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Abstract

Let K be a field equipped with a valuation. Tropical varieties over K can be defined with

a theory of Gröbner bases taking into account the valuation of K. Because of the use of the

valuation, this theory is promising for stable computations over polynomial rings over a p-adic

fields.

We design a strategy to compute such tropical Gröbner bases by adapting the Matrix-F5

algorithm. Two variants of the Matrix-F5 algorithm, depending on how the Macaulay matrices

are built, are available to tropical computation with respective modifications. The former is

more numerically stable while the latter is faster.

Our study is performed both over any exact field with valuation and some inexact fields

like Qp or FqJtK. In the latter case, we track the loss in precision, and show that the numerical

stability can compare very favorably to the case of classical Gröbner bases when the valuation

is non-trivial. Numerical examples are provided.

1 Introduction

Despite its young age, tropical geometry has revealed to be of significant value, with applications
in algebraic geometry, combinatorics, computer science, and non-archimedean geometry (see [11],
[5]).

Effective computation over tropical varieties make decisive usage of Gröbner bases, but before
Chan and Maclagan’s definition of tropical Gröbner bases taking into account the valuation in [3],
[4], computations were only available over fields with trivial valuation where standard Gröbner
bases techniques applied. In this document, we show that following this definition, Matrix-F5
algorithms can be performed to compute tropical Gröbner bases.

Our motivations are twofold. Firstly, our result bears promising application for computation
over fields with valuation that are not effective, such as Qp or QJtK. Indeed, in [14], the author
studies computation of Gröbner bases over such fields and proves that for a regular sequence
and under some regularity assumption (whose genericity is at best conjectural) and with enough
initial entry precision, approximate Gröbner bases can be computed. Thank to the study of
Matrix-F5 algorithms, we prove that to compute a tropical Gröbner basis of the ideal generated
by F = (f1, . . . , fs), F being regular and known with enough initial precision is sufficient. Hence,
generically, approximate tropical Gröbner bases can be computed. Moreover, for a special choice
of term order, the smallest loss in precision that can be obtained by linear algebra is attained:
tropical Gröbner bases then provide a generically numerically stable alternative to Gröbner bases.

Secondly, Matrix-F5 algorithms allow an easy study of the complexity of the computation of
tropical Gröbner bases and are a first step toward a tropical F5 algorithm.

Related works on tropical Gröbner bases: We refer to the book of Maclagan and Sturmfels
[11] for an introduction to computational tropical algebraic geometry.

The computation of tropical varieties over Q with trivial valuation is available in the Gfan
package by Anders Jensen (see [9]), by using standard Gröbner basis computation. Yet, for com-
putation of tropical varieties over general fields, with non-trivial valuation, such techniques are not
readily available. This is why Chan and Maclagan have developed in [4] a way to extend the theory
of Gröbner bases to take into account the valuation and allow tropical computation. Their theory
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of tropical Gröbner bases is effective and allows, with a suitable division algorithm, a Buchberger
algorithm.

Main results: Let K be a field equipped with a valuation val. Let ≥ be an order on the terms
of K[X1, . . . , Xn] as in Definition 2.3, defined with w ∈ Im(val)n and a monomial ordering ≥1 .
Following [4], we define tropical D-Gröbner bases as for classical Gröbner bases.

Then, we provide with Algorithm 1 a tropical row-echelon form computation algorithm for
Macaulay matrices. We show that the F5 criterion still holds in a tropical setting. We therefore
define the tropical Matrix-F5 algorithm (Algorithm 2) as an adaptation of a näıve Matrix-F5
algorithm with the tropical row-echelon form computation. We then have the following result :

Proposition 1.1. Let (f1, . . . , fs) ∈ K[X1, . . . , Xn]
s be a sequence of homogeneous polynomials.

Then, the tropical Matrix-F5 algorithm computes a tropical D-Gröbner basis of 〈f1, . . . , fs〉. Time-

complexity is in O
(
s2D

(
n+D−1

D

)3)
operations in K, as D → +∞.1 If (f1, . . . , fs) is regular, time-

complexity is in O
(
sD

(
n+D−1

D

)3)
.

The Macaulay bound is also available. Furthermore, not only does the tropical Matrix-F5 al-
gorithm computes tropical D-Gröbner bases, but it is compatible with finite-precision coefficients,
under the assumption that the entry sequence is regular. Let us assume thatK = Qp, FqJtK or QJtK.
Let (f1, . . . , fs) ∈ K[X1, . . . , Xn]

s.We define a bound on the precision, precMF5trop ((f1, . . . , fs), D,≥) ,
and one on the loss in precision, lossMF5trop ((f1, . . . , fs), D,≥) , which depend explicitly on the
coefficients of the fi’s. Then we have the following proposition regarding to numerical stability of
tropical Gröbner bases :

Proposition 1.2. Let F = (f1, . . . , fs) ∈ K[X1, . . . , Xn]
s be a regular sequence of homogeneous

polynomials.
Let (f ′

1, . . . , f
′
s) be some approximations of F, with precision l on their coefficients better than

precMF5trop(F,D,≥). Then, with the tropical Matrix-F5 algorithm, one can compute an approxi-
mation g′1, . . . , g

′
t of a Gröbner basis of 〈F 〉 , up to precision l− lossMF5trop(F,D,≥).

This contrasts with the case of classical Gröbner bases, for a monomial order ω, over p-adics
(or complete discrete valuation fields) considered in [14]. Indeed, the structure hypothesis H2

which requires that the ideals〈f1, . . . , fi〉 are weakly-ω is no longer necessary (see Subsection 4.6).
It is only replaced by the (possibly stronger) assumption that the initial precision is better than
precMF5trop(F,D,≥). In the special case of a weight w = (0, . . . , 0), the loss in precision is the
smallest linear algebra on the Macaulay matrices can provide, and numerical evidences show that
it is in average rather low.

