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Abstract

The problem of isolating real roots of a square-free polynomial inside a given interval I0 is a funda-
mental problem. Subdivision based algorithms are a standard approach to solve this problem. Given
an interval I, such algorithms rely on two predicates: an exclusion predicate, which if true means I has
no roots, and an inclusion predicate, which if true, reports an isolated root in I. If neither predicate
holds, then we subdivide the interval and proceed recursively, starting from I0. Example algorithms are
Sturm’s method (predicates based on Sturm sequences), the Descartes method (using Descartes’s rule
of signs), and Eval (using interval-arithmetic). For the canonical problem of isolating all real roots of
a degree n polynomial with integer coefficients of bit-length L, the subdivision tree size of (almost all)
these algorithms is bounded by O(n(L + logn)). This is known to be optimal for subdivision based
algorithms.

We describe a subroutine that improves the running time of any subdivision algorithm for real root
isolation. The subroutine first detects clusters of roots using a result of Ostrowski, and then uses Newton
iteration to converge to them. Near a cluster, we switch to subdivision, and proceed recursively. The
subroutine has the advantage that it is independent of the predicates used to terminate the subdivision.
This gives us an alternative and simpler approach to recent developments of Sagraloff (2012) and Sagraloff-
Mehlhorn (2013), assuming exact arithmetic.

The subdivision tree size of our algorithm using predicates based on Descartes’s rule of signs is
bounded by O(n logn), which is better by O(n logL) compared to known results. Our analysis differs in
two key aspects. First, we use the general technique of continuous amortization from Burr-Krahmer-Yap
(2009), and second, we use the geometry of clusters of roots instead of the Davenport-Mahler bound.
The analysis naturally extends to other predicates.

1 Introduction

Given a polynomial f ∈ R[x] of degree n, the problem is to isolate the real roots of f in an input interval I0,
i.e., compute disjoint intervals which contain exactly one real root of f , and together contain all roots of f in
I0 ∩R. Subdivision based algorithms have been successful in addressing the problem. A general subdivision
algorithm uses two predicates, given an interval I: the exclusion predicate C0(I), which if true means I has
no roots; the inclusion predicate, C1(I), which if true means I has exactly one root. The algorithm outputs
a root-partition P of I0, i.e., a set of pairwise disjoint open intervals such that for each interval either C0

or C1 holds, and I0 \ P contains no roots of f . To compute isolating intervals for roots of f , check the sign
of f at the endpoints of the intervals in P (this works if f is square-free). The following generic subdivision
algorithm constructs a root-partition:
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Isolate(I0)
Input: f ∈ R[x] and an interval I0 ⊆ R.
Output: A root-partition P of f in I0.
0. Preprocessing step.
1. Initialize a queue Q with I0, and P ← ∅.
2. While Q is not empty

Remove an interval I = (a, b) from Q.
If C0(I) ∨ C1(I) then add I to P.
else / Subdivide I

Let m← (a+ b)/2.
Push (a,m) and (m, b) into Q.

3. Output P.

The algorithm is guaranteed to terminate for square-free polynomials; otherwise we get an infinite sequence
of intervals converging to a root of multiplicity greater than one. Some standard choices of the predicates
and the corresponding algorithms are:

(i) Sturm sequences and Sturm’s method [Dav85],
(ii) Descartes’s rule of signs and the Descartes method [CA76],

(iii) Interval-arithmetic based approaches and Eval [BKY09].

The complexity of these algorithms is well understood for the benchmark problem of isolating all real roots
of a square-free integer polynomial with coefficients of bit-length L. One measure of complexity is the size of
the subdivision tree constructed by the algorithm. For the first two algorithms a bound of O(n(L+ log n))
was shown in [Dav85] and [ESY06], respectively. For Eval a weaker bound of O(n(L+ n)) was established
in [SY12]. It is also known [ESY06] that the bound O(n(L + log n)) is essentially tight for any algorithm
doing uniform subdivision, i.e., reduces the width at every step by some constant (in our case by half).

Uniform subdivision cannot improve on the bound mentioned above because it only gives linear conver-
gence to a “root cluster”, i.e., roots which are relatively closer to each other than to any other root. But it is
known that from points sufficiently far away from the cluster, Newton iteration (more precisely, its variants
for multiple roots) converges quadratically to the cluster. This has been an underlying idea in improving
the linear convergence of subdivision algorithms for root isolation [Pan00, Sag12, SM13], and has also been
combined with homotopy based approaches [Yak00, ST09].

We follow the same idea with some key differences. Given C0 and C1, our algorithm can be described as
follows (we only give the inner loop, see Section 3 for complete details):

Newton-Isol(I0)
. . .
If C0(I) ∨ C1(I) then add I to P.
else if a cluster C of roots is detected in I then

Apply Newton iteration to approximate C
while quadratic convergence holds.
Estimate an interval J containing C.
Push J into Q.

else / Subdivide I
. . .

For detecting root clusters, we use a result of Ostrowski based on Newton diagram of a polynomial [Ost40];
other choices are based on a generalization of Smale’s α-theory (see [GLSY05] and the references therein);
the details can be found in Section 2. These tools and approaches have been used earlier [Pan00], however,
our approach has the following differences:

(i) The tools used to detect and estimate the size of a cluster are independent of the particular choice of
the exclusion-inclusion predicates (cf. [Sag12]). This way we obtain a general approach to improve any
subdivision algorithm.

(ii) Another difference is the method that is combined with bisection to improve convergence. In [Sag12]
Abbott’s QIR method is combined with the Schröder operator [GLSY05], whereas we apply standard
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Newton iteration to a suitable derivative of f . The former combination is a backtracking approach to
get quadratic convergence; the latter gives quadratic convergence right away (but perhaps increasing
subdivisions). This has the advantage of separating the Newton iteration steps from the subdivision
tree, which is reflected in the bounds on the subdivision tree size for the two approaches: for the former
we have O(n log(nL)), and for the latter we have O(n log n). The number of quadratically converging
steps remains the same in both cases.

(iii) Our approach can be modified to isolate complex roots; replace binary subdivision with a quad-tree
subdivision, and choose appropriate predicates (e.g., Ostrowski’s result mentioned above, or Pellet’s
test). This avoids Graeffe iteration (cf. [Pan00]), and yet the modified algorithm can be shown to
attain a near optimal bound on subdivision tree size.

In this paper, we focus on bounding the size of subdivision tree of Newton-Isol. For this purpose, we
use the general framework of continuous amortization [BKY09, Bur13]. The key idea here is to bound the
tree size by

∫
I0
G(x)dx, where G is a suitable “charging” function corresponding to the predicates used in

the algorithm (e.g., see [Bur13]). Our key contributions are the following:

(i) We derive a near optimal bound of O(n log n) on the size of the subdivision tree of Newton-Isol when
C0, C1 are based on Descartes’s rule of signs (see Theorem 10). This is the first application of the
continuous amortization framework to a non-uniform subdivision algorithm.

(ii) We show that if the distance of the cluster center to the nearest root outside the cluster exceeds roughly
n3 times the diameter of the cluster, then Ostrowski’s criterion for cluster detection works, and we
obtain quadratic convergence to the cluster center (see Lemma 6).

(iii) Our analysis crucially uses the cluster tree of the polynomial (see Proposition 1). We derive an integral
bound on the size of the subdivision tree (see Theorem 9). The usual approach to upper bound this
integral is to break it over the (real) Voronoi regions of the roots [Bur13]. We instead break the
integral over the Voronoi regions corresponding to the clusters in an inductive manner based on the
cluster tree. The integral over the portion of the region outside the cluster is bounded using known
techniques. However, for the portion inside the cluster, we devise an amortized bound on the integral
(see Lemma 12), which is of independent interest, and is analogous to the improvement given by
Davenport-Mahler bound over repeated applications of the root separation bound. It is this result that
underlies the O(n log n) bound. A simple argument extends these bounds to Sturm’s method and the
Eval algorithm. The details are in Section 4.

