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FORMULAS FOR CONTINUED FRACTIONS

AN AUTOMATED GUESS AND PROVE APPROACH

SÉBASTIEN MAULAT AND BRUNO SALVY

Abstract. We describe a simple method that produces automatically closed
forms for the coefficients of continued fractions expansions of a large num-
ber of special functions. The function is specified by a non-linear differential
equation and initial conditions. This is used to generate the first few coef-
ficients and from there a conjectured formula. This formula is then proved
automatically thanks to a linear recurrence satisfied by some remainder terms.
Extensive experiments show that this simple approach and its straightforward
generalization to difference and q-difference equations capture a large part of
the formulas in the literature on continued fractions.

1. Introduction

Continued fractions are well known for their approximation properties, their use
in acceleration of convergence and analytic continuation, as well as their applica-
tion in proofs of irrationality. Any formal power series can be converted into a
corresponding continued fraction (C-fraction)

(1) a0 +
a1(z)

1 +
a2(z)

1 +
a3(z)

1 + · · ·

classically denoted a0 +K
∞
m=1

am(z)
1 or [a0, a1(z), a2(z), · · · ], where a0 is a constant

and ai(z) are nonconstant monomials for i > 0 that are called partial numerators.
In the frequent case when all the exponents are equal to 1, the C-fraction is called
regular. Truncating a continued fraction after its nth term gives a rational function
which is called its nth convergent. There is a one-to-one correspondence between
power series and C-fractions. It is easily computed by a sequence of extractions of
the constant coefficient, division by the variable and inversion. This conversion is
available in the major computer algebra systems.

In several isolated cases, the coefficients am are known to possess a closed form,
as in the following formula for exp(z):

exp(z) = 1 +
z

1−
z/(2 · 1)

1 +
z/(2 · 3)

1−
z/(2 · 3)

1 +
z/(2 · 5)

1 + · · ·

,

1
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or more compactly

(2) a1 = z, a2k = −z/(2(2k − 1)), a2k+1 = z/(2(2k + 1)).

Such formulas are the object of this work. A number of them are listed in the
classical handbook by Abramowitz and Stegun [1], or in its successor [15] and the
most extensive list to date is the recent handbook by Cuyt et alii [10]. Our aim is
to derive many of these formulas automatically, starting from a description of the
function to be expanded in continued fraction.

We concentrate on functions that are given as solutions of ordinary differential
equations with initial conditions (or difference or q-difference equations, see §6).
Our approach can be summarized as follows. First, the differential equation and
initial conditions are used to generate the first terms of the power series expansion
of the function. This power series is then converted into a continued fraction. The
coefficients of this continued fraction are then “guessed” by variants of rational
interpolation. When this guessing phase is successful, a new power series is defined
by this guessed continued fraction expansion. It remains to show that this power
series satisfies the differential equation (the initial conditions being correct by con-
struction). The key point in this proof is Theorem 4, stating that the (properly
normalized) evaluations of the differential equation on the successive convergents
to the continued fraction satisfy a linear recurrence, that can be computed. In
all cases, after an operation we call “reduction of order”, this recurrence exhibits
a growth in the valuations that is sufficient to conclude the proof. A surprisingly
large proportion of known explicit continued fractions are thus obtained completely
automatically.

Classically, a very effective method due to Gauss derives formulas for continued
fractions starting from the contiguity of hypergeometric series. Specialization of
the parameters then leads to formulas for elementary or special functions [12, §6.1].
This leads to explicit continued fraction expansions by recognizing the function to
be expanded as a special case of a quotient of contiguous hypergeometric functions
and then relying on a small table of such explicit formulas. These quotients satisfy
Riccati equations, so that they are covered by our approach, which is not limited to
them (see §6) and proves more suited to the targetted application to the Dynamic
Dictionary of Mathematical Functions [5]. This is an online encyclopedia of special
functions, where the formulas are all generated by computer algebra algorithms
from differential equations, in many cases along with a human-readable proof. In
this context, it makes sense to avoid any table lookup and generate formulas and
proofs for continued fractions directly from the differential equation.

The work closer to ours is the investigation by Chudnovsky and Chudnovsky [8].
They used computer algebra in the study of formulas for continued fractions. Their
aim was to classify all functions possessing continued fractions with explicit formulas
of various types and relating them to Painlevé transcendents. In contrast, we focus
on one function that is given as input, and heuristically produce a rational continued
fraction expansion when possible.

This article is structured as follows. Section 2 gives an overview of our method
on the example of the tangent function. Next, Section 3 presents a heuristic of
independent interest that reduces the order of a recurrence given initial conditions.
This plays a crucial role in the proving phase of our method. Section 4 is a brief
account of what guessing means in this context, while Section 5 is the heart of this
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work and shows how proofs are achieved automatically. Finally, Section 6 presents
experiments with this approach.

2. Detailed Example: tan

The tangent function can be defined by the Riccati equation

(3) y′ = 1 + y2, y(0) = 0.

The first 15 coefficients of the unique power series solution are easily computed from
the differential equation (see Proposition 3 below for existence and uniqueness). A
conversion into a continued fraction gives the coefficients

[0, z,−z2/3,−z2/15,−z2/35,−z2/63,−z2/99,−z2/143].

