
Subtropical Real Root Finding
Thomas Sturm

Max Planck Institute for Informatics
Saarbrücken, Germany

sturm@mpi-inf.mpg.de

January 20, 2015

Abstract
We describe a new incomplete but terminating method for real root

finding for large multivariate polynomials. We take an abstract view of
the polynomial as the set of exponent vectors associated with sign infor-
mation on the coefficients. Then we employ linear programming to heuris-
tically find roots. There is a specialized variant for roots with exclusively
positive coordinates, which is of considerable interest for applications in
chemistry and systems biology. An implementation of our method com-
bining the computer algebra system Reduce with the linear programming
solver Gurobi has been successfully applied to input data originating from
established mathematical models used in these areas. We have solved sev-
eral hundred problems with up to more than 800 000 monomials in up to
10 variables with degrees up to 12. Our method has failed due to its
incompleteness in less than 8 percent of the cases.

1 Introduction
Our work discussed here is motivated by our studies of Hopf bifurcations [15,
14] for reaction systems in chemistry and gene regulatory networks in systems
biology, which are originally given by systems of ordinary differential equations.
Hopf bifurcations can be described algebraically [7, 32, 11, 10], resulting in
one very large multivariate polynomial equation f = 0 subject to few much
simpler polynomial side conditions g1 > 0, . . . , gn > 0. For such systems one is
interested in feasibility over the reals and, in the positive case, in at least one
feasible point. It turns out that, generally, scientifically meaningful information
can be obtained already by checking only the feasibility of f = 0, which is the
focus of this article. For further details on the scientific background, we refer
the reader to our publications [28, 29, 33, 9, 8].

With one of our models, viz. Mitogen-activated protein kinase (MAPK), we
obtain and solve polynomials of considerable size. Our currently largest instance
mapke5e6 contains 863438 monomials in 10 variables. One of the variables
occurs with degree 12, all other variables occur with degree 5. Such problem
sizes are clearly beyond the scope of classical methods in symbolic computation.
To give an impression, the size of an input file with mapke5e6 in infix notation is
30 MB large. LATEX-formatted printing of mapke5e6 would fill more than 3000
pages in this document. The MAPK model actually yields even larger instances,

1

ar
X

iv
:1

50
1.

04
83

6v
1

 [
cs

.S
C

]
 2

0
Ja

n
20

15

sturm@mpi-inf.mpg.de

which we, unfortunately, cannot generate at present, because in our toolchain
Maple cannot produce polynomials larger than 32 MB.

This article introduces an incomplete but terminating algorithm for finding
real roots of large multivariate polynomials. The principle idea is to take an
abstract view of the polynomial as the set of its exponent vectors supplemented
with sign information on the corresponding coefficients. To that extent, out
approach is quite similar to tropical algebraic geometry [30]. However, after our
abstraction we do not consider tropical varieties but employ linear programming
to determine certain suitable points in the Newton polytope, which somewhat
resembles successful approaches to sum-of-square decompositions [26].

We have implemented our algorithm in Reduce [16] using direct function calls
to the dynamic library of the LP solver Gurobi [13]. In practical computations
on several hundred examples, our method has failed do to its incompleteness in
less than 8 percent of the cases. The longest computation time observed was
around 16 s. As mentioned above, the limiting factor at present is the technical
generation of even larger input.

In Section 2 we introduce a specialization of our method that only finds roots
with all positive coordinates. This is highly relevant in our context of reaction
networks, where typically all variables are known to be positive. We also discuss
an illustrating example in detail. Section 3 generalizes our method to arbitrary
roots. In Section 4 we discuss issues and share experiences related to a practical
implementation of our method. In Section 5 we evaluate the performance of our
method with respect to efficiency and to its incompleteness on several hundred
examples originating from four different chemical and biological models.

