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Let L be a field of characteristic p with q elements and F ∈ L[X,Y ] be a polynomial with p > degY (F )
and total degree d. In [40], we showed that rational Puiseux series of F above X = 0 could be computed
with an expected number of Õ (d5+d3 log q) arithmetic operations in L. In this paper, we reduce this bound
to Õ (d4 + d2 log q) using Hensel lifting and changes of variables in the Newton-Puiseux algorithm that
give a better control of the number of steps. The only asymptotically fast algorithm required is polynomial
multiplication over finite fields. This approach also allows to test the irreducibility of F in L[[X]][Y ] with
Õ (d3) operations in L. Finally, we describe a method based on structured bivariate multiplication [34]
that may speed up computations for some input.

1 Introduction

Let L be a field of characteristic p with q elements, L be an algebraic closure of L and F be a polynomial in L[X,Y ]
with partial degrees degX(F ) = dX > 0, degY (F ) = dY > 0 and total degree deg(F ) = d. We assume that F ,
considered as a polynomial in Y , is separable and primitive, hence squarefree and without non trivial factor in L[X].

We also assume in the sequel that p > dY . Therefore, for any x0 ∈ L, it is well-known that the roots of F may be
expressed as fractional Laurent power series in (X − x0) with coefficients in L, called (classical) Puiseux series of F
above x0 (CPS in the sequel). Terms written in italics in this introduction will be defined in section 2. If p ≤ dY , CPS
may not exist and other types of expansions are necessary: generalized Puiseux series, see [29] and references therein,
or Hamburger-Noether expansions [10, 43].

CPS are an important tool to study singularities of the curve F (X,Y ) = 0 [9, 54], to determine the genus of the curve
via Riemman-Hurwitz’s formula, to determine bases of Riemann-Roch spaces [22, 7], to compute integral bases of the
function field L(X)[Y ]/(F ) [50], etc. Code for computing CPS is available for instance in Maple [36] (implemented by
Van Hoeij [50]), Magma [8] (see Beck [4]) or Singular [19] (implemented by Lamm and Lossen, see [26]).

Our interest in the finite field case stemmed from a modular reduction method that we proposed to avoid coefficient
swell in the number field case [39, 41]. In this context, the condition p > dY may always be enforced and is part of
our good reduction criterion. Our goal is to compute singular parts of CPS since they contain the arithmetic and
geometric information required for most applications. When singular parts are known, subsequent terms of CPS may
be efficiently computed using quadratic Newton iterations [31].

It is however more convenient to compute singular parts of rational Puiseux expansions (RPE) of F rather than CPS.
Introduced by Duval [22, 23], RPEs allow to work in the residue fields of the places of the function field L(X)[Y ]/(F )
(or the product of function fields if F is not irreducible in L[X,Y ]). Computations therefore take place in optimal
degree extensions of L and RPEs provide arithmetical insight. CPS may easily be recovered from RPEs; see Section
2.
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In [40], we studied how to truncate coefficients throughout the computations and gave a detailed count of the number
of arithmetic operations in L required by Duval’s version of the Newton-Puiseux algorithm to compute RPEs.

Inspired by a proof by Abhyankar of Newton-Puiseux’s Theorem [1, Chapter 12], we show herein that it is possible to
improve this result using Hensel-like factorizations and simple, but essential, substitutions.

We explain precisely our goal in Section 2 and recall main features of the Rational Newton-Puiseux algorithm in
Section 3. We describe the improved algorithm in Section 4 and study its worst case complexity in Section 5. Finally,
we show that if a fast multiplication algorithm for bivariate polynomials with support in a lattice is given (see [34,
Theorem 12]), then the input polynomials may be factorized at an acceptable cost. This modification may lead to
improved performances for some families of input, but does not reduce worst case asymptotic complexity.

The main contributions of this paper are Theorem 1 and 2 below. Notation Õ hides logarithmic factors of the degrees:

Theorem 1. There is an algorithm to compute singular parts of a system of RPEs above 0 of F with an expected
number of Õ (dXdY

3 + dY
2 log q) ⊂ Õ (d4 + d2 log q) field operations in L.

This result should be compared with the bound Õ (d5 + d3 log q) given in [40], where we also derived an Õ (d5 log q)
bound for the computation of the genus of the curve defined by F and new complexity results for the number field
case. Unfortunately, the improvement given by Theorem 1 does not propagate to genus computation; we will discuss
this issue in the conclusion.

Theorem 2. There is an algorithm to decide whether F is irreducible in L[[X]][Y ] performing Õ (dXdY
2) ⊂ Õ (d3)

operations in L.

Related works. The complexity of the Newton-Puiseux algorithm, in its classical or rational form, has been in-
vestigated by Chistov [12], Duval [23], and Walsh [56, 55]. Other approaches to compute CPS have been proposed:
linear algebra [21] (following [15]) and differential equations [16, 13, 14, 47, 49, 17], notably. Merle and Henry [27],
then Teitelbaum [46] studied the arithmetic complexity of the resolution of the singularity at the origin defined by
F (X,Y ) = 0, a process tightly related to Puiseux series [9]. We have commented on these works and explained why
we prefer to stick to the Newton-Puiseux algorithm in [40, 41].

Sasaki and als. use generalizations of Hensel’s lifting to compute Puiseux series [45] or for polynomial factorization
in L[[X]][Y ] [44, 28], but no complexity analysis is given. In [32], Kuo revisited the theory of algebroids in C[[X,Y ]],
avoiding CPS and singularity resolution processes, and gave an irreducibility test in C[[X,Y ]] [33] that could probably
be extended to finite fields, but did not demonstrate that his approach is competitive. More recently, Berthomieu,
Lecerf and Quintin [5, Section 3] proposed a Hensel-like factorization method to speed up the computation of roots of
F in L[[X]]; with our notations, they obtain an Õ (d3) algorithm, thus gaining an order of magnitude.

Factorization of F in L[[X]][Y ] or L[[X]][Y ] is closely related to CPS since minimal polynomials over L or L of CPS
are the irreducible factors of F . The factorization of univariate polynomials over local fields, such as L((X)), has been
studied intensively; see [37, 38, 25, 3] and references therein. In particular, the Montes algorithm has received a lot of
attention recently. Bauch, Nart and Stainsby [3] have proved that the factorization of a monic F over L[[X]][Y ] up
to precision µ can be achieved in Õ (dY

2 + dY V
2
F + dY (1 + VF ) log q + dY

2µ) operations in L, where VF = vX(∆F )
is the valuation of the discriminant of F . In our context, we may set µ = VF (see [40, Section 4]) and remark
that VF ∈ O(dXdY ). This yields Õ (d5 + d3 log q), as in [40]. They also provide an irreducibility test that runs in
Õ (dY

2+dY (1+VF ) log q+V
2
F ) ⊂ Õ (d4+d3 log q). For genus computation, [2] proposed a method with an Õ (d7 log q)

complexity bound, but more promising experimental results. Algorithms derived from Montes’ method have so far
not demonstrated a better asymptotic complexity than the classical Newton-Puiseux approach for L((X)). Besides,
they are significantly more involved.

