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Abstract

We present randomized algorithms to compute the sumset (Minkowski
sum) of two integer sets, and to multiply two univariate integer polyno-
mials given by sparse representations. Our algorithm for sumset has cost
softly linear in the combined size of the inputs and output. This is used
as part of our sparse multiplication algorithm, whose cost is softly linear
in the combined size of the inputs, output, and the sumset of the supports
of the inputs. As a subroutine, we present a new method for computing
the coefficients of a sparse polynomial, given a set containing its support.
Our multiplication algorithm extends to multivariate Laurent polynomials
over finite fields and rational numbers. Our techniques are based on sparse
interpolation algorithms and results from analytic number theory.

1 Introduction
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Sparse polynomials are a fundamental object in computer algebra. Computer
algebra programs including Maple, Mathematica, Sage, and Singular use a

sparse representation by default for multivariate polynomials, and there has

been considerable recent work on how to efficiently store and compute with

sparse polynomials [Fateman, 2003, Gastineau and Laskar, 2013, Monagan and Pearce,
2009, Roche, 2011, van der Hoeven and Lecerf, 2012].

However, despite the memory advantage of sparse polynomials, the alter-
native dense representation is still widely used for an obvious reason: speed.
It is now classical [Cantor and Kaltofen, 1991] that two degree-D dense poly-
nomials can be multiplied in softly linear time: O(Dlog D loglog D) ring op-
erations, and even better in many cases [Harvey et al., 2014b]. By contrast, two
size-T sparse polynomials require O(T?) operations, and this excludes the po-
tentially significant cost of exponent arithmetic.
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Much of the recent work on sparse arithmetic has focused on “somewhat
dense” or structured cases, where the sparsity of the product is sub-quadratic
[Monagan and Pearce, 2009, Roche, 2011, van der Hoeven and Lecerf, 2012]. At
the same time, sparse interpolation algorithms, which in the fastest case can
learn an unknown T-sparse polynomial from O(T) evaluations, have gained
renewed interest [Cuyt and Lee, 2008, Javadi and Monagan, 2010, Comer et al.,
2012, Arnold et al.].

Most closely related to the current work, [van der Hoeven and Lecerf, 2013]
recently presented algorithms to discover the coefficients of a sparse polyno-
mial product, provided a list of the exponents and some preprocessing. In the
context of pattern matching problems, [Cole and Hariharan, 2002] gave a Las
Vegas algorithm to multiply sparse polynomials with nonnegative integer co-
efficients whose cost is O(Tlog? D).

A remaining question is whether output-sensitive sparse multiplication is
possible in time comparable to that of dense multiplication. This paper an-
swers that question, with three provisos: First, our complexity is proportional
to the “structural sparsity” of the output that accounts for exponent collisions
but not coefficient cancellations; second, our algorithms are randomized and
may produce incorrect results with controllably low probability; and third, we
ignore logarithmic factors in the size of the input.

To explain the first proviso, define for a polynomial F its support supp(F) to
be the set of exponents of nonzero terms in F. The sparsity of F, written #F, is
exactly #supp(F). For two polyomials F and G, we have #supp(FG) < #F - #G.
But in many cases the set of possible exponents

poss(F, G) d=8f{ep +eg:er € supp(F),eg € supp(G)}

is much smaller than #F - #G. This structural sparsity T = #poss(F,G), is an
upper bound on the actual sparsity S = #supp(FG) of the product. Strict in-
equality S < T occurs only in the presence of coefficient cancellations. Part of our
algorithm’s cost depends only on the actual sparsity, and part depends on the
potentially-larger structural sparsity.

Our algorithms have not yet been carefully implemented, and we do not
claim that they would be faster than the excellent software of [Gastineau and Laskar,
2013, Monagan and Pearce, 2013] and others for a wide range of practical prob-
lems. However, this complexity improvement indicates that the barriers be-
tween sparse and dense arithmetic may be weaker than we once thought, and
we hope our work will lead to practical improvements in the near future.

1.1 Ouwur contributions

Our main algorithm is summarized in Theorem 1.1. Here and throughout, we
rely on a version of “soft-oh” notation that also accounts for a bound y on

the probability of failure: @(cp) gef O(¢ - polylog(¢/p)), for any function ¢,
where polylog means log® for some fixed ¢ > 0 [von zur Gathen and Gerhard,
2013, see sec. 25.7].



Theorem 1.1. Given F, G € Z[x] with degree bound D > deg F 4 deg G and height
bound C > ||F||o + ||Glleo and u € (0,1), Algorithm SparseMultZZ correctly
computes the product H = FG with probability exceeding 1 — y, using worst-case
expected @(Slogc + T'log D) bit operations, where S = #supp(FG) and T =
#poss(F, G) are the actual and structural sparsity of the product, respectively.

The linear dependence on log D and log C means this result extends easily
to multivariate polynomials and finite field coefficients, using the Kronecker
substitution.

Our algorithm relies on two subroutines, both of which are based on tech-
niques from sparse interpolation and rely on number-theoretic results on the
availability of primes.

The first subroutine Sumset(.A, B) computes the sumset of two sets of inte-
gers A and B, defined as

def
AeoB={a+b:ac Abc B}
This algorithm, which may be of independent interest, has softly-linear com-
plexity in the size of the output A& 5.

The second subroutine SparseMulCoeffs(F, G,S) requires a set containing
supp(FG) in order to compute FG in time softly-linear in the input and output
sizes. It is based on an algorithm in [van der Hoeven and Lecerf, 2013], but is
more efficient for large exponents.

