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Abstract

We use exponential start time clustering to design faster and more work-efficient parallel
graph algorithms involving distances. Previous algorithms usually rely on graph decomposition
routines with strict restrictions on the diameters of the decomposed pieces. We weaken these
bounds in favor of stronger local probabilistic guarantees. This allows more direct analyses of
the overall process, giving:

e Linear work parallel algorithms that construct spanners with O(k) stretch and size O (n!'+1/)
in unweighted graphs, and size O(n1+1/ ¥log k) in weighted graphs.

e Hopsets that lead to the first parallel algorithm for approximating shortest paths in undi-
rected graphs with O(m poly logn) work.

1 Introduction

Graph decompositions are widely used algorithmic routines. They partition the graph to en-
able divide-and-conquer algorithms. One form that has proven to be particularly useful is the
low diameter decomposition: the decomposed pieces should have small diameter, while few edges
have endpoints in different pieces. Variants of the low diameter decomposition are used in al-
gorithms for spanners [Coh98|, distance oracles [TZ05], and low stretch embeddings [AKPW95,
Bar96, CMP*14].

Early applications of the low diameter decomposition include distributed algorithms by Awer-
buch [Awe85], and low-stretch spanning trees by Alon et al. [AKPW95]. Further study of low
stretch tree embeddings led to a probabilistic decomposition routine by Bartal [Bar96]. On an
unweighted graph, this decomposition partitions the graph so that only a § fraction of the edges
are cut, and the resulting pieces have diameter O(3~!logn).

The development of parallel algorithms for finding tree embeddings [BGK " 14] led to a parallel
low diameter clustering routine using exponential start times [MPX13]. This routine then led to
algorithms that generate tree embeddings suitable for a variety of applications [CMP™14]. The
clustering algorithm itself has properties suitable for reducing the communication required in par-
allel connectivity algorithms [SDB14]. This suggests that exponential start time clusterings have a
variety of other applications in graph algorithms.

Graph decomposition routines are often invoked hierarchically, leading to many levels, each
refining the output of the previous one. The O(logn) discrepancy between the probability of edges



being cut and diameters of pieces in standard low diameter decomposition could then accumulate
through the levels. To address this issue, recent algorithms using low diameter decompositions
usually require stronger properties at intermediate steps.

In this paper, we give an alternate approach based on the probabilistic guarantees of the expo-
nential start time clustering. We regard the multiple levels as independent events, and analyze the
output probabilistically in each locality. This weakens the interactions between the levels, while
still allowing us to analyze the final outcome. We apply this method to several classical graph
problems involving distances.

Spanners are sparse subgraphs that approximate distances in the original graph. We show that
one round of exponential start time clustering augmented with a few edges leads to spanners. This
algorithm extends to the weighted setting by bucketing the edges by weights, and then clustering
them hierarchically. This leads to an overhead of O(logk) in the size compared to the optimal
construction where k is the stretch factor, and O(log U) in depth, where U is the ratio between the
maximum and minimum edge weights.

Theorem 1.1 There exists an algorithm that given as input a graph G and parameter k > 1, finds
with high probability a subgraph H in which shortest path distances are preserved up to a factor
of O(k) (i.e. H is a O(k)-spanner of G). If G is an unweighted graph, then H has expected size
O(n'*tV/*) and is computed in O(lognlog* n) depth with O(m) work. If G is a weighted graph with
ratio of maximum and minimum edge weights bounded by U, H has expected size O(nHI/k log k)
and is computed in O(log U lognlog* n) depth with O(m) work.

Closely related to spanners are hopsets, which do not limit the edge count, but aim to reduce the
number of edges in the shortest paths. These objects are crucial for speeding up parallel algorithms
for (approximate) shortest paths [KS97, Coh00]. Using the exponential start time clustering, we
construct hopsets which lead to the first parallel algorithm for approximating shortest paths in
undirected graphs with O(m polylogn) work. Here, our key idea is to employ backward analysis
and analyze the algorithm with respect to a single (unknown) optimal s-t path. We show that in
expectation this path is not cut in too many places by the decomposition scheme, and use this to
bound the overall distortion.

Theorem 1.2 There exists an algorithm that given as input an undirected, non-negatively weighted

graph G, and parameters a,e € (0,1), preprocesses the graph in O(me 2~%log®>T*n) work and

44 .
0O (n4+2a e 17*1og? nlog* n) depth, so that for any vertices s and t one can return a (1 + €)-

Ata
approzimation to the s —t shortest in O(me =) work and O <n4+2a 6_2_0‘) depth.

The paper is organized as follows: Section 2 reviews some standard notions and compares our
results with related works. In Section 3, we describe our spanner construction for both unweighted
and weighted graphs. We then describe our hopset algorithm for unweighted graphs in Section 4,
and extend it to the weighted setting in Section 5.

Although the probabilistic analysis allows us to decouple some of the levels, mild dependencies
between the levels remain. Such dependencies result in terms of O(log k) and O(log? n) in our results
for spanners and hopsets respectively. A promising direction for improvements is to construct the
clusterings on different levels in a dependent manner. Picking the randomness across levels from
the same source could allow more streamlined analysis of the overall process.



2 Background and Related Works

We consider a graph G = (V, E,w) with |V| = n, |F| = m and edge weights/lengths w : E — R,..
Throughout the paper we will only deal with undirected graphs with positive edge weights, so we
can assume w(e) > 1 by normalizing and w(u,v) = w(v,u). Furthermore, the graph is unweighted
if w(e) =1 for all e € E. If X is a subset of V or E, we will use G[X]| to denote the induced
subgraph of G on X. If H is a subgraph of G, we will use G/H to denote the quotient graph
obtained from G after contracting the connected components of H into points, removing self-loops
and merging parallel edges (by keeping the shortest edge).

The parallel performances of our algorithms are analyzed in the standard PRAM model. The
longest sequence of dependent operations is known as depth, while the total number of operations
performed is termed work. In practice, the abilities of algorithms to parallelize are often limited
by the number of processors. For instance, a common assumption in the MapReduce model is that
the number of processors is n’ for some small § [KSV10]. In such settings, an algorithm will fully
parallelize as long as the depth is less than n'~9. As a result, it is more important to reduce work
in order to obtain speed-ups over sequential algorithms.