Additional notations and definitions.

• For S ∈ L[[X]], we denote by vX(S) the X-adic valuation of S and extend this notation to fractional power series.
• For t ∈ N

∗, Lt is the degree t extension of L in L.
• If S =

∑
k αkX

k/e is a fractional power series in L((X1/e)) and r is a rational number, ⌈S⌉r denotes the truncated
series ⌈S⌉r =

∑
k≤N αkX

k/e where N = max{k ∈ N | ke ≤ r}. It is extended to elements of L((X1/e))[Y ] coefficient-
wise.
• For e ∈ N

∗, ζe is a primitive e-th root of unity.
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• For a polynomial H =
∑

aijX
jY i ∈ L[X,Y ]:

– dY (H) is its degree with respect to Y ,
– ∆H is its discriminant with respect to Y ,
– VH = vX(∆H),
– I(H) = vY (H(0, Y )),
– Supp(H) = {(i, j) ∈ N

2 | aij 6= 0} is the support of H,
– H is called Y -monic if it is monic in the variable Y .

Complexity model and arithmetic cost. To estimate algorithm complexity, we just count the number of operations
(addition, multiplication, division) in L. Multiplying by the binary cost of operations in L should give realistic bounds
for running times of a careful implementation. Our algorithm is deterministic and we consider worst case estimates.
However, it makes use of sub-algorithms for factoring polynomials in L[T ] and computing primitive elements in finite
fields that are probabilistic of Las Vegas type. For them, we use upper bounds for average arithmetic complexity that
propagate to Theorem 1.

Our complexity results require asymptotically fast algorithms for polynomial arithmetic and we will use bounds below
for basic task arithmetic complexity. When no specific reference is given, the result may be found in [53]. Integers nX

and nY are bounds for degrees in X and Y of input polynomials.

• Multiplication of two polynomials in L[X]: Õ (nX).
• Multiplication of two polynomials in L[X,Y ]: Õ (nXnY ).
• Operations in Lt: Õ (t) with primitive representation.
• Factorization of a polynomial in L[X]: Õ (n2

X + nX log q).
• Computation of ∆H : Õ (nXn2

Y ).
• Y -shift, i.e. computation of H(X,Y +B) mod XnX+1 where H ∈ L[X,Y ] is Y -monic and B is in L[X]: Õ (nXnY )
if nX > 0 and Õ (nY ) if nX = 0. Indeed, if p > nY , [6, Problem 2.6] shows how to perform a shift in a univariate
polynomial of degree nY with coefficients in a commutative ring A with Õ (nY ) operations in A. Taking A =
L[X]/(XnX+1) gives the above bounds.

2 Rational Puiseux Expansions

In this section, we precisely set our goal and recall useful properties. Let L and F =
∑dY

l=0Al(X)Y l be as in Section
1. Up to a change of variable X 7→ X + x0 and an extension of the ground field L, it is sufficient to give definitions
and properties for the case x0 = 0. Following Duval [23], we consider decompositions into irreducible elements:

F =

ρ∏

i=1

Fi with Fi irreducible in L[[X]][Y ] (1)

Fi =

fi∏

j=1

Fij with Fij irreducible in L[[X]][Y ] (2)

Fij = AdY

ei−1∏

k=0

(
Y − Sij(X

1/eiζkei)
)

; Sij ∈ L[[X]] (3)

Definition 1. The series Sijk(X) = Sij(X
1/eiζkei) are the classical Puiseux series (CPS) of F above 0.

Proposition 1. The {Fij}1≤j≤fi have coefficients in a finite extension Ki of L and fi = [Ki : L]. They are conjugated
by the action of the Galois group of Ki/L.

Definition 2. A system of rational Puiseux expansions over L (L-RPE) of F above 0 is a set {Ri}1≤i≤ρ such that:
• Ri(T ) ∈ Ki((T ))

2,
• Ri(T ) = (Xi(T ), Yi(T )) =

(
γiT

ei ,
∑∞

l=ni
βilT

l
)
, γi 6= 0,

• Ri is a parametrization of Fi, i.e. Fi(Xi(T ), Yi(T )) = 0,
• the parametrization is irreducible, i.e. ei is minimal.
If Yi(0) is defined, (Xi(0), Yi(0)) is called the center of Ri.
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Duval [23] showed that there is a canonical bijection between the Ri and the places over L (see [11, 24] for a definition)
of the algebraic function fields defined by the irreducible factors of F in L[X,Y ]. Under this correspondence, residue
fields of the places are isomorphic to the coefficient fields of the Ri and ramifications indices of the places are equal to
the ei. This leads to the following terminology:

Definition 3. The integer ei is the ramification index of Ri, Ki is its residue field and fi its residual degree.

Proposition 2.
∑ρ

i=1 ei fi = dY .

From a system of L-RPEs, CPS can easily be recovered:

1. Ri has fi conjugates Rij(T ) = (Xij(T ), Yij(T )) over L:

Xij = γijT
ei and Yij =

∞∑

l=ni

βijlT
l ; 1 ≤ j ≤ fi

2. The CPS are Sijk(X) = Yij

(
ζkeiX

1/ei/γ
1/ei
ij

)
, where γ

1/ei
ij denotes any ei-th root of γij and 0 ≤ k ≤ ei − 1.

Definition 4. Define si = min {0, ni}. The regularity index ri of Sijk in F is the least integer N ≥ si such that

⌈Sijk⌉
N
ei = ⌈Suvw⌉

N
ei implies (u, v, w) = (i, j, k). The truncated series ⌈Sijk⌉

ri
ei is the singular part of Sijk in F .

The regularity index ri of Ri in F is that of Sijk in F , for any j, k. The singular part of Ri is
(
γiT

ei ,
∑ri

l=ni
βikT

l
)
.

In other words, the regularity index of Sijk is the smallest truncation order that allows to distinguish Sijk from
other CPS of F ; see [40, page 194]. Singular parts contain arithmetic and geometric information necessary for many
applications: ramification indices, residual degrees, Puiseux exponents, etc. We aim at computing them efficiently.

3 Newton-Puiseux Algorithm

This work improves a version of Duval’s rational Newton-Puiseux algorithm presented in [40], called RNPuiseux. In
this section, we introduce some notations and recall useful facts regarding RNPuiseux. Because of space constraints,
the reader is referred to [40, Section 3] for a detailed description of this algorithm.

Definition 5. The Newton polygon N (H) of a polynomial H in Lt[X,Y ] is the lower part of the convex hull of its
support.

