-constrained test problems with known characteristics by suitably mod-
ifying a given unconstrained problem. A corresponding set of Fortran 77
routines is described in a companion algorithm (774).

2. THE GENERATION TECHNIQUE

A vector x# { K is said to be a stationary point for Problem (1) if it satisfies

5 li 5 x# i f ¹ fi~x#! $ 0
li , x# i , ui f ¹ fi~x#! 5 0
x# i 5 ui f ¹ fi~x#! # 0,

6 (3)

where ¹ f~x! is the gradient vector of f at x. Every local, or global,
minimum point of Problem (1) is a stationary point. Our aim in this section
is to describe a simple method to build a box-constrained problem, with a

444 • Francisco Facchinei et al.

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

known local minimum point and characteristics, starting from a given
unconstrained problem

min
x{R

n

g~x!, (4)

where g is a twice continuously differentiable function.
Let x# be a local minimum of this unconstrained problem. The box-

constrained problem we will generate has the same solution x# . We start by
choosing an arbitrary partition of the set of indices $1, . . . , n% into three
subsets L, F, and U. The generated problem will be such that x# i 5 li for
i { L, li , x# , ui, for i { F, and x# i 5 ui for i { U, so that F, L, and
U are the sets of indices of the variables that are free, at a lower bound and
at an upper bound at x# , respectively.
To achieve this, we choose the vectors l and u to satisfy the following

relationships

lL 5 x#L , uL

lF , x#F , uF (5)

lU , x#U 5 uU,

where the subscript is meant to identify the corresponding components. We
assume that if some component of uL or uF is equal to 1`, the correspond-
ing variable has no upper bound, while if some component of lU or lF is
equal to 2`, the corresponding variable has no lower bound.
Now consider the objective function

f ~x! 5 g~x! 1 O
i{L
hi~xi! 2 O

i{U
hi~xi!, (6)

where hi : R 3 R, i { L ø U, are twice continuously differentiable non-
decreasing functions. The gradient of f is given by

¹ fi~x! 5 5 ¹ gi~x! 1 h9i~xi! if i { L
¹ gi~x! if i { F, i 5 1, . . . n
¹ gi~x! 2 h9i~xi! if i { U

(7)

where h9 i indicates the first derivative of hi. Since the functions hi, i { L
ø U, are nondecreasing, it follows from (5) and (6) that x# is a local
minimum of the box-constrained optimization problem

min
l#x#u

f ~x!. (8)

If x# is just a stationary point of (4), since h9 i~x# ! $ 0 for i { L ø U, then
x# is a stationary point of problem (8) as well.

Generating Box-Constrained Optimization Problems • 445

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

Thus, we have generated a box-constrained problem with the same
solution as the underlying unconstrained problem. By suitably choosing the
sets L, F, and U we can control the number of active bounds at x# and
decide exactly which variables are at their lower bounds, which are at their
upper bounds, and which are free at x# . The choice of the vectors l and u
determines the total number of constraints of the problem and the “shape”
of the feasible region. The Lagrange multipliers associated with the con-
straints lL # xL and xU # uU are h9 i~x# i! for i { L ø U, while the
remaining multipliers are 0. Hence, by suitably choosing hi (see below), we
also have complete control over the degeneracy of problem (8) at x# .
Furthermore, it is important to note that the Hessian of f will differ from
that of g in at most the diagonal elements, so that any sparsity pattern of
the Hessian of g is maintained in the Hessian of f.
Note that all these features are known to influence the behavior of

algorithms for the solution of Problem (1).
Examples of possible choices for the functions hi are

(1) b i~xi 2 x# i!,

(2) a i~xi 2 x# i!3 1 b i~xi 2 x# i!,

(3) a i~xi 2 x# i!7/3 1 b i~xi 2 x# i!,

where a i, b i are nonnegative constants. We note that h9 i~x# i! 5 b i with all
these three choices, so that the values of the multipliers are easily
assigned. Furthermore, the Hessian of f at x# is the same as that of g. This
latter property is significant because the Hessian of f at x# will determine,
to a large extent, the “second-order” characteristics of the problem, which
therefore are inherited from those of g. To be more precise, what really
matters is the projection of the Hessian of f onto the subspace of free
variables (those indexed by F), which is also user established.
Choice (1) implies that the Hessian of f is actually the same as that of

g at every point. This choice seems particularly suitable when the function
g is quadratic, since in this case the generated box-constrained problem
will remain quadratic. Choice (3) is interesting because it will make f no
more than twice continuously differentiable, while choice (2) can be re-
garded as a standard, average choice.
In general, we cannot guarantee that the problems generated by this

technique have no stationary points other than x# . This can be assured if f is
strictly convex—for example, if g is strictly convex—and the functions hi

are convex for i { L and concave for i { U on K, which is the case for all
three hi considered above.