The main steps of our multiplication algorithm are:

1. Use Sumset to compute poss(F, G).

2. Run SparseMulCoeffs with S = poss(F, G) but with smaller coefficients,

to discover the true supp(FG).

3. Run SparseMulCoeffs again, with the smaller exponent set supp(FG) but

with the full coefficients.

Steps 1 and 2 work with a size-T exponent set but with small coefficients,
and both contribute @vy (Tlog D) to the overall bit complexity. Step 3 uses the
size-S true support but with the full coefficients, and requires @(S(log D+

log C)) bit operations, for a total of (5; (Tlog D + SlogC).

1.2 Organization of the paper

Section 2 states our notational conventions and some standard results, and Sec-
tion 3 contains the technical number theoretic results on which we base our
randomizations.

Section 4 revisits and adapts our sparse interpolation algorithm from ISSAC
2014 that will be a subroutine for our sumset algorithm, presented in section 5.

Our new method to find the coefficients, once the support is known, is pre-
sented in Section 6. This is then used in concert with our sumset algorithm in
Section 7 to describe fully the algorithm of Theorem 1.1, and also to explain
how this can be easily extended to output-sensitive sparse multiplication over
R[x;,..., xi!], where Ris Z,,, Q, or GF(p°).



2 Background and Preliminaries

We count the cost of our algorithms in terms of bit complexity on a random-
access machine. We state their costs using O, notation, meaning that our algo-
rithms have a factor log® % in the running time. We can make ¢ = 1 by running

the entire algorithm with error bound % some O(log %) times, then returning
the most frequent result.

Our main algorithm depends on an unknown number-theoretic constant,
as discussed in Section 3. Thus we have proven only the existence of a Monte
Carlo algorithm. We also discuss how this could be easily handled in practice.

Our randomized procedures return either the correct answer (with control-
lable probability 1 — ), or an incorrect answer, or the symbol Fail. Whenever
a subroutine returns Fail, we assume the calling procedure returns Fail as
well.

2.1 Notation and Representations

We let R denote a commutative ring with identity. For F € R[x| we let (F) C
R[x] denote the ideal generated by F. For n,m € Z, m > 0, we let n Tem m
and n rem m denote the integers s € [0,m) and t € [—m/2,m/2) respectively,
such thatn = s =t (mod m). We write Z,, for Z/mZ, typically represented
as {nremm|n € Z}.

Unless otherwise stated we assume F € R[x] is of the form

F(x) = Yi<i<sCix®, (1)
with coefficients ¢; € R and exponents ¢; € Z>(. Often we assume each ¢; # 0
and the exponents are sorted e; < - -+ < eg, but it is sometimes useful to relax

these conditions.

We write S > #F and D > deg F for the sparsity and degree bounds. When

R = Z we write C > ||F|| & max; |c;| for the height of F. We also use the

norm || Fl|y = i |ci-
More generally, we consider multivariate Laurent polynomials

S
F=Y cxi" - xim € Rxy, .. x0.
i=1

In the case R = Z, the sparse representation of F consists of a tuple (n,C, D, S),
followed by a list of S tuples (c;, (ej1, .- .,€in)), where each ¢; is stored using
O(log C) bits and each ¢;; is stored using ®(log D) bits. When R is instead a
finite ring, C is omitted and each ¢; is stored using ©(log |R|) bits.

When multiplying F, G € Z[x]|, we assume shared bounds C and D so that
total input/output size is

O((#F + #G + #(FG))(log C + log D)), @)



given that || FG||; < C?>min(#F,#G).

The dense representation of an n-variate polynomial F is an n-dimensional
array of D" coefficients, where exponents are implicitly stored as array indices.
In the case that R = Z with bound C as above, this requires @(D" log C) bits.

The terms “sparse polynomial” and “dense polynomial” refer only to the
choice of representation, and not to the relative number of nonzero coefficients.
Typically, we assume F is sparse and reserve F to indicate a dense polynomial.
Converting between the sparse and dense representations has softly linear cost
in the combined input/output size.

When computing a sumset A @ B, we assume that every integer in A or B is
represented using ©(log D) bits, where D > max(||A||,, || B||s)- In this setting

the combined bit-size of A, B, and A & Bis O((#A+#B +#(A® B))logD).

2.2 Integer and Polynomial Arithmetic

We cite the following results from integer and polynomial arithmetic, which
we use throughout.

Fact 2.1 ([Harvey et al., 2014a], Thm 9.8; [von zur Gathen and Gerhard, 2013],
Cor. 99). Let m,n € Z. Then the following may be computed using O(logm +
log n) operations: m £ n, mn, m rem n, m fem n. Also, arithmetic operations in Z,
require O (log n) bit operations.

Fact 2.2 ([von zur Gathen and Gerhard, 2013], Thm. 10.25). Given m; € Z~y,
and vitem m; for 1 < i < tand M = Hle m;, one can compute the solution
v € [0, M) to the set of congruences v = v; (mod m;), 1 < i < t using O(log M)
bit operations.

We use Chinese Remaindering to construct exponents from sets of congru-
ences. We also use dense polynomial arithmetic as a subroutine, and cite the
following results.

Fact 2.3 ([Harvey et al., 2014b]). Let F,G € Z[x|, deg F,deg G < D. Then the
following may be computed using O(D log m) bit operations: F £ G, FG, F rem G.

In particular, dense arithmetic operations in Z,,[x]/(x? — 1) may be com-
puted in O(plog m) bit operations.