The general formula can be deduced from these first terms by rational interpolation,
which leads automatically to the (so far conjectural) formula

(4) a1(z) := z; an(z) := −z
2/((2n− 3)(2n− 1)), n > 1.

Next, we turn to the automatic proof of this formula. The strategy is to prove
that the sequence of rational functions defined by truncating (4) after the nth term
for n = 1, 2, . . . converges to the formal power series solution to the differential
equation (3). More precisely, let fn be defined by

fn =
Pn

Qn
:= [0, z,−z2/3, . . . ,−z2/((2n− 3)(2n− 1))],

where the rightmost term denotes the finite continued fraction. Then the proof will
be completed by showing that
val(tan−fn)→∞ as n→∞, where val denotes the valuation of a power series:

val
(

∑

i≥0

ciz
i
)

:= min{i ≥ 0 | ci 6= 0},

with the convention val(0) =∞. Proposition 3 below shows that it is sufficient to
prove that val(D(fn))→∞, where
D(fn) := f ′

n − 1− f2
n.

It is classical that the numerator and denominator of the convergents of a con-
tinued fraction are related to the coefficients an through a linear recurrence:

(5)
(P−1, P0) = (1, 0), Pn = Pn−1 + anPn−2, n ≥ 1,

(Q−1, Q0) = (0, 1), Qn = Qn−1 + anQn−2, n ≥ 1.

In view of (4), it follows that for all n ≥ 0, Qn(0) = 1. Thus, the valuation
of D(fn) is that of its numerator

(6) Hn := P ′
nQn −Q

2
n − P

2
n − PnQ

′
n.

Using (5) to rewrite Pn+k and Qn+k in terms of Pn, Pn+1, Qn, Qn+1, it follows that
any shift Hn+k (k ∈ {0, 1, 2, . . .}) can be rewritten as a linear combination of

P ′
n+iQn+j , Pn+iQ

′
n+j , Pn+iPn+j , Qn+iQn+j ,

for i and j in {0, 1}. There are finitely many such terms, which implies that a
linear dependency between Hn, Hn+1, . . . (ie, a linear recurrence for Hn) can be
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computed directly from (5) by linear algebra. This computation produces a linear
recurrence of order 4:

(7) (2n+ 7)z8Hn − z
4(2n+ 7)(2n+ 3)2(2n+ 1)2Hn+1

+ 2z2(2n+ 5)(2n+ 3)2(2n+ 1)2(4n2 − z2 + 20n+ 21)Hn+2

− (2n+ 5)2(2n+ 1)2(2n+ 7)2(2n+ 3)3Hn+3

+ (2n+ 5)2(2n+ 1)2(2n+ 7)2(2n+ 3)3Hn+4 = 0.

This recurrence is satisfied by all sequences defined by (6), with Pn andQn arbitrary
solutions of (5). Using the actual sequences Pn and Qn provided by the continued
fraction gives the first values of Hn:

−1,−z2,−
z4

9
,−

z6

225
,−

z8

11025
,−

z10

893025
.

From there, automatic guessing again suggests the following simpler recurrence
for Hn:

(8) (2n+ 1)2Hn+1 − z
2Hn = 0.

And again, this recurrence admits of an automatic proof: the right Euclidean divi-
sion of the fourth order recurrence operator from (7) by this first order one has a
remainder equal to 0. This shows that the solution of (8) with the initial conditions
given above coincides with the solution of (7) with the same initial conditions, and
thus the numerator of D(fn) satisfies (8). On this last recurrence, the increase of
the valuation with n is clear and this concludes the proof that fn converges to tan
and thus that the power series defined by the continued fraction (4) is that of tan.

In summary, starting with the differential equation (3), this method produces
and proves automatically the general term of the famous continued fraction

tan z =
z

1−
z2/3

1−

. . .

1−
z2/((2n− 3)(2n− 1))

. . .

that was the basis of Lambert’s proof that π is irrational.

3. Reduction of order by Guess and Prove

The transformation of the large recurrence (7) into the shorter one (8) makes
it possible to prove automatically that the valuations valHn(z) increase with n.
This transformation turns out to play a role in most of the examples dealt with
in our experiments. It is actually of more general interest: the closure properties
enjoyed by the class of D-finite series or P-recursive sequences give rise to operators
satisfied by products or sums of zeroes of such operators [17, 16]. These operators
annihilate all possible cases and are potentially of large size, while operators of
smaller order may exist for the specific solution of interest. Such an operator may
be a right factor of the large one and could be searched for by factoring, but this
is made difficult by the potentially infinite number of distinct factorizations [18].
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Sequences. Let A be a recurrence operator with polynomial coefficients in n,
of order denoted by ordA and leading coefficient lc(A)(n). A sequence (un)n≥0,

abbreviated (un), is said to be defined by the operator A and the initial condi-
tions K = (ui)i∈I , when the value un is given by K for n ∈ I and by the recurrence
operator evaluated at n− ordA otherwise. Note that the set I must contain

{0, . . . , ordA− 1} ∪ {i ∈ N | lc(A)(i − ordA) = 0}.