Finally, we show that a faster variant of Matrix-F5 algorithm, where one use the Macaulay
matrices in degree d to build the Macaulay matrices in degree d + 1, can be adapted to compute
tropical Gröbner bases. We first provide a tropical LUP-form computation for Macaulay matrices
that is compatible with signatures, and then what we call the tropical signature-based Matrix-F5
algorithm (algorithms 3 and 4). We prove the following result :

Proposition 1.3. Let (f1, . . . , fs) ∈ K[X1, . . . , Xn]
s be a sequence of homogeneous polynomials.

Then, the tropical signature-based Matrix-F5 algorithm computes a tropical D-Gröbner basis of
〈f1, . . . , fs〉 .

Time-complexity is then inO
(
sD

(
n+D−1

D

)3)
operations inK, asD → +∞ andO

(
D
(
n+D−1

D

)3)

when the input polynomials form a regular sequence.
Structure of the paper: Section 2 is devoted to provide a tropical setting and definitions

for tropical Gröbner bases. In Section 3, we show that matrix algorithms can be performed to
compute such bases. To that intent, after an introduction to matrix algorithms for Gröbner bases,
we provide a row-reduction algorithm that will make a first näıve Matrix-F5 algorithm available.
We then prove and analyze this tropical Matrix-F5 algorithm. In Section 4 we analyze the stability
of this algorithm over inexact fields with valuations, such as Qp. Section 5 is devoted to numerical
examples regarding the loss in precision in the computation of tropical Gröbner bases. In Section 6,

1One could also write O

(

s2
(

n+D

D

)3
)

.
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we prove that the classical signature-based Matrix-F5 algorithm is available, along with an adapted
tropical LUP algorithm for row-reduction of Macaulay matrices. Finally, Section 7 is a glance at
some future possible developments for tropical Gröbner bases.

2 Context and motivations

From now on, let K be a field equipped with a valuation val : K∗ → R. Let R be the ring of
integers of K, m its maximal ideal, kK its residue field and let Γ = Im(val). An example of such
a field is Qp with p-adic valuation. In that case, R = Zp, m = pZp, kK = Z/pZ and Γ = Z.

Let also n ∈ Z>0, A = K[X1, . . . , Xn], B = R[X1, . . . , Xn] and C = kK [X1, . . . , Xn]. We write
|f | for the degree of a homogeneous polynomial f ∈ A, and Ad = K[X1, . . . , Xn]d for the K-vector
space of degree d homogeneous polynomials.

2.1 Tropical varieties, tropical Gröbner bases

If I is an homogeneous ideal in A, and V (I) ⊂ Pn−1
K is the projective variety defined by I. Then

the tropical variety defined by I, or the tropicalization of V (I), is Trop(I) = val (V (I) ∩ (K∗)n)
(closure in Rn). Trop(I) is a polyhedral complex and acts as a combinatorial shadow of V (I) :
many properties of V (I) can be recovered combinatorially from Trop(I).

If w ∈ Γn, we define an order on the terms of K[X1, . . . , Xn].

Definition 2.1. If a, b ∈ K and xα, xβ are two monomials in A, axα ≥w bxβ if val(a) + w · α ≤
val(b) + w · β. Naturally, it is possible that axα 6= bxβ and val(a) + w · α = val(b) + w · β.

For any f ∈ A, we can define LT≥w
(f), and then LT≥w

(I), for I ⊂ A an ideal, accordingly.

We remark that LT≥w
(f) might be a polynomial (with more than one term). For example, if

we take w = [1, 2, 3] in Q2[x, y, z] (with 2-adic valuation), then

LT≥w

(
x4 + x2y + 2y4 + 2−8z4

)
= x4 + x2y + 2−8z4.

T rop(I) is then connected to LT≥w
(I):

Theorem 2.2 (Fundamental th. of tropical geometry). If K is algebraically closed with non-
trivial valuation, Trop(I) is the closure in Rn of those w ∈ Γn such that LT≥w

(I) does not contain
a monomial.

Proof. See Theorem 3.2.5 of [11].

To compute LT≥w
(I) one can add a (classical) monomial order in order to break ties when

LT≥w
(f) has more than one monomial.

Definition 2.3. Let us take ≥1 a monomial order on A.
Given a, b ∈ K and xα and xβ two monomials in A, we write axα ≥ bxβ if val(a) + w · α <

val(b) + w · β, or val(a) + w · α = val(b) + w · β and xα ≥1 xβ .
Let f ∈ A and A be an ideal of A. We define LT (f) and LT (I) accordingly. We remark that

LT (I) = LT≥1
(LTw(I)). We define LM(f) to be the monomial of LT (f), and LM(I) accordingly.

If G = (g1, . . . gs) ∈ As is such that its leading monomials (LM(g1), . . . , LM(gs)) generate LM(I),
we say that G is a tropical Gröbner basis of I.