Assume F € Z|[x] as in (1) with bounds D, S, and C as described above.
Our algorithm performs arithmetic on modular images of F. For F € Z,,[x],
we represent F(x) mod (x¥ — 1) € Zy[x]/(xP — 1) by the remainder from di-
viding Z,(x) by (x? —1). Namely F(x) mod (x? — 1) is a polynomial with
degree less than p. Note we treat F(x) rem (x” — 1) and F(x) mod (x” — 1) as
elements of R[x] and R[x]/ (x? — 1) respectively. To reduce a sparse polynomial
F mod (x? — 1), we reduce each exponent modulo p, and then add like-degree
terms. By Fact 2.1, we have:

Corollary 2.4. Given any F € Zy[x], we can compute F mod (xP — 1) using

O(S(log D + logm)) bit operations.



Procedure GetPrime(A, y)
Input: A > 21; 4 € (0,1).
Output: Integer p € (A,2A], s.t. Pr[p not prime] < p.
1 repeatm = [(5/6)InAIn(1/p)] times
2 | p < random odd integer from (A,2A]NZ
3 L if p is prime then return p

4 return Fail

Procedure GetVanishPrime(S, D, vy, )
Input: Integers S,D € Z~o; v € (0,1]; » € (0,1).
Output: Integer p, s.t. for any set S satisfying #5 < S and ||S||, < D,
with probability at least 1 — y, p is a y-vanish-prime for S.

1 A < max (21, % min (S, ﬁ) In D)

2 return GetPrime(A, p/2)

3 Number-theoretic subroutines

3.1 Choosing primes
We first recall how to choose a random prime number.

Fact 3.1 (Corollary 3, [Rosser and Schoenfeld, 1962]). If A > 21, then the number
of primes in (A,2A] is at least 31/ (51n A).

We test if p is prime in O(polylog(p)) time via the method in [Agrawal et al.,
2004]. This test and Fact 3.1 lead to procedure GetPrime.

Lemma 3.2. GetPrime(A, u) works as stated and has bit complexity (5;, (polylog(A)).

Proof. The stated cost follows from fast primality testing due to [Agrawal et al.,
2004]. The probability that any chosen p is prime is at least 6/(5InA), from
Fact 3.1. Therefore, using the fact that (1 — x) < exp(—x) for any nonzero x €
R, the probability that none of the chosen p are prime is at most (1 — ﬁ) "<
exp (5122 ) < p, as desired. O

It is frequently useful to choose a random prime that divides very few of
the integers in some unknown set S C Z. If a fraction of -y integers in S do not
vanish modulo p, then we call p a y-vanish-prime for S. We call a 1-vanish-prime
for 5 a good vanish-prime. Procedure GetVanishPrime shows how to choose a
random 7y-vanish-prime.

Lemma 3.3. Procedure GetVanishPrime works as stated to produce a y-vanish-prime
p satisfying
pe O (Lmin (s L )l0gD)



Procedure GetDiffPrime(S, D, 7y, u)

Input: Integers S,D € Z~o; v € (0,1]; 1 € (0,1).
Output: Integer p, s.t. for any set S satisfying #5 < S and diam(S) < D,
with probability at least 1 — p, p is a y-difference-prime for S.

1A+ $8(5—1)min (sﬁ) In D
2 if A < 21 then return GetPrime(21, j1/2)
3 else if A > D then return GetPrime(D, 11/2)

4 else return GetPrime(A, p1/2)

and has bit complexity polylog(p).

Proof. Let S be any subset of integers with #5 < S and ||S||,, < D. Write
M = Tlaes |a| < DS, and write k for the number of “bad primes” for which
more than (1 — )S elements of S vanish modulo p. Since each p > A, this
means that A(1=7)5k < M, and because M < D3,k < InD/((1—)InA) is an
upper bound on the number of bad primes.

If 1 — vy is very small, we instead use a similar argument to say that the num-
ber of primes for which any element of S vanishes is at most k < SInD/ InA.

Then Fact 3.1 guarantees the prevalence of bad primes among all primes
in (A,2A) is at most /2, so the probability of getting a bad prime, or of erro-
neously returning a composite p, is bounded by p. O

3.2 Avoiding collisions

A closely related problem is to choose p so that most integers in a set S are
unique modulo p. We say that a € S collides modulo p if there exists b € S with
a =0b (mod p). We say p is a y-difference-prime for S if the fraction of integers
in S which do not collide modulo p is at least y. A 1-difference-prime is called
a good difference-prime for S. Procedure GetDiffPrime shows how to compute
difference-primes, conditioned on the diameter of the unknown set 5:

diam(S) & max(8) — min(8).

Lemma 3.4. Procedure GetDiffPrime has bit complexity polylog(p) and works as
stated to produce a y-difference-prime p satisfying p € O(D) and

peO (%Smin (S, %) log D) .

Proof. Let S be any set as described. An element a € S collides modulo p iff the
product of differences [Tjcg p-£q,(a — b) vanishes modulo p. If p > D this can
never happen. Otherwise, as each such product is at most diam(S)°~1 < D571,
the result follows from the Lemma 3.3, setting the D of the lemma to D>~1. [



Our algorithms often perform arithmetic modulo (x? — 1). Similar to the
notion of collisions above for a set of integers modulo p, we say two distinct

terms cx® and ¢'x¢ of F € R[x] collide modulo (x” — 1) ife = ¢ (mod p).