2 Notation and Basic Results

Let f ∈ R[x] be a square-free polynomial of degree n ≥ 2 and Z(f) ⊂ C be its set of roots. Given a
finite pointset S ⊆ R2, let DS be the disc D(mS , rS) such that mS is the centroid of the points in S, and
rS is the least radius such that all the points in S are contained in D(mS , rS). Given a λ ∈ R>0, define
λDS :=D(mS , λrS). We borrow the following definition from [SSY13]: A subset C ⊆ Z(f) of size at least two
is called a (root) cluster if the only roots in 3DC are from C. We treat individual roots as (trivial) clusters.
In this paper, the non-real roots in C come in conjugate pairs. Therefore, the center of DC will always be in
R. Define RC as the distance from mC to the nearest point in the set Z(f) \ C. From the definition it follows
that Z(f) trivially forms a cluster and RZ(f) = ∞. Given an interval I, let m(I) denote its midpoint and
w(I) its width. We will often use the shorthand I = [m(I)±w(I)/2], and for λ > 0, λI := [m(I)±λw(I)/2].
An interval I contains a cluster C if C ⊆ D(m(I), w(I)/2).

We use the following convenient notation in the subsequent definitions: for x, y ∈ R, ‘x� y’ if there is a
constant c ≥ 1 such that x ≥ cy; similarly define x� y.

A strongly-separated cluster (ssc) is a cluster C for which RC/rC � n3; the exact constant can be
found in Corollary 7. For a ssc C, define the following three quantities:

(i) The interval IC := [mC ± c · krC ], for some constant c ≥ 1.
(ii) The interval IC :=

{
x : |x−mC | � RC/n

2
}

.

(iii) The annulus AC := IC \ IC =
{
z ∈ C : |C|rC � |z −mC | � RC/n

2
}

.

The exact constants in these definitions are given in Lemma 6. See Figure 1 for an illustration of these
concepts. If C is not a ssc, then we define IC := [mC± rC ] and IC := 2IC . Note that for all clusters C, IC ⊆ IC .
We will need the following result later in our analysis [SSY13, Lemma 2.1]:
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Proposition 1. Given a root cluster C of f . There is a unique unordered tree TC rooted at C whose set of
nodes are the clusters contained in C, and the parent-child relation is subset inclusion. Let Tf be the tree
where the parent is the cluster Z(f) of all roots.

The result originally is stated for root clusters of f ∈ C[x]. However, for f ∈ R[x] the clusters come in
conjugate pairs, and by taking the union of such pairs the result still holds. The tree TC is called the cluster
tree of C. The leaves of this tree are the roots in C.

IC

IC

AC AC

mC

rC

mC − |C|rCmC − RC
n2mC −RC mC +

RC
n2mC + |C|rC mC +RC

Figure 1: Geometry of a ssc C. We focus on the the relative geometry, overlooking the exact constants
involved in the definition of the intervals.

2.1 Cluster Detection and Approximation

The literature on detection and approximation of root clusters is vast (see [GLSY05] and the references
therein). One approach is based on Pellet’s test: if for a complex polynomial f(x) =

∑n
i=0 aix

i there is an
r > 0 such that |ak|rk >

∑
i 6=k |ai|ri then the disc D(0, r) contains exactly k roots of f . A point z ∈ C is said

to satisfy Pellet’s test, if there is a k and r for which the test holds with the coefficients of f(x+ z). Results
in [Yak00, GLSY05] generalize Smale’s α-theory and relate it to Pellet’s test; an alternative derivation based
on tropical algebra is given in [Sha11]. We instead use a result by Ostrowski [Ost40].

We need the following definitions. Let f(x) =
∑n
i=0 aix

i, where ai ∈ C. With each index i, ai 6= 0,
associate the point Pi := (i,− log |ai|) ∈ R2. The lower-hull of the convex-hull of these points is called the
Newton diagram of f . Given an index k ∈ {0, . . . , n}, let yk be the point such that (k, yk) is on the
diagram. Define ρk := eyk−yk−1 , for 1 ≤ k ≤ n, ρn+1 :=∞, and the kth deviation ∆k := ρk+1/ρk, for
0 < k < n.

Let α1, . . . , αn ∈ C be the roots of f ordered such that |α1| ≤ |α2| ≤ · · · ≤ |αn|. Ostrowski showed the
following fundamental relation between the absolute values of the roots and ρk’s [Ost40, p. 143]:

1

2k
<
|αk|
ρk

< 2(n− k + 1). (1)

Given z ∈ C, we will be interested in the Newton diagram of f(x + z). If fj(z) := f (j)(z)/j!, then from a
result of Ostrowski [Ost40, p. 128] we get:

ρk(z) = max
j<k

∣∣∣∣ fj(z)fk(z)

∣∣∣∣ 1
(k−j)

, and ρk+1(z) = min
j>k

∣∣∣∣fk(z)

fj(z)

∣∣∣∣ 1
(j−k)

. (2)

The RHS is defined for any k such that fk(z) 6= 0; however, we are only interested in those k for which Pk
is on the diagram. The kth deviation ∆k(z) := ρk+1(z)/ρk(z). We have the following result for detecting
clusters:

Lemma 2. If ∆k(z) ≥ 27, for some index 0 < k < n, then there are exactly k roots in D(z, 3ρk(z)) and
D(z, ρk+1(z)/3). Moreover, as ρk+1(z)/3 ≥ 9ρk(z), these roots form a cluster.

The proof shows that the inequality ∆k(z) ≥ 27 implies that Pellet’s test holds for D(z, r), 3ρk(z) ≤ r ≤
D(z, ρk+1(z)/3) (see [GLSY05, Thm. 1.5]). Since the Pi’s are sorted by x-coordinate, all the ρk’s can be
computed in O(n) steps using, e.g., Graham’s scan for convex hull computation.

Once we have detected a cluster C near z, we want a good approximation to mC . A standard way is to
do the iteration zi+1 = zi − kf(zi)/f

′(zi), starting from z, but this may not be numerically desirable, as
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both f and f ′ are small near C. Another option is to use the standard Newton iteration applied to f (k−1).
We show that if ∆k(z) ≥ 27, then z is an approximate zero, in the sense of Smale et al. [BCSS98, p. 160,

Thm. 2], to the root of f (k−1) in D(z, 3ρk(z)
2k ). Subsequently we show that if ∆k(z) ≥ c0, for some constant

c0 ≥ 27, then for all z′ in this disc ∆k(z′) ≥ 27, and hence there is a cluster of k roots in D(z′, 3ρk(z′)).
Moreover, the cluster is exactly C. These results are summarized in the following:

Lemma 3. Let z ∈ C be such that ∆k(z) ≥ c0, for some k ≥ 2, C be the cluster in D(z, 3ρk(z)), and

D′ :=D(z, 3ρk(z)
2k ). Then the following hold:

(i) z is an approximate zero to the root z∗ of f (k−1) in D′ and the Newton iterates starting from z are in
D′.

(ii) For all z′ ∈ D′, ∆k(z′) ≥ 27, and C is the cluster in D(z′, 3ρk(z′)).
(iii) If z, w are such that ∆k(z),∆k(w) ≥ 27 and D(z, 3ρk(z)), D(w, 3ρk(w)) intersect then the discs have

the same cluster.

The proof is given in the appendix. We choose c0 := 27 × 6e6. Given z ∈ C, a value of k satisfying
the condition ∆k(z) ≥ c0 is called an admissible value for z, with the corresponding inclusion disc
D(z, 3ρk(z)). Note that there can be more than one admissible value for a point z corresponding to clusters
of different sizes.

3 The Algorithm

Let C0 and C1 be some exclusion and inclusion predicate respectively. The following algorithm takes as
input f and an interval I0 and outputs a root partition of I0.

Newton-Isol(f, I0)
1 Initialize P ← ∅, Φ← ∅; let Q be an empty queue.
1.a. If this is a recursive call then subdivide I0 and

push the two halves into Q; else Q← {I0}.
2. While Q is not empty do

Remove an interval I from Q.
2.a. If C0(I) ∨ C1(I) then add I to P.

else if Newton-Incl-Exc(I) is successful then
Let (J, k) be the pair returned.

2.b. If ∀J ′ ∈ Φ, J ∩ J ′ = ∅ and J ∩ I0 6= ∅ then

2.c. ∀ I ′ ∈ Q, I ′ ← I ′ \D(m(J), ρk+1(m(J))
3 ).

2.d. Add J ∩ I0 to Φ.
else subdivide I and push the two halves into Q.

3. Return P ∪J∈Φ Newton-Isol(f, J).

The input to Newton-Incl-Exc is an interval I = (a, b). If the predicate is successful then it returns an
interval J containing a cluster such that w(J) < w(I)/2, and an admissible value k for m(J); otherwise it
returns failure.
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Newton-Incl-Exc (f, I)
1. Let m := (a+ b)/2.
2. For p ∈ {a,m, b}, let kp ≥ 2 be the smallest admissible

value k for p such that I ⊆ D
(
p, ρk+1(p)

3

)
.