2.1 Exponential Start Time Clustering

We start by formalizing the key routine in this paper, a graph decomposition routine which we call
Exponential Start Time Clustering. It generates a partition of V into subsets X1, , Xy, and a
center ¢; for each X;. It also outputs a spanning tree for each cluster rooted at its center. For
convenience, if v € X;, we use ¢(v) to denote ¢;. We use a routine from [MPX13].

Algorithm 1 Exponential Start Time Clustering
ESTCLUSTER(G, f3)

Input: Graph G = (V, E, w), parameter 0 < 3 < 1.
Output: Decomposition of G.

1: For each vertex u, pick ¢, independently from the exponential distribution Exp(/3).

2: Create clusters by assigning each v € V' to u = arg min, ¢y {dist(u,v) — d,}, if v = u we let it
be the center its cluster.

3: Return the clusters along with a spanning tree on each cluster rooted at its center.

In this paper we extend the algorithm to efficiently run on weighted graphs and also extend
the analysis bounding the number of inter-cluster edges to more general subgraphs. The following
lemma gives bounds on the run time and cluster diameter for the weighted case.

Lemma 2.1 (Theorem 1.2 from [MPX13]) Given a weighted graph G = (V, E,w) where |V| = n,
|E| = m, w: E — Z4 with min.egw(e) = 1, ESTCLUSTER(G, ) generates a set of disjoint
clusters U; X; = V. The diameter of each X; is certified by a spanning tree on X;, which has
diameter at most %logn with probability at least 1 — 1/n*=1, for any k > 1. This computation

takes O(B~'lognlog* n) depth with high probability and O(m) work.

We discuss the efficient implementation of the ESTCLUSTER routine in Appendix A, as well as
the effect different models of parallelism have on the depth. An analysis of the resulting decom-
position in unweighted graphs is in Section 4 of [MPX13], and it extends immediately to weighted
graphs. Our spanner algorithm requires a stronger variant of the edge cutting guarantee which we
state below and prove in Appendix A.



Let G be a weighted graph, a ball centered at ¢ of radius r is defined as B(c,r) = {v € V|
d(v,c) < r}. The center ¢ may either be a vertex or the midpoint of an edge. We can show that
balls with small radius do not intersect with too many clusters.

Lemma 2.2 The probability that a ball of radius r intersects k or more clusters from ESTCLUSTER
is at most Y*~1 where v = 1 — exp(—2rp3).

Corollary 2.3 An edge e with weight w(e) is cut in the clustering produced by ESTCLUSTER with
probability at most 1 — exp(—pf - w(e)) < 5 - w(e).

2.2 Spanners

A subgraph H of G is said to be a k-spanner, if for every u,v € V, we have disty(u,v) < k -
distg(u, v), where k is also called the stretch factor. Notice that it is sufficient to prove the stretch
bound for endpoints of every edge. It is known that for any integer k£ > 1, any undirected graph
with n vertices admits (2k — 1)-spanners with O(n'*1/F) edges', and this is essentially the best
tradeoff between sparsity and stretch [PS89, TZ05].

weighted graphs

multiplicative distortion Size Work Parallel depth Notes
2% — 1 tnltl/k O(mn!+1/k) O(n'+1/F) [ADD793]
2k —1 O (kn't+1/k) O(km) O(klog* n) [BS07]
O(k) O(n'*t1/*1og k) O(m) O(klog*nlogU) new
unweighted graphs
multiplicative distortion Size Work Parallel depth Notes
2k —1 O(kn' 1%y O(km) O(klog*n)  [BKMP10]
O(2'°8" " log n) O(n) O(mlogn) O(lognlog®n) [Pet08]
O(k) O(n'+1/k) O(m) O(klog* n) new

Figure 1: Known results for spanners, U represents the range of weights.

A summary of parallel algorithms for constructing spanners can be found in Figure 1. Our
algorithms improve upon the O(k) overhead in spanner sizes from previous parallel algorithms
while losing constant factors in the stretch. On unweighted graphs, this improvement comes mainly
from the ability to invoke exponential start time decomposition in the spanner construction by
Peleg and Schaffer algorithm [PS89]. Our extension of this routine to the weighted case relies on
the probabilistic aspects of the decomposition. This leads to improvements by factors of @ in
spanner size and factors of k in work over the previous best [BS07]. Such routines are also directly
applicable to the graph sparsification algorithm by Koutis [Koul4].

Spanners have also been studied under additive error [DHZ00, BKMPO05]. An («, 5)-spanner
is a subgraph that preserves distances up to a multiplicative factor a and an additive term 3. In
the table above, the construction by [BKMP10] in fact produces (k, k — 1)-spanners in unweighted
graphs. For a single edge, this gives a multiplicative stretch factor of at most 2k — 1, which we
listed for comparison purposes.

This problem has also been extensively studied in the distributed setting [BS07, DGP07,
DGPVO08, Pet08]. In the table above, the constructions by [BS07], [Pet08] and [BKMP10] can

Note that O(n**t/*) = O(n) for k = Q(logn).



produce spanners of the same quality in the synchronized distributed model, where the number of
rounds of the algorithm is given by the stretch factor and unit size messages are used. Our spanner
construction for unweighted graphs can also be ported to this distributed setting with similar guar-
antees, as its employs breadth first search, which admits a simple implementation in synchronized
distributed networks. However for finding spanners in weighted graphs, it is necessary for us to
contract parts of the original graph and work on the resulting quotient graph. Thus we lose the
ability apply it to the distributed setting with weighted edges.

2.3 Hopsets

Hopsets were formalized by Cohen [Coh00] as a crucial component for parallel shortest path al-
gorithms. The goal is to add a set of extra edges to the graph so that the h-hop distance in the
new graph suffices for a good approximation. Let weight of a path p, denoted as w(p), be the
sum of weights of all edges on it, w(p) = > ., w(e). The distance between two vertices s and ¢,
dist(s, t), is the weight of the shortest (lightest) s-t path. Furthermore, with a set of edges E’, the
h-hop distance between s and ¢t in E’, denoted by dist%/(u,v), is defined to be the weight of the
minimum weight path with at most h edges between s and ¢, using only edges from E’. If h is
omitted we assume h = n, if £’ is omitted we assume E' = E. A probabilistic version of hopsets
can be described as follows:

Definition 2.4 Given a graph G = (V, E,w), a (e, h,m’)-hopset is a set of edges E' such that:
1. |[E') <m'.
2. Each edge uv in E' corresponds to a wv-path p in G such that w(uv) = w(p).

3. For any vertices u and v, with probability 1/2 we have:

distly g (u,v) < (1 + €)distg (u, v).

