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ABSTRACT occurrence we are aware of in the literature is Polya’s larf22],

The diagonal of a multivariate power serfess the univariate powerwhich deals with a particular class of bivariate rationaidtions; the

series DiagF generated by the diagonal termsfaf Diagonals form ProOf uses elementary complex analysis. Along the linesobjds
an important class of power series: they occur frequentiyimber @PProach, Furstenberd) gave a (sketchy) proof of the general re-

; ; : f It, over the field of complex numbers; the same argumenbéas
theory, theoretical physics and enumerative combinatokide study sutt, ' . -
algorithmic questions related to diagonals in the case e/Rés the enhan(I:ed llatgrlp], [26, tﬁe.tS]' 'Lhree morg.td|ffer]?n|tdprofc;fsb;X|st.
Taylor expansion of a bivariate rational function. It isssizal that atpurey agYe _Ir_?]lc %nle a wolr S gv?l_rharé gagy 1elas g a g r
in this case Dia§ is an algebraic function. We propose an algorithlﬁ IC zero [lt' ti - 6.1] (see. a$502|[3, '5 e gi)' one baset .Orll
that computes an annihilating polynomial for DRRgGenerically, it 1oN-commutative power serie&4 Prop. 5], and a combinatoria
is its minimal polynomial and is obtained in time quasi-tinén its Proof [6, 83.4.1]. Despite the richness of the topic and the fact that
size. We show that this minimal polynomial has an exponesize MOSt Proofs are constructive in essence, we were not abladarfi
with respect to the degree of the input rational function. tién ad- € literature angxplicitalgorithm for computing a bivariate polyno-
dress the related problem of enumerating directed lattaiesy The Mial that cancels the diagonal of a general bivariate ratiimction.
insight given by our study leads to a new method for expantfieg _Diagonals of rational functions appear naturally in entatiee
generating power series of bridges, excursions and meandiie combinatorics. In particular, the enumeration of unidisienal walks
show that their firsN terms can be computed in quasi-linear compl 'esr eti)r?enTLh: aﬁ;gﬁgc?tfyrggzrgnz(ﬁgg%' ;ﬁéﬁgg;g%i{ggﬂgﬁs
ity in N, without first computing a very large polynomial equation. walks is classical as well, and related to that of bivariaegonals.

Categories and Subject Descriptors: Beyond this structural result, several quantitative afiekcti’e results
1.1.2 [Computing M ethodologies]: Symbolic and Algebraic Manip-are known. Explicit formulas give the generating functiamserms
ulations —Algebraic Algorithms of implicit algebraic functions attached to the set of akalrsteps in

the case of excursion8,[84], [17], bridges and meander&][ More-

General Terms: Algorithms, Theory. over, ifaandb denote the upper and lower amplitudes of the allowed

Keywords: Diagonals, walks, algorithms. steps, the bound,, = (a”’) on the degrees of equations for excur-
sions has been qbtainedaby Bousquet-Mélou, and showed fgtite t
1. INTRODUCTION for a specific family of step sets, as well as generical|\gp.1]. From

the algorithmic viewpoint, Banderier and Flajolet gave Byodathm

Context. The diagonal of a multivariate power series with coeffi¢called thePlatypus Algorithmfor computing a polynomial of degree
Particularly interesting is the class of diagonalsaifonal power se- o ) ) ) o )
ries (ie, Taylor expansions of rational functions). In jratar, diag- Contributions. We design (Sectiod) the first explicit algorithm
onals ofbivariate rational power series are always roots of nonzef@ computing a polynomial equation for the diagonal of abitaary
bivariate polynomials (ie, they are algebraic seri€9, 15]. Since plvarlate r_atlonal function. We an_alyze its comple>_<|ty dhd size of_
it is also classical that algebraic series are D-finite (@is§y linear its outputin Theorem4. The algorithm has two main steps. The first
differential equations with polynomial coefficients), iheoefficients step is the computation of a polynomial equation for thedss of a
satisfy linear recurrences and this leads to an optimalrighgo for bivariate rational function. We propose an efficient altjori for this
the computation of their first term&Z,12,3]. In this article, we deter-task, that is a polynomial-time version of Bronstein’s aition [9);
mine the degrees of these polynomials, the cost of their otatipn Corresponding size and complexity bounds are given in Trea.
and related applications. The se(;on?. Stgp is tk;)e co:(nputanofn ofa polyn?m|al Qc?ua:/t\llotgé .

: s — : . . sums of a fixed number of roots of a given polynomial. We design
.'?Lz/g;’rﬁ gviosr l:r'u;-?c?r ?rl]%egéﬁ'\%% g;f ;g’grt'ﬁéep%%%??yage'fseigltgﬁls_m%ﬁ additive version of the Platypus algorithin §2.3] and analyze it

PR : o o g " in Theorem12. We show in Propositiod6 that generically, the size
tivariate rational series in positive characteristi6,p4,13]. The first of the minimal polynomial for the diagonal of a rational ftioe is

exponential in the degree of the input and that our algoritbmputes
it in quasi-optimal complexity (Theoretiv).

In the application to walks, we show how to expand to high pre-
cision the generating functions of bridges, excursionsraednders.
Our main message is that pre-computing a polynomial equddio
them is too costly, since that equation might have expoaksitie in

" ) the maximal amplitudel of the allowed steps. Our algorithms have
authored or co-authored by an employee, contractor oraaffibf a national govern- L e .. 2
ment. As such, the Government retains a nonexclusive,tyefrale right to publish or quaSI_lmear Comp'ex'.ty in the preC|5|on of .the expanswhg!e keep-
reproduce this article, or to allow others to do so, for Goweent purposes only. ing the pre-computation step in polynomial complexitydir{Theo-
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Structure of the paper. After a preliminary section on background)(f + degQ), whence(3) is proved. Propertyl) is proved similarly.
and notation, we first discuss several special bivariateltegsts of In Property(2), the condition or§(0) makesf (S) well-defined. The
broader general interest in Secti8n Next, we consider diagonalsresult follows from(1). [

the size of their minimal polynomials and an efficient way ofput-

ing annihilating polynomials in Sectioh As consequences, we deduce the following two results.