2 Finding Roots with Positive Coordinates
Denote N1 = N \ {0}, and let d ∈ N1. For a ∈ R, vectors x = (x1, . . . , xd) of
either indeterminates or real numbers, and p = (p1, . . . , pd) ∈ Nd, we use the
notations ap = (ap1 , . . . , apd) and xp = xd1

1 · · ·x
pd
d . We will, however, never

consider a vector to the power of a number. Our notations are compatible with
the standard scalar product as follows:

(ap)q = (ap1 , . . . , apd)q = ap1q1 · · · apdqd = apq.

Consider a multivariate integer polynomial

f =
∑

p∈supp(f)

coeff(f,p) · xp ∈ Z[x],

where coeff(f,p) 6= 0 for p ∈ supp(f), which is called the support of f .

2.1 Finding a Point with Positive Value
The Newton polytope of f is the convex hull of supp(f). It forms a polyhedron
in Rd, which we identify with its vertices, formally newton(f) ⊆ supp(f). The
following lemma is a straightforward consequence of the convex hull property.

Lemma 1. Let f = coeff(f,p) · xp + f ′ ∈ Z[x]. Assume that p /∈ newton(f).
Then newton(f) = newton(f ′).

2

For p ∈ supp(f) we define sign(f,p) = sign(coeff(f,p)). We partition the
support of f as follows:

supp(f) = supp+(f) ∪̇ supp−(f) ∪̇ supp0(f),
supp+(f) = {p ∈ supp(f) | sign(f,p) > 0 ∧ p 6= 0 },
supp−(f) = {p ∈ supp(f) | sign(f,p) < 0 ∧ p 6= 0 },
supp0(f) = supp(f) ∩ {0}.

Let supp+(f) = {p1, . . . ,pr}, supp−(f) = {pr+1, . . . ,ps}, and fix any order on
supp(f). The basic LP matrix B(f) is composed as follows, where the last row
is present if and only if supp0(f) 6= ∅:

B(f) =



B+(f)

B−(f)

(0,−1)


=



p11 . . . p1d −1
...

. . .
...

...
prd . . . prd −1
pr+1,1 . . . pr+1,d −1

...
. . .

...
...

ps,d . . . ps,d −1
0 . . . 0 −1


.

Considering matrices concatenations of their rows, we write this also as B(f) =
B+(f) ◦ B−(f) ◦ (0,−1)∗. Whenever we write for a given matrix B ∈ Zm×n a
product N∗B, then we implicitly agree that

N∗ =


−1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
...

...
.

 ∈ Zm×m.

That is, the multiplication N∗B replaces the elements of the first row of B with
their additive inverses. Similarly, −1 = (−1, . . . ,−1)T is generally a column
matrix of suitable length. In these terms, we are going to consider systems

N∗ ·B(f) · xT ≤ −1, where x = (n, c) ∈ Rd+1,

which can be rewritten as follows:

p1n− c ≥ 1
pin− c ≤ −1, i ∈ {2, . . . , s}.

Lemma 2. Let f ∈ Z[x]. Let n ∈ Rd, and let c ∈ R. Then the following are
equivalent:

(i) The hyperplane H(x) defined by nx = c strictly separates the point p1
from supp(f) \ {p1}, and the normal vector n is pointing from H(x) in
direction p1. In particular, p1 ∈ newton(f).

(ii) There is 0 < λ ∈ R s.t. N∗ ·B(f) · (λn, λc)T ≤ −1.

3

Proof. Assume that (i) holds. The orientation of n is chosen such that n ·p1 > c
and n ·pi < c for i ∈ {2, . . . , s}. Define δ = mini∈{1,...,s} |dist(pi, H)| > 0. Then

p1 · n− c ≥ δ‖n‖,
pi · n− c ≤ −δ‖n‖, i ∈ {2, . . . , s},

and we can choose λ = (δ‖n‖)−1.
Vice versa, assume that (ii) holds. It follows that

p1 · n ≥ c+ 1/λ,
pi · n ≤ c− 1/λ, i ∈ {2, . . . , s}.

Hence H(x) defined by nx = c is a hyperplane separating p1 from supp(f) \
{p1}, where the distance between H(x) and supp(f) is at least ‖n‖/λ > 0.
Furthermore, n is oriented as required in (i).