Given such a hopset, a result by Klein and and Subramanian [KS97] allows us to approximate
the length of the path efficiently. They showed that when given an (e, h,m’)-hopset, a shortest
path can be found in O(me~!) work and O(hn®e~!) depth. As a result, the main work in parallel
shortest path algorithms is to efficiently compute hopsets. A summary of previous algorithms, as
well as ours, is below in Figure 2.

Hop count Size Work Depth Notes
O(n'/?) O(n) Q(mn0'5) O(n%5logn) [KS97, SS99], exact
O(poly logn) O(n'*+% poly logn) O(mn®) O(poly log n) [Coh00]
(logn)O(leglogm)®) (nl+o(7log llogn)> 19) <mn0(7log logn )) (log n)©((loglogn)?) [Coh00]
O(n 3138 ) O(n) O(mlog®™*n) O(n 138 ) new

Figure 2: Performances of Hopset Constructions, omitting ¢ dependency.

For Cohen’s algorithm, Q(n®) processors are needed for parallel speedups in both the construc-
tion and query stages 2. In our case, if € is a constant, O(log>*®n) processors are sufficient for
parallel speedups. Furthermore, once a hopset is constructed, even a constant number of processors
suffices for speedups.

2A more detailed analysis leads to a tighter bound of Q(exp(y/logn))



3 Spanners

We first describe our spanner construction. Our spanner construction in unweighted graphs has the
same structure as the sequential routine by Peleg and Schaffer [PS89]: after the decomposition step,
we add in single edges between adjacent clusters. We formalize this algorithm for completeness
here.

Algorithm 2 Spanner construction for unweighted graphs.
UNWEIGHTEDSPANNER(G, §)
Input: An unweighted graph G and parameter k£ > 1. Output: A O(k)-spanner of G.

1: Compute an exponential start time clustering with 8 = lozgk", let H be the forest produced.
2: From each boundary vertex, add to H one edge connecting to each adjacent cluster.
3: Return H.

The Peleg and Schaffer algorithm [PS89] relied on a bound introduced by Awerbuch [Awe85],
which bounds the number of interacting clusters around a single vertex. The same bound can be
obtained with exponential start time clusterings using Lemma 2.2.

log n

Corollary 3.1 In an exponential start time decomposition with parameter 8 = , for any vertex
v eV, the ball B(v,1) = {u € V | d(u,v) < 1} intersects O(n'/*) clusters in expectatzon.

Proof By Lemma 2.2, B(v,1) intersects k£ or more clusters with probability at most (1 —
exp(28))¥~1. Let L be the number of clusters intersecting B(v, 1), we then have

Zipr[LZl]Si (1 —exp(—28))""
=1

=1

_ 1
exp(—25)

_ 1

~ exp(—logn/k)
1k

Lemma 3.2 Given a connected unweighted graph and for any k > 1, UNWEIGHTEDSPANNER
constructs a O(k)-spanner with high probability of expected size O(n't1/¥). This takes O(klog* n)
depth with high probability and O(m) work.

Proof The algorithm starts by constructing an exponential start time decomposition with pa-
rameter 8 = 1°2gk". Let F' be the forest obtained from the decomposition, notice that F' has at
most n — 1 edges. Then for each boundary vertex v, (i.e. v is incident to an inter-cluster edge),
we add one edge between v and each of the adjacent clusters to our spanner. Using Corollary 3.1
and considering the ball B(v, 1) for each v € V, we see that O(n'*1/*) edges are added this way in
expectation.

For an edge e internal to a cluster, its stretch is certified by the spanning tree within the
cluster, whose diameter is bounded by O(k) with high probability by Lemma 2.1. If the edge e

has its endpoints in two different clusters, our spanner must contain some edge between these two




clusters. As with high probability both of these clusters has diameter O(k), the stretch of e is agin

bounded by O(k) with high probability. The depth and work bounds also follow from Lemma 2.1.

[

This routine can be extended to the weighted setting by bucketing the edges by powers of

2. Given G = (V, E,w) where U = (max. w(e))/(min. w(e)) is the ratio between maximum and
minimum edge weights, we bucket the edges as

Ei={ec E|w(e) e [2071,2)}.

This allows us to run the unweighted algorithm on essentially disjoint sets of edges, but leads
to an overhead of O(logU) in the total size. We reduce this overhead to O(logk) using an ap-
proach introduced in [CMP"14] that’s closely related to the AKPW low-stretch spanning tree
algorithm [AKPWO95]. We build spanners on these buckets in order, but contract the low-diameter
components with smaller weights. Lemma 3.2 then allows us to bound the expected rate at which
vertices are contracted, and in turn the size of the spanner.

Our contraction scheme is significantly simpler than previous ones because we will be able to
ensure that edge weights in different levels differ by factors of poly k, where k is the stretch factor.
To this end, we first break up the input graph into O(logk) graphs where edge lengths are well
separated. We define Gj to be the graph with vertex set V and edge set U;>0Ej1;.c1gk, Where c is
an appropriate constant®. It is clear that the union of O(log k) such G ;s form the whole graph, and
they all have O(logU) buckets of edges, where weights differ by at least O(k¢) between different
buckets. Thus if we can find a O(n'+1/*)-sized spanner for each of G;, we obtain a O(n**'/*log k)-
sized spanner for G.

For each G}, we use the fact that the weights are well-separated to form hierarchical contraction
schemes. Pseudocode of this algorithm is given in Algorithm 3.

Algorithm 3 Spanner Construction on graphs with well separated edge weights.
WELLSEPARATEDSPANNER(G)

Input: A weighted graph G with well separated edge weight buckets as described above.
Output: A O(n)-sized spanner for G.

1: Relabel the edge buckets to be Aj, Ao, ..., As in increasing order of weights, such that edges in
A; have weights in [w;, 2w;) and w41 /w; > O(k).
Initialize Hy = () and S = 0.
for i =1 to s do

Let I'; = G[A;]/H;—1 with uniform edge weights.

Perform ESTCLUSTER with 3 = 1°2gk" on T

Let F be the forest produced in the previous step.

S=SUF and H;=H; {UF.

For each boundary vertex, add one edge connecting each of the adjacent clusters to S.
return S.

Theorem 3.3 Given a weighted graph G with n vertices, m edges and for any k > 1, we can com-
pute with hight probability a O(k)-spanner for G of expected size O(n't1/¥log k), using O(klog* nlog U)
depth and O(m) work.