3. If the three admissible values are equal and the three

inclusion discs are contained in D
(
m,

ρkm+1(m)
3

)
then:

3.a. z0 :=m, k := km, g := f (k−1), i := 0.

4. While ρk(zi) ≤ 25−2iρk(z0)
zi+1 := zi − g(zi)/g

′(zi); i := i+ 1.
J := [zi−1 ± 3ρk(zi−1)]

5. If w(J) ≥ w(I)/2 then return failure
6. else return (J, k).
7. Return failure.

We first explain some steps in the predicate above:

Step 2. A point p in I can have more than one admissible value associated with it. The right admissible
value is governed by w(I), since we should only consider those clusters C for which rC � w(I)� RC .
Step 3. As D(m, ρkm+1(m)/3) contains all the three inclusion discs, they all contain the same cluster
C. Otherwise, it is possible that the three inclusion discs contain different clusters but of the same size.
Step 4. This ensures that as zi converges to the root of f (k−1), the distance to C decreases quadrati-
cally; this fails when we are near C, or the root of f (k−1) is not near C.
Step 5. Required to ensure linear convergence to C.
Step 6. The interval J contains the cluster C. Moreover, as I ⊆ D(m, ρk+1(m)/3), we know that if
the roots in I are a subset of C, and hence are inside J . By now w(J) < w(I)/2, therefore, it suffices
to return J .

We now comment on some steps in Newton-Isol:

Step 1.a. Ensures that a successful call to Newton-Incl-Exc is followed by a subdivision step. Thus
the recursion tree is a binary tree. The predicate can still be successful on an interval J returned
by an earlier successful call. But the convergence in this case would only be linear, and so we prefer
subdivision, though in practice one can go ahead with the linear convergence.
Step 2.b. Checks if C has not been found before (see Lemma 3(iii)), and that J is inside I0; if either
of this test fails, then I contains no roots and can be excluded.

Step 2.c. As the only cluster in D(m(J), ρk+1(m(J))
3 ) is C, we can remove this disc from the intervals

in Q. It is this exclusion step that significantly contributes to the improvement of the subdivision
algorithm.
Step 2.d. This step adds the interval J ∩ I0 containing the newly discovered cluster C to the set Φ.

There are only two loops in the algorithm: first, the while-loop in step 2 of the algorithm, and second, the
Newton iteration in step 4 of Newton-Incl-Exc. The argument for the termination of the first loop is the
same as for Isolate. The termination of the second loop is guaranteed, because if zi’s are such that ρk(zi)
keeps on decreasing, then in the limit ρk’s converge to zero; but the disc D(zi, 3ρk(zi)) contains exactly k
roots; since, in the limit zi’s tend to a root z∗ of f (k−1), this implies that z∗ is a k-fold root of f , which is a
contradiction as f is square-free.

The following is a proof of correctness of the algorithm.

Theorem 4. Given a polynomial f and an interval I0, Newton-Isol(f, I0) outputs a root partition P of I0.

Proof. We need to show the following claims:
1. I0 \ P contains no real roots of f .
2. P contains (interior) pairwise disjoint intervals.
3. For all I ∈ P, C0 or C1 holds (follows from step 2.a.).

Lemma 3 gives us the correctness of Newton-Incl-Exc(I), i.e., if the test is successful then it returns an
interval J such that any roots in I are contained in J . We only argue for the first claim. For every interval
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J returned by a successful call of the predicate, define

AJ :=D (m(J), ρk+1(m(J))/3) \D(m(J), w(J)/2), (3)

i.e., the annulus around J that does not contain any roots. We exclude intervals if step (2.b) fails for the
interval J , or a portion of an interval is removed in step (2.c.). In the former case, either the cluster contained
in J was already detected, or it is outside I0. In the latter case, we do not loose any roots since AJ has no
roots. So I0 \ P contains no roots. Q.E.D.

4 Complexity Analysis

The main result is that Newton-Incl-Exc will be successful near a ssc C. Let c0 > 20 be the constant in
Lemma 3, and C a ssc throughout this section. Our first claim is that |C| is an admissible value for all points
in IC .

Lemma 5. If |z −mC | ≤ RC/(8c0n2) then ∆k(z) ≥ c0.

Proof. Let α1, . . . , αk ∈ C and αk+1, . . . , αn ∈ Z(f) \ C. Moreover, assume that they are ordered in
increasing distance from z. From (1), we know that 2k|z − αk+1| > ρk+1(z) > |z − αk+1|/(2(n − k + 1)).
Moreover, |z − αk+1| > RC − |z −mC | ≥ RC/2; similarly, |z − αk+1| < 3RC/2. Therefore,

RC
4n
≤ ρk+1(z) ≤ 3|C|RC . (4)

From (1), we again have ρk(z) < 2k|z − αk|. But |z − αk| ≤ |z −mC |+ rC , which gives us

ρk(z) ≤ 2k(|z −mC |+ rC). (5)

Since |z−mC |, rC ≤ RC/(8c0n2), we get ρk(z) ≤ kRC/(2c0n2). Combining this with (4), and the observation
that (n− k)k ≤ n2/4, we obtain that ∆k ≥ 2c0n

2/(8(n− k)k) ≥ c0. Q.E.D.

Recall the definition of the intervals IC , IC and the annulus AC from Section 2, and AJ from (3).

Lemma 6. If an interval I is such that

I ⊆ IC = [mC ±RC/(8c0n2)] and w(I) > 72|C|rC

then the pair (J, k) returned by Newton-Incl-Exc(I) is such that k = |C|, J ⊆ IC = [mC ± 20krC ], and
AJ ⊇ AC.

Proof. We show that the conditions on I above imply that Newton-Incl-Exc(I) reaches step 6 of
Newton-Incl-Exc (all the steps below refer to the steps in the predicate). This requires showing the fol-
lowing: (i) all the conditions in step 3 are met; (ii) Newton-iteration in step 4 converges quadratically
terminating with an interval J with w(J) < w(I)/2, and (iii) J ⊆ IC . The following claims provide the
proof. Let I = [a, b] and m = m(I).

Claim 1: For all p ∈ {a,m, b}, kp = |C|. Recall from Step 2 that kp is defined as the smallest admis-
sible value k for which I ⊂ D(p, ρk+1(p)/3). From Lemma 5, we have kp ≤ |C|. Since the roots in I
can only come from C, any smaller admissible value corresponds to a subcluster C′ of C, which implies
RC′ ≤ rC . From (4) we know that ρ|C′|+1(p) ≤ 3(|C′| + 1)RC′ ≤ 3|C|rC . Since w(I) ≥ 72|C|rC , clearly
I 6⊆ D(p, ρ|C′|+1(p)/3) for any subcluster C′ ⊂ C. Thus kp ≥ |C|.

Claim 2: For all p ∈ I, I ⊆ D(p, ρk+1(p)/3). This will follow from the more general claim that

D1 :=D(mC , RC/(8c0n
2)) ⊆ D(z, ρ|C|+1(z)/3) =:D2,

for all z ∈ D1; since a,m, n ∈ I ⊆ D1, the claim holds. But for any z ∈ D1, we know from (4) that
ρ|C|+1(z)

3 ≥ RC
12n which is greater than RC

4c0n2 , the diameter of D1, for c0 ≥ 3.
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Claim 3: For all z, w ∈ D1, the inclusion disc D(z, 3ρk(z)) ⊆ D(w, ρk+1(w)
3 ). This follows if

|z − w|+ 3ρk(z) ≤ ρk+1(w)

3
. (6)

But |z − w|, rC ≤ RC/(8c0n
2), which along with (5) implies that 3ρk(z) ≤ 6kRC/(4c0n

2). Therefore,
LHS of (6) is smaller than 13kRC/(8c0n

2), which is smaller than RC/(12n) for c0 ≥ 20, but from (4)
we know that the latter is smaller than the RHS of (6).