2. BACKGROUND AND NOTATION Corollary 2 Let Qe K[x,y] with ¢(x) = Q(x, 0) be such that (D) # 0.

In this section, that might be skipped at first reading, weoihice Let Q° be a squarefree part of Q. Then
notation and technical results that will be used throughioeiarticle. 1 1

. = € ~Sheq - (Q7(%,0)).
2.1 Notation Q

In this article,K denotes a field of characteristic 0. We denote by PROOF Write Q = q+ R with R/q € &geq q(q)- Then the result
K[x]n the set of polynomials ifK[X] of degree less tham Similarly, whenQ is squarefree@ = Q*) follows from Part(2) of Lemmal,
K(x)n stands for the set of rational functionsli{x) with numerator with f =1/(1+y). The general case then follows from P4itS8). [
and denominator ifK[x]n, andK[[X]]n for the set of power series in
K[[x]] truncated at precision . . .

[I[f]L is a polynomial inK[x,y], then its degree with respect 10 grggo%'inosahgtlf _agtjg g%ggl%/groemlglesgﬂ[x,y], with Q(0,0) #
(resp.y) is denoted degP (resp. degP), and thebidegreeof Pis the ™ 9 - ) ’
pair bideg? = (deg,P.deg,P). The notation deg is used for univari- aF A
ate polynomials. Inequalities between bidegrees are coergewise. dy'  Q(Q)"’

The set of polynomials ifK[x,y] of bidegree less tham, m) is de- \yith pi ; " *
noted byK[x, y]n m, and simi[larll/ for more variables. . with bidegA < bidegP + n(deg, Q", deg, Q" —1).

The valuation of a polynomialF € K[x] or a power serie§ € PROOF The Taylor expansion df (x,y+t) has for coefficients
K[[x]] is its smallest exponent with nonzero coefficient. It is dedo the derivatives oF . We consider it either it (y)[x, t] or in K(x)[y,t].
valF, with the convention val@- . Corollary 2 applies directly for the degree m The saving on the

Thereciprocalof a polynomialP € K[x] is the polynomial re(P) = degree iry follows from observing that in the first part of the proof of
x4ePP(1/x). If P=c(x—a1)--- (x—ag), the notation# (P) stands the corollary, the decompositioR(x,y+t) = Q(x,y) + R(x,y;t) has

for the generating series of tiNewton sumsf P: the property that dgR < deg,Q — 1. This —1 is then propagated
N(P) = z (@ +al+-+al)x". along the proof thanks to P4R) of Lemmal. [
n=0

2.3 Complexity Estimates

We recall classical complexity notation and facts for latse. Let
K be again a field of characteristic zero. Unless otherwiseifipe,
we estimate the cost of our algorithms by counting arithmefier-
ations inK (denoted “ops.”) at unit cost. The soft-O notatiOqf-)

A squarefree decompositiafa nonzero polynomid € A[y], where
A=KorK[x], is afactorizatioQ= Q} - -- QM with Q; € Afy] square-
free, theQ;’s pairwise coprime and dg(pm) > 0. The correspond
ing squarefree parbf Q is the polynomialQ* = Q1---Qm. If Qs
squarefree the@® = Q*. P e : : ;

" coeficen ok i  powerserie < ] isdenotedi . (acees, o POVIBOSTTC s re onted 1 tamlent
If A= 37 ,ax, then Amodx" denotes the polynomig§ g aix. complexity isO(d), whered is the maximahrithmetic siznumber
The exponential serieg,x"/n! is denoted exfx). TheHadamard of coefficients irlK in a dense representation) of the input and of the
productof two power seried\ andB is the power serie&® B such output. In that case, the algorithm is said tojuesi-optimal

that xX"JA© B = [x"]A- [xri‘]B.for alin. ) Univariate operations. Throughout this article we will use the fact
IFE(Y) =30 fi,ij' is a bivariate p(.)werserles]lﬁ[[?gy]}, the that most operations on polynomials, rational functiond power
diagonalof F, denoted Dia is the univariate power seriesi[t]] series in one variable can be performed in quasi-linear. tiGan-
defined by Diagr (t) = ¥ >0 fant". dard references for these questions are the bdjsapd [10]. The
. . . needed results are summarized in Fabelow.
2.2 Bivariate Power Series

_In several places, we need bounds on degrees of coefficiéntg p 4 The following operations can be performeddn) ops. in
bivariate rational series. In most cases, these powerssbakng Hﬁ
0

to K(x)[[y]] and have a very constrained structure: there exists a poly1y aqgition, product and differentiation of element&if|n, K(X)n
nomialQ € K[x] and an integear € N such that the power series can andK([[X|]n; integration inK[xn and K|[[|];

be written y ¥ (2) extended gcd, squarefree decomposition and resuhiapd ,;
Co+ 016 +otCny 3) multi?oint evaluation (ier[x]n, }fK(x)n at O(n) points inI]K; in-
terpolation inK|[x]n, and K(X), from n (resp.2n— 1) values at

with ¢, € K[x] and degn < na, for all n. We denote by, (Q) the set paiFr)Wise distinc[t }r?oints ini(é')n (resp )

of such power series. Its main properties are summarizeallas/s. (4) inverse, logarithm, exponential &[[x], (when defined);
(5) conversions betweendK|x], and.#"(P) mod x" € K[x]n.
Lemmal LetQReK[X, a,B e Nand f e K][[y]].

(1) The setq(Q) is a subring ofK(x)[[yl}; Multivariate operations. Basic operations on polynomials, rational

(2) Let Sc &4 (Q) with S0) =0, then {(S) € &4 (Q); functions and power series in several variables are hardtiqne
(3) The products obey from the algorithmic point of view. For instance, no geneyahsi-
6a(Q)-&p(R) C gmax(g+degﬁ,[3+degQ)(QR). optimal algorithm is currently known for computing results of bi-

) N variate polynomials, even though in several importantgaseh algo-

PROOF. For(3), if A= 5, any"/Q" andB = 3, bny" /R" belong re- ithms are availableq]. Multiplication is the most basic non-trivial
spectively to6g (Q) andég(R), then thenth coefficient of their prod- gperation in this setting. The following result can be prbusing
uct is a sum of terms of the foray (x)Q"'by_i (X)R'/(QR)". There- Kronecker’s substitution; it is quasi-optimal for fixed nben of vari-

fore, the degree of the numerator is bounded(loy+ degR) + (n— ablesm= O(1).