3The constant ¢ should be chosen to achieve the desired succes probability from Lemma 2.1. We will hide ¢ inside
big-O notations from now on.



Proof As discussed above, we break G into O(log k) edge-disjoint graphs in which edge weights
are well separated. We run WELLSEPARATEDSPANNER on each of these graphs in parallel, each
iterations of the loop performs an exponential start time decomposition on disjoint sets of edges,
thus the overall work is O(m). As there are O(log U) iterations, the overall depth is O(k log* nlog U)
with high probability.

Now we show that WELLSEPARATEDSPANNER, produces a spanner for each of these graphs. In
each iteration of the for-loop, the unweighted algorithm is run on I'; = G[A;]/H;—1. This produces
an unweighted spanner for edges in A; by Lemma 3.2. Since the edge weights differ by at least
O(k) between levels, using Lemma 2.1 and induction on the loop index we see that vertices in the
quotient graph I'; corresponds to pieces of diameter at most w; in the spanner constructed so far,
with high probability. Therefore the stretch bound for edges from A; in I'; gets worse by at most
a factor of 2 when translated in G.

We finish by bounding the size of our spanner. Using an argument similar to the proof of
Lemma 2.1, we notice that any non-singleton vertex in one of I'; has probability at least 1/ nt/k of
being contracted away. Thus in expectation each vertex participates in O(nl/ *) level of WELLSEP-
ARATEDSPANNER, and in each level it contributes O(n'/*) inter-cluster edges and O(1) forest edges
in expectation. Thus WELLSEPARATEDSPANNER produces a spanner of size O(nHz/ k), where the
exponent 1+ 2/k can be reduced to 1+ 1/k if we back down on the stretch bound by a factor of 2.
Since the graph is decomposed into O(log k) well separated graphs, this gives us the O(n'*/*log k)
overall bound on the expected size of our spanner. |

4 Hopsets in Unweighted Graphs

Our hop-set construction is based on recursive application of the exponential start time clustering
from Section 2.1. We will designate some of the clusters produced, specifically the larger ones, as
special. Since each vertex belongs to at most one cluster, there cannot be too many large clusters.
As a result we can afford to compute distances from their centers to all other vertices, and keep a
subset of them as hopset edges in the graph. There are two kinds of edges that we keep:

1. star edges between the center of a large cluster and all vertices in that cluster.
2. clique edges between the center of a large cluster and the centers of all other large clusters.

In other words, in building the hopset we put a star on top of each large cluster and connect their
centers into a clique. Then if our optimal s-t path p* encounters two or more of these large clusters,
we can jump from the first to the last by going through their centers. One possible interaction
between the decomposition scheme and a path p* in one level of the algorithm is shown in Figure 3.

This allows us to replace what hopefully is a large part of p* with only three edges: two star
edges and one clique edge. However this replacement may increase the length of the path by the
diameter of the large clusters. But as this distortion can only happen once, it is acceptable as long
as the diameter of the clusters are less than ew(p*). Our algorithm then recursively builds hopsets
on the small clusters. The probabilistic guarantees of an edge being cut gives that p* does not
interact with too many such clusters. So once again a reasonable distortion within these clusters
can be incurred.

Formally, two parameters are crucial to our algorithm: the parameter 5 with which the decom-
position routine is run, and the threshold p by which a cluster is deemed large. The algorithm then
has the following main steps:

1. Compute a exponential start time clustering with parameter £



Figure 3: Interaction of an s — ¢ path with the decomposition scheme. Shortcut edges connecting
the centers of large clusters allow us to ‘jump’ from the first vertex of p* in a large cluster (u), to
the last vertex of p* in a large cluster (v). The edges ucy, cov are star edges, while cjcs is a clique
edge.

2. Identify clusters with more than n/p vertices as large clusters.
3. Construct star and clique edges from the centers of each large cluster.

4. Recurse on the small clusters.

Our choice of 5 at each level of the recursion is constrained by the additive distortion that we
can incur. Consider a cluster obtained at the i*" level of the decomposition ran with ;. Since the
path has length d and each edge is cut with probability (3;, the path is expected to be broken into
Bid pieces. Therefore on average, the length of each piece in a cluster is about f3; ! The diameter
of a cluster in the next level on the other hand can be bounded by kﬂijrll log n, where the constant
k > 1 can be chosen with desired success probability using Lemma 2.1. Therefore, we need to set
Bi+1 so that:

kB logn < e8!
Bi+1 > (ke 'logn) B;.

In other words, the 3s need to increase from one level to the next by a factor of ke ! log n where e < 1
the distortion parameter. This means that the path p* is cut with granularity that increases by a
factor of O(e~!logn) each time. Note that the number of edges cut in all level of the recursion serves
as a rough estimate to the number of hops in our shortcut path. Therefore, a different termination
condition is required to ensure that the path is not completely shattered by the decomposition
scheme. As we only recurse on small clusters, if we require their size to decrease at a much faster
rate than the increase in 3, our recursion will terminate with most pieces of the path within large
clusters. To do this, we introduce a parameter p to control this rate of decrease. Given a cluster
with n vertices, we designate a cluster X; to be small if |X;| < n/p. As our goal is a faster rate of
decrease, we will set p = (kefl log n)6 for some § > 1.

Pseudocode of our hopset construction algorithm is given in Algorithm 4. Two additional
parameters are needed to control the first and last level of the recursion: 8 = 3y is the decomposition
parameter on the top level, and ny;,q is the base case size at which the recursion stops.

We start with the following simple claim about the 8 parameters in the recursion.

Claim 4.1 If the top level of the recursion is called with 8 = By as the input parameter. then the
parameter [ in i™a level, denoted f3;, is given by B; = (k‘e‘l log n)Z Bo-



Algorithm 4 Hop Set Construction on Unweighted Graphs
HorSET(V, E, 5).
Input: Undirected, unweighted graph G = (V, E') and decomposition parameter [3.
Output: The input graph G augmented with a set of weighted edge E*.
LIV < N final, €Xit.
Compute a exponential start time clustering of G with parameter 3, X.
if this is first call then
For each cluster X and in parallel, recursively call HOPSET(X, E(X), (ke ! logn)f).
else
Let X, ={X € X : |X| > |V|/p} be the set of large clusters.
Let Xs ={X € X : |X| <|V]/p} be the set of small clusters.
For each large cluster X € X}, with center ¢ and v € X, add a star edge (v, c) with weight
dist(v, ¢)
9:  For all pairs of large clusters X1, Xo € &} with centers cj, ca respectively, add a clique edge
(c1, c2) with weight dist(cq, c2).
10:  For each X € Ay, recursively call HOPSET(X, E(X), (ke~logn)B) in parallel.