Lemma 3. Let 0 6= f ∈ Z[x]. Then the following are equivalent:

(i) There is (n, c) ∈ Rd+1 s.t. N∗ ·B(f) · (n, c)T ≤ −1.

(ii) There is (n, c) ∈ Qd+1 s.t. N∗ ·B(f) · (n, c)T ≤ −1.

(iii) There is n ∈ Zd, c ∈ Q s.t. N∗ ·B(f) · (n, c)T ≤ −1.

Proof. The existence of a real solution in (i) and a rational solution in (ii)
coincide due to the Linear Tarski Principle: Ordered fields admit quantifier
elimination for linear formulas [21]. Given a solution (n1, . . . , nd, c) ∈ Qd+1 in
(ii), we can use the principal denominator m ∈ N1 of n1, . . . , nd to obtain a
solution (mn1, . . . ,mnd,mc + m − 1) ∈ Zd × Q in (iii). The implication from
(iii) to (i) is trivial.

Lemma 4. Let f ∈ Z[x]\Z. Let (n, c) ∈ Rd+1 such thatN∗·B(f)·(n, c)T ≤ −1.
Then there is a0 ∈ N such that for all a ∈ N with a ≥ a0 the following hold:

(i) |coeff(f,p1) · anp1 | >

∣∣∣∣∣
s∑
i=2

coeff(f,pi) · anpi

∣∣∣∣∣ ,
(ii) sign

(
f(an)

)
= sign(f,p1).

Proof. (i) From f /∈ Z it follows that p1 6= 0. By Lemma 2 we know np1 > c
and npi < c for i ∈ {2, . . . , s}. It follows that there is 0 < δ ∈ R such that

np1 ≥ c+ δ, (1)
npi ≤ c− δ i ∈ {2, . . . , s}. (2)

We are going to show that a0 =
⌈
max

{
2,
(
b · (k − 1)

) 1
δ
}⌉

is a suitable choice,
where

b = |coeff(f,p1)|−1 · max
i∈{2,...,s}

|coeff(f,pi)| .

For a ≥ a0 ≥ 2 and for all i ∈ {2, . . . , s}, the inequalities (1) and (2) and
monotony yield

anp1 ≥ aδac > aδaca−δ ≥ aδanpi ≥ b · (k − 1) · anpi .

4

function find-positive(f)
data : f ∈ Z[x1, . . . , xd]
result: p ∈ (Q+)d or "failed"

1 B+ := B+(f)
2 B− := B−(f)
3 h := "infeasible"
4 while h = "infeasible" and B+ 6= [] do
5 h := lpsolve(B+ ◦B− ◦ (0,−1)∗)
6 delete the first row from B+

7 if h = "infeasible" then
8 return "failed"

9 (n, c) := h
10 t := 2
11 while f(tn) ≤ 0 do
12 t := 2t
13 return tn

function lpsolve(B)
data : a matrix B with d+ 1 columns
result: (n, c) ∈ Zd ×Q or "infeasible"

14 Π := LP problem given by N∗B and −1
15 h := a solution (n, c) ∈ Qd+1 of Π or "infeasible"
16 if h = "infeasible" then
17 return "infeasible"

18 m := principal denominator of the coordinates of n
19 n := m · n
20 c := mc+m− 1
21 return (n, c)

Algorithm 1: Functions find-positive and lpsolve

Using the triangle inequality it follows that

anp1 > b

s∑
i=2

anpi ≥ |coeff(f,p1)|−1 ·

∣∣∣∣∣
s∑
i=2

coeff(f,pi) · anpi

∣∣∣∣∣ ,
which straightforwardly implies

|coeff(f,p1) · anp1 | >

∣∣∣∣∣
s∑
i=2

coeff(f,pi) · anpi

∣∣∣∣∣ .
(ii) It follows from (i) that for a ≥ a0 the sign of the monomial coeff(f,p1) ·

anp1 determines the sign of f(an). Since a > 0, we obtain

sign
(
f(an)

)
= sign

(
coeff(f,p1) · anp1

)
= sign(f,p1).