Algorithm AlgebraicResidues(P/Q)

K[[X1, .-, Xm]]d,..._q, can be multiplied usin@(2Md; - - - dm) ops. Input  Two polynomialsP andQ € K]y
Output A polynomial inK[Z] canceling all the residues Bf/Q

A related operation is multipoint evaluation and interpiola. The
simplest case is when the evaluation points formmadimensional  ComputeQ;Q3- - Qf a squarefree decomposition @f
tensor product gridh x --- x Im, wherelj is a set of cardinad. for i + 1tomdo
if deg,Qi =0then R+ 1
else

Fact 6 [20] Polynomials inK[xy,...,Xm]q,....d, can be evaluated

and interpolated from values that they take on-ddm points that Ui(y) < Q) /Q(Y);
form an m-dimensional tensor product grid usiogmd, - - - dm) ops. Vi(y,t) < (Qi(y+1t) —Qi(Y)/t;
P i— i .
Again, the complexity in Fad is quasi-optimal for fixean = O(1). Expandwgﬁ% =S+ +S-at 1+ O(th);
A general (although non-optimal) technique to deal with enior Write §_1 asAi(y)/Bi(y) with A; andB; coprime;
volved operations on multivariable algebraic objects (BdK[x,y]) R (2) + Resultanf(A —zB,Q);

is to use (multivariate) evaluation and interpolation otypomials
and to perform operations on the evaluated algebraic abjeging
Facts4—6. To put this strategy in practice, the size of the output

needs to be well controlled. We illustrate this philosophytioe ex- Algorithm 1.Polynomial canceling the residues
ample of resultant computation, based on the following @astion

of [16, Thm. 6.22].

return RiR>---Rn

at o is a root of Resultap(A,— -2zB,Q). \_Nhenm =1, this is ex-
Fact 7 Let P(x,y) and Qx,y) be bivariate polynomials of respectiv<=,'f’i(3t|_)t/hthe1 ROLhS;e'n'Trdagi: resultant. t'T?IgI ComPUtfatt;}(Hdﬁe'fO '|°~|' "
. P P Q Q gorithm 1, which avoids the exponential blowup of the complexity
bidegrees(dy,dy ) and (dy’,dy’). Then, that would follow from a symbolic pre-computation of the Bstein

degResultag{P(x,y), Q(x,y)) < dfd? + d2d}. resultants.

Example 1.Letd > 0 be an integer, and I&y(x,y) € Q(x)[y] be

~-8nd" " the rational functioryd /(y —y2 — x)9+1. The poles have ordet+ 1.
Then R= Resultanj(P,Q) belongs toK[xy, ..., Xmlp,....Dy, Where |, g example, the z/il(gorithm c)an be performed by hand fbi-ar
Di = 1+2(d N 1~)(d,;_ 1. M‘;{ff"e“ th_e coefficients of R can bFraryd: a squarefree decomposition has= d+ 1 andQm = y—y? —
computed usin@(27d; - -- dmd™") ops. inK. x, the otheiQ;’s being 1. TheVin = 1— 2y —t and the next step is to

PROOF The degrees estimates follow from F&cfTo computeR, expand
we use an evaluation-interpolation scherReandQ are evaluated at d d
D = D;---Dm points (Xg,...,Xm) forming anm dimensional tensor (y+t) - (y+t) .
product grid;D univariate resultants ifi[y]q are computedR is re- (1—2y—t)d+1 (1—2y)d+1 (17 #)‘”1
covered by interpolation. By Faét the evaluation and interpolation

1-2
steps are performed @(mD) ops. The second one has c@8D). Expanding the binomial series gives the coefficiertais An, with
Using the inequalityp < 2Md; - - - dynd™ concludes the proof. [ m
d 7d\ /d+i\ | »
O
i=

' We conclude this section by recalling_a complt_axity resuitt_fue !
computation of a squarefree decomposition of a bivarialgnomial. The residues are then cancelled by Resuj{@at—zBm, Qm), namely

" . 2
Fact 9 [19] A squarefree decomposition of a polynomiakifx, y]q, d ld/2]
P 0 Yiaca, (1-a)2 27—y d) (2 )
can be computed usirg(dgdy) ops. & \2k) \ k
3. SPECIAL RESULTANTS Bounds. In our applications, as in the previous example, the polyno-
| ialsf id mials P and Q have coefficients that are themselves polynomials in
3.1 Polynomialsfor Residues another variable. Let then(dp,ep), (dg,eg), (d*,€") and(d;,g) be

We are interested in a polynomial that vanishes at the residli the bidegrees irix,y) of P, Q, Q* andQ;, whereQ* = Q1 ---Qm is
a given rational function. It is a classical result in symibahtegra- a squarefree part @. In Algorithm 1, V; has degree at mosf in x
tion that in the case of simple poles, there is a resultamhdta for and total degree — 1 in (y,t). Similarly, P(y-+t) has degreép in x
such a polynomial, first introduced by Rothsted3][and Trager27]. and total degreep in (y,t). Whene* > 1, by Propositiors, the coef-
This was later generalized by Bronste@ {o accommodate mult_lpleﬁciemsj in the power series expansionRfy+t) /U; (y+t) Vi (y,t)!
poles as well. However, as mentioned by Bronstein, the cexityl has denominator of bidegree bounded(Hy + jd*,eq —i + j(e" —

of his method grows exponentially with the multiplicity dfet poles. 1)) and numerator of bidegree bounded (b + jd*,ep — j + j(e* —
Instead, we develop in this section an algorithm with potgia com- 1)) Thus by Fac?, deg,R is at most '

plexity.
Let f = P/Q be a nonzero element iK(y), whereP,Q are two  ((i —1)d* + max(dp,dg))& +
coprime polynomials irK[y]. Let QlQE---Qm be a squarefree de- di((i—1)(e" —1) —i+max(ep +1,€9)),

composition ofQ. Fori € {1,...,m}, if a is a root ofQ; in an al- . - .
; : a h - while its degree irzis bounded by the number of residugs Sum-
gebraic extension dK, then it is simple and the residue dfat a is ming over alli leads to the bound

the coefficient ot~ in the Laurent expansion df(a +t) att = 0.
If Vi(y,t) is the polynomial(Qi(y +t) — Qi(y))/t, this residue is the  (eg—€")d* + (dg —d*)(e" —1)

coefficient oft —1 in the Taylor expansion dt= 0 of the regular ra- +e*max(dp, dg) — dg +d* maxep + 1, &g).
tional functionf (y+t)Q}(y+1t)/Vi(y,t), computed with rational op- ’ ’
erations only and then evaluatedyat a. If this coefficient is de-
notedS_1(y) = Ai(y)/Bi(y), with polynomialsA; andB;, the residue

If & = 1, a direct computation gives the bound rfdx dg) + d*ep.