We now describe how hopsets are used to speed up the parallel BFS. We prove the lemma in
the generalized weighted setting as it will become useful in Section 5.

Lemma 4.2 Given a weighted graph G = (V, E,w) with |V| = n and |E| = m, let E" be the set
of edges added by running HOPSET(V, E, By). Then for any u,v € V, we have with probability at
least 1/2:

distly g (u,v) < distg(u,v) + O(e log, n - distp(u,v))

where h = n};nla/l&nl/aﬁo diste(u, v).

Proof Let p be any shortest path with endpoints u and v, we show how to transform it into a
path p’ satisfying the above requirements using edges in E’. In each level of the algorithm, the
clustering routine breaks p up into smaller pieces by cutting some edges of p. Consider an input
subgraph in the recursion that intersects the path p from vertex x to vertex y. The decomposition
partitions this intersection into a number of segments, each contained in a cluster. Starting from x,
we can identify the first segment that is contained in a large cluster, whose start point is denoted
by z’, and similarly we can find the last segment contained in a large cluster with its end point
denoted by 3. We drop all edges on p between 2’ and y’ and reconnect them using three edges
(', c(2), (e(2'),e(y)) and (c(y'),y"). We will refer to this procedure as shortcutting. We then
recursively build the shortcuts on each segment before u' and after v’. Note that these segments
are all contained in small clusters, thus they are also recursed on during the hopset construction.
We stop at the base case of our hopset algorithm.

We first analyze the number of edges in the final path p’, obtained by replacing some portion
of p with shortcut edges. The path p’ consists of edges cut by the decomposition, shortcut edges
that we introduced, and segments that are contained in base case pieces. It suffices to bound the
number of cut edges, as the segments in p’ separated by the cut edges have size at most the size of
the base case. Recall from Lemma 2.2 that any edge of weight w(e) has probability fw(e) of being
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cut in the clustering. Thus, the expected number of cut edges can be bounded by

> (Z @-) w(e) = (Z m-) w(p)

ecp 7

Since ;s are geometrically increasing, we can use the approximation ), 8; = fj, where [ = log,n
is the depth of recursion. Recalling that p = (ke !logn)’:

Bid = (ke log n)logp("fmal) Bod

)

N
()
N final

As the recursion terminates when clusters have fewer than n g, vertices each path in such a

cluster can have at most nf;,, hops. Multiplying in this factor gives nt fmla/léﬁ d.

Next we analyze the distortion introduced by p’ compared to the original path p. Shortcutting
in level 7 introduces an additive distortion of at most 4¢/3;” ogn. The expected number of shortcut
made in level 4, in other words the expected number of cluster in (i — 1) level intersecting the path
p, is bounded by £;_1d. Thus the amount of additive distortion introduced in level ¢ is at most

4clogn
Bi
This gives an overall additive distortion of O(edlog,n). [

(Bi—1d) - = O(ed).

Lemma 4.3 If HOPSET is run on a graph G with n vertices, it adds at most n star edges and
0 ((n/nfmal) log? n) clique edges to G.

Proof As we do not recurse on large clusters, each vertex is part of a large cluster at most once.
As a result, we add at most n edges as star edges in Line 8 of HOPSET.

To bound the number of clique edges, we claim that the worst case is when we always generate
small clusters, except in the level above the base cases, where all the clusters are large. Suppose
an adversary trying to maximize the number of clique edges decides which clusters are large. Since
we do not recurse on large clusters, if on any level above the base case we have a large cluster, the
adversary can always replace it with a small cluster, losing at most p clique edges doing so (since
there are at most p large clusters), and gain p? edges in the next level by making the algorithm
recurse on that cluster. Since the base case clusters have size at most nyf,q;, there are at most
n/n final clusters in the level above, where each cluster adding at most p? edges. Therefore at most
(n/nfiml)p2 = (n/nfina)(log n/€)?® edges are added in total. |

Theorem 4.4 Given constants 6 > 1 and 1 < 2 < 1, we can construct a (elogn,h,O(n))-hopset

on a graph with n vertices and m edges in O(n72log® nlog* n) depth and O(m log““S =0 work,
where h = ntt1/6+mn(1-1/8)—2

Proof We claim that the theorem statement can be obtained by setting 8y = n™72 and nyfipq =
71, The correctness of the constructed hopset follows directly from Lemma 4.2, Lemma 4.3, and

11



the fact that any path in an unweighted graph has weight at most n. Specifically, for any vertices
u and v with dist(u,v) = d, the expected hop-count is:
nl/én};ja/fﬁod < n1/5n71(1—1/52)n—72n
— /64 (1-1/6)—2

and the expected distortion is O(elogn - d). By Markov’s inequality, the probability of both of
these exceeding four times their expected value is at most 1/2, and the result can be obtained by
adjusting the constants.

So we focus on bounding the depth and work. As the size of each cluster decreases by a factor
of p from one level to the next, the number of recursion levels is bounded by logp(n/nﬁml). As
n/Nfinal is polynomial in n with our choice of parameters, we will treat this term as logn.

The algorithm starts by calling HOPSET(V, E,n~72). Since the recursive calls are done in par-
allel, it suffices to bound the time spent in a single call on each level. Lemma 2.1 gives that
the clustering takes O(8 'lognlog*n) depth and linear work. Since the value of 3 only in-
creases in subsequent levels, all decompositions in each level of the recursion can be computed
in O(n"?lognlog*n) depth and O(m) work. This gives a total of O(n2log®nlog*n) depth and
O(mlogn) work from Line 2. In addition, Line 8 can be easily incorporated into the decomposition
routine at no extra cost.

To compute the all-pair shortest distances between the centers of the large clusters (Line 9), we
perform the parallel BFS by [UY91] from each of the centers. By Lemma 2.1, the diameter of the
input graphs to recursive calls after the top level is bounded by O(n logn). Therefore the parallel
BF'S only need to be ran for O(n"2logn) levels. This gives a total depth of O(n72lognlog* n) and
work of O(pm) per level. Summing over O(logn) levels of recursion gives O(n?? log? nlog* n) depth
and O(pmlogn) = O(e 9mlog!™ n) work. [

The unweighted version of Theorem 1.2 then follows from Theorem 4.4 by setting § = 14 «, and
solving h = n™2 to balance the depth for hopset construction and the depth for finding approximate
distances using hopsets [KS97]. For a concrete example of setting these parameters, 6 = 1.1,
€= @, v = 0.96, and setting v; to some small constant leads to the following bound.