We can finally remark that to compute a generating set of LM≥w
(I), it is enough to compute

a tropical Gröbner basis of I.
Comparison with notations in previous works: In [4], K is such that there is a group

homomorphism φ : Γ → K such that for any w ∈ Γ, val(φ(w)) = w. If x ∈ R, its reduction
modulo m is denoted by x. We define ρ : K∗ → kK to be defined by ρ(x) = xφ(val(x)). ρ extends
naturally to A \ {0} with ρ(

∑
u aux

u) =
∑

u ρ(au)x
u. ≥1 extends naturally to C. Let w ∈ Γn,

then, in [3], the author defines for any f ∈ A, inw = ρ(LT≥w
(f)) and lm(f) = LM≥1

(inw). Let
G = (g1, . . . , gs) ∈ As. Then G is a tropical Gröbner basis of I = 〈G〉 for the term order ≤ if and
only if (inw(g1), . . . , inw(gs)) is a Gröbner basis of inw(I) for ≤1 . As a consequence, computing
LM(I) and in(I) yields the same monomials. Nevertheless, we prefer working with LM since
computations over (inexact) fields with valuations are among our motivations.
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2.2 The algorithm of Chan and Maclagan

A Buchberger-style algorithm: in their article [4], Chan and Maclagan have proved that
if one modifies the classical division algorithm of a polynomial by a finite family of polynomials
with a variant of Mora’s tangent cone algorithm, then one can get a division algorithm suited
to the computation of tropical Gröbner bases. Indeed, they proved that Buchberger’s algorithm
using this division algorithm computes tropical Gröbner bases of ideals generated by homogeneous
polynomials. The main ideas of their division algorithm is to allow division by previous partial
quotients, and choose the divisor polynomial with a suited écart function.

Precision issues: Polynomial computation over (inexact) fields such as Qp or FpJtK is our
main motivation. To compute tropical Gröbner bases in such a setting, one may want to apply
Chan and Maclagan’s algorithm. Unfortunately, Buchberger-style algorithms rely on zero-testing:
the termination criterion is Buchberger’s. This is definitely not suited to finite precision. For
instance, let F be (x2 + xy+ y2 + (1 +O(pN ))t2, x2 +2xy+ 4y2 + (1 +O(pN ))t2, t4) ∈ Qp[x, y, t]

3,
for some N ∈ N. Then the application of Chan and Maclagan’s algorithm (e.g. for w = (0, 0, 0)
and grevlex) lead to S-polynomials that reduce to quantity of the form O(πN ′

)xyt2, i.e. such that
it is not possible to decide whether the polynomial in remainder is zero or not. Such issues appear
even with the usage of Buchberger’s criteria. Hence, they exclude the usage of Buchberger-style
algorithms for most of the computations of Gröbner bases over fields such as Qp.

3 A tropical Matrix-F5 algorithm

3.1 Matrix algorithm

Here we show that to compute a tropical Gröbner basis of an ideal given by a finite sequence of
homogeneous polynomials, a matrix algorithm can be written. The first main idea is due to Daniel
Lazard in [10], who remarked that for an homogeneous ideal I ⊂ A, generated by homogeneous
polynomials (f1, . . . , fs), for d ∈ N, then as K-vector space: I ∩ Ad = 〈xαfi, |α|+ |fi| = d〉 . One
of the main features of this property is that it can be given in term of matrices. First, we define
the matrices of Macaulay :

Definition 3.1. Let Bn,d be the basis of the monomials of degree d, ordered decreasingly ac-
cording to ≥ . Then for f1, . . . , fs ∈ A homogeneous polynomials, |fi| = di, d ∈ N, we define

Macd(f1, . . . , fs) to be the matrix with coefficients inK and whose rows are xα1,1f1, . . . , x
α

1,(n+d−d1−1

n−1 ) ,

xα2,1f2, . . . , x
α

s,(n+d−ds−1
n−1 )fs, written in the basis Bn,d. The xαi,1 < · · · < x

α
i,(n+d−di−1

n−1 )’s are the
monomials of degree n+d−di−1. The i-th column of this matrix corresponds to the i-th monomial
of Bn,d.

If we identify naturally the rows vectors of k

(
n+d−1
n−1

)
with homogeneous polynomials of degree

d, then
Im(Macd(f1, . . . , fs)) = I ∩ Ad,

with Im being the left image of the matrix.
When performing classical matrix algorithms to compute Gröbner bases (see [1]), the idea is

then to compute row-echelon forms of the Macd(f1, . . . , fs) up to some D: if D is large enough,
the reduced rows forms a Gröbner basis of I. Though, it is not easy to guess in advance up to
which D we have to perform row-reductions of Macaulay matrices. This is why the idea of tropical
D-Gröbner bases can be introduced.

Definition 3.2. Let I be an ideal of A, Then (g1, . . . , gl) is a D-Gröbner basis of I for ≥ if for any
f ∈ I, homogeneous of degree less than D, there exists 1 ≤ i ≤ l such that LT (gi) divides LT (f).

3.2 Tropical row-echelon form computation

This Subsection is devoted to provide an algorithm that can compute LM(〈f1, . . . , fi〉) ∩ Ad by
computing echelonized bases of the Macd(f1, . . . , fi). To track what the leading term of a row is,
we add a label of monomials to the matrices:
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Definition 3.3. We define a Macaulay matrix of degree d in A to be a couple (M,mon) where

M ∈ Kr×(n+d−1

n−1 ) is a matrix, and mon is the list of the
(
n+d−1
n−1

)
monomials of degree d of A, in

decreasing order according to ≥ . If mon is not ordered, (M,mon) is only called a labeled matrix.

Algorithm 1 over Macaulay matrices computes by pivoting the leading terms of their rows:

Algorithm 1: The tropical row-echelon algorithm

input :M , a Macaulay matrix of degree d in A = K[X1, . . . , Xn], with nrow rows and
ncol columns.

output : M̃ , the tropical row-echelon form of M
M̃ ←M ;
if ncol = 1 or nrow = 0 or M has no non-zero entry then

Return M̃ ;
else

Find i, j such that M̃i,j has the greatest term M̃i,jx
monj (with smallest i in case of

tie);

Swap the columns 1 and j of M̃ , and the 1 and j entries of mon;

Swap the rows 1 and i of M̃ ;
By pivoting with the first row, eliminate the first-column coefficients of the other
rows ;

Proceed recursively on the submatrix M̃i≥2,j≥2;

Return M̃ ;

Definition 3.4. We define the tropical row-echelon form of a Macaulay matrix M as the result of
the previous algorithm, and denote it by M̃. M̃ is indeed in row-echelon form.