Algorithm. We now detail an efficient heuristic approach finding such right
factors, whose complexity is controlled with respect to the size of the large operator.
The idea is to exploit the initial values of the sequence by a “guess and prove”
approach. This is described in Algorithm 1. This algorithm takes as input a linear
recurrence operator A and initial values, as well as an upper bound N on the
number of coefficients used to find a right factor. It is described here in the case of
recurrence operators; similar variants apply to differential or q-difference cases.

The search for a smaller order operator is performed in two main steps, “guess-
ing” and “proving”. First, the input recurrence of orderM and its initial values are
used to compute the first N terms of the sequence. Next, these N terms are used
to “guess” a linear recurrence. This is done by linear algebra: we search succes-
sively for the existence of a linear recurrence operator G of order 1, 2, . . . ,M with
polynomial coefficients of degrees such that the sum of the numbers of undeter-
mined coefficients of the recurrence is smaller than N . The structure of this linear
algebra problem is exploited by computing matrix rational interpolants [4] (in the
differential case, Hermite-Padé approximants are used [3]).

When N is sufficiently large, this linear algebra phase is always successful, since
it can reconstruct A. The next step is to prove that the recurrence G obtained from
the first N terms of (un) defines the same sequence for all n. The operator G is
not necessarily a right factor of A, but could be merely a left multiple of such a
right factor, the factor itself being too large to be found with N terms only. This
is related to the typical shape of the order-degree curve [7]. Thus the algorithm
next computes the greatest common right divisor of G and A and its numerator R,
obtained by left-multiplication with the least common multiple of the denominators
of the coefficients.

At this stage, the algorithm has produced a right factor R of A. It is then
associated initial conditions (ui)i∈J , with which R defines a sequence (vn)n≥0 . We

now prove that if vn = un for n ∈ J + {1, . . . , ordA− ordR}, then vn = un for all
n. The induction on n is based on the following.

Lemma 1. If un = vn for n ≤ i+ordA−1 and i+j /∈ J for all j ∈ {ordR, . . . , ordA}
then ui+ordA = vi+ordA.

Proof. The sequences {SjR · vn}ordR≤j≤ordA all cancel at n = i. The application
of A at (vn)n≥0 is a linear combination of them with coefficients that are finite, as
shown in the next lemma, so that A · vn is 0 at n = i. �

Lemma 2. Let A and C be recurrence operators with polynomial coefficients, sat-
isfying A = BC where B has rational coefficients. Then the denominator denB
satisfies:

den(B)−1(0) ⊆ lc(C)−1(0) + {0,−1, . . . ,− ordB}

where addition denotes the sumset.



6 SÉBASTIEN MAULAT AND BRUNO SALVY

Algorithm 1 Reduction of Order

Input: (A, (un)n∈I) defining (un)n≥0 , and N > 0.

Output: (R, (un)n∈J ) defining (un)n≥0 s.t. ordR ≤ ordA.

U ← (un)n=0,...,N−1, computed using A and (un)n∈I

G ← guessrec(U)
if G 6= FAIL then

R← numer (gcdright(A,G))

J ← I ∪
(

lc(R)−1(0)− ordR
)

∩ N

V ← (vn)n∈J+{1,...,ordA−ordR}, using (R, (un)n∈J )
U ′ ← (un)n∈J+{1,...,ordA−ordR}, using (A, (un)n∈I) if U

′ = V
then return (R, (un)n∈J ) end if

end if

return (A, (un)n∈I)

Proof. This is seen by following the steps of a right Euclidean division. �

In practice, this algorithm is run for increasing values of N = 4, 8, 16, . . . and
stopped when either a factor is found or N is larger than the number of coefficients
of A. Note however that if A is not irreducible, then increasing N further is bound
to find a nontrivial right factor.

4. Guessing Continued Fractions

The first step of our approach to continued fractions is the automatic discovery
of formulas for the partial numerators ak. This section is very short since this part
of the computation is straightforward.

Starting from the differential equation, a first method would be to produce the
first terms of the series expansion of the function, convert them into the first terms
of the continued fraction and then use the method of the previous section to look
for a linear recurrence of size bounded by the number of terms that have been com-
puted. It turns out that in most of the known examples, explicit formulas are of
rational form (see Section 6). We therefore concentrate on rational coefficients, or
on interlacing of rational coefficients as in the example of the exponential function.
This means that the “guessing” stage of our approach relies simply on rational in-
terpolation, problem for which efficient algorithms are known through its relation
to the extended Euclidean algorithm [11, §5.7]. Moreover, the degrees of the nu-
merator and denominator are generally low, so that a few terms of the expansion
are sufficient for the computation.

5. Proving Continued Fractions
for solutions of ordinary
differential equations

The proving phase is the heart of our work. It is also where most of the compu-
tational work takes place. We consider first-order non-linear differential equations
with rational coefficients, ie, y′ = p(y), with p ∈ Q(z)[Y ] of degree d. In particular,
the case d ≤ 2 corresponds to the classical Riccati equations that are ubiquitous
in the study of continued fractions, due to their stability under linear fractional
transformations of the unknown function [2, 10.7]. Explicit solutions for restricted
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classes of equations have been provided by Euler and Lagrange and more recently
by Khovanskii [13].