Theorem 10 LetP(x,y)/Q(x,Y) € K(X,Y)d+1d,+1- LetQ be a squardJgorithm PureComposedSum(P, ¢)

free part of Q wrty. Le{dy,d}) be bounds on the bidegree of QlInput A polynomial P of degreed in K[y], a positive integec < d
Then the polynomial computed by Algorithmnnihilates the residuesOutput The polynomiaZ:P from Eq. @)

of P/Q, has degree in z bounded by &nd degree in x bounded by

D+ (J)
20 (dy + 1) + (20 — 1)y — 20l % (P)‘; req(P')/ req(P) modyP+1
It can be computed in @Pds;dy (m? + d;%)) operations ink. S« ¥ (P)®expy) modyP+1

Note that both bounds above (wheh> 1 ande* = 1) F “eXP(Zﬁzl(*l)”*lﬂz”) mod (yP+1, #+1)
ote that both bounds above (wheh> 1 an = 1) are upper D1

bounded by 8dy, independently of the multiplicities. The complex- N (2cP) ([2°]F) 8 zyrzlzy'; )mody .

ity is also bounded independently of the multiplicities(bgd;d;d)‘/‘v)_ return rec(exp<] fe dy) mody )

PROOF. The bounds on the bidegreeRt= RiR; - --Rm are easily Algorithm 2.Polynomial canceling the sums ofoots
derived from the previous discussion.

By Fact9, a squarefree decomposition @fcan be computed us-
ing O(d2dy) ops. We now focus on the computations performed BEing valid for monid® only::
side theith iteration of the loop. Computint; requires an exact , .
division of polynomials of bidegrees at maogly, dy); this division N (P) = req(P )7 reqP) = exp(/ d—-#(P) dy) )
can be performed by evaluation-interpolationQdxdy) ops. Sim- req(P) y
ilarly, the trivariate polynomiali can be computed by evaluatiorifruncating these formulas at ordér- 1 makes.#(P) a represen-
interpolation wrt(x,y) in time O(die.z)- By the discussion precedtation of the polynomialP (up to normalization), since both con-
ing Theorem10, both A;(x,y) and Bi(x,y) have bidegrees at mosversions above can be performed quasi-optimally by Newtera-
(Di, Ej), whereD; = dy +id; andEj = dy +idy. They can be com-tion [25,21,4]. The key for Algorithm?2 is the following variant
puted by evaluation-interpolation i8(iD;E;) ops. Finally, the re- of [1, §2.3].
sultantR;(x,z) has bidegree at mostiE; + eD;, ), and since the
degree iny of Ay —zB and Q is at mostE;, it can be computed Proposition 11 Let P< K[y] be a polynomial of degree d, let’(P)
by evaluation-interpolation i®((d,E; +&Dj)gE;) ops by Lemmé. denote the generating series of its Newton sums and let ®Iseties

The total cost of the loop is thuB(L), where A (P)oexpy). LetWe be the polynomial ifK[ts, ..., tc] defined by
o 2
L= ((i+€)DiE +digE?). We(ty,....te) = [£] exp( (1)“1tn—> .
;1( ' ) n; n
Using the (crude) bound®; < D, E < Em, 3", € < d;? and Then the following equality holds
Y, dier < did; shows that is bounded by N (ZcP) @ exply) = We(SY), S(2y), ..., S(cy)).
oo m n . PROOF By construction, the seriesis
Drin 3 (i-+€) +ER 3 der < DinEim(? -+ c?) + E2d Y )
= = Sly) = (a“+a”+~~-+a”)£ =Y explaiy)
which, by using the inequalitieBm < 2md; andEm < 2md;, is seen n;) 1742 d/ M i; 157
* % *2 - B
to belong_tcx)(nqzdxdy(n?+dy )- _ _ When applied to the polynomial.P, this becomes
Gathering together the various complexity bounds yieldsstated
bound and finishes the proof of the theorenL] N (ZP)oexply)= 3 exp((ai, +ai, + - +ai.)y)
1< <i¢
. . . d
Remark. Note that one could also use Hermite reduction combined . :
with the usual Rothstein-Trager resultant in order to campupoly- =[Z] IU(1+zexp(a,y)).

nomial R(x, z) that annihilates the residues. Indeed, Hermite red
tion computes an auxiliary rational function that admite game
residues as the input, while only having simple poles. Aelos d
spection of this approach provides the same baljnfbr the degree [ exp(zl|og(1+zexp(aiy))>
iny of R(x,2), but a less tight bound for its degreeximamely worse i=

J11ﬁ_is expression rewrites:

by a factor ofdy. The complexity of this alternative approach appears d

~ 3 . . m-1 z"
to beO(dkdy(dy+d;>)) (using results from7]), to be compared with = [Zlexp Zx 2 (LT exp(aimy) —
the complexity bound from Theoref. i=lmz1

n 2
S (-1 1s<mwm) ,

m>1

3.2 Sumsof roots of a polynomial =[7] exn(

Given a polynomialP € K[y] of degreed with coefficients in a .
field K of characteristic 0, lefry, ..., ag be its roots in the algebraicand the last expression equétg(S(y), S(2y),...,S(cy)). O
closure ofK. For any positive integar< d, the polynomial of degree

(d) defined by The correctness of Algorithra follows from observing that the
c truncation order® + 1 iny andc+1 in zof the power series involved
2P= (y— (o, + i, +--+ai)) (2) in the algorithm are sufficient to enable the reconstructbrrcP
1<+ <ic from its first Newton sums bygj.

has coefficients ifiK. This section discusses the computatiortg® Bivariate case. We now consider the case whePds a polynomial

summarized in Algorithn®2, which can be seen as an additive ana-K[x,y]. Then, the coefficients &P wrt y may have denominators.