If Supp(H) is a vertical line, N (H) is reduced to a point. Otherwise, N (H) is a sequence of (non degenerate) edges
with increasing slopes. In order to get exactly singular parts of RPEs and no superfluous terms, it is convenient to
modify slightly this definition (see examples of Figure 1):

Definition 6. Let H =
∑

iAi(X)Y i be squarefree, primitive, with dY (H) > 0. The modified Newton polygon1 N ⋆(H)
is constructed as follow: If A0 = 0 (resp. A0 6= 0 and the first edge, starting from the left, ends at (1, vX (A1))), add
to N (H) (resp. replace the first edge by) a fictitious edge joining the vertical axis to (1, vX(A1)) such that its slope is
the largest (negative or null) integer less than or equal to the slope of the next edge.

The introduction of N ⋆ is motivated by the next example:

Example 1. Consider F (X,Y ) = (Y − Xk)(Y 2 − X3) with k ≥ 3. CPS of F are S1 = Xk, S2,j = (−1)jX3/2,
j = 1, 2. According to Definition 4, regularity indices are respectively r1 = 2 and r2,j = 3. Using N (F ) would cause
the algorithm to return Xk for the singular part of S1, instead of the expected value ⌈S1⌉

2 = 0. If a dense representation
is used for the output, returning Xk would not allow to bound running times in terms of VF (see Proposition 9) because
Õ (k) operations would be required to build the result, while VF = 9 for any k > 1.

Each edge ∆ of N ⋆(H) corresponds to three integers q, m and l with q > 0, q and m coprime, such that ∆ is on the
line q j +mi = l. If ∆ is an horizontal edge, m = l = 0 and we choose q = 1.

1
N

⋆(H) is more convenient herein than the generic Newton polygon used in [40] and yields essentially the same output.
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Figure 1: N ⋆(H) for (Y −X3)(Y 2 −X3) and Y (Y − 1)(XY − 1)

Definition 7. If H =
∑

aijX
jY i, then the characteristic polynomial φ∆ of ∆ is φ∆(T ) =

∑
(i,j)∈∆ aijT

i−i0
q where i0

is the smallest value such that (i0, j0) belongs to ∆ for some j0. In particular, φ∆(T ) = T if ∆ is a fictitious edge.

When applied to (L,F,VF ), RNPuiseux returns a set of pairs2 Rt(F ) = {(Pi, Qi)}1≤i≤ρ representing singular parts of
L-RPEs of F above 0. More precisely:

• Pi ∈ L[X] is a monomial of the form λiX
ei ,

• Qi(X,Y ) = Qi0(X) + ciY Xri , where (Pi(T ), Qi0(T )) is the singular part of an RPE of F , ri its regularity index,
and ci ∈ Ki.
Starting at H = F , algorithm RNPuiseux consists in recursive applications of transformations:

H∆,ξ(X,Y ) = H(ξbXq,Xm(ξa + Y ))/X l (4)

where integers (q,m, l) are determined by an edge ∆ of N ⋆(H), ξ is a root of φ∆ and a and b are integers satisfying
aq− bm = 1 and 0 ≤ b < q. These transformations are applied for each relevant pair (∆, ξ) and the algorithm is called
recursively on H∆,ξ until I(H) = 1, yielding a computation tree whose nodes and leaves are RNPuiseux function calls.
It is shown in [40] that the expected number of operations in L required by RNPuiseux is in Õ (dX

2dY
3+dY

2dX log q).

The following remark and lemma are essential for understanding the next sections:

Remark 1. To compute all RPEs of H above 0, it is sufficient to compute RPEs centered at (0, 0) of the H∆,ξ.
Consequently, for the initial call, (i.e. H = F ) all edges ∆ are considered, but recursive calls of RNPuiseux treats only
edges with negative slopes.

4 Improving RNPuiseux

To simplify the exposition, from now on, we assume that the input polynomial F is Y -monic, but this section
may easily be adapted to non monic F as in [40].

Our improvements rely on the following observations:
• Consider first the obvious following consequence of Weierstrass Preparation Theorem:

Proposition 3. If G ∈ Lt[X,Y ] satisfies I(G) > 0, then there exist unique Ĝ and U in Lt[[X]][Y ] such that:
– G = Ĝ U
– U(0, 0) 6= 0, i.e. U is a unit in Lt[[X,Y ]],
– Ĝ is monic, with dY (Ĝ) = I(G),
Moreover, RPEs of G and Ĝ centered at (0, 0) are the same.

Polynomial Ĝ is called the distinguished polynomial associated with G. In view of Remark 1, we can replace H∆,ξ

in RNPuiseux by an approximation H̃∆,ξ of its distinguished polynomial Ĥ∆,ξ, provided that we can compute an
approximation that preserves singular parts of RPEs at a sufficiently low cost; see Proposition 4 below. This will
ensure that the input polynomial H of our algorithm is always monic with dY (H) = I(H) and that edges of N ⋆(H)

2In [40], RNPuiseux actually returns triplets (Gi, Pi, Qi) but Gi is useless for our purpose.
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have negative slopes, except maybe for the initial function call. Moreover, degrees of input polynomials for recursive
function calls will be lower.
• Assuming that the above factorization step is performed, it is possible to get a better control on the number of
recursive calls and, in particular, to ensure that the sequence of integers dY (H) along a branch of the computation
tree is strictly decreasing. Degrees are stationary, i.e. dY (H) = dY (H̃∆,ξ), if and only if H has a single edge ∆ with
φ(∆) = (T − ξ)dY (H). In this case, ∆ has integer slope (i.e. q = 1) and all Puiseux series of H have a first term
equal to ξXm ∈ Lt[X]. Following Abhyankar [1, Chapter 12], we propose to use a simple trick to avoid this case: just
remove at once all common polynomial terms of Puiseux series by replacing H with H = H(X,Y −AnY −1/nY ), where
nY = dY (H). Then, if N ⋆(H) still has a unique edge ∆ with integer slope, φ∆ cannot be of the form (T − ξ)dY (H)

because its monomial of degree dY (H) − 1 is null and p > dY (H). Therefore, the algorithm will always split H and
degrees will be reduced for subsequent recursive calls.

Remark 2. It is worth noting the following: factorization steps alone do not suffice to reduce RNPuiseux complexity,
but they allow to apply the method above to decrease the number of recursive calls and get a more accurate count of
arithmetic operations.

We now specify sub-algorithms and describe a recursive version of the main algorithm ARNP, wherein we emphasize
simplicity rather than efficiency. The first one is just an application of Hensel lifting as described in [53, Chapter 15]
to get an effective version of Weierstrass Preparation Theorem.

Proposition 4. Let G ∈ Lt[X,Y ] be a polynomial satisfying hypotheses of Proposition 3, N be in N and Ĝ denote

the distinguished polynomial of G. There exists an algorithm WPT such that WPT(Lt, G,N) computes G̃ = ⌈Ĝ⌉
N

with
Õ (NdY (G)) operations in Lt.

Proposition 5. Let φ be in Lt[T ] with n = dT (φ). There exists an algorithm Oneroot such that Oneroot(Lt, φ)
decides if φ(T ) = c(T − ξ)n for some c, ξ ∈ Lt and computes ξ if the answer is positive using Õ (n) operations in Lt.