Our procedure goes in the reverse direction. The continued fraction with explicit
rational coefficients that was found in the previous stage defines a power series. The
aim is to show that it is a solution of the differential equation.

5.1. Valuations. The following proposition reduces the proof to that of the ulti-
mate increase of a sequence of integers.

Proposition 3. Let F ∈ K[[X,Y ]] be a formal power series with coefficients in a
field K and let (fn(X)) be a sequence of power series in K[[X ]]. Then the differential
equation Y ′ = F (X,Y ) with initial condition Y (0) = 0 admits a unique power series
solution S(X). Moreover, the sequence (fn(X)) converges to S(X) (ie val(fn−S)→
∞) if and only if fn(0) = 0 for n sufficiently large and val(f ′

n(X)−F (X, fn(X)))→
∞.

Note that equations with an initial condition Y (0) = a 6= 0 can often be brought
to this setting by changing the unknown function into a+ Y .

Proof. Recall that the algebra of power series is a metric space for the distance
induced by the valuation: if f and g are two power series, then d(f, g) = 2− val(f−g),
where val denotes the valuation (this distance does not derive from a norm). It is
a simple consequence of the definition that Cauchy sequences for this distance
converge in K[[X ]].

The first part of the proposition is a variant of Cauchy’s theorem, whose proof
is straightforward thanks to Taylor expansions. In detail, the solutions of Y ′ =
F (X,Y ) with initial condition Y (0) = 0 are the fixed points of the operator G :
Y 7→

∫

F (X,Y ); this operator is a contraction:

val(G(Y1)− G(Y2)) = val

(
∫

F (X,Y1)− F (X,Y2)

)

= val

(
∫

∂F

∂Y
(X,Y2)(Y1 − Y2) +O((Y1 − Y2)

2)

)

> val(Y1 − Y2);

this shows both the existence of a solution (start from Y = 0, iterate G and use
completeness) and its uniqueness.

Next, if val(f ′
n − F (X, fn)) = K, while fn(0) = 0 = S(0), then

S − fn = S(0)− fn(0) +

∫

(F (X,S)− F (X, fn)) +O(xK+1)

= (G(S)− G(fn)) +O(xK+1).

The previous inequality with Y1 = S and Y2 = fn shows that the valuation of
the first term on the right-hand side is larger than that of the left-hand size and
thus val(S − fn) ≥ K + 1, which shows that fn → S. The converse implication
follows from the continuity of the map Y 7→ Y ′ − F (X,Y ). �

This proposition extends to more general equations of the type P (z, y, y′, . . . , y(n)) =
0, with natural assumptions on the initial and separant of the equation.



8 SÉBASTIEN MAULAT AND BRUNO SALVY

5.2. P-recursivity and Convergents. Recall that a sequence is called P-recursive
when it satisfies a linear recurrence with coefficients that are polynomial in the
index. P-recursive sequences are closed under sum and product and algorithms
computing the corresponding recurrences are known and implemented [17, 16].

The key to our approach is the following.

Theorem 4. Let (Pk(z)) and (Qk(z)) be P-recursive sequences of rational functions
in z and let F ∈ K(z)[Y ] be a polynomial of degree d > 0 in Y . Then the sequence

Hk := Q
max(2,d)
k

(

(

Pk

Qk

)′

− F

(

z,
Pk

Qk

)

)

satisfies a linear recurrence with coefficients in K[z, k].

This theorem is used when (Pk) and (Qk) are the sequences of numerators
and denominators of the continued fraction supposed to converge to a solution
of y′ = F (z, y). Its proof constructs a recurrence for Hk from which the increase
of valuation will be obtained using the reduction of order of Section 3. This is
sufficient thanks to Proposition 3 and the observation that valQk = 0, which will
follow by induction from Eq. (5) and the fact that val ak > 0 in applications to
C-fractions.

Again, similar results can be stated for higher order differential equations, but
they proved unnecessary for the continued fractions dealt with in our experiments.

Proof. LetM be the order of the recurrence satisfied by (Pk). Using this recurrence,
all Pk+i, i ∈ N can be rewritten as linear combinations of Pk+j for j = 0, . . . ,M−1,
with coefficients in Q(k, z), while the polynomials P ′

k+i rewrite as linear combina-
tions of those same polynomials complemented by P ′

k+j for j = 0, . . . ,M − 1. The

same argument applies to the sequence (Qk) and we denote by M ′ the order of the
recurrence it satisfies.

The choice of the exponent of Qk makes Hk a polynomial of degree d in Pk, Qk,
P ′
k and Q′

k. Thus all the Hk+i for i ∈ N can be rewritten as linear combinations of
monomials of degree d in Pk+i, Qk+j , i = 0, . . . ,M − 1, j = 0, . . . ,M ′− 1 and their
derivatives. These monomials are in finite number N , whence a linear dependency
betweenHk, . . . , Hk+N (ie, a linear recurrence of order at mostN satisfied by (Hk)).
It can be found by linear algebra. �

As exemplified by the computation in the example of tan in Section 2, the bound
on the order on specific examples may not be as large as suggested by this proof.
Our implementation thus proceeds by increasing the order one by one and looking
for a linear dependency until one is found. The algorithm is outlined in Algorithm 2.
Its termination is granted by the theorem.