logue of thePlatypus algorithnof Banderier and Flajoletl]. We follow the steps of Algorithn2 (run onP viewed as a polynomial
We recall two classical formulas (see, e, §2]), the second onein y with coefficients inK(x)) in order to compute bounds on the bide-



gree of the polynomial obtained by clearing out these denatats. Algorithm AlgebraicDiagonal (A/B)

We abtain the following result. Input  Two polynomialsA andB € K[x,y], with B(0,0) # 0O
Output A polynomial @ € K[t,A] such thaid(t, DiagA/B) =

Theorem 12 Let P€ K[X,Y]g,+1,d,+1, €t c be a positive integer such T

that c< dy and let D= (%). Let ac K[x] denote the leading coeffi- C < §8(3:Y) _ _

cient of P wrty and leEcP be defined as in Eq2). Then & .5.Pis ~ WIteG aISZléQ with qunme polynomial$ andQ;

a polynomial inK[x,y] of bidegree at mositD, D) that cancels all ~ R(2) <~ AlgebraicResidues(P/Q)

sumsa, + - - 4 @i, of ¢ rootsa; (x) of P, with iy < --- < ic. Moreover, €%~ number of small branches Gf

this polynomial can be computed @(cdez) ops. ;Degturzzu ;(?lzr?e(PureComposedSum(R ©)

0

This result is close to optimal. Experiments suggest thagémeric
P of bidegree(dy,dy) the minimal polynomial ofoj, + - -- + a;j, has Algorithm 3.Polynomial canceling the diagonal of a rational function

bidegree(dx(‘iyjll)7 (dcy)) In particular, our degree bound is precise

in y, ?“O,'t overs?tqots by a f?ctorl d;/tc or}ly i” x.ﬁSimlilarIy, the follows that the diagonal is algebraic too. Combining thgosithms
complexity resultis quasi-optimal up to afac ordgtly only. of the previous section gives Algorith that produces a polyno-
PrRoOOF The Newton series/ (P) has the form mial equation for Diagf. The correctness of this algorithm over an

adegP+yAxy) adegP+YyAXY) _ y'B(xY)" arbitrary field of characteristic O follows from an adapsatiof the

P) = = arguments of Gessel and Stanléy,[Th. 6.1], 26, Th. 6.3.3].
AP = e - g g[Th. 6.1], P ]

n
n=0 a

with deg A, deg, B < dy. Since both factors belong &y (a), Lemmal Ex_ample 2.Letd>0bean integer, and Iﬁj(x, y) be the rational
implies that.#"(P) € & (a). Applying this same lemma repeatedljinction /(1 —x—y)4*1. The diagonal ofy is equal to

we get that>.P € &y (a) (stability under the integration of Algo- on+d\ /n+d
rithm 2 is immediate). Sinc&cP has degre® wrt y, we deduce that z ( n ) ( d )t”
aP3.Pis a polynomial that satisfies the desired bound. By evainati n=0

and interpolation at ¥ dyD points, and Newton iteration for quoBYy the previous argument, it is an algebraic series, whithéssum
tients of power series if[[y]]1+p (Fact4), the power series?’(P) of the residues of the rational functi@y of Examplel over its small
can be computed i(ﬁ(dez) ops. The power serie8is then com- branches (withx replaced byt). In this case, the denominatoryis-
puted from.#"(P) in O(dxD?) ops. To computé& we use evaluation-t —y2. It has one solution tending to 0 withthe other one tends to 1.
interpolation wrtx at 1+ dyD points, and fast exponentials of powefhus the diagonal is cancelled by the quadratic polynonijal (
series (Fact). The cost of this step ©(cdiD?) ops. Then,# (Z:P)

is computed forO(dyD?) additional ops. The last exponential is . . . .
again computed by evaluation-interpolation and Newtoratien us- Example 3.For an integed > 0, we consider the rational function

ing O(dyD?) ops. [ xd-1
9% ) op Fd(x’y):m’
4. DIAGONALS of bidegree(d,d + 1). The first step of the algorithm produces
4.1 Algebraic equations for diagonals Gy(t.y) = td-1
The relation between diagonals of bivariate rational fiemst and alhY) = yd —td —y2d+1°
algebraic series is classicdlq, 22]. We recall here the usual derivayhose denominator is irreducible withsmall branches. Running
tion whenK = C while setting our notation. Algorithm 3 on this example, we obtain a polynomi&}; annihilat-

Let F(x,y) be a rational function irC(x,y), whose denominatoring DiagF,, which is experimentally irreducible and whose bidegrees
does not vanish at0,0). Then the diagonal oF is a convergent for d = 1,2 3,4 are(2,3), (18,10), (120,35), (700,126). From these
power series that can be represented for small enobgta Cauchy yajues, it is easy to conjecture that the bidegree is given by

integral SRS W dyy (d(d+1) (de:ll) (Zd - 1))

where the contour is for instance a circle of radiusside an annulus of exponential growth in the bidegree Bf. In general, these bide-
where(t/y,y) remains in the domain of convergenceFofThis is the grees do not grow faster than in this example. In Theotgmwe
basis of an algebraic approach to the computation of theodelgas prove bounds that are barely larger than the values above.
a sum of residues of the rational function
P(ty) . 1_(t 4.2 Degree Boundsand Complexity
Qty ~y \y’)’ The rest of this section is devoted to the derivation of beuoal
with P and Q two coprime polynomials. For small enough, the the complexny of AIgorntth and on the size of the polynomial it
circle can be shrunk around 0 and only the root€)(t,y) tending COMPUtes, which are given in Theorem
to 0 whent — 0 lie inside the contourl[8]. These are called theDegrees. A bound on the bidegree @b will be obtained from the
small branchesThus the diagonal is given as bounds successively given by Theoreb@sand12.
P(t,y) In order to follow the impact of the change of variables in the
DiagF (t) = z Residue(—’,y:yi (t)), (4) first step, we define thdiagonal degreeof a polynomialP(x,y) =
Q(tyi(t))=0 Q(t.y) Si,ja.jXy! as the integer dd¢g) := sup{i—j | a,j #0}. We col-
lim yi (t)=0 lect the properties of interest in the following.

where the sum is over thiistinctroots ofQ tending to 0. We call their

number the number of small branchegXdnd denote it by Nsm&lQ). Lemma 13 For any P and Q irK[x,y],
Since they;’s are algebraic and finite in number and residues are olfl) ddegP) < degP;

tained by series expansion, which entails only rationatatpens, it  (2) ddegPQ) = ddedP) + ddedQ);



(3) there exists a polynomiél e K[x,y], such that and B (resp. a squarefree part of B). LetDy,Dy,c be defined as

P(x/y.y) = y~99€dP)B(x y), with B(x, 0) 0 and In Egs. 6,7,9). Then there exists a polynoml € K{t, 4] such that
oL @(t, DiagF(t)) = 0 and
bideg P) < bidegP) + (0, ddegP)); D,\ /D
(4) bideq(ﬁ)*) _ (deg<P*,ddeqP*) +deqlp*)_ bidequ < (Dx( Cy), ( Cy>) .