Example 3.5. Let F = x + x° + 3x”. Then F mod (x> — 1) = 2x + 3x2. The term
2x is the image of x + x°. We say x and x® collide modulo (x> — 1), whereas 3x’
uniquely maps to 3x2.

Essentially, reduction modulo (x” — 1) “hashes” exponent e € supp(F) to
e fem p. If p is a good difference-prime for supp(F) and g is a good vanish-
prime for the coefficients of F, then F rem (x? — 1) with coefficients reduced
modulo g has the same sparsity as F itself.

3.3 Primes in arithmetic progressions

Sometimes we implicitly reduce exponents modulo p by evaluating at pth roots
of unity. In such cases we need to construct primes g such that p|(g — 1), and
to find pth roots of unity modulo each g.

In principle, this procedure is no different than the previous ones, as there
is ample practical and theoretical evidence to suggest that the prevalence of
primes in arithmetic progressions without common divisors is roughly the
same as their prevalence over the integers in general.

However, the closest to Fact 3.1 that we can get here is as follows, which is
a special case of Lemma 7 in [Fouvry, 2013].

Lemma 3.6. There exists an absolute constant Ay such that, for all A > Ag, and for

all but at most A/ In* A primes p in the range (A,2A), there are at least A%/ In A
primes q in the range (A1, 2A1%] such that p|(q —1).

Proof. Set K = 0.53, which means (1.89)"! < K < 2. Fixing s = 1, and for
any R > 2, Lemma 7 in [Fouvry, 2013] guarantees the existence of positive
constants ax and xg such that the following holds: For all x > max(xg, R'/X),
and for all but R/ In” R integers r € (R,2R], there are at least axx/(¢(r) Inx)
primes g in the range (x, 2x] such that r|(g — 1), where ¢(r) is the Euler totient
function.

Setting Ag = max(xg,3.78/ak), and letting R = A, r = p,and x = A8 the
statement of our lemma holds because

p(r)Inx = (p—1)In A <3780 1n A,

1.89 0.89
thus ARE aKA > A .
¢(r)Inx  (p—1)InAl82 = InA

O

Lemma 3.6 forms the basis for Algorithm GetPrimRoots, where we assume
that the constant Ag is given. Since this constant has not actually been com-
puted, a reasonable strategy would be to choose some small “guess” for A
and run the algorithm until it does not report failure. If the algorithm fails, it



Procedure GetPrimRoots(D, T, C, u)
Input: D > degF; T > #F; C > ||F|o; # € (0,1); where F € Z[x] is fixed
but unspecified.
Output: Prime p, primes (41, . .., qx), and integers (w1, ..., wy); or Fail.
2
1 m <« [lg 4]
2 A ¢ max (786, Ao, BmT(T ~1)InD,1.35 ln3'13(2C))
4+ [1.1In(2C)In? A]

3
4 repeat m times

5 p +GetPrime(A, £-)

6 A « a distinct even integers in [2,21%%]

7 Q, W < empty lists

8 foreacha € Ado

9 g<ap+1

10 ¢ < random nonzero element of Z;

1 if g is prime and (" mod q # 1 then

12 AddgtoQand w = (" to W

13 L if quQ q > 2C then return p, Q, and W

14 return Fail

could be due to the random prime p being an “exception” in Lemma 3.6, or due
to unlucky guesses for the primitive roots , or due to the guessed constant A
being too small. Because our primality tests are deterministic, failure due to Ag
being too small is detectable by the algorithm returning Fail.

We state the running time and correctness, assuming Ay is sufficiently large,
as follows.

Lemma 3.7. Procedure GetPrimRoots has worst-case bit complexity

O, (log C - polylog (T +1og D)) .

With probability at least 1 — y, it returns a good difference-prime p for F, primes
g1, - -, qx such that T1; g; > 2C, and pth primitive roots modulo each q;, w1, . . ., W.

Proof. The lower bound A > max(786,1.35In>!3(2C)) guarantees that there are
sufficiently many even integers in the range [2,2A%8] in order for Step 6 to be

valid, since for any A > 786, we have A% > A321n* A > 1.1In(2C) In® A.
For the running time, the outer loop does not affect the complexity in our

notation because m € O(log %) € (/’)74 (1). Observe also that

log A € polylog (AO +T+logD +1log C + %) .

The running time is dominated by the AKS primality tests in the inner loop,
which are performed O(m log Cpolylog(A)) times, each at cost O(polylog(1)),
giving the stated worst-case bit complexity.



All of the checks for primality of p and g;’s, as well as the test that each w;
is a pth primitive root of unity modulo g;, are deterministic. Therefore the only
possibility that the algorithm returns an incorrect result other than Fail is the
probability that p is not a good difference-prime for supp(F). According to the
proof of Lemma 3.4, the condition A > %mT(T —1)In D, and using the union
bound over all outer loop iterations, the probability that any of the chosen p’s
is not a good difference-prime is less than p /2.

Consider next a single iteration of the outer loop. This will produce a valid
output unless insufficiently many good g;’s and w;’s are found for that choice
of p.

From Fact 3.1 and Lemma 3.6, the probability that p is an exception to the
lemma is at most 5/(31n A), which is less than le from the bound A > 786.

If p is not an exception, then Lemma 3.6 tells us that the probability of each
g being prime is at least ﬁ When g is prime, since prime p divides (g — 1),
the probability that each {* is a p-PRU in Z, is (p — 1)/p, easily making the
total probability of successfully adding to Q and W at each loop iteration at
least 0.99/(InA).