Correctness: ˜Macd(f1, . . . , fi) provides exactly the leading terms of 〈f1, . . . , fi〉 ∩ Ad:

Proposition 3.5. Let F = (f1, . . . , fs) be homogeneous polynomials in A. Let d ∈ Z>0 and
M = Macd(f1, . . . , fs).. Let I = {F} be the ideal generated by the fi’s.

Let M̃ be the tropical row-echelon form of M . Then the rows of M̃ form a basis of I ∩Ad such
that their LT ’s corresponds to LT (I) ∩Ad.

The fact that the rows of M̃ form a basis of I ∩ Ad is clear, it forms an echelonized basis
(considering the basis mon of Ad). Considering the initial terms of I ∩ Ad, the result is a direct
consequence of the following lemma:

Lemma 3.6. if axα > b1x
β and axα > b2x

β, then axα > (b1 + b2)x
β .

Consequence: We can find all the polynomials of a tropical D-Gröbner basis of 〈f1, . . . , fs〉 by
computing the tropical row-echelon forms of the Macd(f1, . . . , fs) for d from 1 to D. Nevertheless,
there is room for improvement: those matrices are huge and most of the time not of full rank.

3.3 The F5 criterion

We introduce here Faugère’s F5 criterion that is enough to discard most of the rows of the
Macd(f1, . . . , fs)’s that do not yield any meaningful information for the computation of LT (I).
For any j ∈ J1, sK, we denote by Ij the ideal 〈f1, . . . , fj〉 . Then, Faugère proved in [7] that for
a classical monomial ordering, if we know which monomials xα are in LM(Ii−1), we are able to
discard corresponding rows xαfi of the Macaulay matrices. This criterion is compatible with our
definition of LM :

Theorem 3.7 (F5-criterion). For any i ∈ J1, sK,

Ii∩Ad = Span({xαfk, s.t. 1 ≤ k ≤ i, |xαfk| = d

and xα /∈ LM(Ik−1)}).
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To prove this result, one can rely on the following fact, which can be proved inductively. Let
(f1, . . . , fi) be homogeneous polynomials of A of degree d1, . . . , di. Let aα1

xα1 , . . . , aαu
xαu be the

initial terms of the rows of
˜Macd−di
(f1, . . . , fi−1), ordered by decreasing order (regarding the initial term). Let xβj denote

the remaining monomials of degree d− di (i.e. the monomials that are not an initial monomial of
〈f1, . . . , fi−1〉 ∩Ad−di

). Then, for any k, the row xαkfi of Macd(f1, . . . , fi) is a linear combination
of some rows of the form xαk+k′ fi (k

′ > 0), xβjfi and xγfj (j < i) of Macd(f1, . . . , fi).
Thus, it is now clear which rows we can remove with the F5 criterion. The following subsection

provides an effective way of taking advantage of this criterion.

3.4 A first Matrix-F5 algorithm

The tropical MF5 algorithm: We apply Faugère’s idea (see [1],[2], [7]) to the tropical setting
and therefore provide a tropical Matrix-F5 algorithm:

Algorithm 2: A tropical Matrix-F5 algorithm

input :F = (f1, . . . , fs) ∈ As, homogeneous with respective degrees d1 ≤ · · · ≤ ds, and
D ∈ N

output : (g1, . . . , gk) ∈ Ak, a D-tropical Gröbner basis of {F} .
G← F
for d ∈ J0, DK do

M̃d,0 := ∅
for i ∈ J1, sK do

Md,i := M̃d,i−1

for α such that |α|+ di = d do

if xα is not the leading term of a row of ˜Md−di,i−1 then

Add xαfi to Md,i

Compute M̃d,i, the tropical row-echelon form of Md,i

Add to G all the rows with a new leading monomial.

Return G

Correctness: What we have to show is that for any d ∈ J0, DK and i ∈ J1, sK, Im(Md,i) =
Ii ∩ Ad. This can be proved by induction on d and i. We remark that there is nothing to prove
for i = 1 and any d. Now let us assume that there exists some i ∈ J1, sK such that for any j with
1 ≤ j < i and for any d, 0 ≤ d ≤ D, Im(Md,j) = Ij ∩ Ad. Then, i being given, the first d such
that Md,i 6= Md,i−1 is di. Let d be such that di ≤ d ≤ D. Then, with the induction hypothesis and
corollary 3.7 :

Ii ∩ Ad = Im(Md,i−1) + Span ({xαfi, s.t. xα /∈ LM(Ii−1)}) . (1)

Besides, by the induction hypothesis and the correctness of the row-echelon algorithm (see
Proposition 3.5), the leading terms of Ii−1 ∩ Ad−di

are exactly the leading terms of rows of

˜Md−di,i−1. Thus, the rows that we add to M̃d,i−1 in order to build Md,i are exactly the xαfi,

such that xα /∈ LM(Ii−1). Finally, we remark that Im(Md,i) = Im(M̃d,i−1). Therefore, Im(Md,i)
contains both summands of (1), and since it is clearly included in Ii ∩ Ad, we have proved that
Ii ∩Ad = Im(Md,i). To conclude the correctness of the tropical MF5 algorithm, we point out that
the correctness of the tropical row-echelon computation (see prop 3.5) show that the leading terms

of rows of M̃d,i indeed correspond to the leading terms of Ii ∩ Ad.

3.5 Regular sequences and complexity

Principal syzygies and regularity: The behavior of this algorithm with respect to principal
syzygies is the same as the classical Matrix-F5 algorithm. See [1] for a precise description of the link
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between syzygies and row-reduction. We instead only prove the main result connecting principal
syzygies and tropical row-reduction of Macaulay matrices.

