
THE LOCAL UNIVERSES MODEL:
AN OVERLOOKED COHERENCE CONSTRUCTION

FOR DEPENDENT TYPE THEORIES

PETER LEFANU LUMSDAINE AND MICHAEL A. WARREN

Abstract. We present a new coherence theorem for comprehension categories,
providing strict models of dependent type theory with all standard construc-
tors, including dependent products, dependent sums, identity types, and other
inductive types.

Precisely, we take as input a “weak model”: a comprehension category,
equipped with structure corresponding to the desired logical constructions.
We assume throughout that the base category is close to locally Cartesian
closed: speciVcally, that products and certain exponentials exist. Beyond this,
we require only that the logical structure should be weakly stable—a pure
existence statement, not involving any speciVc choice of structure, weaker
than standard categorical Beck–Chevalley conditions, and holding in the now
standard homotopy-theoretic models of type theory.

Given such a comprehension category, we construct an equivalent split
one, whose logical structure is strictly stable under reindexing. This yields an
interpretation of type theory with the chosen constructors.

The model is adapted from Voevodsky’s use of universes for coherence, and
at the level of Vbrations is a classical construction of Giraud. It may be viewed
in terms of local universes or delayed substitutions.

Contents

1. Introduction 2
2. Setting 5
2.1. Comprehension categories 5
2.2. Split replacements 8
2.3. Stability conditions 9
2.4. Lifting logical structure 12
3. The local universes model 13
3.1. The comprehension category C! 13
3.2. Template for structure on C! 16
3.3. Manipulating local universes 17
3.4. Logical structure on C! 18
4. Further notes 31
4.1. Generalization to other rules 31
4.2. Applications 33
References 35

Date: April 7, 2015.
During the preparation of this paper, Lumsdaine was supported by NSF grant DMS-1128155 and

the Fondation Sciences Mathématiques de Paris.
Warren was supported by the Oswald Veblen fund and NSF grant DMS-0635607.

1

ar
X

iv
:1

41
1.

17
36

v2
 [

m
at

h.
L

O
]

 6
 A

pr
 2

01
5

2 P. LEF. LUMSDAINE AND M. A. WARREN

1. Introduction

Constructing interpretations of dependent type theory from scratch is a labo-
rious, bureaucratic, and error-prone task. Various algebraic axiomatizations of
such models (contextual categories and their relatives) abstract away many of the
technicalities, allowing constructions of models to concentrate, for the most part,
on their real substance—the logical constructions which genuinely constitute the
model.

One issue remains, however, which feels like it ought to be another mere
technicality, but which has not been so successfully abstracted away: the so-
called coherence problem. In most concrete models, it is not hard to resolve
directly, by more or less ad hoc methods. In a few, however (notably, Voevodsky’s
simplicial model [KLV12] and similar homotopy-theoretic models), it is much less
straightforward to deal with. It has also proven problematic for more abstract
theorems on model existence, in for instance the weak factorization system models
of [AW09].

The most powerful coherence result to date is that of Hofmann [Hof95], which
provides coherence for a wide range of models. However, it does not apply to
the homotopy-theoretic models mentioned above. The present paper gives a new
coherence construction, with slightly diUerent hypotheses from Hofmann’s, ap-
plying in particular to a wide range of homotopy-theoretic models of intensional
type theory.

SpeciVcally, the present work arose from a careful reading of Voevodsky’s
model in simplicial sets [Voe11, KLV12]. Universes are used there for two distinct
purposes: Vrstly to obtain coherence of the model; and secondly to become type-
theoretic universes within the model. It turned out that not only may the two
aspects be entirely disentangled, but moreover, the coherence construction may
be modiVed to work without a universe.

The precise sense of coherence in question is that substitution/pullback should
be strictly functorial, and should strictly preserve all the logical structure under
consideration. This holds in the syntax of type theory; so it must hold in any
direct model of the theory.

However, categorically such strictness is rather unnatural, involving on-the-
nose equality of objects, and rarely arises automatically in nature. We of course
expect to Vnd some kind of stability—some preservation of logical structure under
pullback, such as stability up to isomorphism, or similar—and expect this to be
necessary for modelling the type theory. So the outstanding question is: what is
some good notion of stability, categorically natural and satisVed in as many of the
known models as possible, but strong enough that structures satisfying it can be
transformed into ones with strictly stable logical structure?

We investigate this within the framework of comprehension categories [Jac93]
(one of the many algebraic approaches to modelling type theory). Roughly, a
comprehension category consists of a Vbration of categories, encoding the con-
texts, types, and terms of the theory, together with further algebraic structure

THE LOCAL UNIVERSES MODEL 3

implementing the logical rules. Direct models of syntax are given by split compre-
hension categories with strictly stable logical structure.

The coherence construction we consider, transforming weak models into strict,
is at the level of underlying Vbrations a classical one, due to Giraud [Gir65, I, 2.4.3].
Given a comprehension category C, we replace it with an equivalent split one C!,
in which the objects/contexts are as in C, but where a type A over Γ consists of
another object VA ∈ C, together with a type EA over VA in the sense of C, and a
map ⌜A⌝ : Γ VA.

One may view this as a “delayed substitution”, i.e. as a surrogate for the pullback
[A] := EA[⌜A⌝], and see the pair (VA, EA) as a “local universe”—some family of
types, not necessarily terribly large or satisfying any closure conditions, from
which the map ⌜A⌝ : Γ VA then picks out the types that actually occur in [A].

Γ VA.

EA

⌜A⌝

Given a universe (V,E) (not merely a set, but itself an object of C), closed under
operations corresponding to the logical constructors, one can simply restrict to
the case where (VA, EA) is (V,E), so that types are just maps into V . Logical
constructions are then modelled by composing these maps with the appropriate
operations on V . This is Voevodsky’s approach in [KLV12, §1], also previously
considered by Hofmann and Streicher [HS9?].

In the absence of such a universe, however, one can implement logical construc-
tions by allowing the local universes to vary.

For instance, suppose we are given types A and B, and wish to construct their
sum A+B. We do not expect that either of the families EA VA, EB VB
will include the sum types we need. However, the product VA × VB can be used
to parametrize all possible sums of a type from VA and a type from VB . So we
take this as the new local universe VA+B , together with the family of such sums
EA[π1] + EB[π2] over it (a sum type over VA+B) as EA+B . Then for ⌜A+B⌝ we
take (⌜A⌝, ⌜B⌝) : Γ VA+B , picking out the speciVc sums required.

Substitution in C! corresponds to precomposition with ⌜A⌝, happening entirely
to the left of Γ; and logical constructions are implemented entirely in terms of the
local universes EA VA, all on the right of Γ. There is no interference between
these operations, so strict stability is obtained.

The stability conditions on C required to make this work then turn out to be
quite weak, and quite categorically natural. Suppose we are considering a type-
constructor, widgets, deVned by some universal property. Then what we need to
assume is that C has widgets whose pullbacks are again widgets—call such things
weakly stable widgets. Given these, widgets in C! may be implemented by choosing
weakly stable widgets over the local universes, secure in the knowledge that
pulled back to the actual contexts involved, they will have the required universal

4 P. LEF. LUMSDAINE AND M. A. WARREN

property. So, typically, if C has weakly stable widgets, then C! will have strictly
stable widgets.

In case the universal property is strong enough to determine widgets up to
isomorphism, weak stability is equivalent to a standard Beck-Chevalley condition;
but of course, connectives in intensional type theory are often deVned by rather
weaker properties.

Note also that this stability condition is simply a matter of existence, and does
not depend on any speciVc choices of structure in C.

One more ambient hypothesis is required, for the manipulation of local uni-
verses (for instance, the use of VA × VB above): we will require some products
and exponentials, in the categorical sense (stronger than the type-theoretic sense),
to exist in C.

Our main theorem is therefore:

Theorem. Let C be a full comprehension category, whose underlying category has
(a) Vnite products, and (b) exponentials along display maps into display maps and
product projections (condition (LF) below).

Then there is an equivalent full split comprehension category C!; and if C has
weakly stable binary sums (resp. Π-types, Σ-types, identity types, W-types, . . .), then
C! has strictly stable binary sums (Π-types, . . .), and hence models the syntax of type
theory with binary sums (Π-types, . . .).

The paper is organized as follows.
First, in Section 2, we survey some background: the general setting of com-

prehension categories, some existing split replacement constructions, a range
of stability conditions for logical structure, and existing results on when such
structure lifts to split replacements.

In Section 3, we give our main construction, in several stages. We Vrst set
up the “local universes” split replacement C!, and roughly preview how logical
structure will lift to it. With this as motivation, we set up some technical tools
for manipulating universes. Equipped with these, we are then ready for the full
details of the construction. In Section 3.4, we set out for each logical constructor
in turn the precise statement and construction of its lifting to C!. Taken together,
these constitute the main theorem.

Finally, in Section 4, we discuss how the construction may be generalized to
further logical constructors, and conclude by listing some applications.

Acknowledgements. During the rather protracted preparation of this paper, the
authors have beneVted from the support of several institutions: the excellently
supportive department at Dalhousie University, Halifax; the perhaps distractingly
stimulating special year on Univalent Foundations at the Institute for Advanced
Study, Princeton; and, most recently, the special trimester on Proofs and Pro-
grammes at the Institut Henri Poincaré, Paris.

We are also especially indebted to Pierre-Louis Curien, Thomas Streicher,
Martin Hofmann, Steve Awodey, Mike Shulman, and Vladimir Voevodsky for
detailed and useful discussions on the present work.

THE LOCAL UNIVERSES MODEL 5

2. Setting

2.1. Comprehension categories. We present models of type theory via the
formalism of comprehension categories. We recall here the key points of this
approach; for more detailed background, see [Jac93].

DeVnition 2.1.1. A comprehension category consists of a category C together with
a (cloven) Grothendieck Vbration P : T C and a functor χ : T C→ (the
comprehension), sending cartesian arrows to pullback squares, and such that

T

C

C→
χ

P cod

commutes (strictly). We say that a comprehension category is split if P is a split
Vbration, and full if χ is full and faithful.

In the present work (as in much of the literature), all comprehension categories
are taken to be full.

Split comprehension categories are models of an essentially algebraic theory, so
carry an evident notion of homomorphism, forming a category SplCompCat.
Restricting to some Vxed base category C (and morphisms acting as the identity
on C) yields a subcategory SplCompCat(C).

Morphisms of non-split comprehension categories are subtler. For the present
paper, we take such a morphism to consist of a functor F : C′ C of base
categories, and a cartesian functor F̄ : T ′ T , strictly over F , and commuting
strictly with the comprehension functors. We writeCompCat for the resulting
category; and, again,CompCat(C) for the category of comprehension categories
on a Vxed base C.

(The strict commutation with comprehension is, for many purposes, rather
unnatural. We take it here just for simplicity, since we make little use of morphisms
of general comprehension categories.)

(For readers more familiar with other algebraic approaches, note that full split
comprehension categories are precisely equivalent to categories with attributes,
categories with families, type-categories, and the like; contextual categories are
also closely comparable to all of these, but not quite equivalent.)

Example 2.1.2. The canonical example is given by the syntax of type theory
itself.

Take T to be any type theory with the judgement forms and structural rules
of Martin-Löf type theory. Write CT for the category of contexts of T: objects
are the contexts of T, and arrows are substitutions between contexts, all up to
judgemental equality. Over this, take TT to be the category of types-in-context
of T, with p : TT CT sending a type-in-context to its context; so the Vber
TT(Γ) is the category of types over Γ. Reindexing is given by substitution in
types; since this is strictly functorial, it makes p into a split Vbration. Finally,

6 P. LEF. LUMSDAINE AND M. A. WARREN

the comprehension operation sends a type-in-context Γ ` A to the context
extension Γ, x:A together with its dependent projection πΓ,A : (Γ, x:A) Γ.

Together, these form a (full) split comprehension category CT.