PrRoOOF Part(1) is immediate. The quantity ddég) is nothing
else than—valy P(x/y,y), which makes Part§?) and (3) clear too.

From thgn*e, we get the |d§ntnﬂQ = PQ for arbitrary P and Q, A general bound on bideg depending only on a bour(dl,d) on the
whence(P)* = P* and Par(4)is a consequence of Paftyand(3). - [yjdegree of the input can be deduced from the above as

Thus, starting with a rational functiof = A/B € K(x,y), with : 2d+1
(dx,dy) a bound on the bidegrees AfandB, and(dy, dy) a bound on bideg® < (d(4d +3),1) x d /-
the bidegree of a squarefree pRrtof B, the first step of the algorithm L .
constructs3(t,y) = y? &, with polynomialsP andQ and 4.3 Optimization
o aaeqe) - saeq) 2 ©) e et e eporunatr St 3 e ey el o
. . - i=1 - )i l | -
bidegP < (dx,ddegA) +dy), bidegQ < (dx,ddegB) +dy), tional branches among thesmall branches o®. Then their corre-
bidegQ* < (d;,d;er;). sponding (rational) residues contribute to the diagonal; therefore
it is only necessary to invoke Algorith®on (Q,c— k), which pro-

Algorithm3 computes it irO (cDx([éy)2 + (e + dy)6> ops.

These inequalities give bounds on the degreesahthe numerator % . 4
and denor?linator (ﬁg 9 duces a polynomiab. Then the polynomiap(t,A) = ®(t,A—5;ri)

The rest of the computation depends on the sigmofif o > 0, cancels the diagonal &. . .
then the degrees iyt of yaP and Q are bounded by ddéB) + d, In particular, this optimization applies systematicaly the fac-

S - tory~ 9 whena < 0 (or equivalentlye = 1) in the algorithm. In this
while if o < 0, those of andy~“Q are bounded by ddég) +dy + 1. o : : L
Thus in both cases they are boundedtloy: dy + &, where case, it yields a polynomiab with smaller degree than the original

algorithm:
1 if a <0, dr + d*
&= . (6) d b < X y .
{O otherwise. EhP < NsmallB*) + ddegB*)

A squarefree part of the denominator has degreg bounded by (A sharper bound on the degreetioan be derived as well.)
dx +dj + . From there, TheorermOyields bidedR < (Dx, Dy), with .

Dy = 20k (0 — 0 + dy — & + 1) + ch(2(c; + s +6)—1), () 44 Generic case . .

s The bounds from Theorerii4 on the bidegree of are slightly

Dy i=di+dj+e. pessimistic wrt the variablie but generically tight wrt the variabl,
Small branches. Itis classical that for a polynomid = Zai,inyj ¢ aswill be proved in Propositioh6 below. We first need a lemma.
K[x,y], the number of its solutions tending to O can be read off jts i o
Newton polygon. This polygon is the lower convex hull of tieéan Lemma 15 LetK be a field of characteristi®, and P< Kly| be a
of (i, ]) + N2 for (i, j) such thata; j # 0. The number of SOMionspholynomlal of degrefe d, W|tr|1 Gt?lo.ls glglro@g overdK. Assumehthat
tending to O is given by the minimal-coordinate of its leftmost (€ r00tsa1, ... aq Of P are algebraically independent ovr Then,

points. Since the number of small branches counts onlyngdissolu- for any c< d, the degred?) polynomialzcP is irreducible inK[y].

tions, itis thus given by PROOF SinceX = a1+ ---+ a¢ is a root of Z:P, it suffices to
Nsmal(P) = Nsmal(P*) = valy([x/3xF"]P*). (8) prove thatk(Z) has degreség) overK. Thea;i’s being algebraically
The change of variables+— x/y changes the coordinates of thédependent, any permutatianc Sy of all the ai’s that leaves:
point corresponding tey j into (i, j —i). This transformation mapsunchanged has to preserag,; +--- + aq as well. It follows that
the vertices of the original Newton polygon to the verticégre K(01,...,0q) has degreel(d —c)! over K(X) and degreel! overK,
Newton polygon of the Laurent polynomi&(x/y,y). Multiplying so thatK(Z) has degreé‘c’) overK [
by y99edP) yields a polynomial and shifts the Newton polygon up

by ddegP), thus Proposition 16 Let A be a polynomial if)[x, yq, q,. and
Nsmall(y"edP)P(x/y.y) ) = Nsmal(P*) + ddegP*). Bixy)= 3 bijxyl €Ql(bij)ixyl.
The number of small branches of the denominatd® ebnstructed 1<t <dy
in the first step of the algorithm is then given by where the pj are indeterminates. Then the polynomial computed
¢ := Nsmall(B*) + ddegB*) + ¢. (9) by Algorithm3 with input A/B is irreducible of degree{dxdtdy) over

Complexity. We now analyze the cost of Algorithf The first step K =Q((bi,j):).

does not require any arithmetic operation. Next, the coatjmn ofR PROOF. First apply the change of variables to obt&@n= P/Q,

takesO((dx + dy)e) ops. (see the comment after Theoréf). The with Q(x,y) = Y] bi.jxiydﬁ”j. Denoted = dy + dy. Then, the poly-

fnrl(J)nr;b:rsgL:rrgsgeb:ja:encccnhrﬁ;()iit?(?rga(lzrc])?gpmg:j ?r? &ggg&?ﬁgim nomialQ(1,y) has the fornf ;qt iyl where the;’s are algebraically
" independent ove®). Therefore,Q(1,y) has Galois groufsy over

. ~ 2
Algorithm 2 usesO(cDx (%)) ops. _ Q(to, ... ,tq) and its roots are algebraically independent o@ej28,

We now have the vglues required by Theoreimwhich concludes §57]. This property lifts taQ(x,y) [28, §61], which thus has Galois
the proof of the following bounds. group&y and algebraically independent roots, denotgd. ., yq.