Corollary 4.5 For any constant € > 0, there exists an algorithm for finding (1+€')-approzimation
to unweighted s — t shortest path that runs in O(n%®log®nlog*n) depth and O(mlog®*n) work.

5 Hopsets in Weighted Graphs

In this section we show how to construct hopsets in weighted graphs with positive edge weights. We
will assume that the ratio between the heaviest and the lightest edge weights is O(n?). This is due
to a reduction similar to the one by Klein and Subramanian [KS97]. In that work, they partition the
edges into categories with weights between powers of 2, and show that only considering edges from
O(logn) consecutive categories suffices for approximate shortest path computation. This scheme
can be modified by choosing categories with powers of n, and then considering a constant number of
consecutive categories suffices for good approximations. This result is summarized in the following
lemma, we refer the readers to the full version of this paper [MPVX14] for the full proof.

Lemma 5.1 Given a weighted graph G = (V, E,w), we can efficiently construct a collection of
graphs with O(|V']) vertices and O(|E|) edges in total, such that the edge weights in any one of
these graphs are within O(n®) of each other. Furthermore, given a shortest path query, we can map
it to a query on one of the graphs whose answer is a (1 — €)-approximation for the original query.
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Recall that the parallel BFS of [UY91] conducts the search level by level, and divides the work
of each level between the processors. So a simple adaptation of parallel BFS to weighted graphs
can lead to depth linear in path lengths, which can potentially be big even though the number of
edge hops is small. To alleviate this we borrow a rounding technique from [KXS97]. The main idea is
to round up small edge weights and pay a small amount of distortion, so that the search advances
much faster.

Suppose we are interested in a path p with at most k£ edges whose weight is between d and cd.
We can perturb the weight of each edge additively by % without distorting the final weight by
more than {d. This value serves as the “granularity” of our rounding, which we denote using w:

¢d
&

/(D =
for some 0 < ¢ < 1 and round the edge weights w(e) to w(e)

a0 = [19)]

Notice that this rounds edge weights to multiples of w. The properties we need from this rounding
scheme is summarized in the following lemma.

Lemma 5.2 (Klein and Subramanian [KS97]) Given a weighted graph and a number d. Un-
der the above rounding scheme, any shortest path p with size at most k and weight d < w(p) < cd
for some ¢ in the original graph now has weight w(p) < [ck/{] and w - w(p) < (1 + )w(p).

Thus we only need to run weighted parallel BFS for O(ck¢ ™) levels to recover p, giving a depth
of O(ck¢~1logn). Therefore, if we set ¢ = n" for some 7 < 1, and since the edge weights are within
O(n?) of each other, we can just try building hopsets using O(3/n) estimates, incurring a factor
of O(3/n) in the work. As one of the values tried satisfies d < w(p) < ¢d, Lemma 5.2 gives that
if ¢ is set to €/2, an (1 + €/2)-approximation of the shortest path in the rounded graph is in turn
an (1 + e)-approximation to the shortest path in the original graph. Therefore, from this point on
we will focus on finding an (1 4 €)-approximation of the shortest path in the rounded graph with
weights w(e). In particular, we have that all edge weights are positive integers, and the shortest
path between s and t has weight O(n!*7/() = O(n'*7/e).

Theorem 5.3 For any constants 6 > 1 and v < v2 < 1, we can construct a (elogn,h,O(n))-
hopset on a graph with n vertices and m edges in expected O((n/e)’?1log®nlog*n) depth and
O(mlog'*® ne=%) work, where h = n+1/0+ntn(=1/0)=72 jl=72

Proof Since the edge weights are within a polynomial of each other, we can build O(1/n) hopsets
in parallel for all values of d being powers of n'. For any pair of vertices s and t, one of the value
tried will satisfy d < dist(s,t) < n'ld. Given such an estimate, we first perform the rounding
described above, then we run Algorithm 4 with 8 = (n/e€)™* and nfina = n". The exponential
start time clustering in Line 2 takes place in the weighted setting, and Line 9 becomes a weighted
parallel BFS. The correctness of the hopset constructed follows from Lemma 4.2, Lemma 4.3, and
the fact that dist(s,t) = O(n'*"/e) by the rounding. Specifically, the expected hop count is

—va pltn

1/8,1=1/8 31 /8,71 (1-1/3)
n fznal ﬁd non (6)

€
_ n1+1/5+77+71(1—1/5)—w /61—72
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and the expected distortion is O(ed). By Markov’s inequality, the probability of both of these
exceeding four times their expected values is at most 1/2.

The number of recursion levels is still bounded by log,n. Since the (s only increase, ac-
cording to Lemma 2.1 we spend O((n/e)?lognlog®n) depth in each level of the recursion and
O((n/e)? log? nlog* n) overall in Line 2. Since our decomposition is laminar, we spend O(m)
work in each level and O(mlogn) overall in Line 2. Again, Line 8 can be incorporated into the
decomposition with no extra cost.

Since the diameter of the pieces below the top level is bounded by B~'logn = (n/e)’?logn
and the minimum edge weight is one, Line 9 can be implemented by weighted parallel BFS in
depth O((n/€)?? lognlog*n) in one level and O((n/€)’2log? nlog* n) in total. The work done by
the weighted parallel BFS is O(pm) per level and O(pmlogn) = O(mlog'*° ne=9) in total. [ |

Theorem 1.2 then follows from Theorem 5.3 by adjusting the various parameters. Again, to
give a concrete example, we can set 6 = 1.1, € = €’/(logn), 72 = 0.96, and set vy and ¢ to some
small constants to obtain the following corollary

Corollary 5.4 For any constant error factor €, there exists an algorithm for finding (1 4 €')-
approzimation to weighted s-t shortest path that runs in O(n%9 log? nlog* n) depth and O(mlog®? n)
work in a graph with polynomial edge weight ratio.