Bézout(q,m)
Input: (q,m) ∈ Z

2 with q > 0.
Output: (a, b) ∈ Z

2 such that a q − bm = 1 and 0 ≤ b < q.

Factor(Lt,φ)
Input: Lt, a field, and φ ∈ Lt[T ], with dT (φ) > 0.

Output: A set {(φi,Mi)}i with φi monic, irreducible in Lt[T ] and φ = c
∏

i φ
Mi

i for some c ∈ Lt.

ARNP(Lt,H,N)
Input: Lt, a field, H =

∑
i Ai(X)Y i ∈ Lt[X,Y ], separable, Y -monic, with degY (H) > 0, N ∈ N (truncation order).

Output: If N is large enough, Rt(H).

1. If dY (H) = 1 then Return {[X,Y ]}

2. If N ⋆(H) is made of a unique edge ∆ with integer slope and Oneroot(Lt, φ∆) then

3. B ← Ady(H)−1/dy(H) // Abhyankar’s trick

4. H ← ⌈H(X,Y −B)⌉N

5. else B ← 0 ; H ←⌈H⌉N

6. R← {}

7. For ∆ in N ⋆(H) do

8. Compute q, m, l, and φ∆

9. (a, b)← Bézout(q,m)

10. For (φ,M) in Factor(Lt, φ) do

11. Let ξ be any root of φ

12. Ñ ← N/[Lt(ξ) : Lt] // Update truncation order

6



13. H∆,ξ ← ⌈H(ξbXq,Xm(ξa + Y ))/X l⌉
⌊Ñ⌋

14. H̃∆,ξ ← WPT(H∆,ξ, ⌊Ñ⌋)

15. For each (P,Q) in ARNP(Lt(ξ), H̃∆,ξ, Ñ ) do

16. C ← − ⌈B(ξbP q)⌉
mdX(P )+r

// Q = Q0 +XrY

17. R← R ∪ {(ξb P q, C + Pm(ξa +Q))}

18. Return R.

Remark 3. At line 11, if ξ has multiplicity one in φ, there is no need to execute lines 13 and 14 because the expected
output for the recursive call is just [X,Y ]. Similarly, if ⌊Ñ⌋ = 0, we must have I(H̃∆,ξ) = 1 and ξ must have
multiplicity one. For the sake of clarity, we have not included this optimization in the description of ARNP, but we will
take it into account in our complexity analysis because it will simplify intermediate results. For instance, if H(0, Y )
is squarefree, there is no cost for lines ≥ 11.

Proposition 6. ARNP(L,F,VF ) returns Rt(F ).

Proof. (sketch) Truncation orders of line 4, 5 and 13 preserve singular parts because they are the same as in [40]. We
just need to check that the two modifications introduced in RNPuiseux do not alter the output.
• Consider first Abhyankar’s trick. If S is a Puiseux series for H and (P ′, Q′ = Q′

0 + cXr′Y ) is the corresponding

output of ARNP, then Q′
0(X) = ⌈S(P ′)⌉r

′

. Obviously S + B is a Puiseux series for H(X,Y − B), with regularity

index r′ in H(X,Y − B) and singular part ⌈S +B⌉r
′

. Moreover H(X,Y − B) and H have the same singular parts.

Hence the expected RPE for H is (P ′, ⌈B(P ′)⌉r
′

+ Q′). But the pair (P,Q) in line 15 is an RPE for H̃∆,ξ and

(P ′, ⌈B(P ′)⌉r
′

+Q′) = (ξbP q, Pm(ξa +Q)) is an RPE for H with regularity index r′ = mdX(P ) + r. Therefore, line
16 correctly compensates line 4.
• For line 14, H∆,ξ and its distinguished polynomial Ĥ∆,ξ ∈ Lt(ξ)[[X]][Y ] have the same RPEs centered at (0, 0). At
recursive calls, we are only concerned with RPEs centered at (0, 0) and we are allowed to discard the other factor. It
is shown in [40] that truncation at order ⌊Ñ⌋ preserves singular parts centered at (0, 0). We may thus continue the
computation with H̃∆,ξ instead of H∆,ξ.

Example 2. If F ∈ F29[X,Y ] is defined by F =
∏3

i=1(Y − Si(X)) +X19Y with Si = X +X2 +X3 + 17X4 +X5 +
X6 +X7 + (−1)i X15/2, 1 ≤ i ≤ 2 and S3 = X +X2 +X3 +X4. We have VF = 94 and ARNP runs as follow:

• N ⋆(F ) has a single edge with a unique root. Abhyankar’s trick is applied with −B = X+X2+X3+2X4+20X5+
20X6 + 20X7.
• N ⋆(H) has a single edge ∆ 4 i + j = 12 with φ∆ = (T − 28) (T − 15)2. We obtain two factors H1 = H̃∆,28 and

H2 = H̃∆,15, with respective Y -degree 1 and 2.
• The recursive call for H1 returns [X,Y ].
• Since N ⋆(H2) has once again a single edge with a unique root, the recursive call for H2 applies Abhyankar’s trick
again with −B = 10X + 10X2 + 10X3 + . . . .
• N ⋆(H2) has a single edge 7 i + 2 j = 14 and φ∆ = T − 1. Since I(H2) = 1, execution stops at the next recursive
call.
Let us now illustrate the reconstruction of RPEs for S1 and S2 (lines 16 and 17):

• The terminal call returns (P,Q) = [X,Y ]. Since m = 7, dX(P ) = 1, r = 0 and ξb = 1, this gives C = 10X2 +
10X4 + 10X6 and a RPE [X2, 10X2 + 10X4 + 10X6 + (Y + 1)X7]
• Coming back to the initial call, we have r = 7, m = 4, dX(P ) = 2, and ξb = 1. This time we have C =
X2 +X4 +X6 +2X8 +20X10 +20X12 +20X14, which provides the RPE [X2, S2(X

2) +X15Y ]. As for S3, we have
r = 0 and dX(P ) = 1, which leads to C = X +X2 +X3 + 2X4, and to the RPE [X,S3(X) +X4Y ] (ξ = 28 here).

5 Complexity

In this section, our goal is to prove Theorem 1 and 2. We recall that F is assumed Y -monic. The following relations
are useful and easy to prove:
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Lemma 1. Consider a function call ARNP(L,F,VF ). For any input (Lt,H,N) in the computation tree, we have:
1. dY (H) =

∑
∆,ξ dY (H̃∆,ξ)q∆[Lt(ξ) : Lt].

2. N t = VF .

3. dY (H) t ≤ dY = dY (F ).

We recall that ρ denotes the number of L-RPEs above 0.

Proposition 7. The expected number of operations in L required to factor all characteristic polynomials during the
execution of ARNP(L,F,VF ) is in Õ (ρ dY

2 + dY
2 log q).