Claim 4: Let zi be the sequence of iterates computed in the while-loop in Step 4. If zi ∈ D(mC ,
RC

8c0n2 )\
D(mC , 2rC), then ρk(zi) < 25−2iρk(z0). Since zi 6∈ D(mC , 2rC), rC ≤ |zi −mC |, and hence from (5) we
obtain ρk(zi) ≤ 4k|zi−mC |. From [Paw99, Thm. 2.2] we know that there is a unique root z∗ of f (k−1)

in D(mC , rC). Therefore, |zi−mC | ≤ |zi−z∗|+rC . But as zi 6∈ D(mC , 2rC) and z∗ ∈ D(mC , rC), we have
rC ≤ |zi−z∗|, and hence |zi−mC | ≤ 2|zi−z∗|. Thus, ρk(zi) ≤ 8k|zi−z∗|. As z0 is an approximate zero

to z∗ (see Lemma 3(i)), we know |zi− z∗| ≤ 21−2i |z0− z∗|, which implies that ρk(zi) ≤ 24−2ik|z0− z∗|.
Furthermore, from Lemma 3(i) we know k|z0 − z∗| < 2ρk(z0). Hence ρk(zi) < 25−2iρk(z0).

Claim 5: The interval J ⊆ IC and w(J) < w(I)/2. The previous claim shows that if zi 6∈ D(mC , 2rC),
then we will obtain quadratically decreasing values of ρk(zi). Thus when the iteration stops zi ∈
D(mC , 2rC), and it follows from (5) that ρk(zi) ≤ 6krC . Hence the interval J = zi ± 3ρk(zi) is
contained in IC , for k ≥ 2. Moreover, w(J) ≤ 36krC < w(I)/2, and hence the condition in Step 5 fails
and we return J . The claim on the annulus follows from (4).

Q.E.D.

The following result translates the result above in terms of the subdivision tree:

Corollary 7. Let C be a ssc such that IC ⊆ I0. If I is the first interval such that Newton-Incl-Exc(I) is
successful and the interval returned contains C, then IC ⊆ I ′ ∪ I ′′, where I ′ is the parent-interval of I and
I ′′ is one of I ′’s neighbors.

Proof. In the worst case, C will be detected the first time in the subdivision tree an interval I ⊆ IC . For
such an I, we show w(I) � krC . Since I is the first interval to fall in IC , both I ′ and I ′′ have endpoints
outside IC , thus IC ⊆ I ′ ∪ I ′′. So 2w(I) ≥ RC/(16c0n

2) > 72krC , as C is ssc. The claim clearly holds if C is
detected at an ancestor of I. Q.E.D.

Remark: The proof above gives us the explicit constant in the definition of ssc, namely, we require
RC/rC > 16c0 × 72n3. A careful working out of the proofs shows that the weaker inequality RC/rC >
4c0 × 72(n− |C|)|C|2, (or even 50c0n

3) is sufficient.
Recall that the set of all roots Z(f) is a cluster. As a consequence of Lemma 6, we assume that

I0 ⊆ nIZ(f); otherwise Newton-Incl-Exc will be successful right away and the interval returned will satisfy
the property.

4.1 An Integral Bound on the Subdivision Tree

Let N (I0) be the set of leaves in the subdivision tree of Newton-Isol(f, I0). Step 1.a. of the algorithm
ensures that the subdivision tree is a binary tree. Therefore, it suffices to bound |N (I0)|. For this purpose,
we use the general framework of continuous amortization developed in [BKY09] and generalized in [Bur13].
The idea is to bound |N (I0)| by an integral and then derive an upper bound on this integral. For this
purpose we need the following notion: Given a choice of predicates C0, C1, a function G : R→ R≥0 is called
a stopping function corresponding to C0 and C1 if for every interval I, if there is an x ∈ I such that
w(I)G(x) ≤ 1, then either C0(I) or C1(I) holds. Stopping functions, corresponding to different predicates,
are provided in [Bur13]. The crucial property of G(x) is the following:

Lemma 8. If C0(I) and C1(I) fail for an interval I, then for all J ⊆ I, such that 2w(J) ≥ w(I),
2
∫
J
G(x)dx ≥ 1.
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Proof. From the definition of G(x), we have for all x ∈ I, G(x)w(I) ≥ 1. As J ⊆ I, ∀x ∈ J , 2G(x)w(J) ≥
G(x)w(I) ≥ 1. Thus 2

∫
J
G(x)dx ≥ 2w(J) minx∈J G(x) ≥ 1. Q.E.D.

The main result of this section is the following:

Theorem 9.

|N (I0)| ≤ 4n+ 2

∫
I0\∪CAC

G(x)dx,

where the union is over all ssc C in Tf .

We bound N (I0) recursively. The leaves in N (I0) correspond to three types of intervals:

(i) intervals in the root partition P,
(ii) intervals that were discarded in step 2.c., and

(iii) intervals for which condition 2.b fails to hold (either cluster already found, or J ∩ I0 = ∅).
We will bound each of these three types. We analyse what happens before the first set of recursive calls.

Let Φ be the set of intervals collected in Step 2.d. of the algorithm, AJ be as defined in (3), and
IJ := J ∪ AJ . From the construction of Φ, we know that all intervals J ∈ Φ are contained in I0 and each
contains a unique cluster. For each J ∈ Φ, let LJ be the set of parent-intervals of intervals in Q that intersect
IJ ; the type (ii) intervals are children of intervals in LJ . Let MJ be the set of intervals that do not intersect
IJ and are of type (iii). See Figure 2 for an illustration of these types. Note that if I ∈ LJ contains an
endpoint of IJ , then I \ IJ can be of type (i) or (iii); but there can be at most two such intervals for each J
on either side of IJ . We abuse notation and use LJ to represent a set as well as the union of the intervals
in it; same for MJ .

J

I ′J I ′′J

IJ

MJ or P Intervals in LJ MJ or P

Figure 2: The three types of intervals in N (I0). Intervals in LJ are shown in green. The remaining intervals
could be in MJ or P. The width of the red colored intervals can be much smaller than their parents. But
there are at most two such intervals.

For an I ∈ MJ , both C0 and C1 failed. Therefore, from Lemma 8 we get |MJ | ≤ 2
∑
I∈MJ

∫
I
G(x)dx =

2
∫
MJ

G(x)dx. As the predicates C0 and C1 also fail for the intervals in LJ , we can similarly bound |LJ |. But
this effectively amounts to doing subdivision on J . To avoid this we do the following: since the width of the
intervals in LJ is more than w(J), we know that there are at most two neighboring intervals I ′J and I ′′J that
contain J . We count them separately, and for the rest we use Lemma 8 to get |LJ | ≤ 2+2

∫
LJ\(I′J∪I′′J )

G(x)dx.

For an interval I ∈ P, we expect 2
∫
I
G(x)dx ≥ 1, as the predicates must have failed for the parent I ′ of I.

However, Lemma 8 requires that w(I ′) ≤ 2w(I). This can fail to happen near the boundary of IJ , as noted
earlier. But then there are at most two such intervals. Therefore, the number of intervals in P coming from
the non-recursive calls is at most 2|Φ| + 2

∫
I0\∪J (LJ∪MJ )

G(x)dx. Combining this with the bounds on |LJ |
and |MJ | we get

|N (I0)| ≤ 4|Φ|+ 2

∫
I0\∪J (I′J∪I′′J )

G(x)dx+
∑
J∈Φ

|N (J)|. (7)

To open the RHS recursively, we introduce the notion of cluster tree TI0 with respect to an interval I0:
It is the smallest subtree TC of Tf rooted at a cluster C such that I0 ⊆ IC ; since by assumption I0 ⊆ nIZ(f),
in the worst case, TI0 is Tf . Moreover, as enlarging I0 increases the integral in (7), we further make the
simplifying assumption that I0 = 2IC0 , where C0 is the root of TI0 .
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Let C be the cluster associated with a node u in TI0 . Let Ju ∈ Φ be the interval returned the first time C
is detected by Newton-Incl-Exc . Define Au := (I ′Ju ∪ I ′′Ju) \ Ju; if C is not detected, let Au = Ju = ∅. Using
this notation, the following bound can be derived from (7) by induction:

|N (I0)| ≤ 4|TI0 |+ 2

∫
I0\

⋃
u∈TI0

Au

G(x)dx. (8)

For a ssc C ∈ TI0 , the assumption I0 = 2IC0 ensures that IC ⊆ I0. So Corollary 7 implies that I ′u ∪ I ′′u ⊇ IC ,
and Lemma 6 implies that Ju ⊆ IC ; hence, Au ⊇ AC . Considering only the ssc in TI0 on the RHS of (8) we
obtain

|N (I0)| ≤ 4|TI0 |+ 2

∫
I0\∪CAC

G(x)dx, (9)

As |TI0 | ≤ n, we get Theorem 9.