This example motivates much of the terminology and notation for general
comprehension categories (C, T , p, χ).

The objects of the base category C are thought of as contexts; and given such an
object Γ, we consider objects of the Vber T (Γ) as types over Γ.

Given a type A ∈ T (Γ), its comprehension χ(A) is an arrow with codomain Γ.
We denote the domain of χ(A) by Γ.A; it may be seen as the context extension of
Γ by some new variable of type A, with χ(A) the resulting dependent projection:

Γ.A

Γ.

χ(A)

We refer to composites of such maps as display maps.
Next, given a map σ : ∆ Γ (which we think of as a context morphism,

or substitution) and an object A of T (Γ), we write σA : A[σ] Γ for the lift
provided by the cleaving of the Vbration P . Diagrammatically:

∆ Γ

AA[σ] T

C.
σ

P

σA

The type A[σ] may be seen as the result of applying the substitution σ to A.
Following our notation for context extensions, we denote the comprehension
χ(σA) by σ.A : ∆.A[σ] Γ.A.

Given our standing assumption of fullness, we will also sometimes silently
conWate maps in Vbers of T with maps in slices of C.

In syntactic categories CT, terms of a typeA in context Γ correspond to sections
t : Γ Γ.A of the dependent projection Γ.A; such sections occur frequently
when working with comprehension categories. We will therefore often write
just “a section” to mean “a section of a dependent projection”, unless speciVed
otherwise.

Γ.A

Γ

Γ

a

1Γ

χ(A)

Finally, for a map σ : ∆ Γ, we extend the reindexing notation A[σ] in
several ways. Most straightforwardly, it denotes the reindexing functor T (Γ)

THE LOCAL UNIVERSES MODEL 7

T (∆), with action on objects provided by the cleaving of T . More generally, given
a map f : A B in T (Γ), and any speciVed reindexings A′, B′ of A and B
(precisely, cartesian lifts σA : A′ A, σB : B′ B of σ), we write f [σ] for
the induced map A′ → B′ in T (∆). Finally, we write (−)[σ] also for the induced
pullback functor C//Γ C//∆, where C//Γ denotes the full subcategory of C/Γ
with just display maps as objects.

All the above notation and terminology suggests that the syntactic comprehen-
sion categories CT may be seen as typical. This is indeed the case; speciVcally,
they turn out to enjoy certain universal properties, arguably the raison d’être of
comprehension categories.

Starting with T∅, the theory given by just the structural rules, one has:

Proposition 2.1.3 (Cartmell [Car86, §15]). CT∅ is the initial split comprehension
category.

In other words, any split comprehension category C admits a canonical map
[[−]] : CT∅ C; that is, an interpretation of the syntax of T∅ in C. This justiVes
taking split comprehension categories as a deVnition of models of T∅.

Extending this correspondence to less trivial type theories, one considers com-
prehension categories with extra structure. Take, for instance, the theory T⊗
given by the structural rules together with a single type-forming rule:

Γ ` A type Γ ` B type

Γ ` A⊗B type

Say that (strictly stable) ⊗-structure on a comprehension category C consists
of an operation giving, for any objects Γ ∈ C and A,B ∈ T (Γ), an object
A ⊗Γ B ∈ T (Γ), strictly stable under reindexing, i.e. such that for any such
Γ, A,B and map σ : Γ′ Γ, we have (A⊗Γ B)[σ] = A[σ]⊗Γ′ B[σ]. Then CT⊗
carries an evident ⊗-structure (with its strict stability arising inevitably from the
inductive deVnition of substitution, (A⊗B)[σ] := A[σ]⊗B[σ]); and indeed, we
have:

Proposition 2.1.4. The syntactic category CT⊗ is initial in the category of split
comprehension categories with ⊗-structure, and functors strictly preserving the
comprehension functor and ⊗-structure.

In other words, any split comprehension category C with strictly stable ⊗-
structure carries a canonical interpretation [[−]] : CT⊗ C of the syntax of T⊗.
This justiVes once again taking such comprehension categories as an algebraic
deVnition of models of T⊗.

Similarly, this correspondence extends to all the other usual constructors and
rules. Each new constructor corresponds to an extra operation, and each new
judgemental equality rule to an algebraic axiom. The syntactic category CT is
then initial among split comprehension categories with the appropriate strictly
stable structure. See [Str91, Ch. 3, p. 181] for a detailed treatment of the case of
the Calculus of Constructions.

8 P. LEF. LUMSDAINE AND M. A. WARREN

The task of modelling type theory thus amounts to the construction of split
comprehension categories with suitable strictly stable algebraic structure.

Unfortunately, many constructions of models do not directly give this: they
give comprehension categories with the appropriate algebraic structure, but they
are not split, and the operations are not strictly stable. This occurs particularly in
abstract categorical constructions, such as the model of extensional type theory
(ETT) in an arbitrary LCCC [See84, Hof95], or of intensional type theory (ITT)
using a suitable weak factorization system [AW09]. In such models, T (Γ) usually
consists of all maps into Γ satisfying some property, or carrying some extra
structure. Reindexing is then given by pullback; but this is deVned only up to
canonical isomorphism, and so is only functorial up to isomorphism, not on the
nose. By the same token, the logical operations are typically characterized at most
up to canonical isomorphism (and in some homotopy-theoretic models, only up to
homotopy equivalence), and so are not automatically strictly stable.

In concrete models, a solution can often be found: an equivalent comprehension
category, split, and with some strictly stable choice of structure. For the model in
Sets, for instance, one takes T (Γ) not as Sets/Γ, but as the equivalent category
SetsΓ. Related solutions exist for the (higher) groupoid models [HS98, War08,
War11], presheaf models of ETT, and various other concrete examples.

However, for general categorical constructions, and some homotopy-theoretic
models (e.g. SSets), the problem remains: when can one replace a comprehension
category, carrying some kind of logical structure, by an equivalent split one with
strictly stable structure? This is the coherence problem for dependent type theory.

In the remainder of this section, we survey existing results and lay out the
setting for our own, taking the problem in two steps: Vrst the splitness, then the
strict stability.

2.2. Split replacements. The split replacement constructions for Vbrations are
classical, due to Giraud [Gir65, I, 2.4.3] and Bénabou [Str14]. Let Fib(C) denote
the (1-)category of (cloven) Vbrations and cartesian functors (not assumed to
preserve the cleaving) over a Vxed base C, and similarly SplFibcl(C) the category
of split Vbrations over C, with morphisms cloven functors, i.e. preserving the
splitting on the nose. Then the inclusion functor i : SplFibcl(C) Fib(C)
possesses both left and right adjoints:

SplFibcl(C)

Fib(C).

(−)∗(−)! aa

Explicitly, let p : T C be a cloven Vbration. An object of T∗ over Γ ∈ C consists
of an object A of T (Γ), together with for each f : Γ′ Γ some cartesian lifting
f : Af A, such that A1Γ = A, 1Γ = 1A. On the other hand, an object of T!

THE LOCAL UNIVERSES MODEL 9

over Γ consists of objects V ∈ C, E ∈ T (V), and a map f : Γ V (as discussed
in detail in Section 3.1 below).

The unit and counit maps of these adjunctions are not in general isomorphisms.
However, consideringFib(C) as a 2-category (with 2-cells natural transformations
over C), they are equivalences.

In other words, every Vbration over a given base has two canonical split re-
placements.

Moreover, much of this situation lifts from Vbrations to comprehension cate-
gories.

For the right adjoint (−)∗, this is described in [Hof95, CGH14]. Given a com-
prehension category C = (C, T , p, χ), the comprehension χ∗ on T∗ is given by
sending an object-with-chosen-reindexings simply to the comprehension in C of
the object itself.

Similarly, the left adjoint lifts to a functor

(−)! : CompCat(C) SplCompCat(C),

described in full in Section 3.1 below, with the comprehension on T! sendings
an object f : Γ V , A ∈ T (V) to χ(A[f]). This is no longer a left adjoint,
however: the putative unit map (C, T , p, χ) (C, T!, p!, χ!) will strictly preserve
the comprehension just when p is a normal Vbration, i.e. when the cleaving lifts
identity maps to identities.

We retain, however, the fact that the maps C∗ C and C C! are equiva-
lences in suitable 2-categories.

In sum, we Vnd that simply for bare comprehension categories, the coherence
problem is satisfactorily solved: (−)∗ and (−)! provide two ways to replace an
arbitrary comprehension category by an equivalent split one.

2.3. Stability conditions. The real fun starts when one wishes to model a non-
trivial type theory; that is, when one has some logical structure on the original
comprehension category, and wishes to lift it to strictly stable structure on a split
replacement.

It is reasonable to expect that some kind of stability condition will be needed
for the operations of the original category. We set out here a range of possible
such conditions, from stronger ones which will lift more easily, to weaker ones
which are satisVed more often in nature.

We do not give general deVnitions of them, for arbitrary logical operations:
no appropriate generality of operations exists in the literature, and giving one is
beyond the scope of this paper. Instead, we deVne them here in the illustrative
case of identity types; then in Section 3.4 below, we deVne them for other speciVc
type-constructors as we require them.

Fix, for the remainder of this section, a comprehension category C = (C, T , p, χ).

DeVnition 2.3.1. Given objects Γ ∈ C and A ∈ T (Γ), an identity type for A
consists of:

10 P. LEF. LUMSDAINE AND M. A. WARREN

• a type IdA ∈ T (Γ.A.A)1;
• a factorization

Γ.A Γ.A.A.IdA

Γ.A.A

rA

∆

of the diagonal map ∆A : Γ.A Γ.A.A;
• for each C ∈ T (Γ.A.A.IdA) and d : Γ.A Γ.A.A.IdA.C such that the
outer square of

Γ.A

Γ.A.A.IdA Γ.A.A.IdA

Γ.A.A.IdA.C
d

rA

1Γ.A.A.IdA

jA,C,d

commutes, a diagonal Vller jA,C,d : Γ.A.A.IdA C as indicated, making
the resulting triangles commute.

A choice of identity types on C is a function giving, for each appropriate Γ, A in
C, an identity type (IdA, rA, jA) for A.

To give a direct model of syntactic identity types, one requires stability condi-
tions corresponding to the recursive deVnition of syntactic substitution:

DeVnition 2.3.2. A choice of identity types on C is strictly stable if for each
σ : Γ′ Γ, and all appropriate A, C , d,

IdA[σ] = IdA[σ]

rA[σ] = rA[σ]

jA,C,d[σ] = jA[σ],C[σ],d[σ].

The most problematic aspect of this deVnition, categorically, is that it requires
an on-the-nose equality of types. Also, it does not necessarily respect isomorphism
of types. Making the minimal modiVcation to allay these objections, we obtain:

DeVnition 2.3.3. A choice of identity types on C is (fully) pseudo-stable if it is
equipped with a cartesian functorial action on cartesian maps. That is, for each
σ : Γ′ Γ, and cartesian map σA : A′ A over σ, a cartesian map

IdσA : IdA′ IdA

over σ.σA.σA : Γ′.A′.A′ Γ.A.A, such that Id1A = 1IdA , IdτA◦σA = IdτA ◦ IdσA ,
and moreover commuting appropriately with values of r and j.

1Strictly, T (Γ.A.A[χ(A)]); here and elsewhere, we suppress such “weakenings”, i.e. reindexings
along dependent projections, where they are unambiguous.

THE LOCAL UNIVERSES MODEL 11

(Full details of the “commuting appropriately” are spelled out in [War08, Def.
2.38], where these are called coherent identity types; we omit them here, since our
main results do not involve this condition.)

This action may be seen as combining two parts: comparison isomorphisms
IdA[σ]

∼= IdA[σ] for the reindexings given by the cleaving, and functoriality in
isomorphisms A ∼= B within each Vber T (Γ). An earlier version of this paper
incorrectly deVned pseudo-stability using just the Vrst of these components.