Proof. We first estimate the cost of a single function call with input (Lt,H,N), forgetting for a moment recursive
calls. Since Factor(Lt, φ∆) requires an expected number of Õ (deg(φ∆)

2 + deg(φ∆) log q
t) operations in Lt, summing

over ∆, we get Õ (dY (H)2 + dY (H) log qt) operations in Lt, hence Õ (dY (H)2t+ dY (H) t2 log q) operations in L. By
Lemma 1, this is in Õ (dY

2 + t dY log q). In order to conclude, we must estimate the sum of these quantities over the
computation tree T . Let Ri denote the RPE corresponding to a branch Bi of T . There are three types of function
calls, corresponding to three types of vertices of T :
• Type (I): N ⋆(H) has a single edge with slope m/q and φ∆ = φM , with φ irreducible in Lt[T ]. Two sub-cases may
occur:
– Type (I.a): dT (φ) = 1. In this case, thanks to Abhyankar’s trick, we must have q > 1. Since the product of all
integers q along Bi is ei, this situation happens at most log2 ei times along Bi.
– Type (I.b): dT (φ) > 1. The product of the degrees of all polynomials φ along Bi is fi, hence this case may occur at
most log2 fi times along Bi.
From Proposition 2, we deduce that type (I) calls may occur at most log2 eifi ≤ log2(dY ) times along Bi. Along Bi,
all integers t that occur satisfy t ≤ fi. Summing costs of type (I) along Bi, we get log2(dY )× Õ (dY

2 + fidY log q) =
Õ (dY

2 + fidY log q). Summing over i, we obtain Õ (ρ dY
2 + dY

2 log q) using Proposition 2.
• Type (II): N ⋆(H) has several edges, or the characteristic polynomial of the unique edge has several irreducible
factors in Lt[T ]. Since algorithm ARNP then separates two groups of RPEs, this can happen at most (ρ − 1) times.
Since these nodes have at least two subtrees, there exists an injective map j from these nodes to leaves of T such that
node c is mapped to leaf Rj(c) of a subtree rooted at c. With this construction, integer t associated with c is at most
fj(c). Summing costs over all such nodes and using Proposition 2 yields again the expected result.
• Type (III): dY (H) = 1. Those are the leaves of T and induce no operations in L.

For Theorem 1 to hold, arithmetic operations in a subfield Lt of a residue field must be performed in Õ (t) operations
in L. Unfortunately, ARNP builds residue fields by adding step by step roots ξj of characteristic polynomials and no
Õ (t) algorithm is known if Lt is represented as a tower of extensions over L [35, 42]. Following [40], we propose to
compute a primitive element and to change the coefficient field representation whenever a new root of a characteristic
polynomial is required. To simplify the exposition, transformations related to coefficients fields are not explicitly
described in algorithm ARNP, but their complexity must be taken into account. The analysis of [40, Section 5.1] applies
to ARNP:

Proposition 8. The number of operations in L required by changes of representation to execute ARNP(L,F ,VF ) is in
Õ (VFdY

2).

Proposition 9. Not taking into account univariate factorizations and changes of representation, ARNP(L,F,VF ) re-
quires at most Õ (ρ dY (VF + 1)) operations in L.

Proof. Consider first the execution of one function call, ignoring for now recursive calls.

By Proposition 5, line 2 requires Õ (dY (H)) operations in Lt, hence Õ (tdY (H)) ⊂ Õ (dY ) operations in L.

Shift of line 4 may be performed with Õ ((N+1)dY (H)) operations in Lt, hence Õ (t (N+1)dY (H)) ⊂ Õ (dY (VF +1))
operations in L; see Lemma 1.

Define dtξ = [Lt(ξ) : Lt] and consider one execution of line 13. If ⌊Ñ⌋ > 0, then [40, Lemma 2] indicates that

it requires Õ (ÑdY (H)) operations in Lt(ξ), hence Õ (Ñ dY (H) t dt ξ) operations in L. Lemma 1 and line 12 gives

Õ (NdY ) ⊂ Õ (dY VF ). If ⌊Ñ⌋ = 0, Remark 3 indicates that there is no cost at all. If s denotes the number of pairs
(∆, ξ), total cost for line 13 is thus in Õ (s dY VF ).
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For line 14, the operation count is the same as for line 13.

As for line 16, we denote by (P = λXe, Q) an Lt(ξ)-RPE of H̃∆,ξ computed recursively and r (resp. f) its regularity
index (resp. its residual degree over L). Setting r′ = me+ r, the computation of ξbλq requires less than Õ (f log dY )
operations in L and the cost of computing C is in Õ ((r′ +1) f) operations in L. Since f is the residual degree over L
of an RPE of H, r′f ≤ VF ; see [40, Proposition 5]. Moreover,

∑
(P,Q) f ≤ tdY (H) ≤ dY by Proposition 2. Total cost

is thus in Õ (VF + dY ).

Line 17 needs no arithmetic in L if the output is returned without expanding expressions, except for the computation
of ξa and ξb, which can be done in O(f log dY (H)) operations in L. Summing over (P,Q) as above, we obtain Õ (dY ).
If an output in expanded form is expected, computations may also be done with Õ ((VF + 1)dY ) operations in L.

Altogether, we have shown that a single call to ARNP performs Õ (s dY (VF + 1)) operations in L. We now sum this
cost over all nodes of the computation tree T following the proof of Proposition 7.

For type (I) function calls, s = 1. There are at most ρ log2 dY of those and the total cost is in Õ (ρ dY (VF + 1)).

For type (II) calls, s > 1 and such a call separate RPEs into s groups. Consider the tree T ′ where nodes of type (I)
are ignored. We set s = 0 for leaves and show by induction on the depth D of T ′ that

∑
s∈T ′ s ≤ 2ρ− 2 (with equality

when T ′ is a binary tree). For D=0, T ′ is just a leaf and the formula is correct because ρ = 1. Assume D > 0 and let
s0 be the value associated with the root of T ′ (initial call). Removing the root gives s0 ≥ 2 subtrees of lower depth,
having respectively ρ1, . . . , ρs0 leaves. The induction hypothesis yields:

∑

s∈T ′

s = s0 +
∑

s∈T ′\{s0}

s ≤ s0 +

s0∑

i=1

(2ρi − 2) = 2ρ− s0 ≤ 2ρ− 2,

and the proposition is proved.

Proof of Theorem 1. The bound VF can be computed with Õ (dXdY
2) operations in L. Since ρ ≤ dY and

VF ≤ dX(2dY − 1), the monic case is a direct consequence of Proposition 7, 8 and 9. For non monic F we follow [40]:
algorithm ARNP returns the expected output provided that the truncation bound VF is replaced by VF + vX(AdY ),
where AdY (X) is the leading coefficient of F . The complexity analysis must be sligtly adapted, but yields the same
result.