4.2 Bound for the Descartes’s rule of signs

In this section, we derive the following bound:

Theorem 10. Given a square-free polynomial f ∈ R[x] of degree n, the size of the subdivision tree constructed
by Newton-Isol(f, I0) using predicates based on the Descartes’s rule of signs is bounded by O(n lnn).

We bound the RHS of (9), where the stopping function corresponds to the Descartes’s rule of signs. We
use the same stopping function as described in [Bur13], but explain why the argument there fails to give us
the bound above.

Let V :=Z(f), the set of roots of f . Define d(x, V ) as the distance from x to the closest point in V ,
and d2(x, V ) as the distance to the second closest point in V . The crucial idea in [Bur13] is to partition
the integral over the (real) Voronoi interval Iα of each root α (for the moment suppose α ∈ R). Define

Jα := [α ± d2(α,V )
2 ]. Then for x ∈ Jα, G(x) := 2/d2(x, V ), and for x ∈ Iα \ Jα, G(x) := 1/|x − α|. Break∫

Iα
G(x)dx as

∫
Jα
G(x)dx +

∫
Iα\Jα G(x)dx. In [Bur13] it is shown that the first integral is O(1), and the

second integral is O(logw(Iα)/d2(α, V )); from Cauchy’s bound we can assume that w(Iα) = 2O(L). The
problem is that in the worst case this ratio can be Ω(n(L + log n)). E.g., if all the other roots are of the
form α± it, for increasing values of t, then Iα is the x-axis. Therefore,

∫
Iα\Jα G(x)dx = Ω(L− log d2(α, V ));

in the worst case d2(α, V ) can be the root separation bound.
Our idea is based on the observation that roots with very small separation give rise to root clusters. For

clusters that are not ssc, the ratio RC/rC = O(n3), therefore, the number of subdivisions needed to bridge
this gap is O(log n). For a ssc, the gap is bridged by Newton-Incl-Exc so that the subdivision is restricted
to the ranges RC to roughly RC/n

2 and |C|rC to rC , both of which take O(log n) subdivisions. Doing this for
all clusters basically gives the bound in Theorem 10.

Let P ⊆ C be a pointset such that any non-real point in P also has its complex conjugate in P . Such a
set of points is called dense if no proper subset of P forms a non-trivial cluster, i.e., for all S ⊂ P , such that
|S| ≥ 2, the disc 3DS contains a point from P \S. This structure plays a fundamental role in our arguments,
as do the following two integrals (see [Bur13, SY12]):

Lemma 11. Let γ ∈ C and J = [r, s].
(Re) If γ ∈ R \ J , then ∫

J

dx

|γ − x| = ln

∣∣∣∣γ − sγ − r

∣∣∣∣δ(J>γ)

, (10)

where δ(J > γ) = +1 if r > γ and −1 if s < γ.
(Im) If γ ∈ C \ R then ∫

J

dx

|γ − x| ≤ O
(

ln
max {|s− γ|, |r − γ|}

|Im(γ)|

)
. (11)
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We now give the proof of Theorem 10.
Proof. The proof is by induction on |TI0 |. We claim that∫

I0\∪CAC
G(x)dx = O(|TI0 | lnn). (12)

Let C0 be the root of TI0 ; by assumption we have I0 = 2IC0 . Let M0 be the children of C0 in TI0 . Consider
a ssc C ∈ M0. Then I0 \ AC ⊆ (I0 \ IC) ∪ 2IC . If C′ is a ssc contained in C, we can inductively remove AC′
from IC . This also works for clusters that are not ssc in M0, since by definition IC = 2IC . Therefore,

I0 \ ∪CAC ⊆ (I0 \ ∪C∈M0IC) ∪ (∪C∈M0 (2IC \ ∪C′⊂CAC′)) .

We claim that ∫
I0\∪C∈M0

IC
G(x)dx = O(|M0| lnn). (13)

As |TC | < |TI0 |, for C ∈ M0, by induction we obtain∫
2IC\∪C′⊂CAC′

G(x)dx = O(|TC | lnn).

This bound along with (13) and the observation that |M0| +
∑
C∈M0

|TC | < |TI0 | gives us (12). The base
case is when M0 contains only leaves, in which case (12) reduces to (13).

We next claim that ∫
I0\∪C∈M0

IC
G(x)dx = O(lnn) +

∫
I′0\∪C∈M0

IC
G(x)dx,

where I ′0 := [mC0 ± 2rC0 ]. If C0 is not a ssc, then this is clear as I ′0 = 2IC0 = I0. If C0 is a ssc, then
I0 = [mC0±|C0|rC0 ]. Break I0 as I ′0, [mC0 +2rC0 ,mC0 +|C0|rC0 ] and [mC0−2rC0 ,mC0−|C0|rC0 ]. The closest root
to any x in these intervals is from C0. Moreover, as |x−mC0 | ≥ 2rC0 , we get G(x) := 1/d(x, V ) ≤ 2/|x−mC0 |.
Therefore, from Lemma 11(Re) it follows that

∫mC0+|C0|rC0
mC0+2rC0

2
|x−mC0 |

= O(ln |C0|). Similarly for the other

interval. Hence to prove (13), it suffices to show∫
I′0\∪C∈M0

IC
G(x)dx = O(|M0| lnn). (14)

Let M0 also denote the pointset obtained by replacing each C ∈ M0 by its center mC . We will use
Lemma 12 to prove (14). As no subset of M0 forms a cluster, M0 is a dense pointset, and Lemma 12 is
applicable. However, we first remove some region around every p ∈M0 ∩R to be able to invoke Lemma 12.
For each such p, define Jp := [p± d2(p,M0)/2]. If p = mC , for C ∈ M0, then Ip := IC ⊆ Jp. We claim∫

∪p∈M0
(Jp\Ip)

G(x)dx = O(|M0| lnn). (15)

From Lemma 12 we get ∫
I′0\(∪p∈M0

Jp)

G(x)dx = O(|M0| lnn).

Combining these two bounds, along with the observation that the union of the sets I ′0 \ (∪p∈M0
Jp) and

∪p∈M0
(Jp \ Ip) is the set I ′0 \ ∪p∈M0

Ip, completes the proof of (14).
To prove (15), we show that

∫
Jp\Ip G(x)dx = O(lnn), and then sum over all p ∈ M0. There are three

cases to consider:

(i) p = mC for some normal cluster C ∈ M0. Then Jp = [mC±RC/2] and Ip = IC = [mC±2rC ]. Therefore,
Jp \ Ip contains [mC + 2rC ,mC +RC/2] and [mC −RC/2,mC − 2rC ]. The nearest root to any x in these
two intervals is from C. Since x is outside 2IC , it follows that d(x, V ) ≥ |x − mC |/2. Therefore,

G(x) := 1
d(x,V ) ≤ 2/|x−mC |. From Lemma 11(Re), we obtain

∫mC+RC/2

mC+2rC
G(x)dx = O(lnRC/rC). Since

C is not a ssc, RC/rC = O(n3), which gives us the desired bound. The same applies to the other
interval.
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(ii) Suppose p = mC , where C ∈ M0 is a ssc. Then Jp = [mC ± RC/2] and Ip = IC = [mC ± RC/n2]. Let
I ′C := [mC + RC

n2 ,mC + RC
2 ] be one of the intervals in Jp \ Ip. The nearest root to any x ∈ I ′C is from C.

Since x 6∈ 2IC , it follows that d(x, V ) ≥ |x−mC |/2. Therefore, G(x) := 1
d(x,V ) ≤ 2/|x−mC |. Applying

Lemma 11(Re), we get
∫
I′C
G(x)dx ≤ 4 lnn. Similarly, for the other interval.

(iii) p is a real root then Ip = ∅. For x ∈ Jp, our stopping function G(x) = 2/d2(x, P ), i.e., corresponding
to the inclusion predicate. Suppose q ∈ P is such that d2(p, P ) = |p − q|. Then for all x ∈ Jp,

d2(x, P ) ≥ |p− q| − |p− x| ≥ σp/2, and hence
∫
Jp

2dx
d2(x,P ) ≤ 4

∫ p+σp/2
p−σp/2

dx
σp

= O(1).