In homotopy-theoretic models, the Vllers j are usually not speciVed, but given
merely by an existence condition. This suggests the further weakening:

DeVnition 2.3.4. A choice of partly-speciVed identity types (i.e. operations giving
chosen IdA, rA, such that there exist elimination Vllers j making these identity
types), is partially pseudo-stable if it is equipped with a cartesian action of Id on
cartesian maps (as above), commuting with values r (but not necessarily j).

(Again, see [War08, Def. 2.33] for full details; these are the stable identity types
there.)

A more categorically familiar property is the Beck–Chevalley condition:

DeVnition 2.3.5. Say a choice of identity types on C satisVes the Beck–Chevalley
condition if for each σ : Γ′ Γ and A ∈ T (Γ), the canonical map

jA[σ],IdA[σ],rA[σ] : IdA[σ] IdA[σ]

is an isomorphism. This depends on these particular Vllers, but not on other values
of j.

Our Vnal condition is a pure existence condition on C, not dependent at all on a
choice of identity types:

DeVnition 2.3.6. Given Γ in C and A in T (Γ), a weakly stable identity type for
A is a pair (Id, r) as above such that, for all σ : Γ′ Γ, there is some j making
(IdA[σ], rA[σ], j) an identity type for A[σ].

Say that C has weakly stable identity types if for every Γ, A, there is some
weakly stable identity type (Id, r).

The conditions above may be usefully compared in terms of their impliciations
for the Beck–Chevalley maps jA[σ],IdA[σ],rA[σ] : IdA[σ] IdA[σ], and for the
stability of values of j modulo these maps.

choice of Id-types (Id, r) j
strictly stable = =
pseudo-stable ∼= =
partially pseudo-stable ∼= ∼
weakly stable ' ∼
arbitrary

Here ∼ denotes homotopy (pointwise propositional equality), and ' homotopy
equivalence, in the sense of [Uni13, Ch. 4].

Analogous deVnitions of these levels of stability may be made for the other
usual type and term constructors; as mentioned already, we will deVne these in

12 P. LEF. LUMSDAINE AND M. A. WARREN

full as they are required, in Sec. 3.4 below. BrieWy, they are obtained for inductive
types (+, Σ, 1, etc.) by replacing (Id, r) in the deVnitions above by the type for-
mer in question and its constructors, and replacing j by the eliminator; and for
Π-types, by replacing (Id, r) by the Π-type and its application map, and j by the
λ-abstraction operation.

Existence conditions and the axiom of choice. The various existence condi-
tions above—in particular, weak stability—may each be interpreted in two ways:
classically, as mere existence, or according to the constructive tradition, with each
forall–exists statement witnessed by some function (but with no conditions on
the function assumed).

Assuming the axiom of choice, the two are of course equivalent. In the absence
of AC, however, the witnessed form is stronger, and is the form required for the
results of Section 3 below. (Compare the use of cloven Vbrations in the deVnition
of comprehension categories.) We will for the most part elide this distinction;
where necessary, we will speak of witnessed weakly stable identity types, and the
like.

2.4. Lifting logical structure. Equipped with these deVnitions, we can now
state when logical structure lifts from C to its strict replacements C∗, C!.

For the right-handed strictiVcation C∗, the known results require either restric-
tions on the type theory in question, or strong stability conditions.

Theorem 2.4.1 (Hofmann [Hof95, Thm. 2,4], analysed further in [CGH14]). Sup-
pose C is a comprehension category, equipped with structure corresponding to the log-
ical constructions of extensional Martin-Löf type theory, including in particular the
reWection rule for identity types2, and all satisfying the appropriate Beck–Chevalley
conditions.

Then C∗ may be equipped with strictly stable Π-structure, Σ-structure, etc.
In particular, if E is a locally cartesian closed category, then (E , E→, cod, 1)∗ is a

model of extensional type theory.

With the terminology above, this may be read as factoring into two lemmas.
The Vrst characterizes when logical structure (not just that corresponding to ETT)
lifts to C∗.

Lemma 2.4.2. Suppose C is a comprehension category, equipped with pseudo-stable
Id-types (resp. Π-types, +-types, etc.).

Then C∗ carries strictly stable Id-types (Π-types, +-types, etc.).

Proof. Just as in the proof of [Hof95, Thm. 2] �

The second shows why for extensional type theory, and similar theories, pseudo-
stability is a very reasonable condition to expect.

2That is, for eachA ∈ T (Γ), there is a type IdA over Γ.A.Awhose comprehension is isomorphic
over Γ.A.A to the diagonal map Γ.A Γ.A.A.

THE LOCAL UNIVERSES MODEL 13

Lemma 2.4.3. Suppose C is a comprehension category, with identity types satisfying
the reWection rule, and with Π-types (resp. +-types, etc.), all weakly stable (or,
a fortiori, satisfying the Beck–Chevalley condition), and in the case of Π-types,
satisfying the η-rule.

Then all this structure is in fact pseudo-stable, with comparison isomorphisms
corresponding to the Beck–Chevalley maps.

Proof. Using the identity types with the reWection rule, one may show that the
maps produced by eliminators of inductive types (e.g. j), or by λ-abstraction
for Π-types with η, are unique; e.g. given identity-elimination data Γ, A, C , d,
and an Id-type (IdA, rA, jA) for A, then any section f of χ(C) with f ◦ rA = d
must be equal to jA,C,d. From this, it follows that the various type formers have
categorical universal properties, either as certain initial algebras or as exponential
objects. Weak stability then implies that the Beck–Chevalley maps, as algebra
maps between two initial/terminal objects, are isomorphisms, and satisfy the
appropriate axioms to witness that the logical structure is pseudo-stable. �

For theories such as intensional Martin-Löf type theory, however, pseudo-
stability is often diXcult to obtain.

Most obviously, type constructors such as Id-types, or sum types without η-
rules, are not automatically determined up to isomorphism, only up to equivalence.
This is not often an obstacle in practice, though, since the speciVc constructions
used usually are stable up to coherent isomorphism after all.

More problematically, however, the Id-elimination operation (and some other
inductive eliminators) is not canonically determined, but merely given by ex-
istence conditions, so does not commute with substitution and the coherence
isomorphisms; and even in concrete cases (e.g. SSets), it may not be clear how to
make choices that do [War08, §2.3].

In the terminology from above, identity types in comprehension categories
coming from homotopy-theoretic models are usually partially pseudo-stable, but
are often not fully so. It is not possible, therefore, to apply Lemma 2.4.2 to obtain
strictiVcations of such models.

Theorem 3.4.1 and Heuristic 4.1.1 below resolve this situation, stating that for
lifting logical structure to the left-handed strictiVcation C!, only weak stability
is required, provided that certain products and exponentials exist in the base
category C.

The next section is devoted to the full statement and proof of this theorem.

3. The local universes model

3.1. The comprehension category C!. Throughout this section, assume given
a Vxed comprehension category C = (C, T , p, χ).

DeVnition 3.1.1. DeVne the new comprehension category C! = (C!, T!, p, χ!) as
follows:

Base category: We set C! := C; the base category does not change.

14 P. LEF. LUMSDAINE AND M. A. WARREN

Types: An object of T! over Γ ∈ C consists of a tuple (VA, EA, ⌜A⌝), where
VA is an object of C, EA an object of T (VA), and ⌜A⌝ an arrow Γ VA in
C. One may view this diagrammatically as follows:

Γ VA.

EA

⌜A⌝

Given such an object, write [A] for its reindexing EA[⌜A⌝] in T (Γ).
An arrow (VB, EB, ⌜B⌝) (VA, EA, ⌜A⌝) in T! over σ : ∆ Γ is just

a map [B] [A] over σ in T :

[B] [A]

∆ Γ
σ

Together, this gives the category T! together with a projection p! : T!

C!.
Reindexing: Cartesian lifts for p! are given as follows. Let σ : ∆ Γ be

an arrow in C, and A = (VA, EA, ⌜A⌝) an object of T!(Γ). Set

A[σ] := (VA, EA, ⌜A⌝ ◦ σ)

and take the map Aσ : A[σ] A over σ to be the canonical map
[A[σ]] [A] over σ in T given by the cartesianness of (EA)⌜A⌝ for p:

[A[σ]]

∆

[A]

Γ

EA

VA

(EA)⌜A⌝◦f

(EA)⌜A⌝

⌜A⌝σ

Aσ

This is straightforwardly seen to make p! a split Vbration.
Comprehension: Given an object (VA, EA, ⌜A⌝) of T!(Γ), take

χ!(VA, EA, ⌜A⌝) := χ([A]).

Cartesianness of the functor χ! follows directly from that of χ.

Intuitively, we think of VA together with EA as a kind of “local universe”. (By
abuse of notation, we often refer to the pair (VA, EA) just as VA, leaving EA
understood.) Following this intuition, the map ⌜A⌝ : Γ VA picks out the actual
type family [A] from the local universe VA.

THE LOCAL UNIVERSES MODEL 15

In general, C! may not support the interpretation of any interesting constructors,
even when C does. However, provided that the underlying category C comes
equipped with a modest amount of additional structure it will be possible to lift
the interpretations of various constructors from C to C!. We Vrst recall some
deVnitions.

DeVnition 3.1.2. If Z g Y f X are maps in a category C such that all
pullbacks of f exist, a (categorical, dependent) exponential for f and g is an object∏

[f, g] of C/X together with a natural isomorphism

C/X(W,
∏

[f, g]) ∼= C/Y (W ×X Y, Z),

for all h : W X .
A map f : Y X possessing all pullbacks is (dependently) exponentiable if

for every g : Z Y , some dependent product
∏

[f, g] exists; equivalently, if the
pullback functor f∗ : C/X C/Y has a right adjoint.

Then the precise ambient hypothesis required, for lifting structure to C!, is as
follows (named by analogy with the logical framework presentation):

DeVnition 3.1.3. Say that C satisVes condition (LF) if its underlying category has
Vnite products, and given maps Z g Y f X , if f is a display map and g is
either a display map or a product projection, then a dependent exponential

∏
[f, g]

exists.

Proposition 3.1.4. Each of the following (simpler) conditions implies (LF):
(LFa): C has Vnite products; and every display map is exponentiable.
(LFb): Every map X 1 is a display map; and for each A ∈ T (Γ), the

reindexing functor χ(A)∗ : T (Γ) T (Γ.A) has a right adjoint.
(LCCC): C is locally Cartesian closed. �

The exponentials required by (LF) can be essentially independent of any func-
tion types one may consider in the type theory. On the one hand, they are not
required to themselves be display maps. On the other, they are required to be
categorical exponentials, not merely type-theoretic function types (in general
slightly weaker). Compare how in logical framework presentations of the type
theory, one usually asks for strong function types in the ambient logical frame-
work, independently of what function types the object theory may possess [NPS90,
Ch. 19].

Given this assumption, all standard type-constructors will lift from C to C!

essentially independently. We consider them one by one in Sections 3.4.1–3.4.4,
which all have roughly the same form: we deVne precisely what it means for a
comprehension category to have weakly stable widgets, and to have a strictly
stable choice of widgets; and we show that if C has weakly stable widgets and
satisVes (LF), then C! has a strictly stable choice of widgets, and hence models
type theory with widgets. Before embarking on this, however, we Vrst set out
the general template for the construction of the structure on C!, and set up some
machinery that it requires.

16 P. LEF. LUMSDAINE AND M. A. WARREN

We assume throughout the following discussion that C satisVes condition (LF);
however, we explicitly re-state this hypothesis in all theorems, as required.

3.2. Template for structure on C!. To illustrate the pattern we will follow, Vrst
consider the operation corresponding to the (+)-formation rule:

Γ ` A type Γ ` B type

Γ ` A+B type

Assuming that C is equipped with such an operation, we wish to lift it to C!.
The result should send any object Γ ∈ C! and pair of types A1, A2 ∈ T!(Γ) to

some type A1 +A2 ∈ T!(Γ). These inputs correspond, in C, to objects Γ, VAi ∈ C,
types EAi ∈ T (VAi), and maps ⌜Ai⌝ : Γ VAi .