After these preparations we can state our first subalgorithm as Algorithm 1.

Theorem 5 (Correctness of find-positive). Consider f ∈ Z[x]. Then the
following hold:

5

(i) The function find-positive terminates.

(ii) The function find-positive returns either "failed" or p ∈ (Q+)d with
f(p) > 0.

Proof. (i) The termination of lpsolve follows from the existence of terminat-
ing algorithms for linear programming in line 15, including the Simplex algo-
rithm [5], the ellipsoid method [19], and the interior point method [17]. For
the function find-positive itself, the number of iterations of the while-loop
in line 3 is bounded by the number of rows of B+, which is in turn bounded by
the finite cardinality of supp(f). The termination of the while-loop in line 11
will be discussed with the correctness in (ii).

(ii) To start with, the subroutine lpsolve solves the LP problem Π defined
in line 14 and, in the feasible case, (n, c) in line 15 is a feasible point in Qd+1.
The return value (n, c) ∈ Zd ×Q in line 21 is a feasible point for Π as well. Its
construction in lines 18–20 follows the proof step from (ii) to (iii) in Lemma 3.

Next, the while-loop in line 3 has the following loop invariants. Consider

f(n) = f −
n−1∑
i=1

coeff(f,pi)xpi

before the n-th iteration:

(I1) newton(f(n)) = newton(f),

(I2) B
(
f(n)

)
= B+

(n) ◦B
− ◦ (0,−1)∗.

Invariant (I2) is easy to see. Consider (I1). For n = 1 this is trivial. Before the
n + 1-st iteration we know that h = "infeasible", which means that the LP
problem given by

N∗ ·
(
(pn) ◦B+

(n+1) ◦B
− ◦ (0,−1)∗

)
and −1

was infeasible at the n-th iteration. According to Lemma 2 it follows that
pn /∈ newton(f(n)). Using Lemma 1 and the induction hypothesis we conclude

newton(f(n+1)) = newton(f(n) − coeff(f,pn)xpn) = newton(f(n)) = newton(f).

The function find-positive has two possible exit points at lines 8 and 13
corresponding to its two possible return values. Assume we are in line 13. We
have to show that tn ∈ (Q+)d with f(tn) > 0. The while-loop in line 3 has
terminated after n iterations, and the if-condition in line 7 is false. In line 9 we
know by (I1), (I2), and Lemma 2 that the feasible regions for N∗ · (B+ ◦ B− ◦
(0,−1)∗) · v ≤ −1 and N∗ · B(f) · v ≤ −1 are identical. This allows us to use
B+ ◦B− ◦ (0,−1)∗ instead of B(f) for applying Lemma 4 to the original f , and
our n ∈ Zd has the property described there. In line 11, at the beginning of the
k-th iteration of the while-loop we have t = 2k. By Lemma 4 we know that we
will eventually have t ≥ a0 and thus sign(f(tn)) = sign(f,pn) > 0.

6

function find-zero(f)
data : f ∈ Z[x1, . . . , xd]
result: z ∈ (Q+)d or "failed"

1 y := f(1)
2 if y = 0 then
3 return 1
4 if y > 0 then
5 f := −f
6 p := find-positive(f)
7 if q = "failed" then
8 return "failed"

9 z := construct-zero(f , p, 1)
10 return z

function construct-zero(f , p, q)
data : f ∈ Z[x1, . . . , xd], p, q ∈ Qd
result: z ∈ Qd or "failed"

11 b := p + y · (q − p), where y is a new variable
12 g := f(b)
13 isolate r ∈]0, 1[with g(r) = 0
14 z := b(r)
15 return z

Algorithm 2: Functions find-zero and construct-zero

2.2 Finding a Zero
We have discussed how to heuristically find p ∈ (Q+)d such that f(p) > 0 for
our given f ∈ Z[x]. On that basis Algorithm 2 computes z ∈ (Q̄+)d such that
f(z) = 0, where Q̄ denotes the algebraic closure of Q.