Q.E.D.

The proof above can carried out with the exact constants involved in the definitions of IC , IC and AC (see
Lemma 6), but they will be absorbed by the big-O notation. Note that the O(n lnn) bounds the number of
calls to the C0 predicate. The specialization of G(x) for C0 is 1/d(x, V ). The corresponding specialization for
Sturm sequences is 1/d(x, V ∩ R) ≤ 1/d(x, V ). Therefore, O(n lnn) holds for Newton-Isol combined with
Sturm sequences. For Eval, one specialization of the stopping function for the C0 predicate is n/d(x, V ),
which immediately gives an O(n2 lnn) bound for Newton-Isol combined with Eval. Whether it can be
improved using the more precise specialization

∑
α∈V

1
|x−α| remains open.

Let P be a dense pointset P . Given a point p ∈ P , define σp := min |p − q|, where q ∈ P \ {p}, and
Jp := [p± σp/2]. We want to bound

∫
(2DP∩R)\∪pJp dx/d(x, P ). We first show an O(|P |2) bound, essentially

following [Bur13]. Let Vp be the set of points in 2DP ∩R closer to p than to any other point in P . It is clear
that Jp ⊆ Vp. The intervals Vp partition 2DP ∩ R. Then

∫
Vp\Jp dx/d(x, P ) can be shown to be bounded

by O(ln(r(Dp)/σp)). Using the density of P , it can be shown that if p, q are such that σp = |p − q| then
P ⊆ 3O(|P |)D{p,q}, which implies that r(DP ) ≤ 3O(|P |)σp, for all p ∈ P . This gives an O(|P |2) bound instead
of the bound in Theorem 10. To obtain that we need to amortize the integral carefully. The intuition is that
if σp is very small then there there must a lot of other points close to p, and hence the width of Vp cannot
be very large compared to σp . The challenge is to get an “almost cluster-like” decomposition of P . We
construct a tree on P that gives us this decomposition.

We describe an iterative bottom-up procedure to construct a tree TP with leaves from P . Let σ := minp∈P σp.
For all points p ∈ P , draw a disc of radius σ/2 centered at p. As σ is the smallest distance between any
pair of points, two such discs can at most touch each other. The discs touching each other form a connected
component. The collection of the largest connected components partitions P (leaves are considered as com-
ponents). Moreover, there is at least one component G ⊆ P that has cardinality strictly greater than one; the
components with cardinality one are the leaves. For each such component G, we introduce an internal node
u in TP with children as the leaves p, where p ∈ G; let Gu :=G, the associated component, and σu :=σ. Now
redefine σ as the minimum separation between the components constructed so far, draw a disc of radius σ/2
centered at each p ∈ P , and continue as above. Let TP be the tree constructed in this bottom-up manner;
see Figure 3. Further define the following quantities for each u ∈ TP :

(i) νu as the number of children of u,
(ii) mu be the center and ru be the radius of D(Gu).

Let u, v ∈ TP be such that v is a child of u. We have the following properties of TP :

(P1) σu ≤ minp∈Gv,q∈P\Gv |p− q| ≤ 3rv. The upper bound follows from the density of P . The lower bound
follows from the observation that the discs with radius σ/2 centered at p ∈ Gv, where σv < σ < σu,
do not touch the discs of any other component, except when the radius is σu/2.

(P2) ru ≤ |Gu|σu. Consider the graph G with the vertices as Gu and edges between two vertices p, q if
D(p, σu/2) ∩ D(q, σu/2) 6= ∅. As Gu is a connected component of these discs, we know that G is
connected. Therefore, if m is the number of vertices on the path joining p, q in G, then by triangular
inequality |p− q| ≤ mσu ≤ |Gu|σu.

(P3) If p is a leaf-child of u then σu = σp. It is clear that any disc D(p, r), with r < σp/2, cannot touch
D(q, r), for any other point q. The first time they touch is when σu = σp. If p ∈ C \R, then we further
obtain that |Im(p)| ≥ σp ≥ σu.

(P4) The size of TP = O(|P |). Every level has a node with more than one child, as there are pairs of
components with separation exactly σ.

(P5) P is the component associated with the root of TP .
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Figure 3: A dense pointset P and construction of TP . Circles of different colors correspond to different σ’s.
The first choice of σ corresponds to blue colored circles, followed by green, orange and red. The components
formed are shown in the corresponding colors. We only draw some of the relevant circles to give an idea.

The next result is an amortization analogous to that of the Davenport-Mahler bound over the root
separation bound.

Lemma 12. If P is a dense pointset then∫
(2DP∩R)\∪p∈P Jp

dx

d(x, P )
= O(|P | ln |P |), (16)

where for p ∈ P ∩ R, Jp := [p± σp/2], and Jp = ∅ otherwise.

Proof. We break the integral recursively over the nodes of TP . For an internal node u of TP , we will show
the following claim: ∫

(2D(Gu)∩R)\∪p∈GuJp

dx

d(x, P )
= O(νu ln |Gu|). (17)

We take the sum over all internal nodes u. From (P4) we know that |TP | = O(|P |), and hence
∑
u νu =

O(|P |); moreover, from (P5) we know that the component associated with the root of TP is P . These
observations then give us (16).

For a point p ∈ P , recall that Vp is the set of points in 2DP ∩ R closer to p than to any other point of
P ; by definition Jp ⊆ Vp. Suppose u is the parent of p. We will bound the integral over Vp in two steps:
the portion of Vp inside 2D(Gu) and the portion outside 2D(Gu). The latter portion is where amortization
occurs, as for an x 6∈ 2D(Gu), the distance of x to p ∈ Gu is roughly |x−mu|. Let v be a child of u. There
are three cases to consider:

Case 1. v is a leaf p ∈ R. We first bound the portion Ip of Vp inside 2D(Gu); the portion outside will be
handled collectively for all points in the third case. For all x ∈ Ip \Jp, it is clear that d(x, P ) = |x−p|.
From Lemma 11(Re) we obtain that

∫
Ip\Jp

dx
|x−p| = O

(
ln

w(Ip)
σp

)
. But as Ip ⊆ 2D(Gu)∩R, we know that

w(Ip) ≤ 4ru. From (P3), we know that σp = σu. Therefore,
∫
Ip\Jp

dx
|x−p| = O(ln ru/σu) = O(ln |Gu|),

from (P2).
Case 2. v is a leaf p = Re(p) + iIm(p) ∈ C \ R. Again consider the interval Ip :=Vp ∩ 2D(Gu); in
this case Jp = ∅. As p is the closest point to any x ∈ Ip, d(x, P ) = |x − p|. Moreover, p and both
the endpoints of Ip are in 2D(Gu), so the maximum distance of an endpoint of Ip from p is ≤ 2ru.
Therefore, from Lemma 11(Im) we have∫

Ip

dx

d(x, P )
= O

(
ln

ru
|Im(p)|

)
.
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But recall from (P3) that |Im(p)| ≥ σu, hence ru/|Im(p)| ≤ ru/σu ≤ |Gu|, where the last inequality
follows from (P2). Therefore,

∫
Ip

dx
d(x,P ) = O(ln |Gu|).

Case 3. v is an internal node. Inductively, we have already bounded the integral
∫

(2D(Gv)∩R)\∪p∈GvJp
dx/d(x, P ).

However, it is possible that Vp, for some point p ∈ Gv extends beyond 2D(Gv) ∩R. Suppose p is such
a point, and x ∈ Wp :=Vp ∩ (2D(Gu) \ 2D(Gv)). Then we know that |x− p| ≥ |x−mv|/2, where mv

is the center of D(Gv). Therefore,∑
p∈Gv

∫
Wp

dx

|x− p| ≤
∫

(2D(Gu)\2D(Gv))∩R

2dx

|x−mv|
.

As 2w(Iu) = 4ru, from Lemma 11(Re), it follows that the integral on the RHS is bounded by
O(ln ru/rv). But from (P2) we have ru ≤ |Gu|σu, and σu ≤ 3rv from (P1). Therefore, we obtain∑

p∈Gv

∫
Wp

dx

d(x, P )
= O(| ln |Gu|).

This is the case where the amortization of the integral over the Voronoi regions takes place.

Summing the bounds for all children v of u gives (17). Q.E.D.

The following is the analogue of Lemma 12 in C: define Dp :=D(p, σp/2), then∫
2DP \∪pDp

dz

d(z, P )
= O(|P | ln |P |).