Proposition 3.8. If a row reduces to zero during the tropical row-echelon form computation of
the tropical MF5 algorithm, then the syzygy it yields is not in the module of principal syzygies.

Proof. Let
∑i

j=1 ajfj with aj ∈ A be a syzygy of (f1, . . . , fi). If aj 6= 0 and if this this syzygy
is principal, then ai ∈ Ii−1 and LM(ai) ∈ LM(Ii−1). Since because of the F5 criterion, there is
no row of the form xαfi with xα ∈ LM(Ii−1) in the operated Md,i, then no such syzygy can be
produced during the reduction of Md,i.

Corollary 3.9. If the sequence (f1, . . . , fs) is regular, then no row of a Macaulay matrix in the
tropical MF5 algorithm reduces to zero. In other words, the Md,i are all injective, and have non-
strictly less rows than columns.

Proof. For a regular sequence of homogeneous polynomials, all syzygies are principal. See [6] page
69.

Complexity: The complexity to compute tropical row-echelon form of a matrix of rank r with
nrows rows and ncols columns can be expressed as O(r×nrows×ncols) operations in K. This yields
the following complexities for Algorithm 2:

• O
(
s2D

(
n+D−1

D

)3)
operations in K, as D → +∞.

• O
(
sD

(
n+D−1

D

)3)
operations in K, as D → +∞, in the special case where (f1, . . . fs) is

regular, because of corollary 3.9.

Compared to the classical case, for which we refer to [2], complexity gets essentially an extra factor
s. This comes from the fact that we need to compute the tropical row-echelon form from start for
each new Md,i. In other words, we do not take into account the fact that, after building Md,i,

M̃d,i−1 was already under row-echelon form.
Bound on D: Regarding bounds on a sufficientD forD-Gröbner bases to be Gröbner bases, we

might not hope better bounds than in the classical case (i.e. with trivial valuation) exist. Chan has

proved in [3] (Theorem 3.3.1) that D = 2(d2/2+d)2
n−2

, with d = maxi di, is enough. If (f1, . . . , fn)
is a regular sequence, we remark that all monomials of degree greater than the Macaulay bound∑

i(di − 1) + 1 are in LM(I). This is a consequence of the fact that we know what is the Hilbert
function of a regular sequence. Hence,

Proposition 3.10. If (f1, . . . , fn) ∈ An is a regular sequence of homogeneous polynomials, all
D-Gröbner bases are Gröbner bases for D ≥

∑
i(|fi| − 1) + 1.

4 The case of finite-precision CDVF

4.1 Setting

Throughout this section, we further assume that K is a complete discrete valuation field. We refer
to Serre [13] for an introduction to such fields. Let π ∈ R be a uniformizer for K and let SK ⊂ R
be a system of representatives of kK = R/m. All numbers of K can be written uniquely under its
π-adic power series development form :

∑
k≥l akπ

k for some l ∈ Z, ak ∈ SK . We assume that K
is not an exact field, but kK is, and symbolic computation can only be performed on truncation of
π-adic power series development. We denote by finite-precision CDVF such a field. An example of
such a CDVF is K = Qp, with p-adic valuation. We are interested in the computation of tropical
Gröbner bases over finite-precision CDVF and its comparison with that of classical Gröbner bases.
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4.2 Precision issues with leading terms

For any m ∈ Z, let O(πm) = πmR. In a finite-precision CDVF K, we are interested in computation
over approximations x of elements of K which take the form
x =

∑m−1
k≥l akπ

k +O(πm). m is called the precision over x.
If the precision on the coefficients of f ∈ A is not enough, then one can not determine what

the leading term of f is. For example, on Qp[X1, X2], with w = (0, 4) and lexicographical order,
then one can not compare O(p2)X1 and X2. Yet, with enough precision, such an issue does not
occur when computing tropical row-echelon form. The following proposition provides a bound on
the precision needed on f to determine its leading term.

Proposition 4.1. Let f ∈ A be an homogeneous polynomial, and let aXα be its leading term.
Then precision val(a) + max|β|=d ((α− β) · w) on the coefficients of f is enough to determine

which term of f is LT (f).

Proof. We only have to remark that O(pn)Xβ < aXα if and only if n > val(a) + (α− β) · w.

4.3 Row-echelon form computation

Regular sequences: As we have already seen, when dealing with finite-precision coefficients, a
crucial issue is that one can not decide whether a coefficient O(πk) is zero or not. Fortunately,
thanks to Corollary 3.9, when the input polynomials form a regular sequence, all matrices in the
tropical MF5 algorithm are injective. It means that if the precision is enough, the tropical row-
echelon form computation performed over these matrices will have no issue with finding pivots and
deciding what the leading terms of the rows are. In other words, if the precision is enough, there
is no zero-testing issue.

We then estimate which precision is enough in order to be able to compute D-Gröbner bases
of such a sequence.

A sufficient precision:

Proposition 4.2. Let M be an injective tropical Macaulay matrix with coefficients in R, of degree
d. Let a1, . . . , au be the pivots chosen during the computation of its tropical row-echelon form. Let
xαk be the corresponding monomials. Let prec be :

prec =
∑

k

val(ak) + max
k

val(ak) + max
k,|β|=d

(αk − β) · w.

Then, if the coefficients of the rows are known up to the same precision O(πprec), the tropical
row-echelon form computation of M can be computed, and the loss in precision is

∑
k val(ak).