Leta > 1.11n(2C) In? A be the size of A. By Hoeffding’s inequality ([Hoeffding,
1963], Thm. 1), the probability that fewer than 0.03a/(InA) integers are added
to Q after all iterations of the inner loop is at most

exp(—2a(0.96/ InA)?) < exp(—2.02In(2C)) < 0.25,

where the last inequality holds because C > 1.
Therefore, with probability at least %, and using again A > 786, at least

0.032/InA = 0.033In(2C) InA > In(2C)/ InA

integers are added to Q each time through the inner loop. Since each gq; > A,
this means []; ; > 2C, and the algorithm will return on Step 13.

Combining with the probability that p is an exception, we conclude that the
probability the algorithm does not return in each iteration of the outer loop is at
most 1/2. As this is repeated [lg %1 times, the probability is less than y/2 that
the algorithm returns Fail. Using the union bound with the probability that
any p is not a good difference-prime, we have the overall failure probability
less than p. O

4 Multiplying via Interpolation

Let F,G € Z[x] be sparse polynomials with C = ||F||, + |G|l and D =
deg F + deg G. The subroutine Sumset computes poss(F,G) by first reduc-
ing the degrees and heights of the input polynomials and then multiplying
them. However, it cannot perform the multiplication using a recursive call to
SparseMultZZ because the degrees are never reduced small enough to allow
the use of dense arithmetic in a base case.

10



Procedure SparselnterpBB(F, G, «, 1)
Input: F,G € Zy[x];a € Zy; 1 € Zy.
Output: H(az) mod (z" — 1), where H = FG.
1 (F,G) < (F(az) rem (z" — 1), G(az) rem (z" — 1))
2 H + F-Grem (z' — 1) via dense arithmetic
3 return sparse representation of H

Procedure BasecaseMultiply(F, G, S, 1)
Input: F,G € Z[x]; S > #F +#G + #(FG); u € (0,1).
Output: H € Z[x] such that Pr[H # FG| < p.

1 q «+GetPrime(2S ||F||, ||Gl|o + 2deg F +2deg G, §)

2 Call procedure Majority VoteSparselnterpolate from [Arnold et al., 2014],
with coefficient field Z,, sparsity bound S, degree bound deg F + deg G,
error bound %, and black box SparselnterpBB(F, G, -, -).

Instead, we present here a “base case” algorithm which, given F, G, and a
bound S > #F + #G + #(FG), computes FG, in time softly linear in S,logC,
and polylog(D). Any algorithm with such running time suffices; we will use
our own from [Arnold et al., 2014], which is a Monte Carlo sparse interpolation
algorithm for univariate polynomials over finite fields.

To adapt [Arnold et al., 2014] for multiplication over Z[x], we first choose
a “large prime” g > max(2C,2D) and treat F, G and their product H = FG as
polynomials over IF;. This size of g ensures that no extension fields are neces-
sary. The subroutine SparselnterpBB specifies how the unknown polynomial
H = FG € F;[x] will be provided to the algorithm. It exactly matches the sorts
of black-box evaluations that [Arnold et al., 2014] requires. The entire proce-
dure is stated as BasecaseMultiply.

Lemma 4.1. The algorithm SparselnterpBB works correctly and uses O (S log Dlogq +
rlogq) bit operations.

Proof. Correctness is clear. To compute F(az), we replace every term cx* of F
and G with ca®x® € Z;. This costs O(Slog D log q) by binary powering. Reduc-
ing modulo (2 — 1) costs O(S(log D + logq)) by Corollary 2.4. Dense arith-

metic costs O(rlogq) bit operations by Fact 2.3. Summing these costs yields

O(SlogDlogq+rlogg). O

Lemma 4.2. The algorithm BasecaseMultiply correctly returns the product H = FG
with probability at least 1 — y, and has bit complexity @;, (S log? D (log C + log D)) .

Proof. In order to use SparselnterpBB in the algorithm from [Arnold et al., 2014],
we simply replace the straight-line program evaluation on the first line of pro-
cedure Computelmage with our procedure SparselnterpBB. Again, note that

11



as the prime g was chosen with ¢ > 2D, the Majority VoteSparselnterpolate
algorithm does not need to work over any extension fields.

The correctness is guaranteed by the previous lemma, as well as Theorem
1.1in [Arnold et al., 2014]. For the bit complexity, in Section 7 of [Arnold et al.,
2014], we see that the cost is dominated by @(log D) calls to the black box

evaluation function, each of which is supplied g € O(C+ D),and r € OV (S log D).
Applying the bit complexity of Lemma 4.1 gives the stated result.

5 Sumset Algorithm

Let A,B € ZN(—D,D) be nonempty, R = #A +#B, and S = #(A @ B)
throughout this section. We prove as follows:

Theorem 5.1. Procedure Sumset (A, B, jt) has bit complexity @vy (Slog D) and pro-
duces A @ B with probability at least 1 — pu.

We compute the sumset A & B as supp(H), H = FG € Z[x~!,x], where
F = Y,c4x" and G = Y,cpx?. Here H has exponents in (—2D,2D) and
|H||, < R. Thus it suffices to construct the exponents of H modulo ¢ > 4D.
Moreover, we have supp(H) = poss(F, G), and that

R-1<#(A®B) =S5 <R~ (3)

5.1 Estimating Sumset Output Size

We first show how to compute a tighter upper bound on the true value of
S = #H = #(A ® B). To this end, let p € O(D) be a good difference-prime
for supp(H), using the naive bound R? from (3), and define the H; = F; G,
where Fj, G| € Z|[x] are defined by

F = Frem (xF — 1), G1 = Grem (xF —1).