3. CONCLUSIONS

We have presented a new, simple technique for generating box-constrained
minimization problems. The generated problem is built from a given

446 • Francisco Facchinei et al.

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

unconstrained problem with a known solution point. The box-constrained
problem obtained has the same solution point as that of the underlying
unconstrained problem. Furthermore, the sparsity pattern of the uncon-
strained problem is also preserved. The number and position of the con-
straints and of the active constraints, the Lagrange multipliers, and the
shape of the feasible region can be easily controlled.
We hope that the simplicity of our approach and the availability of

corresponding software [Facchinei et al. 1997] will encourage researchers
to employ the generation technique described here to test codes for box-
constrained optimization.

REFERENCES

AVERICK, B., CARTER, R., MORÉ, J., AND XUE, G.-L. 1992. The MINPACK-2 test problem
collection. Rep. MCS-p153-0692, Argonne National Laboratory, Argonne, IL.

BARTELS, R. H AND MAHDAVI AMIRI, N. 1986. On generating test problems for nonlinear
programming algorithms. SIAM J. Sci. Stat. Comput. 7, 3 (July), 769–798.

BONGARTZ, I., CONN, A. R., GOULD, N., AND TOINT, PH. L. 1995. CUTE: Constrained and
unconstrained testing environment. ACM Trans. Math. Softw. 21, 1 (Mar.), 123–160.

BROWN, A. A. AND BARTHOLOMEW-BIGGS, M. C. 1988. Some effective methods for uncon-
strained optimization based on the solution of systems of ordinary differential equa-
tions. J. Optim. Theory Appl. 62, 2 (Aug. 1989), 211–224.

FACCHINEI, F., JÚDICE, J., AND SOARES, J. 1997. Algorithm 774: Fortran subroutines for
generating box-constrained optimization problems. ACM Trans. Math. Softw. 23, 3 (Sept.).
This issue.

HOCK, W. AND SCHITTKOWSKI, K. 1981. Test Examples for Nonlinear Programming Codes.
Springer Lecture Notes in Economics and Mathematical Systems, vol. 187. Springer-Verlag
New York, Inc., New York, NY.

LOOTSMA, F. 1985. Comparative performance evaluation, experimental design and genera-
tion of test problems in nonlinear optimization. In Proceedings of the NATO Advanced
Study Institute (Bad Windsheim, July 23-Aug. 2, 1984), K. Schittkowski, Ed. Springer-
Verlag New York, Inc., New York, NY, 249–260.

GARBOW, B. S., HILLSTROM, K. E., AND MORÉ, J. J. 1981. Testing unconstrained optimization
software. ACM Trans. Math. Softw. 7, 1, 17–41.

NASH, S. AND NOCEDAL, J. 1991. A numerical study of the limited memory BFGS method
and the truncated-Newton method for large scale optimization. SIAM J. Optim. 1, 3 (Aug.),
358–372.

ROSEN, J. AND SUZUKI, S. 1965. Construction of nonlinear programming test problems.
Commun. ACM 8, 2.

SCHITTKOWSKI, K. 1980. Nonlinear Programming Codes: Information, Tests, Performance.
Springer Lecture Notes in Economics and Mathematical Systems, vol. 183. Springer-Verlag,
Berlin, Germany.

SCHITTKOWSKI, K. 1992. Randomly Generated Nonlinear Programming Test Problems.
Springer Lecture Notes in Control and Information Sciences, vol. 187. Springer-Verlag,
Berlin, Germany.

Received: September 1995; revised: October 1996; accepted: February 1997

Generating Box-Constrained Optimization Problems • 447

ACM Transactions on Mathematical Software, Vol. 23, No. 3, September 1997.