Proof of Theorem 2. The polynomial F is irreducible in L[[X]][Y ] if and only if ρ = 1 and the corresponding RPE
has coefficients in L. This condition is equivalent to the following one: each Newton polygon encountered by ARNP

has a unique edge ∆ and φ∆(T ) = (T − ξ)dT (φ∆). The latter condition may be tested with the Oneroot function at a
cost of Õ (dT (φ∆)) ⊂ Õ (dY ) operations in L; see Proposition 5. Hence, it is easy to modify ARNP to abort and return
False whenever any of these two conditions is not satisfied. The Oneroot test will be repeated at most log2 dY times,
thanks to Abhyankar’s trick. There will be no factorization cost, nor change of representation cost. By Proposition 9,
execution of the modified algorithm requires Õ (dY (VF + 1)) operations in L because ρ = 1; thus Theorem 2 holds.

6 Further factorization

In this section, we present a technique that may reduce running times in some cases, but does not improve the worst
case complexity bound of Theorem 1. Due to space constraints, all proofs are omitted. The method is based on the
following well-known result, that can easily be justified:

Proposition 10. Consider H ∈ Lt[X,Y ], a Y -monic polynomial with dY (H) > 0 and H(X, 0) 6= 0. Denote {∆i}1≤i≤u

the edges of N (H), −mi/qi the slope of ∆i (with gcd(mi, qi) = 1) and φ∆i
=

∏ci
j=1 φ

Mij

ij the factorization φ∆i
into

irreducible elements of Lt[T ]. Then there exists a unique set of Y -monic Gij ∈ Lt[[X]][Y ] such that:

1. H =
∏u

i=1

∏ci
j=1Gij .

2. dY (Gij) = qi deg(φij)Mij

3. gcd (Gij , Gi′j′) = 1 if (i, j) 6= (i′, j′)

4. N (Gij) has a unique edge with slope −mi/qi,

5. The characteristic polynomial of N (Gij) is φ
Mij

ij .
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Applying line 13 of ARNP to each factor ⌈Gij⌉
N for a well-chosen N instead of H may save useless computations since

dY (Gij) < dY (H), provided that an approximate factorization of H that preserves singular parts can be computed

at a sufficiently low cost. Since H(0, Y ) = Y deg(H), there is no initial factorization that allows to directly construct
approximations of the Gij via Hensel lifting. Algorithm Split below explains how to alleviate the problem. But to
stay within the complexity bound of Theorem 1, we must first reduce the complexity of Hensel lifting for polynomials
with support in a lattice.

Structured Hensel Lifting. Let (q,m) ∈ Z
2 with q > 0 and gcd(m, q) = 1 and denote Γq,m the lattice of Z2

generated by (0, q) and (1,m). We also introduce Lt[X,Y ]Γq,m , the ring of polynomials with support in Γq,m.

Lemma 2. Lt[X,Y ]Γq,m ∩ Lt[Y ] = Lt[Y
q].

Complexity results in Section 6 are subject to the following hypothesis:

Hypothesis 1. It is possible to multiply two polynomials in Lt[X,Y ]Γq,m with degrees less than nX and nY ≥ q using
at most Õ (nXnY /q) operations in Lt.

By notation Õ (nXnY /q), we mean that, for all q ≥ 1 and all nY ≥ q, with nY and nX sufficiently large, the function
is bounded by nXnY /q times logarithmic factors of nX and nY . If Lt contains sufficiently many roots of unity, the
existence of such a multiplication algorithm might be deduced from [34, Section 4.3]. Assuming Hypothesis 1, we get:

Proposition 11. Let A,B ∈ Lt[X,Y ]Γq,m with dY (B) ≤ dY (A) = nY , q ≤ nY , B is Y -monic and let N be in N
∗.

There exists an algorithm to compute Q,R ∈ L[X,Y ] such that A = QB+R mod XN with dY (R) < dY (B) requiring
no more than Õ (nY N/q) operations in L. Moreover, Q and R are in Lt[X,Y ]Γq,m .

Proposition 12. Let H ∈ Lt[X,Y ]Γq,m be Y -monic, assume nY = dY (H) ≥ q and let N be in N
∗. Suppose that

H(0, Y ) =
∏

i hi(Y ) with hi ∈ Lt[Y
q] and gcd(hi, hj) = 1 for i 6= j. Then there exist unique Hi ∈ Lt[X,Y ]Γq,m such

that H =
∏

iHi mod XN and Hi(0,X) = hi(Y ). Moreover, there exists an algorithm SHensel such that the function
call SHensel(H,{hi}i,q,N) computes the (ordered) set {Hi}i with no more than Õ (nYN/q) operations in Lt.

Factorization of H. We can now describe algorithm Split to compute an approximate factorization of H in
Lt[[X]][Y ] corresponding to Proposition 10. The following points are essential:

• To get sufficient approximation for the factors, we must start from the edge with greatest slope, i.e., the rightmost
edge. Therefore, the classical dichotomic approach used in multi-factor Hensel lifting cannot be applied to reduce
complexity further. During a function call, other edges are grouped together and treated recursively; see lines 5 and
9.
• If −m/q is the slope of the rightmost edge, we use at line 6 a transformation similar to (4) to obtain a polynomial in
Lt[X,Y ]Γq,m that allows to use structured Hensel lifting. All factors corresponding to the rightmost edge are computed,
together with a factor H0 corresponding to other edges.
• To get an order N approximation, we must lift factors up to order qN ; see [40, Figure 2]. The key point is that the
extra factor q is compensated by the gain given by Proposition 12. Otherwise, this factorization step would worsen
our complexity bound because q may be as large as dY .

Split(Lt,H,N)

Input: Lt, a field, H ∈ Lt[X,Y ], Y -monic, with dY (H) > 0 and H(X, 0) 6= 0, N an integer with N > vX(H(X, 0)).
Output: A set {(mi, qi,Hij , φij ,Mij)}i,j with 1 ≤ i ≤ u, 1 ≤ j ≤ ci such that Hij = ⌈Gij⌉

N where mi, qi, Gij , φij and
Mij are defined in Proposition 10.

1. Compute the quantities m, q, l, φ∆ associated with the rightmost edge ∆ of N (H).

2. {(φj ,Mj)}
c
j=1 ← Factor(Lt, φ∆)

3. Let (i0, j0) be the leftmost point of ∆.

4. If i0 = 0 and c = 1 then Return {(m, q,H, φ1,M1)}.

5. If i0 > 0 then // There is more than one edge.

Write i0 = (a− 1)q + b with 0 < b ≤ q and set r = q − b.

(φ0,M0)← (T a, 1)
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6. Ĥ(X,Y )← Y rH(Xq,XmY )/X l ∈ L[X,Y ].

7. {Ĥj}j ← SHensel(Ĥ, {φj(Y
q)Mj}j , q, qN + 1)

8. For j from 1 to c do // Ĥj corresponds to φj.

Hj(X,Y )← Ĥj(X
1/q ,X−m/qY )Xm deg(φj)Mj

9. If i0 > 0 then // Treat remaining edges.

H0(X,Y )← Ĥ0(X,Y )XmaY −r

S ← Split(Lt,H0, N)

10. Return S ∪ {(m, q,Hj , φj ,Mj)}1≤j≤c

Note that at line 7, index j ranges from 0 to c if i0 > 0 and from 1 to c if i0 = 0.