One cannot directly take the sum EA1 +EA2 in C, since these live in diUerent
Vbers of T . One could pull both EA1 , EA2 back to T (Γ) and take their sum there,
but since this involves Γ, the resulting operation would not be strictly stable unless
(+) were already so in C.

Instead, note that taken together, the maps ⌜Ai⌝ correspond to the single map
(⌜A1⌝, ⌜A2⌝) : Γ VA1 × VA2 , and factor through it via the projections π1, π2.
We can thus pull both EA1 , EA2 back to T (VA1 × VA2), and take their sum there.
Putting this together, we set VA1+A2 := VA1×VA2 ,EA1+A2 := EA1 [π2]+EA2 [π1],
and ⌜A1 +A2⌝ := (⌜A1⌝, ⌜A2⌝).

This is strictly stable in Γ, since the only part involving Γ is the deVnition of
⌜A1 + A2⌝, which (as an element of a set, not an object of a category) is, as one
would hope, strictly natural in Γ.

The key point is that once the local universes VAi , EAi are chosen, the object
VA1 × VA2 represents the premises of (+)-form: instances of the premises over a
given Γ, with these universes, correspond to maps Γ VA1 × VA2 . One may see
VA1 × VA2 as parametrizing all possible sums of a type from VA1 and a type from
VA2 .

This pattern will be followed for all rules and constructors. Given universes for
all type premises of the rule, we construct an object V representing the rest of the
data of the premises.

A speciVc instance of the premises over some context Γ then corresponds to a
map Γ V. In particular, there is a universal instance over V itself. To perform
the operation on a particular instance, we Vrst apply the operations of C to this
universal instance over V. (Here, we may rely on weak stability of structure in C
to know that reindexed from their own universes to V, all types involved retain
any universal properties required.)

In the case of a type constructor, we are now done, using V as the local universe
of the new type, and the map Γ V corresponding to the rest of the data as
the new name map. In the case of a term constructor, we further need to actually
perform the reindexing from T (V) to T (Γ) to obtain an appropriate map in C!.

In either case, the constructions depend on Γ only via operations that are
strictly natural in Γ: use of the universal property of V, and reindexing of maps

THE LOCAL UNIVERSES MODEL 17

(not objects!) between Vbers of T . They are thus strictly stable in Γ, regardless of
the stability of the structure in C.

3.3. Manipulating local universes. In the example above, it was straightfor-
ward to construct the representing object VA × VB for the premises of the rule
in question. For more complex rules, however, construction of this representing
object—the new universe—may be rather more involved. Indeed, this is the main
technical work of the proof.

We establish here some tools for constructing such objects, beginning with one
construction, in particular, which recurs for several diUerent logical constructors.
The operations corresponding to Π-formation, Σ-formation, and W-formation all
take as input an object Γ, a type A over Γ, and a dependent type B over Γ.A.

These data in C!, over a given object Γ, consist ofA = (VA, EA, ⌜A⌝) in T!(Γ) and
B = (VB, EB, ⌜B⌝) in T!(Γ.A), which amount in C to the following conVguration:

Γ

Γ.A

VA

EAVB

EB

⌜A⌝

⌜B⌝

(Here Γ.A A is the comprehension χ!(A), taken in C!; in terms of C, this is
χ([A]) : Γ.[A] Γ.)

Now, Vxing (VA, EA) and (VB, EB), pairs of maps ⌜A⌝, ⌜B⌝ as above correspond
by adjunction to maps from Γ into the object

(VA, EA) / (VB, EB) :=
∑
VA

∏
EA

(VA.EA)× VB

VA.EA

 ,

where
∏
EA

: C/VA.EA C/VA denotes the right adjoint to χ(EA)∗, which
exists by hypothesis (LF), and

∑
VA

: C/VA C simply sends a map to its
codomain. (By the usual abuse of notation, we will often denote this object simply
by VA / VB .) Moreover, this correspondence is natural in Γ.

In particular, the identity map of VA / VB corresponds to the universal such
pair of maps, which we denote by

πA : VA / VB VA, πB : (VA / VB).(EA[πA]) VB.

VA / VB may thus be considered as the object of “families of types in VB ,
indexed by a type in VA”.

The deVnition of VA / VB may alternatively be presented in a type-theoretic
internal language for C: not the arbitrary type theory that we are trying to model,
but a speciVc type theory with just Π-types, satisfying the judgemental η-rule, to

18 P. LEF. LUMSDAINE AND M. A. WARREN

handle the substitution and exponentiation in C and its slices. In this language,
the deVnition becomes:

VA / VB := [a:VA, b:VB
EA(a)].

For complex constructions, this notation scales somewhat more readably than
using categorical combinators. For instance, in the operation corresponding to the
(+)-elimination rule,

Γ ` A,B type Γ, w : A+B ` C(w) type
Γ, x:A ` d1 : C(inl(x)) Γ, y:B ` d2 : C(inr(y))

Γ, w : A+B ` 〈x.d1, y.d2〉(w) : C(w)

once universes VA, VB , VC are chosen, the representing object for the premises is
given by

[a:VA, b:VB,

c:VC
EA(a)+EB(b), d1:Πx:EA(a)EC(c(ν1(x))), d2:Πy:EB(b)EC(c(ν2(y)))]

which in categorical combinators is

ΣVAΣ∆VA
VBΣ(∆∆VA

VB
VC)(EA[π1]+EB [π2])(

ΠEA[π1◦π1]EC [ev ◦ν1[π1]]×ΠEB [π2◦π1]EC [ev ◦ν2[π1]]
)
.

For this reason, we use the internal language to present such objects below.
Unfortunately, this is somewhat laborious to formally justify. Since we do not
restrict the local universes VA to “Vbrant objects” (i.e. with VA 1 a display
map), nor assume that exponentiation preserves display maps, we need “types” of
this internal language to include arbitrary maps of C, or at least something more
general than the types of T . Π-types between them may therefore not always be
deVned; so we cannot take the language to be the Π-fragment of ETT, and thus
cannot quite apply Theorem 2.4.1 to justify its interpretation.

To thoroughly address this question, one could consider type theory with an
extra judgement “Γ ` A fib” added to the syntax (cf. Voevodsky’s system HTS
[Voe13]), and with Π-formation restricted to the case where the domain is given by
this judgement. Correspondingly, one would consider comprehension categories
equipped with a subVbration F ⊆ T , and extend Theorem 2.4.1 to this setting.

For the present purposes, however, it is simpler to regard the internal language
merely as a notational shorthand, since we do not require the full interpretation
function, but only Vnitely many instances of it, which the scrupulous reader may
unwind into the algebraic language of products, pullbacks, and exponentials as
required.

3.4. Logical structure on C!. With the machinery set up, we are now ready to
lift logical structure from C to C!, one constructor at a time.

Taken together, the following lemmata constitute our main result:

Theorem 3.4.1. Let C be a full comprehension category satisfying condition (LF).

THE LOCAL UNIVERSES MODEL 19

If C has weakly stable binary sums (resp. Π-types, identity types, Σ-types, zero
types, unit types, or W-types relative to a stable class of Π-types), then its split
replacement C! has strictly stable binary sums (Π-types, . . .), and hence models the
syntax of type theory with binary sums (Π-types, . . .).

See also Section 4.1 for a discussion of how this extends to other rules and
constructors.

3.4.1. Binary sums. First, we return in full to the case of binary sums. (Note that
we consider general type-theoretic (weak) binary sums, not necessarily assumed
to be categorical coproducts.)

DeVnition 3.4.1.1. Given a comprehension category C, an object Γ ∈ C, and
types A1, A2 ∈ T (Γ), a binary sum for A1 and A2 consists of:

• a type A1 +A2 ∈ T (Γ);
• maps νi : Γ.Ai Γ.A1+A2 in C over Γ (for i = 1, 2) (the sum inclusions);
• such that for any type C ∈ T (Γ.(A1 + A2)) and sections ti : Γ.Ai

Γ.Ai.C[νi], there is some section 〈t1, t2〉 : Γ.(A1+A2) Γ.(A1+A2).C ,
such that 〈t1, t2〉 ◦ νi = νi.C ◦ ti.

DeVnition 3.4.1.2. A comprehension category C has weakly stable binary sums
if each Γ, A1, A2 as above has some binary sum (A1 +A2, ν1, ν2), such that for
every σ : ∆ Γ, ((A1 + A2)[σ], ν1[σ], ν2[σ]) is a binary sum for A1[σ] and
A2[σ] over ∆.

(Note that this condition is independent of the choice of reindexings used, i.e.
of the cleaving of T .)

DeVnition 3.4.1.3. A split comprehension category C has strictly stable binary
sums it it is equipped with functions giving for each Γ, A1, A2 some chosen binary
sum (A1 +A2, ν1, ν2), and moreover for each suitableC, t1, t2 some chosen copair
〈t1, t2〉, such that for every σ : ∆ Γ,

(A1 +A2)[σ] = A1[σ] +A2[σ]

νi[σ] = νi : Ai[σ] A1[σ] +A2[σ]

〈t1, t2〉[σ] = 〈t1[σ], t2[σ]〉.

(By contrast, this is certainly not independent of the choice of reindexings given
by the splitting of T .)

The components of this deVnition—the sum type, the inclusion maps, the copair
map, and the copair equations—correspond precisely to the type-theoretic rules
for binary sums [ML84, p. 55]. A split comprehension category C with strictly
stable binary sums is thus precisely what is needed to interpret the syntax of type
theory with these rules (cf. [Hof97, §3.3]).

Lemma 3.4.1.4. If C has weakly stable binary sums and satisVes condition (LF),
then C! has strictly stable binary sums.

Proof. We take each component of the deVnition in turn.

20 P. LEF. LUMSDAINE AND M. A. WARREN

Formation. Suppose we are given suitable Γ, A1, A2 in C!, and wish to form
A1 +A2. These correspond to local universes VAi ∈ C, EAi ∈ T (VAi), and maps
⌜Ai⌝ : Γ VAi .

Set VA1+A2 := VA1 × VA2 . As indicated previously, this may be seen as the
object of “(formal) sums of a type from VA1 with a type from VA2”. Precisely, for
any Γ, pairs ⌜A1⌝, ⌜A2⌝ as above correspond to maps (⌜A1⌝, ⌜A2⌝) : Γ VA1+A2 ,
naturally in Γ.

In particular, the identity map of VA1+A2 corresponds to the projections
πi : VA1+A2 VAi . Pulling back the types EAi along these, we obtain types
EAi [πi] ∈ T (VA1+A2). Take EA1+A2 to be the sum EA1 [π1] + EA2 [π2].

Finally, take ⌜A1 + A2⌝ := (⌜A1⌝, ⌜A2⌝) : Γ VA1+A2 , picking out the appro-
priate speciVc pairs of types.

For strict stability, suppose in addition to the above data we have some σ :
Γ′ Γ; we need to show that (A1 +A2)[σ] = A1[σ]+A2[σ]. It is immediate that
their universes are equal—i.e. that V(A1+A2)[σ] = VA1[σ]+A2[σ] and E(A1+A2)[σ] =
EA1[σ]+A2[σ]—since the universe of the sum depends only on the universes of the
summands, and substitution in the summands does not change their universes.
On the other hand,

⌜(A1 +A2)[σ]⌝ = (⌜A1⌝, ⌜A2⌝) ◦ σ
= (⌜A1⌝ ◦ σ, ⌜A2⌝ ◦ σ)

= ⌜A1[σ] +A2[σ]⌝;
that is, strict stability of (+) comes exactly from the (strict) naturality in Γ of the
universal property of VA1 × VA2 .