Now define the polynomiaR(x,y) = i (Y —P(X.¥i)/Q(X,¥i)).
Theorem 14 Let F=A/B be arational function ik (x, y) with B(0, 0) BinceQ has simple roots, this is exactly the polynomial that is com-
0. Let (dx,dy) (resp. (dy,d})) be a bound on the bidegrees of Auted by Algorithm. The family{P(x,y;)/8,Q(x,yi) } is algebraically



independent, since any algebraic relation between thenthimmduce ~ We define the full generating power series of walks

one for they;’s by clearing out denominators. In particular, the nat- W _ “yk Zivy-1

ural morphism G4RQ/K) = &4 — Gal(R/K) is injective, whence s(xy) = WXy € Zly,y ][],

an isomorphism. (Here, G&/K) denotes the Galois group Bfc . n>0kez ) .

K][y] overK.) Since an immediate investigation of the Newton polyherewn  is the number of walks with step s&tof lengthnand final

gon of Q shows that it hagl small branches, we conclude usingltitudek. We denote byBs(x) (resp. Es(x), andMs(x)) the power

Lemmals. O seriesy >0 UnX", whereun is the number of bridges (resp. excursions,
and meanders) of lengthwith step seS.

Propositiont 6implies that for a generic rational functidyBwith e omit the step se§ as a subscript when there is no ambiguity.

A€ K[x,Ylga andB € K[x,Yla+1d+1, the degree ofp in A'is (%). Several properties of the power selisB, E andM are classical:

This is indeed observed on random examples.
Fact 17 [1, 82.1-2.2] The power series W, B, E and M satisfy
Example 4.We consider a rational functioR (x,y) = 1/B(x,y), (1) W(xy) is rational and Wx,y) = 1/(1—XI"(y));
whereB(x,y) is a dense polynomial of bidegrée, d) chosen at ran- (2) B(X), E(x) and M(x) are algebraic;
dom. Ford = 1,2, 3,4, algorithmAlgebraicDiagonal (F) produces  (3) B(X) = [y°]W(x,y);
irreducibleoutputs with bidegree&, 2), (16,6), (108 20), (640,70),  (4) E(x) = exp(/ (B(x) —1)/xdx).

that are matched by the formulas ) o ) o
Our main objective in what follows is to study the efficiendycom-
(2d2 (2d - 2). (2d>) (10) Pputing the power series expansions of the seBie§ andM. In the
d-1/'\d ’ next two sections, we first study two previously known methdken
so that the bound on dg@ is tight in this case and the irreducibilityve design a new one.

of the output shows that Theoreld cannot be improved further. } . .
5.2 Expanding the generating power series

We denote byu~ (resp. u™) the largestu such that(1,—u) € S

(resp. (L,u) € § and denote byl the sumu™ +u™. The integer

5. WALKS d measures the vertical amplitude &f this makesd a good scale
or measuring the complexity of the algorithms that willléel. We

; by ; hat botl~ andu™ are positive, since otherwise the study of
proved in Propositioi6 concerns more generally other sums of resi 5 me th: g
since this is the step where the exponential growth of thebakgc % x.cur5|ons and meanders .becomes tr'?”?!' ]
equations appears. This includes in particular constamistef ratio- The direct methpd. The combinatorial definition of walks yields a
nal functions inC(x)[[y]], that can also be written as contour integrat§currence relation fowy :
of rational functions around the origin. Wor — W (11)

By contrast, sums of residues of a rational function alwayisty nk = Z n—Lk-us
a differential equation of only polynomial siz€][ Thus, when an (Lues
algebraic function appears to be connected to a sum of eesioliua With initial conditionswyx = 0 if n,k < 0 with (n,k) # (0,0), and
rational function, the use of this differential structuseniuch more Woo = 1. If Wy denotes the number of walks of lengttand final
adapted to the computation of series expansions, insteaing altitudek that never exit the upper half plane, thepy‘also satisfies
through a potentially large polynomial. recurrence 1), but with the additional initial conditionsi,j; = O for

As an example where this phenomenon occurs naturally, we @k < 0. Then the bridges (resp. excursions, meanders) are cbunte
sider here the enumeration of unidimensional lattice wdttlowing by the numbersv, o (resp.wWp o, 3 i Wn k)-
Banderier and Flajoletl] and Bousguet-Mélou7]. Our goal in this  One can compute these numbers by unrolling the recurretae re
section is to study, from the algorithmic perspective, #ges expan- tion (11). Each use of the recurrence coSt&l) ops., and in the worst
sions of various generating functions (for bridges, exoms mean- case one has to compu@dN?) terms of the sequence (for example,
ders) that have been identified as algebra]c Pne of our contribu- if the step set iS= {(1,1),...,(1,d)}). This leads to the computa-
tions is to point out that although algebraic series can Ipardted tion of each of the generating seriesiid2N?) ops.
fast [11, 12, 3], the pre-computation of a polynomial equation coull(jsin algebraic equations. Another method is suggested i §2.3]
have prohibitive cost. We overcome this difficulty by prevgmuting It religes gn the aelqebraicif & E andM (Factl?(%]) The series
differential (instead of polynomial) equations that hawypomial andM can be ex?)ressed yas broducts in terms of ihe small branches
size only, and using them to compute series expansions ¢smeN of the characteristic polynomidls (see [L, Th. 1, Cor. 1]). From

for bridges, excursions and meanders in time quasi-limelr i there. a polynomial equation can be obtained using the Riatglgo-
A . rithm [1, §2.3], which computes a polynomial canceling the products

5.1 Pre“mma”es ) ] of a fixed number of roots of a given polynomial. Given a pokyno

~ We start with some vocabulary on lattice walks. sAnple step mial equatiorP(z E) = 0, another one foB can be deduced from the

is a vector(1,u) with u € Z. A step set Ss a finite set of simple rg|ationB = zE'JE +1 as Resultagt((B— 1)ER: +zR, P).