We state a simple generalization of this result that could be useful in applications
to continued fractions: if the partial numerators in the continued fraction expan-
sion (1) are of the form r(k)zp(k) with r rational and p polynomial, then again, the
polynomials Hk defined in the theorem satisfy a linear recurrence, this time with

coefficients that are polynomials in k, z and a finite number of zk
i

, with i ≤ deg p.
The proof follows along the same lines.

5.3. Riccati Equations. The case when the polynomial F of Theorem 4 has de-
gree 2 gives rise to Riccati equations that are ubiquitous in the theory of continued
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Algorithm 2 Recurrence for (Hk)k≥0

Input: linear recurrences LP and LQ of order bounded by M for (Pk)k≥0

and (Qk)k≥0

Output: a linear recurrence LH for (Hk)k≥0

T0(k)← Hk

for i = 1, 2, 3, . . . do
Ti(k) ← Ti−1(k + 1) with Pk+M , P ′

k+M , Qk+M , Q′
k+M rewritten in terms

of values of these sequences with smaller indices, using LP , LQ and their
derivatives.
if the linear equation

∑i−1
j=0 cjTj(k) + Ti(k) in the unknowns c0, . . . , ci−1 has

a solution then

return Hk+i + ci−1Hk+i−1 + · · ·+ c0Hk = 0
end if

end for

fractions [2, 10.7]. In this case, the computation of a recurrence of the form pre-
dicted by the theorem can be made explicit in full generality.

Proposition 5. Let K∞
k=1

ak(z)
1 be a solution of the Riccati differential equation Y ′ =

F (z, Y ) where F is a polynomial in K(z)[Y ] of degree 2 in Y , let (Pk) and (Qk) be
sequences obeying the linear recurrence uk+2 = uk+1 + ak+2(z)uk, with a

′
k(z) 6= 0.

Let finally Hk be defined by

Hk = Q2
k ((Pk/Qk)

′ − F (z, Pk/Qk)) .

Then the sequence (Hk) satisfies the following linear recurrence of order 4:

1

a′k+1

Hk+1 +

(

ak
a′k
−
ak+1 + 1

a′k+1

)

Hk

−

(

ak(ak + 1)

a′k
+
ak+1(ak+1 + 1)

a′k+1

)

Hk−1

−

(

ak + 1

a′k
−
ak+1

a′k+1

)

a2kHk−2 +
a2k−1a

2
k

a′k
Hk−3 = 0.

The shift of the indices (from Hk+1 to Hk−3) is only for readability. A nice
property of this recurrence is that its coefficients do not depend on the differential
equation, but only on the sequence ak. This persists for higher degrees: a differential
equation with a cubic right-hand side leads to a recurrence of order 6 that does not
depend on the equation.

Proof. The formula is obtained automatically by the method from the proof of
Theorem 4, on a differential equation with symbolic coefficients. It could also be
derived by hand. However, once it is given, it is a simple matter to produce a proof:
inject the definition of Hk into the recurrence, rewrite all the Pk’s and Qk’s using
the recurrence they satisfy in terms of Pk−3, Qk−3, Pk−2, Qk−2 and collect terms to
observe that the left-hand side becomes 0. �

As an example, setting ak(z) = −z
2/((2k− 1)(2k− 3)) recovers Eq. (7) obtained

for tan.
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Corollary 6. If the sequences (Pk) and (Qk) satisfy a linear recurrence of the
form uk+2 = bk+2(z)uk+1 + ak+2(z)uk, then the sequence (Hk) satisfies a fourth-
order linear recurrence obtained by evaluating that of Prop. 5, replacing a1 by a1/b1
and ak by ak/(bkbk−1) for k ≥ 2.

Proof. This is a classical transformation of continued fractions. Setting P̃k =
Pk/(b1 · · · bk−1bk) and similarly for Q̃k and injecting into the recurrence equation

shows that both sequences (P̃k) and (Q̃k) satisfy

uk+2 = uk+1 +
ak+2

bk+2bk+1
uk.

Since P̃k/Q̃k = Pk/Qk, the proposition applies. �

5.4. Nonregularity and Periodicities. As the example of the continued fraction
for the exponential function in Eq. (2) shows, not all common closed forms for
continued fractions are given by one rational function. However, most C-fractions
formulas in the literature appear to be “periodic”, in the sense that there exists a
period ℓ > 0, and ℓ sequences (a0k), . . . , (a

ℓ−1
k ), that alternately define the partial

numerators ak: ak = a
(k mod ℓ)
k . The case ℓ = 2 encountered for exp is the most

common, but higher values also happen (e.g., ℓ = 4 for ψ′′, where ψ = Γ′/Γ is the
logarithmic derivative of the Gamma function).

This is not a restriction in our approach, by the following.