Notice that with our current scheme it is not possible to push the depth under O(\/ﬁ) as the
hop count becomes the bottle neck. A modification that allows us to obtain a depth of O(n®) for
arbitrary a > 0 at the expense of incurring more work can be found in the full version of this paper
[MPVX14].
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A Deferred Proofs

We now show the properties of the exponential start time clustering routine from Section 2.1 in
more detail.
Proof of Lemma 2.1:

The bound on diameter of the clusters follows from taking a union bound on the maximum
value of 9, at vertices:

Pr [5max > kl;gn] < ZPr [51, > k‘logn]

veV 'B
klogn)
=n-exp _5
(555
1
T k1

To compute the output of ESTCLUSTER efficiently, we can add a super-source and connect
it to vertex u via an edge of length §,, then we build a shortest path tree in increasing order of
distance. The clusters then correspond to the subtrees below the super-source. We can construct
this shortest path tree level by level in 0(10%") steps, taking only the integer part of the d,s into
consideration with arbitrary tie breaking in the search. Since we assume the minimum edge weight
is 1, this modification in implementation can be shown to have negligible effect on the probabilistic
guarantee from Lemma 2.2 (see Theorem 2 from [SDB14]). The overhead of O(log* n) per search
level comes from the overhead of CRCW PRAM [GMV91]. We remark that this factor of log* n
depends on the model of parallelism, but is standard in parallel BFS algorithms [KKS97]. It is O(1)
in the OR CRCW PRAM model, and can be bounded by O(logn) in most models of parallelism.
|

Proof of Lemma 2.2:

Let B be a subgraph of G with center ¢ and radius r. From c¢’s point of view, the algorithm can
be seen as a race between all the vertices to ¢: vertex v starts its race at time . — 0, and arrives
at ¢ at time d(v, ¢) + dmax — dy. In particular, the winner of this race will include ¢ in its cluster.
For B to intersect k& or more clusters, the first k& arrivals at ¢ must be within 27 units of time of
each other. Since dyax 1S & common term in everyone’s arrival time, we can drop it and flip the
sign to obtain a quantity Y, = 0, — d(v, x), for each vertex v. Notice that it is just an exponential
random variable with some constant offset. The event we are interested in then becomes: the k
largest Y, ’s are within 2r of each other.

We will use the law of total probability for continuous random variables. Let S vary over subsets
of Vofsize k —1, u € V'\ 5, and « a fix real number. Let Eg, , be the event that ¥;, = o and
Y, >aifve Sand Y, < aif v € S. That is, set S represents the first £k — 1 arrivals, and wu is
the kth arrival at time «. Clearly, ranging over all possible S, u and « gives a paritition of the
probability space. Thus it suffices to show

Pr[Y, <a+2rforallve S| Esyal < (1—exp(—2r3))*!

for any fixed S, u and a.
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By independence of the Y,s we have that

Pr[Y, < a+2r for allv € S | Egy.al

— HPr[nga—l—Zﬂang].
vES

For each v € S,

PrlY, <a+2r|a <Y,
= Prid, <a+2r+d(v,c) | a+dv,c) < X,

There are two cases to consider. If a + d(v,c) < 0, then by the definition of the exponential
distribution

Pr(dy, < a+2r+d(v,c) | a+d(v,c) < X,
< Pr[d, < 2r]
=1—exp(l—2rp).

If & + d(v,c¢) > 0, using the memoryless property of the exponential distribution, we have

Pr(dy, < a+2r+d(v,c) | a+d(v,c) < X,
= Pr[d, < 2r]
=1—exp(l—2rp).

This finishes the proof. |

B Preprocessing to Create Instances with Polynomially Bounded
Edge Weights

Here we describe the reduction needed for the assumption of the edge weights being polynomially
bounded in Section 5. We will give a way to transform a graph G into a collection of graphs
where the ratio between the maximum and minimum edge weights is at most O(n?) in each graph.
The total size of the collection of graphs is on the order of the original graph, and given any
query, we can map it to a query in one of the graphs in the collection efficiently. The technique
presented is similar to the scheme used by Klein and Sairam [KS92]. They partition edges into
categories with weights between consecutive powers of 2, and show that only considering edges from
O(logn) consecutive categories suffice for approximate shortest path computation. We modify this
scheme slightly by choosing categories by powers of n, and show that picking a constant number of
consecutive categories suffice.

We will divide the edges into categories according to their weights so that weights between
edges in categories that are more than 2 apart differ significantly. If the shortest path needs to use
an edge in a heavier category, any edges in lighter weight categories can be discarded with minor
distortion. Thus setting edge weights in these lower categories to 0 does not change the answer
too much. As the graph is undirected, this is equivalent to constructing the quotient graph formed
by contracting these edges. We then show that the total size of these quotient graphs over all
categories is small. This allows us to precompute all of them beforehand, and use hopsets for one
of them to answer each query. To simplify notations when working with these quotient graphs, we
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use G/E’ to denote the quotient graph formed by contracting a subset of edges E' C E.
Given a weighted graph G = (V, E,w), we may assume that the minimum edge weight is 1 by
normalizing by the minimum weight. Then we group the edges into categories as follows:

E;={ecE| (n/e)' <w(e) < (n/e)”l}.

As the contractions are done to all edges belonging to some lower category, they correspond to pre-
fixes in this list of categories. We will denote these using P;, P; = [J]_, Ei. Also, let ¢(1),--- , q(k)
be the indices of the non-empty categories in G. Contracting E1, F ... in order leads to a laminar
decomposition of the graph, which we formalize as a hierarchical category decomposition:

Definition B.1 A hierarchical weight decomposition is defined inductively as follows.

o The vertices form the leaves. For convenience we say that the leaves form the 0" level and
define Eq(p) = 0.

e Given the j™ level whose nodes represent connected components of G[Eq)), we form the
(5 + 1) level by adding a node for each connected components of G[Eyj+1)], and make it the
parent of the components in G[Eq;)] it contains.

Lemma B.2 A hierarchical weight decomposition can be computed in O(log® n) depth and O(mlogn)
work.

Proof We first compute the non-empty categories FEj), -, Eqx) where k < m. Then we
perform divide and conquer on the number of weight categories. Let E; be the median weight
class, the connected components of G[E;] can be computed using the graph connectivity algorithm
by Gazit [Gaz93] in O(logn) depth and |E;| work. We then recurse on each connected components
and also on the quotient graph where all the components of G[E;| are collapsed to a point. |

This then allows us to prove Lemma 5.1 at the start of Section 5 about only working with

graphs with polynomially bounded edge weights.