steps. Aunidimensional walkn the planeZ? built from Sis a finite  Once a polynomial equation is known for one of these threeser

sequencéAg,Aq,...,An) of points inZ?, such thathg = (0,0) and it can be used to compute a linear recurrence with polynoouaf-

oy ; ; ; ficients satisfied by its coefficient&, 12, 3]. This method produces

A 1A« = (1,uk) with (L,uk) € S In this casen is called theength > ; L

of the walk, andSis thestep sebf the walk. They-coordinate of the 20 algorithm that computes the fifstterms ofB, E andM in O(N)

; N . ; ops. For this to be an improvement over the naive method fge 14,
_?_rp]gpcti:gtrﬁg,ten&rtrils lgé'y:nlol;'n’iésl gfa tllheed Sttré% fég:l altitude of the Walkthe dependence ahof the constant in th®() should not be too large

and the precomputation not too costly.
Cs(y) = Z Y. Indeed, the cost of the pre-computation of an algebraic tesjua
(Lues is not negligible. Generically, the minimal polynomial Bfhas de-

Following Banderier and Flajolet, we consider three spetiin- gree (ud,), which may be exponentially large with respectdd7].
ilies of walks: bridges, excursions and meanddis [Bridgesare Empirically, the polynomials foB andM are similarly large.
walks with final altitude Omeandersare walks confined to the upper The situation for differential equations and recurrenesadifferent:
half plane, angxcursionsare bridges that are also meanders. B satisfies a differential equation of only polynomial sizeg®elow),

The exponential degree of the minimal polynomial of a diado



Algorithm Walks(S, N)

Input A setSof simple steps and an integsr
Output Bs, Eg,Mg modxN+1

F + W(x,y)/y[caseB,E] or W(x,y)/(1—y) [caseM]

D « HermiteTelescoping(F) [2, Fig. 3]

R « the recurrence of orderassociated t®

I+ YIW(xy) modx*+1 [caseB, E]
YPIyW(x,y)/(1—y) modx*! [caseM]

B+ [YIW(x,y) modxN+1 (from R 1)

A< YOIyW(x,y)/(1—y) modxN+1 (from R 1)

E < exp([ (B(x) — 1)/xdx) modxN+1

M — exp(— [ (A(X)/X)/(1—T(1)x) dx) modxN+1

return B,E,M

Algorithm 4.Expanding the generating functions
of bridges, excursions and meanders

Meanders. As in the case of excursions, the logarithmic derivative
of M(x) is recovered from a sum of residues by the following.

Proposition 19 The series W and M are related through
exp<ff @ dx)
1-xr (1)

PrRoOOF Denote byyi,...,y,- the small branches of the polyno-
mialy* —xy! I (y). ThenM is given as {, Cor. 1]:

1 u
M(x) = mig(l—)ﬁ)-
On the other hand,

AX) = % V\i(f ;l)

A = [ WOKY), M9 =

dy

< 1 : 1
= Residug_,, (—> N ,
whereas (empirically), those f& andM have a potentially exponen- i; Fn (1=y)(1=x(y)) i; (1=yi)x" (i)
tial size. These sizes then transfer to the correspondingnences where the integral has been taken over a circle around thmard

and thereby to the constant in the complexity of unrollingnth

Example 5.With the step seS= {(1,d),(1,1),(1,—d)} andd >
2, the counting serieék equals
yd

—X(14yd+1 fy2dy”

VVS(X7 Y) = yd

the small branches. Differentiating the equationx (y) = 0 with re-
spect tox leads to—xI' (yi) = 1/(xy}), whenceA(x) = xS, i /(1—vi).
Therefore[1(1—yi) = exp(— [ A/xdx)), finishing the proof. [

Thus we apply the same method as in the case of the excur§ins.
first compute a differential equation fé(x) using the method of7].

Experiments indicate that the minimal polynomialBx(x) has bide- The computation of the initial conditions fércan also be performed

gree(2d (23:12) , (2d

d )), exhibiting an exponential growth oh On the

naively from its definition as a constant term, by simply exqiag
YW(x,y)/(1—Yy). The formula of the proposition then recovéfi$x).

other hand, they show th&l5(x) satisfies a linear differential equathe complexity analysis goes exactly as in the previous, gigeg
tion of order 21 — 1 and coefficients of degre# +3d — 2 for evend, 5 global cost of(d®) ops.

andd? + 3d — 4 for oddd.
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New Method. We now give a method that runs in quasi-linear time

(with respect td\) and avoids the computation of an algebraic equé'i-
tion. Our method relies on the fact that periods of rationaktions ©.
such as the one in PgR) of Fact17 satisfy differential equations of [1]
polynomial size in the degree of the input rational functigh We 2]
summarize our results in the following theorem, and then\go the
proof in each case individually. 3]

Theorem 18 Let S be a finite set of simple steps ane-di— +u™. [4

The series B (resp. E and Ms) can be expanded at order N in 5

O(d2N) ops. (respO(d?N) ops.), after a pre-computation {B(d®) ops.
(6]

5.3 Fast Algorithms

Bridges. To expandB(x), we rely on Fact.7(3). The formula can be Y
written B = (1/2ni)§W(x,y)d—;’, the integration path being a circle [8]
inside a small annulus around the origin proof of Th. 1]. Moreover, 9]
W(x,y)/y is of the formP/Q, where bide® < (1,d) and bided®® < [10]
(0,d —1). SinceP andQ are relatively prime an@ is primitive with
respect toy, Algorithm Her miteTelescoping [2, Fig. 3] computes a [11]
tele~scoper foP/Q, which is also a differential equation satisfiedy 12]
in O(d®) ops. The resulting differential equation has order at rdos{
and degreeD(d?). This differential equation can be turned into &3
recurrence of orde®(d?) in quasi-optimal time (see the discussiofi4
after [5, Cor. 2]). We may use it to expar{x) modxN in O(d?N)

ops, once we have a way to compute the initial conditions. tBist (15]
can be done using the naive algorithm described abo(fl{dﬁ) ops. [16]
Thus, the total cost of the pre-computatiordigl®), as announced. 171

Excursions. If B(x) modxN*1 is known, it is then possible to re-
cover E(x) modxN+1 thanks to Faci7(4). ExpandingE(x) comes 18l
down to the computation of the exponential of a series, whaghbe [;q)
performed using(N) ops. (Fact(4)).
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