5 Concluding Remarks

Our aim has been to devise a general approach to improve any subdivision based algorithm for real root
isolation. This is achieved by the Newton-Incl-Exc predicate, which detects strongly separated clusters,
and hence reduces the number of subdivisions from O(logRC/rC) to O(n log n). The crucial ingredient is
Ostrowski’s criterion based on deviations of the Newton diagram of a polynomial. The criterion works for
complex polynomials, so we expect an analogue of Newton-Isol for isolating complex roots that is concep-
tually simpler than the existing approaches. We have not explored the practical aspects of the algorithm,
nevertheless, we think that the analysis based on the geometry of cluster provides tools and techniques for
an alternate approach to understand existing algorithms.

We can bound the arithmetic complexity of Newton-Isol as follows. The Newton diagram computation
takes O(n), and the Taylor shift O(n log n) operations. The number of Newton iterations to approximate C
is bounded by O(log log RC

rC
), which is O(log(nL)) from root separation bounds. Therefore, the arithmetic

complexity, ignoring poly-log factors, is bounded by Õ(n2). The extension to the bitstream model involves
deriving a robust version of Ostrowski’s result and bounding precision requirements. The latter will be
governed by perturbation bounds for clusters. For a cluster of size k, we expect these bounds to be O(ε1/k),
for ε-perturbation in the coefficients. In the worst case, this would give an O(n(L + log n)) bound on the
precision.

References

[BCSS98] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and Real Computation.
Springer-Verlag, New York, 1998.

[BKY09] Michael Burr, Felix Krahmer, and Chee Yap. Continuous amortization: A non-probabilistic
adaptive analysis technique. Electronic Colloquium on Computational Complexity (ECCC),
TR09(136), December 2009.

[Bur13] Michael A. Burr. Applications of continuous amortization to bisection-based root isolation. CoRR,
abs/1309.5991, 2013.

14



[CA76] George E. Collins and Alkiviadis G. Akritas. Polynomial real root isolation using Descartes’
rule of signs. In R. D. Jenks, editor, Proceedings of the 1976 ACM Symposium on Symbolic and
Algebraic Computation, pages 272–275. ACM Press, 1976.

[Dav85] James H. Davenport. Computer algebra for cylindrical algebraic decomposition. Tech. Rep., The
Royal Inst. of Technology, Dept. of Numerical Analysis and Computing Science, S-100 44, Stock-
holm, Sweden, 1985. Reprinted as Tech. Report 88-10 , School of Mathematical Sci., U. of Bath,
Claverton Down, Bath BA2 7AY, England. URL http://www.bath.ac.uk/˜masjhd/TRITA.pdf.

[ESY06] Arno Eigenwillig, Vikram Sharma, and Chee Yap. Almost tight complexity bounds for the
Descartes method. In 31st Int’l Symp. Symbolic and Alge. Comp. (ISSAC), pages 71–78, 2006.
Genova, Italy. Jul 9-12, 2006.

[GLSY05] M. Giusti, G. Lecerf, B. Salvy, and J.-C. Yakoubsohn. On location and approximation of clusters
of zeros of analytic functions. Found. Comput. Math., 5(3):257–311, July 2005.

[Ost40] Alexandre Ostrowski. Recherches sur la méthode de Graeffe et les zéros des polynomes et des
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Appendix

We give the proof of Lemma 3; the arguments are based standard manipulations with Taylor series in alpha-
theory of Smale et al. We first prove Lemma 3(i), for which we need the following functions from [BCSS98]
defined for f (k−1):

βk(z) =

∣∣∣∣f (k−1)(z)

f (k)(z)

∣∣∣∣ , γk(z) = max
j≥1

∣∣∣∣ f (k+j)(z)

(j + 1)!f (k)(z)

∣∣∣∣
1
j

(18)

and αk(z) = βk(z)γk(z). We derive relations between these quantities and ρk(z)’s given in (2). Considering
the RHS of ρk(z) for j = k − 1, we immediately have

ρk(z) ≥
∣∣∣∣fk−1(z)

fk(z)

∣∣∣∣ = kβk(z). (19)

Multiplying and dividing the inner term on the RHS of γk(z) in (18) by (k + j)!/k! we obtain that

γk(z) ≤ max
j≥1

(
(k + j)!

k!(j + 1)!

)1/j

max
j>k

∣∣∣∣ fj(z)fk(z)

∣∣∣∣1/(j−k)

= max
j≥1

(
(k + j)!

k!(j + 1)!

)1/j
1

ρk+1(z)
.

The max-term is bounded by (k + 1), which implies that

γk(z)ρk+1(z) ≤ (k + 1). (20)

Multiplying (19) and (20) we obtain that αk(z)∆k(z) ≤ 2. Therefore, if ∆k(z) ≥ 12 then z is an approximate

zero of f (k−1) with associated root in D(z, 1.5βk(z)) ⊆ D(z, 3ρk(z)
2k ), where the inclusion follows from (19).

The claim on Newton iterates follows from [BCSS98, p. 160,Thm.2].
We now prove Lemma 3(ii). We will need the following result [BCSS98, p. 161, Lem. 3]: for a u ∈ [0, 1)∑

j≥0

(
k + j

j

)
uj =

1

(1− u)k+1
. (21)

Let ε := 1.5, δ := ερk/k, and u := δ
ρk+1

= ε
k∆k

; here we express ρk(z) by ρk (similarly, for the other quantities).

Lemma 13. If z is such that ∆k(z) ≥ 16 then for z′ ∈ D(z, δ), we have |fk(z′)| ≥ |fk(z)|(1− u)−(k+1)/2.

Proof. Take the absolute values in the Taylor expansion of f (k)(z′) and apply the triangular inequality
to obtain

|fk(z′)| ≥ 1

k!

|f (k)(z)| −
∑
j≥1

∣∣∣∣f (k+j)(z)

j!

∣∣∣∣ δj
 .

Dividing both sides by |fk(z)|, and multiplying and dividing the summation term on the RHS by k! and
(k + j)! we obtain that ∣∣∣∣fk(z′)

fk(z)

∣∣∣∣ ≥
1−

∑
j≥1

(
k + j

j

) ∣∣∣∣fk+j(z)

fk(z)

∣∣∣∣ δj
 .

From the expression of ρk+1(z) in (2) and definition of u, we deduce that

∣∣∣∣fk(z′)

fk(z)

∣∣∣∣ ≥
2−

∑
j≥0

(
k + j

j

)
uj

 .

Using (21), and the bound on ∆k, the RHS can be simplified to (1− u)−(k+1)/2. Q.E.D.
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Lemma 14. If ∆k(z) ≥ 16 then for all z′ ∈ D(z, δ) we have ρk(z′) < 2e6ρk(z) and ρk+1(z′) ≥ ρk+1(z)/3.
Therefore, ∆k(z′) ≥ ∆k(z)/(6e6).

Proof. For j < k, take absolute values in the Taylor expansion of fj(z
′), apply triangular inequality, and

split the summation up to k and beyond k, to get

|fj(z′)| = |fj(z)|+
k−j∑
`=1

(
`+ j

`

)
|f`+j(z)| δ` +

∑
`>k−j

(
`+ j

`

)
|f`+j(z)| δ`.

Divide by |fk(z)| and use the expressions in (2) to obtain∣∣∣∣fj(z′)fk(z)

∣∣∣∣ ≤ ρk−jk +

k−j∑
`=1

(
`+ j

`

)
ρk−`−jk δ` +

∑
`>k−j

(
`+ j

`

)
δ`

ρ`+j−kk+1

.

Since δ = ερk/k, we can pull out ρk−jk from the RHS (and since ∆k > 1), we get that

∣∣∣∣fj(z′)fk(z)

∣∣∣∣ ≤ ρk−jk

1 +

k−j∑
`=1

(
`+ j

`

)( ε
k

)`
+
∑
`>k−j

(
`+ j

`

)( ε
k

)` .

Assuming k ≥ 2, from (21) we obtain that∣∣∣∣fj(z′)fk(z)

∣∣∣∣ ≤ ρk−jk

(
1− ε

k

)−(j+1)

.