Proposition 13. Algorithm Split returns the expected output. Not taking into account operations induced by sub-
algorithm Factor, it requires at most Õ (uNdY (H)) operations in Lt, where u is the number of edges of N (H).

Function ARNP may be easily modified to include this factorization step: After line 5, include a line

5b. {(mk, qk,Hk, φk,Mk)}1≤k≤s ← Split(L,H, ⌊N⌋),

then replace the nested “For” loops over ∆ and ξ by a loop over the (mk, qk,Hk, φk,Mk) for 1 ≤ k ≤ s, and continue the
processing as before. The modified algorithm must also take a special care of the first edge of H, if the corresponding
Hk has degree 1, otherwise it may return expansions with superfluous terms. This causes no significant problem and
has no impact on the complexity, hence we omit these technical details.

From the proof of Proposition 9, cost for lines 13 and 14 of one function call is Õ (sNdY (H)) operations in Lt, where
s is the number of pairs (∆, ξ). With the above modifications, this becomes Õ (uNdY (H)) +

∑s
k=1 Õ (NdY (Hk)) ⊂

Õ (uNdY (H)) because
∑

k dY (Hk) = dY (H). This factorization step is thus worthwhile if u/s is sufficiently small to
compensate larger factors hidden by the notation Õ .

7 Conclusion

Theorem 1 reduces by one order of magnitude the bound of [40] for the computation of RPEs of F above 0. Example
3 below shows that our operation count is sharp because Algorithm ARNP requires Θ(d4) operations in L for this case.

Example 3. Define Sk = 2Xk +
∑k−1

l=1 X l and F (X,Y ) =
∏N

k=1 (Y − Sk). At each call of ARNP, H has single edge
i + j = dY (H), with φ∆ = (T − 2) (T − 1)dY (H)−1 and Abhyankar’s trick does not save any function call. We have

dY = N , dX = N(N+1)
2 and VF = (N−1)N(N+1)

3 ∈ Θ(dXdY ). Moreover, ARNP will execute ρ − 2 = dY − 2 recursive
calls; this leads to a complexity in Θ(dXdY

3).

It turns out that the Õ (d5 log q) complexity bound derived in [40] using the Riemann-Hurwitz formula for the compu-
tation of the genus of the curve F (X,Y ) = 0 cannot be decreased by a mere application of Theorem 1. Indeed, suppose
that ∆F has a large irreducible factor D in L[X] of degree t0 close to dXdY . In order to apply the Riemann-Huwitz
formula, we need to compute RPEs above 0 of Fc(X,Y ) = F (X + c, Y ) ∈ Lt0 [X,Y ] where c is a root of D. When
applying ARNP to Fc, if a characteristic polynomial φ of degree close to dY is encountered, the factorization of φ in
Lt0 [T ] alone will require Õ (dY

2+dY log qt0) operations in Lt0 with standard factorization algorithms, thus Õ (d5 log q)
operations in L. Unless a univariate factorization algorithm with a drastically reduced running time is discovered,
there is no hope to get an Õ (d4 log q) bound with this method (the recent algorithm of [30] is not even sufficient).
However, following [40], we obtain:

Proposition 14. Not taking into account univariate factorizations, there exists an algorithm to compute the genus of
the curve F (X,Y ) = 0 with Õ (dXdY

2(dX + dY )) ⊂ Õ (d4) operations in L.

This result suggests to use the D5 technique [20, 18] to avoid the univariate factorization bottleneck; this will the topic
of forthcoming investigations.

A prototype for ARNP has been implemented in Maple to validate the algorithm, but a significant amount of work
is still necessary to develop efficient code. In fact, the technique introduced in this paper give better asymptotic
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operation counts and better upper complexity bounds, but it is not even clear that ARNP can be made to run faster
than other implementations for reasonable input size. In particular, the truncation bound VF is usually not sharp
(as demonstrated by Example 2 where the value VF = 94 is far from optimal) and calls to WPT artificially increase
X-degree. Finer bounds, or/and a “relaxed” approach [48] could prove useful.

As for Section 6, we consider it for now as a motivation for studying further structured multiplication algorithms [34].
No implementation of those is known to the authors and this would be a significant contribution in itself.

Acknowledgments. We are grateful to Eric Schost for useful input about [34]. We thank anonymous referees for
their contribution to the clarity of the paper.
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8 Appendix

We present proofs omitted in the paper.

of Proposition 3. The existence and unicity of U ∈ Lt[[X,Y ]] and Ĝ is guaranteed by Weierstrass Preparation
Theorem. Writing U =

∑
i Ui(Y )Xi, it is a simple matter to show recursively that Ui is a polynomial with

dY (Ui) ≤ dY (G) − I(G). Finally, it is easily seen that Puiseux series S of Ĝ and G that vanish at X = 0 are
the same.

of Proposition 4 (sketch). Define u = I(G) and h(Y ) = Y u. If N = 0, just return h and there is no operation in Lt to
execute. If N > 0, we apply the quadratic Hensel lifting technique described in [51, Chapter 15] to compute G̃. Set
g(Y ) = G(0, Y )/Y u, so that G = g h mod X, and compute s, t ∈ Lt[Y ] satisfy s g + t h = 1 using Õ (dY ) operations
in Lt. Hypotheses of [51, Algorithm 15.10], that performs a Hensel lifting step, are not verified by polynomials G, g,
h, s and t because the leading coefficient of G is not invertible in Lt[[X]] and dY (g) + dY (h) may be less than dY (G).
However, an examination of the proof of this algorithm ([51, Theorem 15.11]) shows that it can still be applied.
Therefore, [51, Algorithm 15.17] computes g̃ and h̃ in Lt[X,Y ] such that G = g̃ h̃ mod XN+1, g̃ = g mod X and
h̃ = h mod X, using Õ (NdY (G)) operations in Lt. It is possible to adapt proof of [51, Theorem 15.14] to show that
g̃ and h̃ are the unique polynomials satisfying these relations. Since Ĝ(0, Y ) = h and U(0, Y ) = g, we must have

h̃ = ⌈Ĝ⌉
N
.

of Lemma 1. Point 1 is a direct consequence of the definition of φ∆, noting that the multiplicity M∆,ξ of ξ in φ∆ is

equal to dY (H̃∆,ξ). Equality 2 is easily proved by induction, since N is divided by [Lt(ξ) : Lt] at each function call,
and t multiplied by the same quantity. Statement 3 can also be proved recursively using 1.