Proof. We begin with a matrix M with coefficients all known with precision O(πl), and we first
assume that there is no issue with finding the pivots. Thus, we first analyze what the loss in
precision is when we pivot. That is, we wish to put a “real zero” on the coefficient Mi,j =
επn1 +O(πn), by pivoting with a pivot piv = µπn0 +O(πn) on row L, with n0, n1 < n be integers,

and ε =
∑n−n1−1

k=0 akπ
k, µ =

∑n−n0−1
k=0 bkπ

k, with ak, bk ∈ SK , and a0, b0 6= 0. We remark that by
definition of the pivot, necessarily, n0 ≤ n1. Now, this can be performed by the following operation
on the i-th row Li :

Li ← Li −
Mi,j

piv
L = Li + (εµ−1πn1−n0 +O(πn−n0 ))L,

along with the symbolic operation Mi,j ← 0. Indeed,
Mi,j

piv
= επn1+O(πn)

µπn+O(πm0) , therefore
Mi,j

piv
=

εµ−1πn1−n0+O(πn−n0 ). As a consequence, after the first pivot is chosen and other coefficient of the

first column have been reduced to zero, the coefficients of the submatrix M̃i≥2,j≥2 are known up to
O(πl−val(a1)). We can then proceed inductively to prove that after the termination of the tropical

row-echelon form computation, coefficients of M̃ are known up to
O(πl−val(a1×···×au)). Since we have to be able to determine what the leading terms of the rows
are in order to determine what the pivots are, then, with Proposition 4.1, it is enough that
l − val(a1 × · · · ×, au) is bigger than maxk,|β|=d (α− β) · w, which concludes the proof.
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4.4 Tropical MF5 algorithm

We apply this study of the row-echelon computation to prove Proposition 1.2 concerning the tropical
Matrix-F5 algorithm over CDVF. To facilitate this investigation, and only for section 4, the step

Md,i := M̃d,i−1 in algorithm 2 is replaced with Md,i := Md,i−1. This is harmless since both
matrices have same dimension and image. We first define bounds on the initial precision and loss
in precision. Let (f1, . . . , fs) ∈ Bs be a regular sequence of homogeneous polynomials.

Definition 4.3. Let d ≥ 1 and 1 ≤ i ≤ s. Let xα1 , . . . , xαu be the monomials of the leading terms
of 〈f1, . . . , fi〉 ∩ Ad.

Let ∆d,i be the minor over the columns corresponding to the xαl that achieves smallest valuation.
Let

�d,i = 2∆d,i + max
k,|β|=d

(αk − β) · w.

We define precMF5trop((f1, . . . , fs), D,≥) = maxd≤D,i�d,i, and lossMF5trop((f1, . . . , fs), D,≥
) = maxd≤D,i∆d,i.

As a consequence of Proposition 4.2, these bounds are enough for Proposition 1.2.
Furthermore, we can precise the special case of w = 0 :

Proposition 4.4. If w = 0, then the loss in precision corresponds to the maximal minors of the
Md,i with the smallest valuation. In particular, w = 0 corresponds to the smallest lossMF5trop and
a straight-forward precMF5trop.

4.5 Precision versus time-complexity

We might remark that if one want to achieve a smaller loss in precision, one might want to drop
the F5 criterion and use the tropical row-reduction algorithm on the whole Macaulay matrices
until enough linearly-free rows are found. The required number of rows can be computed thanks
to the F5-criterion and corollary 3.7 if Macaulay matrices are operated iteratively in d and i.
This way, one would be assured that its pivots will yield the smallest loss of precision possible
over Macd(f1, . . . , fs). Yet, such an algorithm would be more time-consuming because of the huge

number of useless rows, and would be in O
(
s2D

(
n+D−1

D

)3)
operations in K even for regular

sequences.

4.6 Comparison with classical Gröbner bases

We compare here the results over finite-precision CDVF for computation of tropical Gröbner bases
and for computation of classical Gröbner bases, as it was performed in [14].

We recall the main result of [14] :

Definition 4.5. Let ω be a monomial order on A. Let F = (f1, . . . , fs) ∈ Bs be homogeneous
polynomials. Let Md,i be the Macaulay matrix in degree d for (f1, . . . , fi), without the rows
discarded by the F5-criterion. Let ld,i be the maximum of the l ∈ Z≥0 such that the l-first columns
of Md,i are linearly free. We define

∆d,i = min (val ({minor over the ld,i-first columns of Md,i})) .

We define the Matrix-F5 precision of F regarding to ω and D as :

precMF5(F,D, ω) = max
d≤D, 1≤i≤s

val (∆d,i) .

Then, precMF5(F,D, ω) is enough to compute approximate D-Gröbner bases :

Theorem 4.6. Let (f ′
1, . . . , f

′
s) be approximations of the homogeneous polynomials F = (f1, . . . , fs) ∈

Bs, with precision better than precMF5 = precMF5(F,D,w). We assume that (f1, . . . , fs) is a reg-
ular sequence (H1) and all the 〈f1, . . . , fi〉 are weakly-ω-ideals (H2). Then, the weak Matrix-F5
algorithm computes an approximate D-Gröbner basis of (f ′

1, . . . , f
′
s), with loss in precision upper-

bounded by precMF5. The complexity is in O
(
sD

(
n+D−1

D

)3)
operations in K, as D → +∞.
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We remark that for tropical Gröbner bases, the structure hypothesis H2 is compensated by the
precision requirement for the tropical row-echelon computation : maxk val(ak)+maxk,|β|=d (αk − β)·
w so that there is no position problem for the leading terms when a tropical Gröbner basis is com-
puted. This leads to a bound on the required precision, precMF5trop(F,D,≥), that might be bigger
than precMF5 but with no position problem and no requirement for H2.

Thus, for tropical Gröbner bases over a CDVF (where the valuation is non-trivial), the only
structure hypothesis is the regularityH1, and is clearly generic, whereas for classical Gröbner bases,
H1 and H2 might be generic only in special cases, like for the grevlex ordering if Moreno-Socias’
conjecture holds. Therefore, tropical Gröbner bases computation may require a bigger precision
on the input than classical Gröbner bases, but it can be performed generically, while it is not clear
for classical Gröbner bases.