Then deg H; < 2p and each term cx® of H corresponds to either one or two
terms in Hj, of degrees e tem p and (e rem p) + p. Therefore

#H,/2 < #H = S < #H,.

We will compute an approximation S* ~ S such that S*/2 < #H; < §%,
and therefore S*/4 < S < S*. To this end we present a test that, given 5%,
always accepts if #H; < S* and probably rejects if #H; > 25*. We do this for
S* initially 2, doubling whenever the test rejects.

Given the current estimate S*, we next choose a (1/2)-difference-prime g
for the support of any 25*-sparse polynomial with degree 2p > deg H;, and
compute H* = H; mod (x7 — 1). We work modulo m = R? > || H||; > ||H*||c,
such that none of the coefficients of H* vanish modulo m. If H; is S*-sparse
then H* is as well. If H; has 25* terms then, as fewer than S* terms of H; are in
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collisions, H* is not S*-sparse. As no terms of H; vanish modulo m, additional
terms in Hj can only increase #H".

We choose g so that the test is correct with probability at least 3/4. By
iterating [81n(8/y)] times, by Hoeffding’s inequality, the probability is at least
1 — u/4 that the test runs correctly in at least half of the iterations. As #H; <
2R?, it suffices that the test is correct [log, R -+ 1] times.

The Sumset procedure performs this test on lines 3-7. By Corollary 2.4 the
respective costs of constructing F* and F* mod (R? x7 — 1) are O, (Rlog D)
and @(R log plog R), and similarly for G*. The cost of the dense arithmetic
here is @(qlog R). Given that p € @;,(D),q € @(Slog p), the total bit-cost
of this partis O, (Slog D).

5.2 Computing Sumset

Armed with the bound $*/4 < S < S§*, we aim to compute H = FG. Our
approach is to compute images

H] = F1G1 mod (éz,xp — 1),
Hy = F((£+1)x)G((£+1)x) mod (¢2,xF —1),

for an integer ¢ = 8D > max(degH, | H||;).

Since the coefficients of H, are scaled by powers of (¢ + 1), a single term
cx® in the original polynomial H becomes cx® ™™ P in Hy and (¢ + 1)¢x¢ ™M P
in Hp, and if they are uncollided we can discover (¢ + 1)¢ by computing their
quotient. Modulo 2, this quotient (£ + 1) is simply el + 1, from which we
can obtain the exponent e. This idea is similar to the “coefficient ratios” tech-
nique suggested by [van der Hoeven and Lecerf, 2014], but working modulo
% allows us to avoid costly discrete logarithms. Procedure Sumset contains
the complete description.

Sumset has four steps that are probabilistic: choosing a good difference-
prime p, estimating the sumset size S = #(A @ B), and constructing H; and
Hj. As each is set to fail with probability less than /4, Sumset succeeds with
probability at least 1 — p.

We now analyze the total cost of this algorithm. GetDiffPrime produces p
of size logp < polylog(R + log D + %) Constructing Fy, b, G1, Gy at the be-
ginning, and the reduction of Hq, H, modulo ((2, xP — 1) at the end, both cost
@vy (Slog D) bit operations.

The search for S* costs @(S log D) from the previous section. Finally, as
|Fill < £/2,degF; < p, and similarly for F,, G, and Gy, the sparse multipli-
cations due to BasecaseMultiply also costs @(S log D) bit operations. These
dominate the complexity as stated in Theorem 5.1.
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Procedure Sumset(A, 5, u)

Input: A, B C Z with #A + #B = R and maxyc 4 [k| < D; p € (0,1).
Output: Set S C Z such that Pr[S # A® B] < u.
1 p < GetDiffPrime(R?,4D, 1,1 /4)

2 (F,Gp) (ZaeAxamp/ZbeBxbmp)

3 5%« 2

4 repeat [max(8In(8/yu),log, R +1)] times

5 | g < GetDiffPrime(25*,2p, %, 3)

6 H* < F{G; mod (R?,x7 — 1), via dense arithmetic
7 if #H* > S* then S* « 25*

s { < 8D

5 (B2, Ga) = (gl + 1) ™™ P, ¥y (bl +1) )
10 Hy <BasecaseMultiply(F;, G1, S*, iu/4)

11 Hj <BasecaseMultiply(F,, Gy, S, 11/4)

12 forj =1,2do Hj + Hj mod (£?,x¥ —1)

13 S < empty list of integers
14 for every nonzero term cx® of Hy do

15 ¢’ + coefficient of degree-e term of H,

16 | ifc|c and (| (c'/c—1) as integers then

17 | Add (c'/c—1)/LtoS

18 else return Fail / /cannot reconstruct an exponent
19 return S

6 Multiplication with support

We turn now to the problem of multiplying sparse F, G € Z[x], provided some
S O supp(FG). This algorithm is used twice in our overall multiplication al-
gorithm: first with large S = poss(F, G) but small coefficients, then with the
actual support S = supp(FG) but full-size coefficients.

The bit-complexity of our algorithm is summarized in the following theo-
rem.

Theorem 6.1. Given F,G € Z[x] and a set S C Z > such that supp(FG) C S, the

product FG can be computed in time @ ((#F + #G + #S) (log C + log D)) , where
C =|F|le + |G|l and D > deg F + deg G.