of Proposition 5. Writing φ(T ) =
∑n

i=0 aiT
i, it is sufficient to test whether the shifted polynomial φ(T − an−1/an/n)

is equal to anT
n, at a cost of Õ (n); see assumptions in Section 1.
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of Proposition 8. We refer the reader to [40, Section 5.1] and use the same notations: bounds given for steps (A), (B),
(D) are explicitly in Õ (δF dY ) ⊂ Õ (VFdY ). As for step (C), the last paragraph of [40, Section 5.1.3] indicates that it
can be done with Õ (VF dY

2) operations in L.

of Proposition 10 (sketch). Let ξij be a root of φij. Then Gij is just the product of the minimal polynomials over
Lt[[X]] of Puiseux series of H above 0 (counted with multiplicities if H is not squarefree) with first term equal to
ξijX

mi/qi ; see factorization (1) with F = H. All properties are then easily checked since Mij is the number of such
minimal polynomials (counted with multiplicities) and qi deg(φij) their degrees.

of Proposition 11. To compute Q and R, we follow [52, Algorithm 9.5]. Let a = nY and b denote respectively degrees
in Y of A and B. For any polynomial H ∈ Lt[X,Y ]Γq,m , we denote H̃(X,Y ) = Y dY (H)H(X, 1/Y ) the reciprocal
polynomial of H. We assume b > 0, otherwise, the result is trivial. Since B is monic, Lemma 2 gives b = qk for some
k ∈ N

∗. Therefore, a monomial of B̃ has the form X−m(−i+kq)+q(j+km)Y −i+kq for some (i, j) ∈ Z
2, which shows that

B̃ is in Lt[X,Y ]Γq,−m
. The inverse B̃−1 mod (Y (b−a+1),XN ) may then be computed via Newton’s iterations using

only multiplications and additions in Lt[X,Y ]Γq,−m
. If a is also a multiple of q, then Ã is also in Lt[X,Y ]Γq,−m

and
the computation of

Q̃ = ÃB̃−1 mod (Y (b−a+1),XN )

is essentially a product in Lt[X,Y ]Γq,−m
. Hence, it is sufficient to replace in [52, Algorithm 9.5] bivariate multiplications

by structured multiplications of Hypothesis 1 to obtain an algorithm that needs at most Õ (nXnY /q) operations in
Lt. Moreover, Q and R are in Lt[X,Y ]Γq,m because Lt[X,Y ]Γq,m is a ring. When a is not a multiple of q, Ã may not
be in Γq,−m, but the following workaround solves the problem: Let a′ be the smallest multiple of q greater than a and
set A1 = Y a′ + A, A2 = Y a′ . We may now compute quotients and remainders for the Ai in Õ (a′ nX/q) operation in
L. Since a′ < a + q and a ≥ b ≥ q because b is a non zero multiple of q, a′ ≤ 2a and we get the expected bound.
Finally, set Q = Q1 −Q2 and R = R1 −R2.

of Proposition 12 (sketch). Noting that H is monic, the existence, unicity and computability of the Hi are guaranteed
by the Hensel lifting algorithm [52, Chapter 15]. We are left to prove the complexity estimate and the fact that Hi

is in Lt[X,Y ]Γq,m . When q = 1, this complexity bound is well known; see [52, Theorem 15.18]. We argument as in
the proof of Proposition 11: An examination of Hensel multi-factor lifting algorithm, as presented in [52, Algorithm
15.17], reveals that it boils down to additions, multiplications and Euclidean division modulo powers of X (where
divisors are always monic in Y ) of polynomials in Lt[X,Y ]Γq,m . The cost of each elementary operation may thus be
divided by q and this gives the expected complexity.

of Proposition 13. If i0 = 0 and c = 1, Split obviously returns the expected result. Next, note that a monomial
XjY i is transformed by line 6 into Xmi+qj−lY i+r. Let us show that the corresponding affine application defined
by Ψ(i, j) = (i,mi + qj) + (r,−l) is a bijection from Z

2 to Γq,m. Since (i0, j0) belongs to ∆, l = mi0 + qj0 and
(r,−l) = (r,−mi0 − qj0) = (r,m(r − aq)− qj0) = r(1,m) − (ma+ j0)(0, q) ∈ Γq,m, which proves that Ψ(i, j) belongs

to Γq,m. Finally, Ψ is bijective because its matrix is unimodular. We deduce that Ĥ belongs to L[X,Y ]Γq,m . For
v ∈ N, we denote by Lv the line mi + qj = l + v. It is easily checked that Ψ(Lv) is the horizontal of ordinate v;
see [40, Figure 2]. For v = 0, this shows that 1) by Lemma 2, Ĥ(0, Y ) belongs to L[Y q], 2) Ĥ is monic in Y and 3)
I(Ĥ) = i0 + r = aq. From the definition of φ∆ and lines 2 and 5, we get: Ĥ(0, Y ) =

∏
j φj(Y

q)Mj , where the product
ranges from 0 to c if i0 > 0 and from 1 to c if i0 = 0. Since the φj(Y

q) are pairwise coprime, algorithm SHensel is
correctly initialized and returns polynomials satisfying:

Ĥ =
∏

j

Ĥj mod XqN+1. (5)

Consider the factorization ofH in Proposition 10 and defineGu0 =
∏u−1

i=1

∏ci
j=1Gij , Ĝu0 = Y rG0(X

q,XmY )/XmdY (Gu0)

and Ĝuj = Guj(X
q,XmY )/XmdY (Guj) for 1 ≤ j ≤ cu. The Ĝuj satisfy Ĥ =

∏
j Ĝuj because l = mdY (H) and

dY (H) =
∑

j dY (Guj). Proceeding as above, it can be shown that the Ĝuj are L[[X]][Y ]Γq,m . Up to a re-indexing, we

have Ĝuj(0, Y ) = φj(Y
q)Mj = Ĥj(0, Y ). From the unicity of the Ĥj in (5), we get:

Ĥj = Ĝuj mod XqN+1, 0 ≤ j ≤ cu.
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Applying reverse transformations, we get Y -monic polynomials Hj that verify:

Hj = Guj mod LqN+1, 0 ≤ j ≤ cu,

where, for any U, V ∈ Lt[X,Y ], U = V mod Lv means that U − V is in the ideal generated by the monomials with
support in Lv. Consider now the intersection of LqN+1 with the vertical line of abscissa dY (Hj). The ordinate j1 of this
point satisfies mdY (Hj)+qj1 = qN+ l+1, hence j1 = N+(l−mdY (Hj)+1)/q = N+m(dY (H)−dY (Hj)+1)/q ≥ N .
Hence, Hj contains all monomials of Guj up to X-degree N and we get:

Hj = Guj mod XN+1 and H =
∏

j

Hj mod XN+1.

In particular, if i0 6= 0, we have N > vX(H(X, 0)) ≥ vX(H0(X, 0)), H0(X, 0) 6= 0 and dY (H0) > 0. Algorithm Split

may thus be applied recursively to H0.

Finally, note that algorithm SHensel is called at most u times. Proposition 12 then gives the complexity bound.
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