Finally, when the weight w is zero, thanks to Proposition 4.4, the smallest loss in precision
defined by minors of Macaulay matrices is attained.
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5 Implementation

A toy implementation in Sage [12] of the previous algorithm is available at http://perso.univ-rennes1.fr/tristan.vaccon/toy_F5.py.
The purpose of this implementation was the study of the precision. It is therefore not optimized
regarding to time-complexity. We have applied the tropical Matrix-F5 algorithm to homogeneous
polynomials with varying degrees and random coefficients in Zp (regarding to the Haar measure):
f1, . . . , fs, of degree d1, . . . , ds in Zp[X1, . . . , Xs], known up to initial precision 30, with a given
weightw and the grevlex ordering to break the ties, and up toD the Macaulay bound. We have done
this experiment 20 times for each setting and noted maximal loss, mean loss in precision and the
number of failures (i.e. the computation can not be completed due to precision). We have compared
with the weak-MF5 of [14] with grevlex on the same setting (the ”grevlex” cases in the array). We

present the results in the following array :

d = w D p maximal loss mean loss failure

[3,4,7] grevlex 12 2 9 0.1 0
[3,4,7] [1,-3,2] 12 2 11 0.1 0
[3,4,7] [0,0,0] 12 2 0 0 0
[3,4,7] [1,-3,2] 12 7 3 .02 0
[3,4,7] [0,0,0] 12 7 0 0 0
[2,3,4,5] grevlex 11 2 9 1.6 2
[2,3,4,5] [1,4,1,-1] 11 2 13 0.2 0
[2,3,4,5] [0,0,0,0] 11 2 0 0 0
[2,3,4,5] [1,4,1,1] 11 7 5 0.02 0

These results suggest that the loss in precision is less when working with bigger primes. It
seems reasonable since the loss in precision comes from pivots with positive valuation, whereas
the probability that val(x) = 0 for x ∈ Zp is p−1

p
. Those results also corroborate the facts that

w = [0, . . . , 0] lead to significantly smaller loss in precision.

6 A faster tropical MF5 algorithm

In this section, we show that one can perform in a tropical setting an adaptation of the classical,
signature-based, Matrix-F5 algorithm presented in [2]. This variant of the Matrix-F5 algorithm is

characterized by the usage of the fact that M̃d,i is under echelon form to build a Md,i closer to its
echelon-form.

To that intent, we introduce labels and signatures for polynomials, and a tropical LUP-form
computation.

6.1 Label and signature

Definition 6.1. Given (f1, . . . , fs) ∈ As, a labeled polynomial is a couple (u, p) with u = (l1, . . . , ls) ∈
As, p ∈ A and

∑s

i=1 lifi = p.
u is called the label of the labeled polynomial. We write (e1, . . . , es) to be the canonical basis

of As.
If u = (l1, . . . , li, 0, . . . , 0) with li 6= 0, then the signature of the labeled polynomial (u, p), de-

noted by sign((u, p)), is (HM(li), i), with the following definition : HM(li) is the highest monomial,
regarding to ≤, that appears in li with a non-zero coefficient.

Remark 6.2. We must point out that in the definition of the signature, we do not take into account
the valuations of the coefficients in the label, hence the HM(li) instead of LT (li) or LM(li).
HM(li) is not, in general, the monomial of the leading term of li.

Definition 6.3. We define a total order on the set of signatures {monomials in R} × {1, . . . , s}
with the following definition : (xα, i) ≤ (xβ , k) if i < k, or xα ≤ xβ and i = k.

Signatures are compatible with operations over labeled polynomials :

Proposition 6.4. Let (u, p) be a labeled polynomial, (xα, i) = sign((u, l)) and let xβ be a monomial
in A. Then

sign((xβu, xβp)) = (xαxβ , i).
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If (v, q) is another labeled polynomial such that
sign((v, q)) < sign((u, p)), and if µ ∈ K, then sign((u+ µv, p+ µq)) = sign((u, p)).

6.2 Signature-preserving LUP-form computation

From now on throughout this subsection, an additional datum will be attached to the rows of the
Macaulay matrices: its label and signature. We make the further assumption that the rows are
ordered with increasing signature. Such a matrix will be called a labeled Macaulay matrix. When
adding a row, both its label and its signature will be noted, and all the operations on the rows are
carried on to the labels of these rows.

The algorithm: We provide a tropical LUP algorithm for labeled Macaulay matrices to
compute the leading term of the Macaulay matrices while preserving signatures.

Algorithm 3: The tropical LUP algorithm

input :M , a labeled Macaulay matrix of degree d in A, with nrow rows and ncol

columns.
output : M̃ , the U of the tropical LUP-form of M
M̃ ←M ;
if ncol = 1 or nrow = 0 or M has no non-zero entry then

Return M̃ ;
else

for i = 1 to nrow do

Find j such that M̃i,j has the greatest term M̃i,jx
monj over the row;

Swap the columns 1 and j of M̃ , and the 1 and j entries of mon;
By pivoting with the first row, eliminates the coefficients of the other rows on the
first column;

Proceed recursively on the submatrix M̃i≥2,j≥2;

Return M̃ ;

We remark that at the end of the algorithm, there exists a unipotent lower-triangular matrix L,
a permutation matrix P , such that M̃ = LMP, M̃ is under row-echelon form up to permutation,
and since we only add to a row Li a linear combination of rows that are above Li, those rows have
a strictly lower signature than Li, and therefore the operations performed on the rows (and on the
columns) preserve the signature. Furthermore,

Proposition 6.5. For any 1 ≤ i ≤ nrow(M), if j is the index of the i-th row of M̃ , then M̃i,jx
monj

is the leading term of the polynomial corresponding to this row.