Introduction. For the sum inclusions, suppose again we have Γ, A1, A2 in C!.
Having constructed A1 +A2 as above, note that since EA1+A2 was chosen as a
weakly stable sum, it comes with inclusion maps ν̄i : EAi [πi] EA1+A2 . Now
set νi := ν̄i[⌜A1 +A2⌝] : [Ai] [A1 +A2].

(We are using here the convention that maps may be reindexed to arbitrary
reindexings of their domain and codomain. We will do so in future without
comment.)

Breaking down this deVnition a little: we Vrst consider the introduction maps
in the universal case, ν̄i : EAi [πi] EA1+A2 , over VA1+A2 . We then reindex
this to T (Γ) along ⌜A1 +A2⌝.

Γ VA1+A2 VAi
⌜A1 +A2⌝ πi

Γ.Ai VA1+A2 .EAi [πi] VAi .EAi

Γ.(A1 +A2) VA1+A2 .EA1+A2

νi ν̄i

THE LOCAL UNIVERSES MODEL 21

Elimination. DeVning copairing in C! holds a subtle pitfall for the unwary—one
worth looking at explicitly, since it will recur later for other constructors.

Consider the data Γ, A1, A2, C , d1, d2 in C!, for forming a copair. In C, these
correspond to Γ, VAi , EAi , ⌜Ai⌝ as above, together with another local universe
EC ∈ T (VC), a name map ⌜C⌝ : Γ.(A1 + A2) VC , and sections di : Γ.Ai
Γ.Ai.EC [⌜C⌝ ◦ νi].

We require a copair for C , d1, d2 in C!; that is, a certain section Γ.(A1 +A2)
Γ.(A1 + A2).C , commuting appropriately with νi, di. This corresponds to a
section Γ.[A1 +A2] Γ.[A1 +A2].[C] in C, commuting there with νi, di.

The obvious way to obtain such a section is simply as a copair in C. We chose
EA1+A2 as a weakly stable (+)-type over VA1+A2 , so [A1 +A2] is a (+)-type over
Γ, and the data [C], d1, d2 are just right for forming a copair there.

However, the resulting operation would not necessarily be strictly stable, since
the copair in C was taken over Γ.3 We therefore resist this tempting shortcut and
keep to the general approach prescribed above, Vrst taking a “universal copair”
depending just on the universes VA1 , VA2 , VC . Only having done this do we pull
it back (strictly naturally) to the speciVc context Γ in question.

Precisely, Vx universes VAi , EAi , VC , EC , and set:

V〈d1,d2〉 := [a1:VA1 , a2:VA2 , c:VC
EA1+A2

(a1,a2),

d1:Πx:EA1
(a1)EC(c(ν1(x))), d2:Πy:EA2

(a2)EC(c(ν2(y)))]

The remaining data ⌜Ai⌝, ⌜C⌝, di correspond to maps Γ V〈d1,d2〉, naturally in
Γ. In particular, the identity 1V〈d1,d2〉 corresponds to maps

πAi : V〈d1,d2〉 VAi πC : V〈d1,d2〉.EA1+A2 [(πA1 , πA2)] VC

πdi : V〈d1,d2〉.EAi [πAi] V〈d1,d2〉.EAi [πAi].EC [πC ◦ νi[(πA1 , πA2)]].

Now, as in the direct approach, since EA1+A2 was a weakly stable sum, its
reindexing EA1+A2 [(πA1 , πA2)] together with the inclusion maps νi[(πA1 , πA2)]
is a sum for EA1 [πA1] and EA2 [πA2] over V〈d1,d2〉. So we may form there the
copair section

〈πd1 , πd2〉 : V〈d1,d2〉.EA1+A2 [(πA1 , πA2)] V〈d1,d2〉.EA1+A2 [(πA1 , πA2)].EC [πC].

Pulling this back along

(⌜A1⌝, ⌜A2⌝, ⌜C⌝, d1, d2) : Γ V〈d1,d2〉

then gives us a section

Γ.(A1 +A2) Γ.(A2 +A2).C

which we take as the copair 〈d1, d2〉 in C!.

3If the (+)-types of C are pseudo-stable—for instance, if they satisfy the η-rule, making them
categorical coproducts—then this direct deVnition of copairing is strictly stable after all; and in
the case of (+)-types, this would be a reasonably mild extra condition to demand. However, for
identity types (and more general inductive families), the analogous hypothesis would be much less
innocuous, implying in particular the reWection rule, and hence UIP.

22 P. LEF. LUMSDAINE AND M. A. WARREN

Strict stability of this operation follows from the fact that the only involvement
of Γ, ⌜A1⌝, ⌜A2⌝, ⌜C⌝, d1, d2 was via the map Γ V〈d1,d2〉, and the pullback of a
section along this map, both of which are strictly natural in Γ. In particular, the
copair used in C, which a priori may not satisfy any naturality condition, was
taken over V〈d1,d2〉, and so is unaUected by any reindexing Γ′ Γ.

Computation. Finally, the copair-inclusion equations for 〈d1, d2〉 follow directly
from the equations in C for 〈πd1 , πd2〉, pulled back along (⌜A1⌝, ⌜A2⌝, ⌜C⌝, d1, d2).

�

3.4.2. Dependent products.

DeVnition 3.4.2.1. Given Γ ∈ C, A ∈ T (Γ), B ∈ T (Γ.A), a dependent product
for Γ, A, B is given by:

• a type
∏

[A,B] ∈ T (Γ);
• a map appA,B :

∏
[A,B][χ(A)] B in T (Γ.A);

• an operation giving for each section t : Γ.A Γ.A.B, a section λ(t) :
Γ Γ.

∏
[A,B], such that (Γ.A.appA,B) ◦ (1Γ.A, λ(t)) = t.

DeVnition 3.4.2.2. C has weakly stable dependent products if every Γ, A, B has
some (

∏
[A,B], appA,B) as above, such that for every σ : ∆ Γ, there is some

operation λ making (
∏

[A,B][σ], appA,B[σ], λ) a dependent product for ∆, A[σ],
B[σ]. More speciVcally, call such (

∏
[A,B], appA,B) a weakly stable dependent

product for Γ, A, B.

(Note again that this is independent of the cleaving of T .)

DeVnition 3.4.2.3. C has strictly stable dependent products if it is equipped with
operations giving

∏
(A,B), appA,B , and λ(t) for all appropriate Γ, A,B and t as

above, such that for every σ : ∆ Γ,∏
[A,B][σ] =

∏[
A[σ], B[σ]

]
appA,B[σ] = appA[σ],B[σ]

(λ(t))[σ] = λ(t[σ]).

(Again, this is by contrast entirely dependent on the chosen cleaving.)

Lemma 3.4.2.4. If C has weakly stable dependent products and satisVes condition
(LF), then C! has strictly stable dependent products.

Proof. Again, we consider the components of the deVnition—the four rules for
Π-types—one by one.

Formation. Suppose we have A = (VA, EA, ⌜A⌝) in T!(Γ) and B = (VB, EB, ⌜B⌝)
in T!(Γ.A), and wish to form

∏
[A,B].

We begin by setting

V∏[A,B] := VA / VB.

(Recall VA / VB is the object given in the internal language by [a:VA, b:VB
EA(a)].)

THE LOCAL UNIVERSES MODEL 23

As described in Section 3.3, maps Γ VA / VB correspond to data ⌜A⌝ : Γ
VA, ⌜B⌝ : Γ.EA[⌜A⌝] VB as above. In particular, there is the universal case

πA : VA / VB VA, πB : (VA / VB).(EA[πA]) VB

over V∏[A,B] itself. To obtain E∏
[A,B], we choose a weakly stable dependent

product in C for this universal case:

E∏
[A,B] :=

∏
[EA[πA], EB[πB]] ∈ T (V∏[A,B]).

Finally, we take ⌜∏[A,B]⌝ : Γ V∏[A,B] to be the map corresponding to the
pair ⌜A⌝, ⌜B⌝ under the universal property of V∏[A,B].

Together, these deVne the type
∏

[A,B] in C!. To see that the resulting operation
is moreover strictly stable, suppose we have Γ, A, B as above, and additionally
some σ : Γ′ Γ. We need to check that

∏
[A,B][σ] =

∏
[A[σ], B[σ]].

It is immediate that the local universes of these two products are the same,
since they depend only on the local universes VA, VB , which are unaUected by
the reindexing.

It therefore only remains to show that ⌜∏[A,B][σ]⌝ = ⌜∏[A[σ], B[σ]]⌝; but this
follows just from the (strict) naturality in Γ of the universal property of VA / VB .

Application. By the deVnition of E∏
[A,B] as a weakly stable dependent product,

it comes with a map

appEA[πA],EB [πB] : V∏[A,B].EA[πA].E∏
[A,B] V∏[A,B].EA[πA].EB[πB]

over V∏[A,B].EA[πA].
We deVne appA,B just as the reindexing of this map to T (Γ.A):

Γ.A.B

Γ.A

V∏[A,B].EA[πA].EB[πB]

V∏[A,B].EA[πA].

V∏[A,B].EA[πA].E∏
[A,B]Γ.A.

∏
[A,B]

⌜∏[A,B]⌝.EA

appEA[πA],EB [πB]appA,B

Once again, strict stability of this follows directly by construction. The universal
case appEA[πA],EB [πB] depends only on VA, VB ; and the subsequent reindexing is
strictly natural in Γ.

Introduction. As in the case of copairing above, there is a direct approach to
deVning λ-abstraction, which however may fail to be strictly stable. We therefore
take once again a two-stage approach. First, we deVne the object VλA,B of all
possible λ-abstractions into E∏

A,B , and choose a universal λ-abstraction over
that; then, we pick out the λ-abstractions in C! as pullbacks of that universal one.

24 P. LEF. LUMSDAINE AND M. A. WARREN

Let VλA,B be the object:

[a : VA, b : VB
EA(a), t :

∏
x:EA(a)

EB(b(x))]

Here we write
∏

to emphasize that this description is interpreted using the
categorical exponentials in C provided by condition (LF), not the weakly stable
dependent products of types in T used for E∏

[A,B]. Modulo that diUerence, this
is exactly analogous to the object V∏[A,B].E

∏
[A,B].

Write πλA,B for the evident projection VλA,B V∏[A,B].
As a categorical dependent product, VλA,B has application map

app : VλA,B .EA[πA ◦ πλA,B] VλA,B .EA[πA ◦ πλA,B].EB[πA ◦ πλA,B .EA].

Since E∏
[A,B] was a weakly stable dependent product, app induces a map

λ(app) : VλA,B VλA,B .E
∏

[A,B][πλA,B]

with appEA[πA],EB [πB][πλA,B] ◦ λ(app)[χ(EA[πA ◦ πλA,B])] = app.
Now, suppose we are given the inputs for λ-abstraction in C!. That is, in

addition to Γ, A, B as before, we have a section t : Γ.A Γ.A.B.
By the universal property of the categorical dependent product, such tuples

(⌜A⌝, ⌜B⌝, t) correspond naturally to maps ⌜(A,B, t)⌝ : Γ VλA,B . So, we may
take λ(t) : Γ Γ.

∏
[A,B] to be the reindexing of λ(app) along ⌜(A,B, t)⌝:

Γ

Γ

Γ.
∏

[A,B]

VλA,B

VλA,B

VλA,B .E
∏

[A,B][πλA,B]

⌜(A,B, t)⌝
1Γ

λ(app)λ(t)

Strict stability is immediate by construction, just as for appA,B .

Computation. Finally, the β-reduction equation for λ(t) in C! follows from the
corresponding equation for the universal case λ(app), which holds by its construc-
tion as a λ-abstraction into E∏

[A,B]. �

Often, one may want to restrict the Π-types used to some well-behaved or
well-understood subclass—typically, the categorical dependent products. Indeed,
one might want the same for other constructors as well; we spell out the case of
Π-types since we will need it for setting up weakly stable W-types below.