This is @-optimal, as it matches the bit-size of the inputs.

Our algorithm requires a small randomly-selected good difference-prime
p with O(log S + loglog D) bits, and a series of pairs (g, w), where each g is
a slightly larger prime with O(log p) bits, and w is an order-p element in Z,.
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These numbers are provided by GetPrimRoots (Sec. 3). Our algorithm works
by first reducing the exponents modulo p, then repeatedly reducing the coeffi-
cients modulo g and performing evaluation and interpolation at powers of w.
This inner loop follows exactly the algorithm of [van der Hoeven and Lecerf,
2013] and [Kaltofen and Yagati, 1989] for applying a transposed Vandermonde
matrix and its inverse. Since p is a good difference-prime for the support of the
product, there are no collisions and this gives us each coefficient modulo 4. The
process is then repeated O(log C) times in order to recover the full coefficients
via Chinese remaindering.

6.1 Comparison to prior work

Without affecting the complexity, we may assume that S contains the support
of the inputs too, i.e., supp(F) and supp(G). We also assume that max$S =
deg FG, such that no e € S is too large to be an exponent of FG. Under these
assumptions, and writing S = #5, the stated complexity of our algorithm is
simply O, (S(log C +log D)).

The problem of computing the coefficients of a sparse product, once the
exponents of the product are given, has been recently and extensively investi-
gated by van der Hoeven and Lecerf, where they present an algorithm whose
bit complexity (in our notation) is

O ((Zees logee) (log D +1log C))

([van der Hoeven and Lecerf, 2013], Corollary 5). As ) ,cgloge € O(SlogD),
the algorithm here saves a factor of at most O(log D) in comparison, which
could be substantial if the exponents are very large.

Their algorithm is more efficient if the support superset 5 is fixed, in which
case they can move the most expensive parts into precomputation and com-
pute the result in the same soft-oh time as our approach, @ (S(log D +1ogC)).
Furthermore, the support bit-length ), .5 log e is at most O(Slog D), but could
be as small as Q)(Slog S +1log D), for example if the support contains only a sin-
gle large exponent. In such cases our savings is only on the order of (log D)/S.

6.2 Transposed Vandermonde systems

Applying transposed Vandermonde systems, and their inverses, is an impor-
tant subroutine in sparse interpolation algorithms, and efficient algorithms are
discussed in detail by [Kaltofen and Yagati, 1989] and [van der Hoeven and Lecerf,
2013]. We restate the general idea here and refer the reader to those papers for
more details.

If F is a dense polynomial, it is well known that applying the Vander-
monde matrix V(6y,...,0p) to a vector of coefficients from F corresponds to
evaluating F at the points 0; ...,0p. Applying the inverse Vandermonde ma-
trix corresponds to interpolating F from its evaluations at those points. The
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product tree method can perform both of these using O(D) field operations
([von zur Gathen and Gerhard, 2013], Chapter 10).

If F is instead a sparse polynomial F = } ,.gc1x%, evaluating F at consec-
utive powers of a single high-order element w corresponds to multiplication
with the transposed Vandermonde matrix:

Vw4, ..., (cy,...,c5)T = (F(1),..., F(w*™)T

The transposition principle tells us it is possible to compute the maps V7T
and (VT)~1 in essentially the same time as dense evaluation and interpolation.
In particular, if the coefficients ¢; are in the modular ring Z,, then the trans-
posed Vandermonde map and its inverse can be computed using O(Slog )
bit operations [van der Hoeven and Lecerf, 2013].

6.3 Statement and analysis of the algorithm

Procedure SparseMulCoeffs(S, F, G, u)

Input: Exponents S = (eq, ¢, . .. es); coefficient lists (fi, ..., fs) and
(g1,---,85), with F, G € Z[x] implicitly defined as
F=Y1<i<sfixiand G = Y 1<;<5 &ix“; error bound p € (0,1).

Output: (hy,...,hs) € Z5 such that, with probability least 1 — 1,

FG = ZlSiSS hixgi.

C + (maxi<i<s |fi|) (maxi<i<s [gi])S

p, Q, W <GetPrimRoots(max$5, #S, C, u)

Sy < (eyTem p,ep Tem p, ..., eg Tem p)

H < list of S empty lists of integers

foreach (q,w) € Q,W do

foreache;, €5, do

L v; - W' € Z4 by binary powering
8 a(—V(Ul,...,Us)T<f1,...,fs)TEZ;
9 b<—V(ZJ1,...,Z)S)T(g1,...,g5)TGZS’

10 | < (aihy,...,asbs)T € Zg

11 if V(vy,...,0s) is invertible then

12 (hlp/'-'/hSp) — (V(Ul,...,vs)T)_lC EZ;

13 for 1 <i < S do Add h;, to the list Hli]

N o Gk 0N =

14 f(;rlgiSSdo
15 | h; + Chinese remaindering from images H|i] modulo integers in Q

16 return (hy, ..., hg)
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Lemma 6.2. Procedure SparseMulCoeffs works as stated when S O supp(FG). In
any case it has bit-complexity

Oy <Zloge+SIOgC> .

ecS

Proof. We first analyze the probability of failure when S O supp(FG). The
randomization is in the choices of p, q, and w; problems can occur if these
lack the required properties.

If p is a good difference-prime for supp(FG), then by definition there will
be no collisions in S,. Furthermore, if w is a pth root of unity modulo g, then
there are no collisions among the values (vy,...,vs), so V(vq,...,vg) is in-
vertible modulo 4. Algorithm GetPrimRoots ensures this is the case with high
probability, and if so the algorithm here faithfully computes each coefficient h;
modulo g.