Those remarks justify the name of tropical LUP algorithm, and the facts that this algo-
rithm computes the leading terms of Span(rows(M)). Finally, since signature remains unchanged
throughout the tropical LUP reduction, we can omit the labels and only handle Macaulay matrices
on which the signatures of the rows are marked.

6.3 A signature-based tropical MF5 algorithm

We show that with LUP-reduction we can adapt the classical Matrix-F5 algorithm.
The signature-based F5 criterion is still available:

Proposition 6.6. Let (u, f) be a labeled homogeneous polynomial of degree d, such that sign(u) =
xαei, with 1 < i ≤ s and xα ∈ Ii−1. Then,

xα ∈ Span
({

xβfk, |x
βfk| = d, and (xβ , k) < (xα, i)

})
.

As a consequence, if (u, f) is a labeled homogeneous polynomial of degree d with sign(u) = xαei
and xα /∈ LM(Ii−1). Then f can be written f = xαfi + g, with

g ∈ Span
({

xβfk, |x
βfk| = d, and (xβ , k) < (xα, i)

})
.
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A faster tropical Matrix-F5 algorithm:

Algorithm 4: The tropical signature-based Matrix-F5 algorithm

input :F = (f1, . . . , fs) ∈ As, with respective degrees d1, . . . , ds, and D ∈ N
output : (g1, . . . , gk) ∈ Ak, a D-tropical Gröbner basis of 〈F 〉, if D is large enough.
G← F
for d ∈ J0, DK do

M̃d,0 := ∅
for i ∈ J1, sK do

Md,i := M̃d,i−1

for L a row of M̃d−1,i do

for x ∈ {X1, . . . , Xn} do
xαek := sign(xL)

if k = i, xα is not the leading term of a row of ˜Md−di,i−1, and Md,i has
not already a row with signature xαei then

Add xL to Md,i.

Compute M̃d,i, the tropical LUP-form of Md,i.
Add to G all the rows with a new leading monomial.

Return G

Correctness: This algorithm indeed computes a tropical D-Gröbner basis. The first thing
to prove is that with the building of the Macaulay matrices suggested in the algorithm, the two
following properties are satisfied : Im(Md,i) = Ii ∩ Ad and for any monomial xα of degree d − di
such that xα /∈ LM(Ii−1), Md,i has a row with signature xαei. This can be proved by induction
on d and i.

Now, since the tropical LUP reduction indeed computes an echelon-basis of the Md,i, as in the
previous tropical MF5 algorithm, the signature-based tropical MF5 algorithm computes tropical
D-Gröbner bases.

Complexity: The main difference in complexity between Algorithm 2 and Algorithm 4 is that
for the latter, the computation of the tropical LUP-form of the Md,i+1 takes into account the fact
that it was previously done on Md,i, i.e. the first rows of Md,i+1 are already under row-echelon form
with the right leading terms. As a consequence, the complexity to compute a tropical D-Gröbner

basis of (f1, . . . , fs) is the same as in the classical case, that is to say, O
(
sD

(
n+D−1

D

)3)
operations

in K, as D → +∞. If (f1, . . . , fs) is a regular sequence, then the complexity is in O
(
D
(
n+D−1

D

)3)
.

7 Future works

Since both Buchberger and Matrix-F5 algorithms are available, we conjecture that the F5 algo-
rithm can be adapted to the tropical setting. It would probably reduce to adapt properly the
TopReduction of [7].

The numerical stability of Proposition 1.2 and the fact that tropical Gröbner bases provide
normal forms, suggest investigating the FGLM ([8]) algorithm to pass from a tropical order (with
w = (0, . . . , 0)) to a classical one, with a view toward stable computations over finite-precision
CDVF.
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at http://home.imf.au.dk/jensen/software/gfan/gfan.html

[10] Lazard, Daniel Gaussian Elimination and Resolution of Systems of Algebraic Equations,
in Proc. EUROCAL 83, volume 162 of LNCS, p.146-157, 1983

[11] Maclagan, Diane & Sturmfels, Bernd Introduction to Tropical Geometry, Book in
preparation.

[12] Stein, W.A. et al. Sage Mathematics Software (Version 4.7.2), The Sage Development
Team, 2011, http://www.sagemath.org.

[13] Serre, J.-P. Local Fields, Graduate Texts in Mathematics, 67, Springer-Verlag, 1995

[14] Vaccon, Tristan Matrix-F5 algorithms over finite-precision complete discrete valuation
fields, Proceedings of the 39th International Symposium on Symbolic and Algebraic Compu-
tation, ISSAC ’14, pages 397-404, Kobe, Japan, ACM.

14

http://arxiv.org/abs/1303.0729
http://home.imf.au.dk/jensen/software/gfan/gfan.html
http://www.sagemath.org

	1 Introduction
	2 Context and motivations
	2.1 Tropical varieties, tropical Gröbner bases
	2.2 The algorithm of Chan and Maclagan

	3 A tropical Matrix-F5 algorithm
	3.1 Matrix algorithm
	3.2 Tropical row-echelon form computation
	3.3 The F5 criterion
	3.4 A first Matrix-F5 algorithm
	3.5 Regular sequences and complexity

	4 The case of finite-precision CDVF
	4.1 Setting
	4.2 Precision issues with leading terms
	4.3 Row-echelon form computation
	4.4 Tropical MF5 algorithm
	4.5 Precision versus time-complexity
	4.6 Comparison with classical Gröbner bases

	5 Implementation
	6 A faster tropical MF5 algorithm
	6.1 Label and signature
	6.2 Signature-preserving LUP-form computation
	6.3 A signature-based tropical MF5 algorithm

	7 Future works
	References