DeVnition 3.4.2.5. A stable class of Π-types on C consists of:
• for each Γ, A, B, a non-empty family GΠ(Γ, A,B) of Π-types (Π, app) for
A, B, stable under reindexing, in that for all σ : ∆ Γ and (Π, app) ∈
GΠ(Γ, A,B), and any reindexings A′, B′, Π′, app′ of these along σ, we
have (Π′, app′) ∈ GΠ(Γ′, A′, B′);

THE LOCAL UNIVERSES MODEL 25

• and, for each Γ, A, B as before, (Π, app) ∈ GΠ(Γ, A,B), and section
t : Γ.A Γ.A.B, a non-empty family of sections Gλ(Γ, . . . , t), similarly
stable under reindexing.

Given such a class, we refer to an element of GΠ(Γ, A,B) (resp. Gλ(Γ, . . . , t))
as a good Π-type for A, B (resp. a good λ-abstraction of t). Stability says just that
any reindexing of a good Π-type or λ-abstraction is again good.

Scholium 3.4.2.6. If C is equipped with a stable class of dependent products, then
C! has strictly stable dependent products, always chosen from the given stable class.

Proof. Immediate from the proof of Lemma 3.4.2.4. �

Proposition 3.4.2.7. C has weakly stable Π-types if and only if it can be equipped
with a stable class of Π-types.

Proof. The “if” direction is immediate. For the “only if”, note that if C has weakly
stable Π-types, then the class of all weakly stable Π-types and λ-abstractions
forms a stable class. �

Finally, we pause to consider the pseudo-stable level, again for later use in the
presentation of W-types:

DeVnition 3.4.2.8. C has pseudo-stable dependent products if it is equipped with
operations Π, app, λ as above, together with a cartesian functorial action on
cartesian maps; that is, for each σ : Γ′ Γ, and cartesian maps σA : A′ → A over
σ and σB : B′ → B over σ.σA, a cartesian map Π[σA, σB] : Π[A′, B′]→ Π[A,B]
over σ, such that

Π[1A, 1B] = 1Π[A,B]

Π[τA ◦ σA, τB ◦ σB] = Π[τA, τB] ◦Π[σA, σB]

σ.σB ◦ appA′,B′ = appA,B ◦ σ.σA.Π[σA, σB]

σ.Π[σA, σB] ◦ λA′,B′(t[σ]) = λA,B(t) ◦ σ
(for all suitable σ, σA, σB, τ, τA, τB, t).

Proposition 3.4.2.9. If C is equipped with pseudo-stable dependent products, then
it carries a stable class of dependent products, consisting of all Π-types equipped with
isomorphisms to those supplied by the pseudo-stable structure, and all λ-abstractions
corresponding under those isomorphisms to the ones provided by the pseudo-stable
structure. �

3.4.3. Identity types. The identity types we consider in this section will be
slightly stronger than those set out in Section 2.3 above. SpeciVcally, we consider
structure corresponding to the elimination rule:

Γ, x, y:A, u:IdA(x, y), ∆ ` C(x, y, u) type
Γ, z:A, ∆[z/x, z/y, r(z)/u] ` d(z) : C(z, z, r(z))

Γ, a, b:A, p:IdA(x, y), ∆[a/x, b/y, p/u] ` Jx,y,u.C; z.d(a, b, p) : C(a, b, p)

where ∆ may be an arbitrary context extension.

26 P. LEF. LUMSDAINE AND M. A. WARREN

Often, ∆ is omitted in the basic deVnition of identity types, and the version
with it is called strong or Frobenius identity types. In the presence of Π-types, the
two forms are interderivable, so the weak form suXces. In general, however, the
Frobenius form is the more important and more natural; so that is the form we
consider here, and throughout this section, identity types will always refer to the
Frobenius form. (As ever, though, the construction works for either set of rules.)

Given this, we make some slight modiVcations to the deVnitions of Sec. 2.3.

DeVnition 3.4.3.1. A (Frobenius) identity type for Γ ∈ C, A ∈ T (Γ) consists of
IdA, rA as in DeVnition 2.3.1, together with for each sequence ∆ = (B1, . . . , Bn)
such that Bi ∈ T (Γ.A.A.IdA.B1.Bi−1), each C ∈ T (Γ.A.A.IdA.∆), and
each d : Γ.A.∆[rA] Γ.A.A.IdA.∆.C such that the square

Γ.A.∆[rA]

Γ.A.A.IdA.∆ Γ.A.A.IdA.∆

Γ.A.A.IdA.∆.C
d

rA

1

jA,∆,C,d

commutes, a diagonal Vller jA,∆,C,d, which we call an elimination section for the
data A,∆, C, d.

A choice of identity types on C is strictly stable if for each σ : Γ′ Γ, and all
appropriate A, ∆, C , d,

IdA[σ] = IdA[σ]

rA[σ] = rA[σ]

jA,∆,C,d[σ] = jA[σ],∆[σ],C[σ],d[σ].

A weakly stable identity type for A ∈ T (Γ) is (Id, r) as above such that, for all
σ : Γ′ Γ, there exists some j making (Id[σ], r[σ], j) an identity type for A[σ].
Say C has weakly stable identity types if for each Γ, A, there exists some weakly
stable identity type.

Lemma 3.4.3.2. If C has weakly stable identity types and satisVes condition (LF),
then C! has strictly stable identity types.

Proof. As usual, we consider the rules one by one.

Formation. GivenA ∈ T!(Γ), choose some weakly stable identity type (IdEA , rEA)
for EA over VA, and deVne:

VIdA := VA.EA.EA

EIdA := IdEA

⌜IdA⌝ := ⌜A⌝.EA.EA : Γ.A.A VIdA

As usual, this is strictly stable just since VIdA and EIdA do not depend on Γ, ⌜A⌝,
while the construction of ⌜IdA⌝ is strictly natural in Γ.

THE LOCAL UNIVERSES MODEL 27

Introduction. For the reWexivity map, take

rA := rEA [⌜A⌝]
where rEA is the reWexivity map of the chosen weakly stable identity type IdEA .

Again, strict stability is immediate.

Elimination, computation. Let Γ, A, ∆ = (B1, . . . , Bn), C , d be instances of
the premises of Id-elimination in C!. (In particular,Bi ∈ T!(Γ.A.A.IdA.B1.Bi−1).)

As usual, we work by Vrst Vxing the universes VA, VB1 , . . . , VBn , VC , and
constructing a representing object V for “data as above, with the given universes”.
Due to the Frobenius premise ∆, this is slightly more involved than other rules
we have considered.

In the internal language, it may be expressed as

V := [a : VA,

b1 :
∏

x, x′:EA(a), y:IdEA(a, x, x′). VB1 ,

b2 :
∏

x, x′:EA(a), y:IdEA(a, x, x′), z1:EB1(b1(x, x′, y)). VB2 ,

. . .

c :
∏

x, x′, y, z1, . . . , zn. VC

d :
∏

x : EA, z1 : EB1(b1(x, x, rEA(a, x))), . . . ,

zn : EBn(bn(x, x, rEA(a, x), z1, . . . , zn−1)),

EC(c(x, x, rEA(a, x), z1, . . . , zn))]

(Here (IdEA , rEA) are the identity type used for IdA, rA above.)
Maps ⌜A,∆, C, d⌝ : Γ V now correspond, naturally in Γ, to tuples over Γ

(⌜A⌝, ⌜B1⌝, . . . , ⌜Bn⌝, ⌜C⌝, d) as in the original data. In particular, the identity 1V
corresponds to such data over V itself. Since (IdEA , rEA) was weakly stable, we
may choose some universal elimination section j for this data:

j : [(a, b1, . . . , c, d):V, x, x′:EA(a), y:IdEA(a, x, x′), z1, . . . , zn]

[(a, b1, . . . , c, d), x, x′, y, z1, . . . , zn, c:EC(c(x, . . . , zn))].

Returning to the original speciVc inputs Γ, A, ∆, C , d, we can now pull this
universal j back along the representing map ⌜A,∆, C, d⌝ : Γ V to give the
required elimination section for d:

jA,∆,C,d := j[⌜A,∆, C, d⌝] : (Γ.A.A.IdA.∆) (Γ.A.A.IdA.∆.C).

Strict stability follows, as usual, from the fact that this depends on Γ only via
the universal property of V and the action on morphisms of a pullback functor,
both of which are suitably natural.

In particular, the choice of an elimination section j—the one operation which is
not strictly natural in many models, and cannot easily be made so—was made over
V, and so depends only on the universes involved, not on Γ, or on anything else
aUected by reindexing in C!. �

28 P. LEF. LUMSDAINE AND M. A. WARREN

3.4.4. Other constructors. The three cases above illustrate essentially all the
issues that arise in constructing structure on C!.

For the remaining constructors, therefore, we give just the deVnitions of the
appropriate strictly/weakly stable structure, and precise statements of the lifting
lemmas. We omit their proofs, since they follow exactly the same template as the
cases above.

The deVnitions, too, contain just the same components as the cases above,
with one exception, in the case of W-types. Since their rules refer to Π-types,
the deVnition of weakly stable W-types must be given relative to some form of
Π-types—most naturally and Wexibly, to a chosen stable class thereof. This is the
only new twist appearing in the deVnitions below, and indicates more generally
how one might extend the present results to other type-formers whose rules make
reference to other previously-deVned types.

Dependent sums.

DeVnition 3.4.4.1. For Γ ∈ C, A ∈ T (Γ), and B ∈ T (Γ.A), a dependent sum for
B consists of:

• a type ΣAB ∈ T (Γ);
• a “pairing” map 〈−,−〉 : Γ.A.B Γ.ΣAB; such that
• for any typeC ∈ T (Γ.ΣAB) and section d : Γ.A.B Γ.A.B.C[〈−,−〉],
there is a section splitC,d : Γ.ΣAB Γ.ΣAB.C , with splitC,d ◦ 〈−,−〉 =
(〈−,−〉.C) ◦ d.

C has weakly stable dependent sums if for each Γ, A, B as above, there exists
some (ΣAB, 〈−,−〉), such that for each σ : ∆ Γ, (ΣAB[σ], 〈−,−〉[σ]) is a
dependent sum for A[σ] and B[σ] over ∆.

A split comprehension category C has strictly stable dependent sums if it is
equipped with functions giving for each Γ, A,B a dependent sum (ΣAB, 〈−,−〉),
and moreover for each suitable C, d some appropriate section splitC,d, all commut-
ing on the nose with reindexing in C.

Lemma 3.4.4.2. If C has weakly stable dependent sums and satisVes condition (LF),
then C! has strictly stable dependent sums. �

Zero types.

DeVnition 3.4.4.3. Given Γ ∈ C, a zero type over Γ consists of:

• a type 0 ∈ T (Γ);
• for any type C ∈ T (Γ.0), a section of C .

C has weakly stable zero types if for each Γ, there exists some type 0 over Γ
such that for every σ : ∆ Γ, 0[σ] is a zero type over ∆.

A split comprehension category C has strictly stable zero types if it is equipped
with functions giving for each Γ a zero type 0Γ, and for each C ∈ T (Γ.0Γ) a
section, both commuting strictly with reindexing.

Lemma 3.4.4.4. If C satisVes condition (LF) and has weakly stable zero types, then
C! has strictly stable zero types. �

THE LOCAL UNIVERSES MODEL 29

Unit types.

DeVnition 3.4.4.5. Given Γ ∈ C, a unit type over Γ consists of:

• a type 1 ∈ T (Γ);
• a section tt : Γ Γ.1;
• for any type C ∈ T (Γ.1) and section d of C[tt], a section urecC,d of C ,
such that urecC,d ◦ tt = d.

C has weakly stable unit types if for each Γ, there is some (1, tt) over Γ such
that for every σ : ∆ Γ, elimination sections can be chosen making (1[σ], tt[σ])
a unit type over ∆.