Conversely, if there are no collisions in S, and if no zero divisors modulo g
are encountered in the application of the Vandermonde matrix and its inverse,
then the algorithm correctly computes then values /1; mod ¢, even if p is not
prime or some w € Z, is not actually a pth root of unity.

Therefore all failures in choosing tuples p, g, w are either detected by the al-
gorithm or do not affect its correctness. Since that is the only randomized step,
we conclude that the entire algorithm is correct whenever the input exponent
set S contains the support of the product.

For the complexity analysis first define D = deg(FG). Step 2 costs O, (log C-
polylog(S + log D)) bit operations by Lemma 3.7. Reducing each exponent e;
modulo p, on step 3, can be done for a total of @ (Yecs log e) bit operations.

Now we examine the cost of the for loop that begins on step 5. As the
exponents are now all less than p, computing each v; on step 7 requires only
O(log p) operations modulo g, for a total of O(Slogplogq), which is @(S :
polylog(log C + log D)) bit operations. From before we know that applying the
transposed Vandermonde matrix and its inverse takes @(S logg), or @(S :
polylog(log C + log D)) bit operations.

Because #Q < [log, (2C)], the loop on step 5 repeats O(log C) times, for a

total cost of @(S log C - polylog(log D)) bit operations. This also bounds the
cost of the Chinese remaindering in the final loop. O

7 Multiplication algorithms

The complete multiplication algorithm over Z[x] that was outlined in the in-
troduction is presented as SparseMultZZ.

Proof of Thm. 1.1. Unless failure occurs, we have S; = poss(F, G). Every coef-
ficient in H is a sum of products of coefficients in F and G, so the value Cy
computed on step 2 is an upper bound on ||H ||, and p is a good vanish-prime
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Procedure SparseMultZZ(F, G)
Input: Sparse F,G € Z[x|; u € (0,1).
Output: Sparse H € Z[x], such that Pr[H # FG| < p.
15 <—Sumset(supp(F),supp(G),%)
2 Cy < ||F|l || Gl max(#F, #G)
3 p <GetVanishPrime(#5,,C, 1, %)
4 Hy «SparseMulCoeffs(F rem p, G rem p, Sy, )
5
6

S, < supp(Hj rem p)
return SparseMulCoeffs(F, G, S,, %), Sy

for H. Thus S; = supp(H rem p) = supp(H), so the final step correctly com-
putes the product FG.

By the union bound, Lemma 3.3 and Theorems 5.1 and 6.1, the probability
of failure is less than p.

Writing T = #poss(F, G) and S = #supp(FG), we see thatlog p < polylog(T +
log C+ %), thus steps 1 and 4 contribute O, (T log D) to the overall cost, whereas

the last step costs @(S(log D + log C)) bit operations. As S < T, the total bit
complexity is @vy (Tlog D + Slog C), as required. O

We now consider extensions of this algorithm to positive and negative ex-
ponents (Laurent polynomials), multiple variables, and other common coeffi-
cient rings, using Kronecker substitution. This is stated in the following theo-
rem.

Theorem 7.1. Let F,G € R[xlil, .., x;71] be sparse Laurent polynomials over R,
where R = Z, Z,, GF(q®), or Q. The product FG can be computed using

O, (T (nlog D + B))

bit operations, where T = # poss(F, G) is the structural sparsity of the product, D >
max; | deg;(FG)|, and B is the largest bit-length of any coefficient in the input or
output.

Proof. Write the output polynomial H = FG as
H= ZzT:l Cixiilxgiz . .xiin,

where each ¢; € R and each ¢;; satisfies [e;;| < D.

We first apply the Kronecker substitution, providing an easily-invertible
map between R[x?,...,x] and R[z£1): x; > 20" ' for 1 < i < n. This
increases the degree to D", such that the logarithm of this degree O(nlogD),
matching the exponent bit-size in the multivariate representation.

The algorithm Sumset already handles negative exponents (i.e., Laurent
polynomials) explicitly. The other primary subroutine to procedure SparseMultZZ
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is SparseMulCoeffs, which only uses the exponents in the set S,,, which are re-
duced modulo p and therefore cause no difficulty if they are negative. Thus
the multiplication algorithms handle univariate Laurent polynomials without
any changes.

To extend the multiplication algorithm and it subroutines beyond R = Z,
we use that our algorithm is also softly-linear in the input heights. This allows
us to adapt to many coefficient domain that provides a natural mapping to
the integers, and to preserve softly-linear time if that mapping provides only a
softly-linear increase in size.

For a modular ring R = Z,,, we can trivially treat the inputs as actual inte-
gers, then reduce modulo m after multiplying. For a finite field R = GF(p?), el-
ements are typically represented as polynomials over Z,[z] modulo a degree-d
irreducible polynomial, so these coefficients can be converted to integers using
alow-degree Kronecker substitution. For the rationals R = Q, we might choose
a prime g larger than the product of the largest numerator and denominator in
the output, multiply modulo g, then use rational reconstruction to recover the
actual coefficients.

In all the above cases, there is growth in the bit-length of coefficients, but
only in poly-logarithmic terms of input and output size, therefore not affecting
the soft-oh complexity. The only downside is that we are no longer able to
split the cost neatly between T = poss(F, G) and S = supp(FG) because the
unreduced integer polynomial product might have nonzero coefficients which
are really zeros in R. O
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