Combining this bound with Lemma 13, and doing some further simplifications we obtain the upper bound
on ρk(z′). Note that we require k ≥ 2 > ε. To derive a lower bound on ρk+1(z′) in terms of ρk+1(z), we take
absolute values in the Taylor expansion of fj(z

′), for j > k, apply the triangular inequality, and divide both
sides by |fk(z)|, to get ∣∣∣∣fj(z′)fk(z)

∣∣∣∣ ≤ ∣∣∣∣ fj(z)fk(z)

∣∣∣∣+
∑
`≥1

(
`+ j

`

) ∣∣∣∣f`+j(z)fk(z)

∣∣∣∣ δ`.
From the expression for ρk+1 in (2) and (21) it follows that∣∣∣∣fj(z′)fk(z)

∣∣∣∣ ≤ 1

ρj−kk+1

(1− u)
−(j+1)

.

Combining this with the lower bound in Lemma 13, and using the lower bound on ∆k we further obtain that∣∣∣∣ fj(z′)fk(z′)

∣∣∣∣1/(j−k)

≤ 2j−k

(1− u)ρk+1
.

Since u ≤ ε/(k∆k) and ∆k ≥ 16, we get that∣∣∣∣ fj(z′)fk(z′)

∣∣∣∣1/(j−k)

≤ 3

ρk+1
,

which implies the desired lower bound on ρk+1(z′). Q.E.D.

To show Lemma 3(iii), we suppose that ρk(w) ≤ ρk(z). As the two inclusion discs intersect it follows
that

|w ± 3ρk(w)− z| ≤ |z − w|+ 3ρk(w) ≤ 9ρk(z) ≤ ρk+1(z)

3
,

where the last inequality follows from ∆k(z) ≥ 27. This implies that D(w, 3ρk(w)) ⊆ D(z, ρk+1(z)
3 ), and

hence both the discs have the same cluster.
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We next give a self-contained proof of Pawlowski’s result [Paw99, Thm. 2.2]. The difference in our proof
is that we avoid using Eneström-Kakeya theorem. The key idea of using Walsh’s representation theorem
[RS02, Thm. 3.4.1c], however, is common to both the proofs.

Given a cluster C of size k, and z ∈ C, let f1(z) = lead(f)
∏
α∈C(z−α) and f2(z) =

∏
β∈C(z− β). From

Leibniz’s formula we have

f (j)(z) =

min{j,k}∑
i=max{0,j+k−n}

(
j

i

)
f

(i)
1 (z)f

(j−i)
2 (z).

We will focus on the case when j ≤ k, in which case the upper bound of the summation is j. The bounds
on the summation are required because f1 cannot be differentiated more than k times and similarly for f2.
Applying Walsh’s representation theorem, first to f1 we obtain that there is an α ∈ D(m, rC) such that

f (j)(z) =

j∑
i=max{0,j+k−n}

(
j

i

)
k(k − 1) · · · (k − i+ 1)(z − α)k−if

(j−i)
2 (z).

Now applying Walsh’s representation theorem to f2, we know that there is a β 6∈ D(m,RC) such that

f (j)(z) =

j∑
i=max{0,j+k−n}

(
j

i

)
k(k−1) · · · (k−i+1)(z−α)k−i(n−k)(n−k−1) · · · (n−k−j+i+1)(z−β)n−k−j+i.

Opening up the binomial
(
j
i

)
and simplifying we obtain

fj(z) =
f (j)(z)

j!
=

j∑
i=max{0,j+k−n}

(
k

i

)
(z − α)k−i

(
n− k
j − i

)
(z − β)n−k−j+i.

Pulling out the last term from the RHS we obtain that

fj(z) =

(
k

j

)
(z − α)k−j(z − β)n−k

j∑
i=max{0,j+k−n}

(
k
i

)(
n−k
j−i
)(

k
j

) (
z − α
z − β

)j−i
;

note that when j = k, the term (z − α)k−j is one. Now we substitute i by j − i to obtain

fj(z) =

(
k

j

)
(z − α)k−j(z − β)n−k

min{j,n−k}∑
i=0

(
k
j−i
)(
n−k
i

)(
k
j

) (
z − α
z − β

)i
. (22)

The fraction (
k
j−i
)(
n−k
i

)(
k
j

) =
1

i!

(n− k)!

(n− k − i)!
j!

(j − i)!
(k − j)!

(k − j + i)!
≤ 1

i!

(
(n− k)j

(k − j)

)i
;

note that for j = k, the denominator does not appear; we capture this by using the notation (x)1 := max {1, x}.
Therefore, the summation in (22) does not vanish if z satisfies the following inequality:

1

2
≥

min{j,n−k}∑
i≥1

1

i!

(
j(n− k)

(k − j)1

∣∣∣∣z − αz − β

∣∣∣∣)i .
Substituting the upper bound of the summation by infinity, we get the following stronger constraint:

1

2
≥
∑
i≥1

1

i!

(
j(n− k)

(k − j)1

∣∣∣∣z − αz − β

∣∣∣∣)i .
Adding one on both sides, and using the observation that the RHS is the expansion of exp(

(
j(n−k)
(k−j)1

∣∣∣ z−αz−β

∣∣∣)),

we get that the inequality follows if

ln 1.5 ≥ 1

4
≥
(
j(n− k)

(k − j)1

∣∣∣∣z − αz − β

∣∣∣∣) . (23)
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Since α ∈ D(mC , rC), we have

|z − α| ≤ |z −mC |+ rC ≤ 2 max(|z −mC |, rC),

and
|z − β| ≥ |mC − β| − |z −mC | ≥ RC − |z −mC | ≥ RC −max {|z −mC |, rC} .

These bounds imply that
|z − α|
|z − β| ≤ 2

max {|z −mC |, rC}
(RC −max {|z −mC |, rC})

,

and hence (23) follows if

RC ≥ max {|z −mC |, rC}
(

1 +
8j(n− k)

(k − j)1

)
.

To summarize, we have the following result:

Lemma 15. Let C be a cluster of size k and j ∈ {0, . . . , k}. If z ∈ C is such that

RC ≥ 2 max {|z −mC |, rC}
(

8j(n− k)

(k − j)1

)
1

, (24)

then

fj(z) =

(
k

j

)
(z − α)k−j(z − β)n−k(1± 1

2
),

for some α ∈ D(m, rC) and β 6∈ D(m,RC); the notation “±” stands for a θ ∈ C such that |θ| ≤ 1. Moreover,
if z also satisfies |z −mC | > rC then f (j)(z) 6= 0.

We specialize this result to the case of a strongly separated cluster:

Corollary 16. For a strongly separated cluster C, if z is such that

|z −mC | ≤
RC
4n2

then for 0 ≤ j ≤ k,

fj(z) =

(
k

j

)
(z − α)k−j(z − β)n−k(1± 1

2
),

for some α ∈ D(m, rC) and β 6∈ D(m,RC). Moreover, if z also satisfies |z −mC | > rC then f (j)(z) 6= 0, for
0 ≤ j ≤ k.

Proof. Note that the maximum value of the term j(n−k)/(k−j)1 is obtained at j = k, and it is k(n−k).
From the AM-GM inequality, we know that k(n − k) ≤ n2/4. Therefore, (24) follows if z and rC are such
that

RC ≥ 4n2 max {|z −mC |, rC} .
For a strongly separated cluster C we know that RC ≥ 4n2rC , and the condition on z is the condition in the
corollary. Q.E.D.

We use this result to show that (k − j) roots of the jth derivative are in D(mC , rC) and the remaining
are outside D(mC , RC/(2n

2)). Let α1, . . . , αk be the roots of f in C and let β1, . . . , βn−k be the remaining
roots. Let gt be the polynomial with roots (1− t)mC + tα1, . . . , (1− t)mC + tαk, β1, . . . , βn−k. Thus g0(z) =
(z−mC)k

∏
β∈C(z−β) and g1(z) = f(z). Since gt(z) has a strongly separated cluster of size k in D(mC , trC),

from the lemma above we know that g
(j)
t (z) does not vanish on the boundary of D(mC , rC). As the roots

vary continuously with t, and g
(j)
0 (z) has a root of multiplicity (k − j) at mC , it follows that g

(j)
t (z) has

k− j roots in D(mC , trC) and the remaining roots outside D(mC , RC/(2n
2)). Substituting t = 1 gives us the

desired result. To summarize, we have obtained the following result:

Lemma 17. Given a strongly separated cluster C of size k, for j ≤ k, there are k − j roots of the derivative
f (j)(z) in D(mC , rC) and the remaining (n− k) roots are outside D(mC , RC/(2n

2)).
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