Lemma 7. Given a period ℓ > 0, a sequence (uk)k≥0 is P-recursive if and only if

all its subsequences (uℓk+j)k≥0 are P-recursive, for j = 0 . . . ℓ− 1.

Proof. This lemma is classical. We give a constructive proof for completeness.
If the sections (uℓk+j)k≥0 are P-recursive, then their generating series sj(z) =
∑

k≥0 uℓk+jz
k are D-finite, then so is s0(z

ℓ) + zs1(z
ℓ) + · · · + zℓ−1sℓ−1(z

ℓ) and

therefore its sequence of coefficients (uk)k≥0 is P-recursive. Conversely, if (uk)k≥0

is P-recursive, then its generating series s(z) is D-finite and so is its Hadamard
product with zj/(1− zℓ), then also its quotient by zj evaluated at z1/ℓ and this is
precisely the generating series of (uℓk+j)k≥0 . �

In cases like the exponential function, this lemma implies that the sequence
of partial numerators (ak)k≥0 itself satisfies a linear recurrence. With the recur-

rences (5), this alone does not imply that (Pk) and (Qk) are also P-recursive for
in general, no such closure property exists. For instance, the sequence defined
by un :=

∏n
k=1 k! satisfies a linear recurrence of order 1 with a coefficient (k!) that

is P-recursive, but (un) itself is not P-recursive, as can be seen from its asymp-
totic growth that is too fast. The crucial property in our application is that the
sequences (aik) are rational in k. This allows for the following.

Lemma 8. Let a0k, . . . , a
ℓ−1
k be rational functions of k and z, ak be defined for k ≥ 0

by ak := a
(k mod ℓ)
k and let the sequences (Pk) and (Qk) be defined by the recur-

rence (5). Then (Pk) and (Qk) are P-recursive sequences.

Proof. The proof is constructive. By the recurrences (5) and the definition of ak,
all Pℓk+j for j = 1, . . . , 2ℓ rewrite as linear combinations of Pℓk+1 and Pℓk with coef-
ficients that are rational functions of z and k. Thus Pℓk+j, Pℓ(k+1)+j and Pℓ(k+2)+j

are linearly dependent for j = 0, . . . , d− 1.
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The same reasoning applies to (Pℓk+j)k≥0 for any j ∈ {0, . . . , ℓ − 1} and shows
that it is a P-recursive sequence and thefore that so is (Pk) by the previous lemma.
By construction, (Qk) satisfies the same recurrence as (Pk). �

Example. The special case ℓ = 2 is important in applications. Starting from
P2k = P2k−1 + a2kP2k−2 and its first two shifts, the linear combination P2k+2 +
P2k+1 − a2k+1P2k gets rid of the terms with odd index, leaving:

(9) P2k+2 = (1 + a2k+1 + a2k+2)P2k − a2ka2k+1P2k−2.

A similar computation would give a recurrence between the terms with odd index.

The proof of Lemma 8 leads to an algorithm in two steps: compute a recurrence
for (Pk) and (Qk) and then appeal to Lemma 7. A simpler and faster computation
proceeds directly from a recurrence for (Pℓk), thanks to the following.

Proposition 9. Let F (X,Y ) be a rational function, that is regular at X = Y =
0. Let aik, i = 1, . . . , ℓ be rational functions in X and k with positive valuation
in X. Let (ak), (Pk) and (Qk) be defined as in the previous lemma and (Hk) as in
Theorem 4. If valHkℓ →∞ as k →∞, then the continued fraction K∞

m=1
ak

1 is the
solution of Y ′ = F (X,Y ) with Y (0) = 0.

Here again, other values for Y (0) are obtained by a change of unknown function.

Proof. Since the denominator of F does not vanish at 0, F admits an expansion
in power series and thus by Proposition 3, the differential equation Y ′ = F (X,Y )
with Y (0) = 0 possesses a formal power series solution S(X).

The condition on the valuations of the sequences (aik) makes the continued frac-
tion well-defined, in the sense that the sequence of power series (Pk/Qk) converges
to a power series G(X). Thus if its subsequence fk = Pkℓ/Qkℓ converges to S(X),
then we have G(X) = S(X). Induction from Eq. (5) shows that Qk(0) = 1 for
all k ≥ 0 and that Pk(0) = 0 (by the positive valuation of a11). This gives fk(0) = 0
and valHkℓ = val(f ′

k − F (X, fk)). Thus by Proposition 3, the sequence (fk) con-
verges to S. �

Example. The proof for the continued fraction for exp from the introduction goes
as follows. Starting from the recurrences for (Pk) when k is even and when k is
odd and proceeding as for Eq. (9) yields

P2k+2 = P2k +
z2

4(4k2 − 1)
P2k−2,

which is also satisfied by Q2k since this computation does not depend on the initial
conditions.

Next, turn to the numerator of the evaluation of y′ − y − 1 at y = P2k/Q2k,
namely

H2k = P ′
2kQ2k − P2kQ

′
2k − P2kQ2k −Q

2
2k.