Proof of Lemma 5.1:  We first construct the decomposition tree from Definition B.1. Once
we have the tree, given a query on the distance between s and ¢, we can find their least common
ancestor (LCA) in the tree using parallel tree contraction. Let j be the level the LCA of s and ¢ is
in, then we claim that we only need to consider edges in Eq;_1) U Ey;) U Eg(j11). Since the LCA
is in j*® level, the s — ¢ shortest path uses at least one edge, say ej, from E, ;. By definition, for
any edge ej_o € Pyj_2), we have (n/e)w(ej_2) < w(e;). Since the s — ¢ path can have at most
n — 1 edges, setting lengths of edges in Eg(;_o) to 0 incurs a multiplicative distortion of at most
e. Moreover, edges in level j + 2 and above have weights at least (n/e)w(e’), and since s and ¢ is
in one connected components of G[E(;y], no edge in level j + 2 and above can be part of the s — ¢
shortest path.

Consider the induced subgraph G[P;(;;1)] and its quotient graph where all edges in Py(;_;) are
collapsed to points: G[Py(j1+1)]/Py(j—1)- Let s’ be the component in G[E,(;_)] containing s and let
t’ be the component that contains ¢. By the above argument, the shortest path between s’ and ¢’ in
G[Py(j+1))/ Py(j—1) 1s an (1 — €)-approximation for the s —t shortest path in G. Lemma B.2 allows
us to build the graphs G[P,(;11)]/Pyj—1) for all j as part of the decomposition tree construction
without changing the total cost of constructing the hopsets. Each edge of G appears at most
three times in these quotient graphs, however the number of vertices is equal to the size of the
decomposition tree. We trim down this number by observing that any chain in the tree of length
more than three can be shortened to length three by throwing out the middle parts as they will
never be used for any query. This gives an overall bound of O(|V). [
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C Obtaining Lower Depth

We now show that the depth of our algorithms can be reduced arbitrarily to n® for any a > 0 in
ways similar to the Limited-Hopset algorithm by Cohen [Coh00]. So far, we have been trying to
approximate paths of potentially n hops with paths of much fewer hops. Consider the bound from
Theorem 4.4, which gives a hop count of n!*1/9+71=7 for § > 1 and ; < 72 < 1. The the first
factor of n is a result of handling path containing up to n hops directly. We now show a more
gradual scheme that gradually reduces the length of these paths. Instead of reducing the hop-count
of paths containing up to n edges, we approximate n?"-hop paths with ones containing n" hops for
some small 7. This routine can be applied to a longer path with k hops, by breaking it into kn=2"
ones of n?" hops each and apply the guarantee separately. If the guarantee holds deterministically,
we get an approximation with kn~" hops. Repeating this for 1/n steps would then lead to a low
depth algorithm. However, the probabilistic guarantees of our algorithms makes it necessary to
argue about the various piece simultaneously. This avoids having probabilistic bounds on each
piece separately, but rather one per weight class.

Lemma C.1 Given a graph G = (V, E,w), let p1 ... p¢ be a collection of disjoint paths hidden from

the program such that each p; has at most k = n?" hops and weight between d and dn". For any
2

failure probability pfaiture, we can construct in O(n'l/€) depth and O(m log2+ﬁ n/e) work a set of

at most O(nlfg) edges E' such that with probability at least 1 — Dfqiture there exist paths pf ...p;
such that:

1. p} starts and ends at the same vertices as p;.

2. The total number of hops in py ...p} can be bounded by tn'.
3. i w(ph) < (1+€) i, w(pi).

Proof

We use the rounding scheme and construction for weighted paths from Section 5. We first round
the edge weights with @ = edn™2". As the paths have at most k = n?" edges, the guarantees of
Lemma 5.2 gives that the lengths of paths are distorted by a factor of (1 + €). Furthermore, this
rounding leaves us with integer edge weights such that the total length of each path is at most
d=n%/e.

We can then call Algorithm 4 on the rounded graph with the following parameters:

2 AN | n €
0= — = | — = — ; =n:2 I — .
0 , Bo < p > d’ Nfinal = N2, € log 1

By an argument similar to the proof of Theorem 5.3 and Lemma 4.2, this takes O((n?"/¢) log n log x ne)
2
depth and O(mlog'*¥ n/e') = O(m log> ™7 n/€) work. Furthermore, for each p;, the expected num-
ber of pieces that it is partitioned into is:

1 n
ns Bodnfinal =n2n

(SIS

= nn
and if we take all shortcuts through centers of big clusters, the expected distortion is:

O(log,, ne'd) = ed.
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Applying linearity of expectation over all ¢ paths gives that the expected total number of hops is
tn", and the expected additive distortion is edt. As both of these values are non-negative, Markov’s
inequality the probability of any of these exceeding pfaiZZure of their expected value is at most p faijure-
Therefore, adjusting the constants and e accordingly gives the guarantee. Finally, the number of

edges in the hopset can be bounded by n!=7 log% n<nl"z. |

Then it suffices to run this routine for all values of d equaling to powers of n”. The fact that
edge weights are polynomially bounded means that this only leads to a constant factor overhead
in work. Running this routine another n” times gives the hop-set paths with arbitrary number of
hops.

Theorem C.2 Given a graph G = (V, E,w) with polynomially bounded edge weights and any con-
stant a > 0, we can construct a (e,n®, O(n))-hopset for G in O(n®e~') depth and O(m logo(é) ne 1)
work

Proof Letn = «a/2. We will repeat the following % times: run the algorithm given in Lemma C.1
repeatedly for all values of d being powers of n”, and add the edges of the hopset to the current
graph. As the edge weights are polynomially bounded, there are O(n%) invocations, and we can
choose the constants to that they can all succeed with probability at least 1/2. In this case, we will
prove the guarantees of the final set of edges by induction on the number of iterations.

Consider a path p with k hops. If k¥ < n?", then the path itself serves as a k-hop equivalent.
Otherwise, partition the path into pieces with 77 hops, with the exception of possibly the last 12"
edges. Consider these subpaths classified by their weights. The guarantees of Lemma C.1 gives that
each weight class can be approximated with a set of paths containing n~" as many edges. Putting
these shortcuts together gives that there is a path p’ with kn~" hops such that w(p’) < (1+€)w(p).
Since p’ has fewer edges, applying the inductive hypothesis gives that p’ has an equivalent in the
final graph with n?" hops that incurs a distortion of (1+ (log,,» k — 1)¢). Multiplying together these
two distortion factors gives that this path also approximates p with distortion (1 + log,,, ke). As
k < n and 7 is a constant, replacing € with ne gives the result. |
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