A split comprehension category C has strictly stable unit types if it is equipped
with functions giving unit types 1Γ, ttΓ, and elimination sections urecC,d, all
commuting strictly with reindexing.

Lemma 3.4.4.6. If C satisVes condition (LF) and has weakly stable unit types, then
C! has strictly stable unit types. �

W-types. W-types (also known as inductive types, or types of well-founded trees),
are the most powerful of the standard type-constructors [ML84, p. 79].

Since their rules involve Π-types, any kind of W-type structure on a com-
prehension category C must be relative to some form of Π-type structure on
C. This dependence introduces an extra subtlety into the deVnition of weakly
stable W-types. We will therefore consider two diUerent weak forms: a simpler
form, assuming that the Π-types of C are pseudo-stable (for instance, if they are
categorical exponentials); and a more involved but more general form, allowing
that the Π-types themselves may be only weakly stable .

DeVnition 3.4.4.7. Suppose C is equipped with some choice of dependent prod-
ucts. Given Γ ∈ C, A ∈ T (Γ), B ∈ T (Γ.A), a W-type (W, fold,wrec) for Γ, A,B
consists of:

• a type W ∈ T (Γ);
• a map fold : Γ.A.Π[B,W[χ(A)]] Γ.W, over Γ;
• together with, for any type C over Γ.W and square of the form

Γ.W.Π[B,W].Π[B,C[app′B,W]]

Γ.W.Π[B,W] Γ.W,

Γ.W.C
d

fold

(1)

30 P. LEF. LUMSDAINE AND M. A. WARREN

a section wrecC,d : Γ.W Γ.W.C , such that the square

Γ.W.Π[B,W].Π[B,C[app′B,W]]

Γ.W.Π[B,W] Γ.W,

Γ.W.C
d

λ(wrecC,d ◦ app′B,W)

fold

wrecC,d(2)

commutes.
(Here app′ is app with its arguments Wipped; and we suppress several

weakenings, so e.g. Π[B,W] is strictly speaking Π[B,W[χ(A)]].)

For the strictly stable case, of course, the Π-types too must be strictly stable, in
order for the stability equations for fold and wrec to typecheck.

DeVnition 3.4.4.8. Suppose C has strictly stable dependent products. We say C
has strictly stable W-types (over the given dependent products) if it is equipped
with operations providing, for all Γ,A,B as above, a W-type (WA,B, foldA,B,wrecA,B),
such that for σ : Γ′ → Γ and all appropriate A, B, C , d,

WA,B[σ] = WA[σ],B[σ]

foldA,B[σ] = foldA[σ],B[σ]

wrecA,B;C,d[σ] = wrecA[σ],B[σ];C[σ],D[σ].

If we assume pseudo-stable dependent products, then we can give a simple
deVnition of weakly stable W-types, along the same lines as the other deVnitions
of weakly stable constructors so far.

DeVnition 3.4.4.9. Suppose C is equipped with pseudo-stable dependent prod-
ucts. A weakly stable W-type for Γ, A, B (over these dependent products) is
(W, fold) as above, such that for each σ : ∆ Γ, there is some wrec making
(W[σ], fold[σ],wrec) a W-type for ∆, A[σ], B[σ].

(Here the reindexing fold[σ] is taken with domain ∆.W[σ].Π[B[σ],W[σ]],
which by pseudo-stability is a valid reindexing of Γ.W.Π[B,W].)

We say C has weakly stable W-types (over the given dependent products) if, for
each Γ, A, B, there exists some weakly stable W-type.

Lemma 3.4.4.10. If C has pseudo-stable dependent products, and weakly stable W-
types over these, then C! has strictly stable W-types over the strictly stable dependent
products given by Scholium 3.4.2.6 together with Prop. 3.4.2.7.

In maximal generality, one might not want to assume that the Π-types are any
more than weakly stable themselves. DeVning W-types over these, that can lift to
C!, is a little more involved.

(In fact, dependent products are pseudo-stable in all examples we know of, so
for W-types this more general deVnition is never really needed. However, it is
illustrative of a more general situation that does arise in practice: constructors
that depend on others previously deVned, where the earlier ones (identity types,
perhaps) are only weakly stable. See Heuristic 4.1.1 below for more on this point.)

THE LOCAL UNIVERSES MODEL 31

DeVnition 3.4.4.11. Suppose C is equipped with a stable class G of Π-types. C
has weakly stable W-types over G, if:

• for each Γ, A, B as above, there is some W ∈ T (Γ) such that
• for each σ : Γ′ Γ, any reindexings A′, B′, W′ of A, B, W along
σ, and any good Π-type (Π[B′,W′], appB′,W′), there is some map fold :
Γ′.A′Π[B′,W′] Γ′.W′, over Γ, such that
• for each further σ′ : Γ′′ Γ′, reindexings A′′, B′′, W′′, type C ∈
T (Γ′′.W′′), good Π-type (Π[B′′, C[app′B′,W′ [σ]]], appB′′, C[app′

B′,W′ [σ]]),

and map d : Γ′′.A′′.Π[B′,W′][σ].Π[B′′, C[app′B′,W′ [σ]]]→ Γ′′.W′′.C over
fold[σ′] as in the square (1) above, a section wrec of C , such that
• for each further reindexing of everything along some map σ′′ : Γ′′′

Γ′′, and good λ-abstraction λ(wrec[σ′′] ◦ app′B′,W′ [σ
′][σ′′]), the square

corresponding to (2) above commutes.

As one would hope, these deVnitions of weakly stable W-types agree:

Proposition 3.4.4.12. Suppose C is equipped with pseudo-stable Π-types. Then C
has weakly stable W-types in the sense of Def. 3.4.4.9 over this pseudo-stable structure
if and only if it has weakly stable W-types in the sense of Def. 3.4.4.11 over the
corresponding stable class deVned in Prop. 3.4.2.7. �

We may now lift weakly stable structure to C!, using the techniques established
above. Once again, nothing surprising occurs, and no new subtleties arise.

Lemma 3.4.4.13. Suppose C satisVes (LF), and is equipped with a stable class of
Π-types, and weakly stable W-types relative to these. Then C! carries strictly stable
W-types, over the strictly stable Π-types from Scholium 3.4.2.6. �

This completes the proof of Theorem 3.4.1. �

4. Further notes

4.1. Generalization to other rules. We have given Theorem 3.4.1 just for (a
selection of) the standard constructors and rules of Martin-Löf type theory. How-
ever, one of the hallmarks of type theory is its extensibility. One usually wants
to consider at least some other rules and constructors beyond these; a technique
applying only to this standard core would be highly limited in its utility. A word
is therefore in order on how the present results extend to rules and constructors
beyond those considered above.

Heuristic 4.1.1. The deVnition of strictly stable structure and the initiality of the
syntactic category extend straightforwardly to all reasonable constructors and rules
of type theory.

The deVnition of weakly stable structure seems to extend to all reasonable con-
structors and rules, in general along the (slightly involved) lines of the case of W-types
in Section 3.4.4 above.

Given these, the lifting of weakly stable structure on C to strictly stable structure on
C! extends straightforwardly to all reasonable Vnitary rules and constructors, except

32 P. LEF. LUMSDAINE AND M. A. WARREN

for type equality rules, exactly along the lines of the cases given in Section 3.4. The
Vnitariness condition may be removed by strengthening (LF) appropriately.

For the case of strictly stable structure, this is well-understood and generally
believed in the community; but, to our knowledge, no precise statement of it has
been formulated. Given such a formulation, one would hope that the present
heuristics could be made precise, and the results of this paper given in some more
satisfying generality. However, setting up such a general framework is beyond the
scope of this paper; so for now we treat the general case informally.

The case of weak stability is less clear; extending the deVnition is in general
rather trickier than most of the cases considered in this paper might suggest.

The complication comes from the dependence of later rules on earlier ones.
Since most standard constructors fall into independent groups, we have “cheated”
slightly within these groups, and given weak stability in a slightly simpler form
than the general approach would provide. In the case of W-types, however, we
see the complications that arise with successive dependency of rules.

The inputs to each operation (or existence condition) are interpretations of
the premises of the corresponding rule, which may involve previously given
constructors. For instance, the inputs to W-elimination involve Π-types. If those
previous constructors are only weakly stable, then the types in the premises will
not have canonically chosen interpretations; so one must quantify over all possible
choices, or at least over some reasonable class of choices.

So in general, for each operation, one considers C as equipped with a stable class
of interpretations, called good; and in the inputs to each operation, one quantiVes
over all good interpretations of the types involved in the premises. Since these
will in general be derived types, not just primitives, this depends on being able to
extend the notion of good interpretations to derived types.

This consideration is subtle enough that, without a precise formulation, we can-
not conVdently claim that this approach extends to all reasonable rules. However,
for all the rules that we have investigated in this connection, it extends without
further complications.

(If a constructor does not appear in subsequent rules, then there is no need to
distinguish a class of good interpretations; one may without loss of generality
consider all weakly stable interpretations as good, and hence to ask that for any
given input, some such interpretation exists.)

Once weak stability is appropriately deVned, the lifting from C to C! is generally
straightforward, modulo two limitations.

Firstly, with (LF) in its present form, one can lift only Vnitary rules, since we
have just Vnite limits with which to construct representing objects for premises.
To lift inVnitary rules, one needs to strengthen (LF) by assuming appropriate
larger limits in C.

Secondly, and less negotiably, the lifting works just for rules whose conslusions
are type constructors, term constructors, or term equalities. It does not work for

THE LOCAL UNIVERSES MODEL 33

type equality rules. Even when some equality of derived types holds strictly in C,
their liftings to C! will almost always have diUerent local universes.

The most notable type equality rules considered in practice are the constructor
commutation rules for universes à la Tarski [ML84, p. 88], and (in the absence
of universes) large eliminators for simple inductive types. In each case, one may
replace these rules with forms not involving type equalities, which will then lift.

Most straightforwardly, one can simply replace the equalities by (terms repre-
senting) equivalences of types.

Alternatively, in the case of operations on universes, one may directly equip
the results of operations with the appropriate structure. For instance, if (V, elV)
is a universe, and +V : V × V V is the sum-types operation on V, then the
standard commutation rule states that elV(a+V b) = elV(a) + elV(b). Instead, one
may posit inclusion maps and an eliminator directly exhibiting elV(a+V b) as a
sum for elV(a) and elV(b), independently of any globally deVned sum types. This
is interestingly analogous to weak stability, replacing an explicit commutation
condition by the preservation of the universal property.

In either case, it seems that in replacing type equality rules with these weaker
forms, one loses only convenience, not logical strength. Again, however, this
is somewhat heuristic and conjectural: generally believed based on practical
experience, but not (to our knowledge) known in any precise form.

4.2. Applications. Our main motivating examples are homotopy-theoretic in
nature, along the lines of [AW09, War08, dBG12, Voe11], and similar. The slogan
for all such models is types as Vbrations.

SpeciVcally, any weak factorization system (or algebraic wfs) on a Vnitely
complete category E gives a comprehension category T E over E , with
T (Γ) the category of right maps into Γ. (We will refer to the right maps of the
factorization system as Vbrations.) When it is clear which weak factorization
system is under consideration, we refer to the resulting comprehension category
again simply as E . Similarly, we write Ef for the full sub comprehension category
on the Vbrant objects of E .