Using Proposition 5, or directly as in Section 2, leads to a recurrence of order 4,
on which reduction of order yields H2k+2 = −z2H2k/(4(2k + 1)2), which concludes
the proof.
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Algorithm 3 Discovery and proof of continued fractions

Input: Y ′ = F (z, Y ) with F ∈ K(z)[Y ];
a bound N on the number of coefficients to guess from;
a bound L on the period to be found.

Output: In case of success, an explicit expression for the continued fraction ex-
pansion of the solution such that Y (0) = 0.

Compute the first coefficients a1, . . . , aN of the continued fraction expansion of
the power series solution of Y ′ = F (z, Y ) with Y (0) = 0.
for ℓ = 1, 2, 3, . . . , L do

Use rational interpolation to compute aji interpolating the subse-
quences (aℓi+j)i, j = 0, . . . , ℓ− 1.
if this has been successful then
compute a recurrence R for Hkℓ, with Hk defined in Theorem 4
compute a new recurrence R′ from R and the initial conditions for (Hk)
using Algorithm 1
if R′ exhibits the increase of (valHℓk) then

return the rational functions aji
end if

end if

end for

return FAIL

6. Experiments

An overview of the whole approach is given in Figure 3. In practice, N =
20 and L = 2 have proved sufficient in our experiments except for one case of
period 4. For the computation of the first terms of the continued fraction, one can
either compute a power series expansion first, e.g., by Newton iteration [6], or use
techniques for continued fraction expansions of solutions of Riccati equations [9].

Our main experimental result is the following.

Empirical Observation. All the 53 explicit C-fractions formulas of the com-
pendium by Cuyt et alii [10] can be guessed and proved by our approach and its
variants below. Among them the vast majority (44) are solutions of Riccati equa-
tions, 2 satisfy q-Riccati equations and the remaining 7 satisfy difference equations.

We now give more detail on the calculations in the differential case and then
outline the variants of our method in the q-difference and difference cases. An
implementation in the differential case is available under the form of a submodule
gfun:-ContFrac of the package gfun (for versions ≥ 3.70). It can be downloaded
from our web pages. All the examples of solutions of Riccati equations from [10]
are provided through the associated help pages.

6.1. C-fractions from Differential Equations. In our experiment, the Riccati
equations were themselves found by a guessing approach on power series expansions
to small order (less than 30). Depending on how one decides to define the power
series from the computer algebra point of view, these Riccati equations can also be
automatically proved to hold.
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Gauss’s continued fraction. The classical hypergeometric series is

2F1(a, b; c; z) :=
∑

n≥0

(a)n(b)n
(c)n

zn

n!
,

where (a)n is the Pochhammer symbol (a)n = a(a+1) · · · (a+n−1). Gauss proved
the following identity

2F1(a, b; c; z)

2F1(a, b+ 1; c+ 1; z)
= 1 +

∞

K
m=1

amz

1
,

a2k = −
(k + b)(k + c− a)

(2k + c)(2k − 1 + c)
, a2k+1 = −

(k + a)(k + c− b)

(2k + c)(2k + 1 + c)
,

for the quotient of two contiguous hypergeometric series. This is the source of
many continued fractions for special functions by specialization of the parameters.
If y = 1 + F is the function on the left-hand side, then elementary properties
of the 2F1 that can be derived from the first order recurrences satisfied by its
coefficients show that

cz(z − 1)y′ = a(c− b)z + (c(a− b)z + c2)y + c2y2.

This is our starting point. From there, it is easy to compute the first 20 coefficients
and conjecture the formulas for a2k and a2k+1 by rational interpolation. As in
Eq. (9), a recurrence for even indices follows. From Corollary 6, a linear recurrence
of order 4 follows for the remainder H2k, that can be either obtained by hand from
Proposition 5, or by a generic code that searches for linear dependency. Next,
reduction of order gives a two-term linear recurrence within a couple of seconds:

H2(n−2) = z2
(n+ a) (n− a+ c) (n+ b) (n− b+ c)

(2n+ c)
2
(2n+ c− 1)

2 H2(n−3)

and this concludes the automatic proof.

More parameters. Khovanskii [13, p. 85] gives an explicit continued fraction
with 5 parameters for the power series solution of the differential equation

(1 + αz)zy′ + (β + γz)y + δy2 = ǫz, y(0) = 0

(an extra parameter k is obtained by changing z into zk and adjusting the coefficient
of y′; we have relabeled the parameters). This contains the equation for Gauss’s
continued fraction above as a special case.

From there again rational formulas for a2k and a2k+1 are obtained by guessing
on the first 20 values; a recurrence of order 4 can be found for the remainders H2k;
Algorithm 1 reduces it to the conclusive recurrence:

(2n+ β)2(2n+ β − 1)2H2(n−2) =

− (αn2 + (αβ + γ)n+ βγ + δǫ)(αn2 + (αβ − γ)n+ δǫ)z2H2(n−3).

Other examples. We also applied our method to a few functions not men-
tioned by Cuyt et alii [10] and in particular found (and proved) experimentally the
following nice C-fraction for the Airy function:

z
Ai′

Ai
(1/z2) = −1−

z3

4

/

(

1 +
∞

K
m=2

am(z)

1

)

,

a2k = (6k − 1)z3/8, a2k+1 = (6k + 1)z3/8.
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It also follows from known C-fractions for the divergent 2F0.

6.2. q-analogues. The method used in this article also applies to q-analogues. We
outline the very simple example of the q-exponential:

eq(z) :=
∑

m≥0

(1 − q)m

(1− q)(1 − q2) · · · (1− qm)
zm,

which satisfies the q-differential equation

(10)
eq(qz)− eq(z)

(q − 1)z
− eq(z) = 0.

The classical exponential is obtained as the limit when q → 1. The first coefficients
of the continued fraction expansion let one guess a1 = z,

a2k = −
qk−1(1− q)z

(1 + qk)(1 − q2k−1)
, a2k+1 =

q2k(1− q)z

(1 + qk)(1− q2k+1)
,

a clear generalization of the continued fraction (2) for exp. In order to prove this
continued fraction, the recurrence for (P2k) is computed as in Section 5.4, which
gives

P2k+2 =

(

1−
(1 − q)qkz

(1 + qk)(1 + qk+1)

)

P2k +
q3k−1(1− q)2z2

(1 + qk)2(1 − q2k+1)(1− q2k−1)
P2k−2.

The sequence Hk is defined as the numerator of the evaluation of (10), namely

Pk(qz)Qk(z)− Pk(z)Qk(qz)

(q − 1)z
− Pk(z)Qk(qz)−Qk(z)Qk(qz).

Next, we compute a linear dependency between H2k, H2k+2, . . . , which is still of or-
der 4 (but significantly bigger than its limit as q → 1). The q-analogue of reduction
of order then proves

H2k+2 = −
q3k+2(1− q)2z2

(1 + qk+1)2(1− q2k+1)2
H2k,

which concludes the proof, providing with a generalization of the expression for exp
that is recovered by letting q → 1.

Using the same steps leads to an automatic proof of Heine’s q-analogue of Gauss’s
continued fraction [10, 19.2.1]: the q-hypergeometric series is defined by

2φ1(a, b; c; q; z) =
∑

n≥0

(a; q)n(b; q)n
(c; q)n

zn

(q; q)n
,

where (a; q)n is the q-Pochhammer symbol

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1).

Heine’s continued fraction is

2φ1(a, b; c; q; z)

2φ1(a, bq; cq; q; z)
= 1 +

∞

K
m=1

amz

1
,

a2k+1 =
(1− aqk)(cqk − b)qk

(1− cq2k)(1 − cq2k+1)
, a2k =

(1− bqk)(cqk − a)qk−1

(1− cq2k−1)(1 − cq2k)
.
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We sketch the main steps of the computation. The q-Riccati equation is

(1− c)2F (z)F (qz) + (1 − c)(bz − c)F (qz)

+ (1− z)(1− az)F (z)− z(a− 1)(b− c) = 0.

The sequence Hk of interest is therefore the numerator of the evaluation of this
left-hand size at F (z) = Pk(z)/Qk(z). The continued fraction being periodic of
period 2, a recurrence for H2k (or order 4) is computed. Reduction of order yields

H2k+2

z2H2k
=

(1 − aqk+1)(1 − bqk+1)(a− cqk+1)(b − cqk+1)q2k+1

(1− cq2k+1)(1 − cq2k+2)
,

which concludes the proof. This automates 2 more of the formulas in [10].

6.3. Difference Equations. The same method applies to difference equations.
For instance, it results in one of the classical proofs [14, chap. 3] of Brouncker’s
continued fraction for

b(s) :=

(

Γ
(

s+1
4

)

Γ
(

s+3
4

)

)2

,

where Γ is Euler’s Gamma function. Using the functional equation Γ(s+1) = sΓ(s),
it follows that b(s) satisfies

b(s)b(s+ 2) = 16/(s+ 1)2.

Looking for a formal power series solution in inverse powers of s (and nonnegative
leading term) leads to a unique solution b(s) = 4/s − 2/s3 + · · · This is then
converted into a continued fraction expansion with coefficients (ak) given by

4

s
,

1

2s2
,

9

4s2
,
25

4s2
,
49

4s2
,
81

4s2
, . . .

from which it is easy to conjecture ak = (2k − 3)2/(4s2) for k ≥ 3. The analogue
of Hk in this context is

Hk = (s+ 1)2Pk(s)Pk(s+ 2)− 16Qk(s)Qk(s+ 2),

for which the same approach as above produces a linear recurrence of order 4 which
is not sufficient to conclude that the valuations increase. From there, reduction of
order with Algorithm 1 yields the shorter

Hk+1 = −
(2k + 1)2

4s(s+ 2)
Hk, k ≥ 1,

which exhibits the required increase of valuations.
The same technique has been applied to all the explicit C-fractions concerning

the ψ function in [10], thereby completing the experiment on this book.

7. Conclusion

In a simple and unified way, our approach to continued fractions recovers an
unexpectedly large number of explicit C-fractions from the literature. One miracle
that takes place is that in all cases, the sequence of remainder polynomials turns
out to be hypergeometric or q-hypergeometric. We are currently exploring this
phenomenon in more detail.
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