If (the underlying maps of) Vbrations are exponentiable, then the ambient
hypothesis (LF) applies; so to model type theory, we need only show that ap-
propriate weakly stable structure exists. As shown in various recent work—
[AW09, War08, AK11]—this structure often follows from well-known homotopy-
theoretic facts. Various combinations of homotopy-theoretic properties turn out
to suXce. One particularly fruitful combination is the following (the terminology
is taken from [AK11]; we modify their deVnition somewhat):

DeVnition 4.2.1. A logical weak factorization system on E is a weak factorization
system on E , such that:

(a) Vbrations are exponentiable: for any Vbration p : Y X , the pullback
functor p∗ : E/X E/Y has a right adjoint Πp;

(b) left maps are preserved by pullback along Vbrations (equivalently, Vbrations
are preserved by exponentiation along Vbrations); and

34 P. LEF. LUMSDAINE AND M. A. WARREN

(c) any left map i between Vbrations over a common base Γ

A B

Γ

i

is substitution-stable in Γ, i.e. its pullback along any map f : Γ′ Γ is again
a left map.
A semi-logical weak factorization system is as above, but with the conditions

required only for Vbrations over Vbrant bases.
A (semi-)logical model structure is a model structure whose (trivial coVbration,

Vbration) weak factorization system is (semi-)logical.

Theorem 4.2.2. Suppose E is a Vnitely complete category, with stable Vnite coprod-
ucts, equipped with a weak factorization system.

If the weak factorization system is semi-logical, then (Ef)! models type theory
with Π-, Σ-, unit, Id-, and Vnite sum types. If it is moreover logical, then so does E!.

Proof. The assumption of Vnite completeness, together with (a), ensures that
condition (LF) applies; so by the results of Section 3 it suXces to construct the
desired weakly stable structure on E . Identity types are constructed as in [AW09,
Thm. 3.1] and [War08, Thm. 2.17] The other structure is along standard categorical
lines, with condition (c) providing weak stability (compare [AK11, Thm. 26]). �

For recognizing (semi-)logical weak factorization systems, it is often convenient
to replace (c) with a simpler equivalent criterion:

Lemma 4.2.3. In any weak factorization system satisfying (b) above, the following
are equivalent:
(i) Any left map between Vbrations over a common base Γ is substitution-stable in

Γ.
(ii) Any map between Vbrations over a common base Γ has an (L,R) factorization

whose L-factor is substitution-stable in Γ.
(iii) For any Vbration p : X Γ, the diagonal map ∆p : X X ×Γ X has an

(L,R) factorization whose L-factor is substitution-stable in Γ.
Moreover, they remain equivalent when restricted to Vbrant bases.

Proof. The implications (i)⇒ (ii)⇒ (iii) are immediate. For the converses, (ii)⇒
(i) is a standard retract argument, while (iii)⇒ (ii) is analogous to the proof of
[GG08, Lemma 4.2.2]. �

A stronger condition, but usually easier to verify when it holds, is:

Lemma 4.2.4. Let E be a model category in which coVbrations are stable under
pullback. Then condition (c) holds in E .
Proof. By Ken Brown’s lemma, weak equivalences between Vbrations over a base
are always stable under pullback in the base. Thus, if coVbrations are also stable
under such pullbacks, so are trivial coVbrations. �

THE LOCAL UNIVERSES MODEL 35

Examples 4.2.5. The following is a (non-exhaustive) list of examples to which
Theorem 4.2.2 is easily seen to apply, using the lemmas above. (Cf. [Shu15,
Exs. 2.16].)

1. The “canonical” model structures on Cat and Gpd are logical (since isoVbra-
tions are exponentiable in Cat) [JT91].

2. The usual (Kan/Quillen) and quasicategory (Joyal) model structures on SSets
[Joy08] are both logical.

3. Any right proper Cisinski model structure [Cis06] is logical.
4. Any locally cartesian closed right proper simplicial model category in which

the coVbrations are monomorphisms is logical [War08, Cor. 2.46]. (Examples
include simplicial presheaves and simplicial sheaves.)

5. For any coVbrantly generated logical model category C and small category J ,
the injective and projective model structures on CJ are logical.

6. If C is any logical model category, and J is an inverse category, then the Reedy
(equivalently, injective) model structure on CJ is logical. [Shu15, §11] treats
this example in detail, showing moreover that univalent universes in C lift
to univalent universes in CJ , using the results of the present paper to obtain
coherence.

More examples of (semi-)logical weak factorization sytems are given (with
slightly diUerent terminology) in [Awo14, §3.3].

References

[AK11] Peter Arndt and Krzysztof Kapulkin, Homotopy-theoretic models of type theory, Typed
Lambda Calculi and Applications, Springer, Berlin, Heidelberg, 2011, pp. 45–60.

[AW09] Steve Awodey and Michael A. Warren, Homotopy theoretic models of identity types, Math.
Proc. Camb. Phil. Soc. 146 (2009), 45–55.

[Awo14] Steve Awodey, Natural models of homotopy type theory, Preprint, 2014, arXiv:1406.3219,
doi:10.1017/bsl.2014.9.

[dBG12] Benno van den Berg and Richard Garner, Topological and simplicial models of identity
types, ACM Trans. Comput. Log. 13 (2012), no. 1, Art. 3, 44, arXiv:1007.4638v1, doi:
10.1145/2071368.2071371.

[Car86] John Cartmell, Generalised algebraic theories and contextual categories, Ann. Pure Appl.
Logic 32 (1986), no. 3, 209–243.

[CGH14] Pierre-Louis Curien, Richard Garner, and Martin Hofmann, Revisiting the categorical
interpretation of dependent type theory, Theor. Comput. Sci. 546 (2014), 99–119, doi:
10.1016/j.tcs.2014.03.003.

[Cis06] Denis-Charles Cisinski, Les préfaisceaux comme modèles des types d’homotopie, Astérisque
308 (2006), xxiv–390.

[GG08] Nicola Gambino and Richard Garner, The identity type weak factorisation system, Theoret.
Comput. Sci. 409 (2008), no. 1, 94–109, arXiv:0803.4349, doi:10.1016/j.tcs.2008.
08.030.

[Gir65] Jean Giraud, Cohomologie non abélienne, C. R. Acad. Sci. Paris 260 (1965), 2666–2668.
[Hof95] Martin Hofmann, On the interpretation of type theory in locally Cartesian closed categories,

Computer science logic (Kazimierz, 1994), Lecture Notes in Comput. Sci., vol. 933, Springer,
Berlin, Heidelberg, 1995, pp. 427–441, doi:10.1007/BFb0022273.

[Hof97] , Syntax and semantics of dependent types, Semantics and logics of computation
(Cambridge, 1995), Publ. Newton Inst., vol. 14, Cambridge Univ. Press, Cambridge, 1997,
pp. 79–130, doi:10.1017/CBO9780511526619.004.

http://arxiv.org/abs/1406.3219
http://dx.doi.org/10.1017/bsl.2014.9
http://arxiv.org/abs/1007.4638v1
http://dx.doi.org/10.1145/2071368.2071371
http://dx.doi.org/10.1145/2071368.2071371
http://dx.doi.org/10.1016/j.tcs.2014.03.003
http://dx.doi.org/10.1016/j.tcs.2014.03.003
http://arxiv.org/abs/0803.4349
http://dx.doi.org/10.1016/j.tcs.2008.08.030
http://dx.doi.org/10.1016/j.tcs.2008.08.030
http://dx.doi.org/10.1007/BFb0022273
http://dx.doi.org/10.1017/CBO9780511526619.004

36 P. LEF. LUMSDAINE AND M. A. WARREN

[HS9?] Martin Hofmann and Thomas Streicher, Lifting Grothendieck universes, Unpublished note,
199?, http://www.mathematik.tu-darmstadt.de/~streicher/.

[HS98] , The groupoid interpretation of type theory, Twenty-Vve years of constructive type
theory (Venice, 1995), Oxford Logic Guides, vol. 36, Oxford Univ. Press, New York, 1998,
pp. 83–111.

[Jac93] Bart Jacobs, Comprehension categories and the semantics of type dependency, Theoret.
Comput. Sci. 107 (1993), no. 2, 169–207, doi:10.1016/0304-3975(93)90169-T.

[Joy08] André Joyal, The theory of quasi-categories and its applications, Quaderns 45 (2008), no. 2,
151–496, Vol. II of course notes from Simplicial Methods in Higher Categories, http:
//www.crm.es/HigherCategories/notes.html.

[JT91] André Joyal and Myles Tierney, Strong stacks and classifying spaces, Category theory
(Como, 1990) (Aurelio Carboni, Maria Cristina Pedicchio, and Guiseppe Rosolini, eds.),
Lecture Notes in Math., vol. 1488, Springer, Berlin, Heidelberg, 1991, pp. 213–236, doi:
10.1007/BFb0084222.

[KLV12] Chris Kapulkin, Peter LeF. Lumsdaine, and Vladimir Voevodsky, The simplicial model of
univalent foundations, Submitted, 2012, arXiv:1211.2851.

[ML84] Per Martin-Löf, Intuitionistic type theory, Studies in Proof Theory. Lecture Notes, vol. 1,
Bibliopolis, Naples, 1984.

[NPS90] Bengt Nordström, Kent Petersson, and Jan M. Smith, Programming in Martin-Löf’s type
theory, International Series of Monographs on Computer Science, vol. 7, Clarendon Press,
Oxford University Press, New York, 1990.

[See84] Robert A. G. Seely, Locally Cartesian closed categories and type theory, Math. Proc. Cam-
bridge Philos. Soc. 95 (1984), no. 1, 33–48, doi:10.1017/S0305004100061284.

[Shu15] Michael Shulman, Univalence for inverse diagrams and homotopy canonicity, Mathe-
matical Structures in Computer Science FirstView (2015), 1–75, arXiv:1203.3253,
doi:10.1017/S0960129514000565, http://journals.cambridge.org/article_
S0960129514000565.

[Str91] Thomas Streicher, Semantics of type theory, Progress in Theoretical Computer Science,
Birkhäuser Boston Inc., Boston, MA, 1991, Correctness, completeness and independence
results.

[Str14] , Personal communication, June 2014.
[Uni13] The Univalent Foundations Program, Homotopy type theory: Univalent foundations of

mathematics, Tech. report, Institute for Advanced Study, 2013.
[Voe11] Vladimir Voevodsky, Notes on type systems, Unpublished notes, April 2011,

http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/
expressions_current.pdf.

[Voe13] , A simple type system with two identity types, Ongoing unpublished notes,
2013, https://uf-ias-2012.wikispaces.com/file/view/HTS.pdf/410120566/
HTS.pdf.

[War08] Michael A. Warren, Homotopy theoretic aspects of constructive type theory, Ph.D. thesis,
Carnegie Mellon University, 2008.

[War11] , The strict ω-groupoid interpretation of type theory, Models, logics, and higher-
dimensional categories, CRM Proc. Lecture Notes, vol. 53, Amer. Math. Soc., Providence,
RI, 2011, pp. 291–340.

Department ofMathematics, Stockholm University, Stockholm, Sweden
E-mail address: p.l.lumsdaine@gmail.com

Los Angeles, California, USA

http://www.mathematik.tu-darmstadt.de/~streicher/
http://dx.doi.org/10.1016/0304-3975(93)90169-T
http://www.crm.es/HigherCategories/notes.html
http://www.crm.es/HigherCategories/notes.html
http://dx.doi.org/10.1007/BFb0084222
http://dx.doi.org/10.1007/BFb0084222
http://arxiv.org/abs/1211.2851
http://dx.doi.org/10.1017/S0305004100061284
http://arxiv.org/abs/1203.3253
http://dx.doi.org/10.1017/S0960129514000565
http://journals.cambridge.org/article_S0960129514000565
http://journals.cambridge.org/article_S0960129514000565
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/expressions_current.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/expressions_current.pdf
https://uf-ias-2012.wikispaces.com/file/view/HTS.pdf/410120566/HTS.pdf
https://uf-ias-2012.wikispaces.com/file/view/HTS.pdf/410120566/HTS.pdf

	1. Introduction
	2. Setting
	2.1. Comprehension categories
	2.2. Split replacements
	2.3. Stability conditions
	2.4. Lifting logical structure

	3. The local universes model
	3.1. The comprehension category C_!
	3.2. Template for structure on C_!
	3.3. Manipulating local universes
	3.4. Logical structure on C_!

	4. Further notes
	4.1. Generalization to other rules
	4.2. Applications

	References