Lemma 6 (Correctness of construct-zero). Consider f ∈ Z[x], and let p,
q ∈ Qd such that f(p)f(q) < 0. Then the following hold:

(i) The function construct-zero terminates.

(ii) The function construct-zero returns either "failed" or z ∈ Q̄d with
f(z) = 0. If p, q ∈ (Q+)d, then z ∈ (Q̄+)d.

Proof. (i) The termination of construct-zero follows from the existence of
terminating algorithms for univariate real root isolation including Sturm se-
quences [27] and more efficient algorithms [4, 1] based on Vincent’s Theorem [31].

(ii) Since f is continuous and f(p)f(q) < 0, the intermediate value theorem
guarantees the existence of z ∈ pq with f(z) = 0. Formally, z ∈ Q̄d is a solution

7

for x of the following nonlinear system with indeterminates x1, . . . , xd, y:

f = 0 (3)
x1 = p1 + y · (q1 − p1) (4)

...
xd = pd + y · (qd − pd) (5)
y > 0 (6)
y < 1. (7)

In line 11, b is assigned the vector of the right hand sides of the d equations (4)–
(5). In line 12, these are plugged into the left hand side of equation (3) yielding
a nonlinear univariate polynomial equation in y. Using any of the methods
mentioned in (i), we obtain in line 13 a solution r ∈ Q̄ for y of that equation
subject to the constraints (6)–(7). That solution r is a real algebraic number
in some suitable representation [23]. In line 14 we substitute r back into the
equations (4)–(5) to finally obtain x = z ∈ Q̄, also as a real algebraic number.

Since z ∈ pq, it follows from p, q ∈ (Q+)d that also z ∈ (Q+)d.

On the basis of Lemma 6 the following theorem is straightforward.

Theorem 7 (Correctness of find-zero). Let f ∈ Z[x]. Then the function
find-zero terminates and returns either "failed" or z ∈ (Q̄+)d with f(z) = 0.

When one is interested only in the existence of a zero of f , then one can, in
the positive case, obviously skip construct-zero and exit from find-zero after
line 8. Notice that, in addition, one can then also exit early from find-positive
after line 8 in Algorithm 1.

2.3 An Illustrating Example
Consider f = −2x5

1 + x2
1x2 − 3x2

1 − x3
2 + 2x2

2 ∈ Z[x1, x2]. We apply find-zero
to find a point on the variety of f . Figure 1 pictures the variety. We obtain
f(1, 1) = −3 < 0, and apply find-positive to f .

Figure 2 pictures the support of f and indicates the Newton polytope. We
split into supp+(f) = {(2, 1), (0, 2)}, supp−(f) = {(2, 0), (5, 0), (0, 3)}, and
supp0(f) = ∅, and we construct

B+ =
[
2 1 −1
0 2 −1

]
, B− =

2 0 −1
5 0 −1
0 3 −1

 .
Our first LP problem 

−2 −1 1
0 2 −1
2 0 −1
5 0 −1
0 3 −1

 · (n, c)T ≤

−1
−1
−1
−1
−1



8

Figure 1: The variety of f = −2x5
1 + x2

1x2 − 3x2
1 − x3

2 + 2x2
2 and the segment

given by t ∈ [0, 2] of the moment curve (t−3, t−2) corresponding to the normal
vector (−3,−2) of the separating hyperplane in Figure 2.

(5, 0)

(2, 1)

(2, 0)

(0, 3)

(0, 2)

H

(−3,−2)

Figure 2: A subtropical view on f = −2x5
1 + x2

1x2 − 3x2
1 − x3

2 + 2x2
2 from Fig-

ure 1. We see a hyperplane separating (0, 2) ∈ newton(f) from supp(f)\{(0, 2)}
together with its normal vector n = (−3,−2).

is infeasible, which confirms the observation in Figure 2 that (2, 1) /∈ newton(f).
Our next LP problem 

0 −2 1
2 0 −1
5 0 −1
0 3 −1

 · (n, c)T ≤

−1
−1
−1
−1


is feasible with n = (−3,−2) and c = 5. Figure 2 shows the corresponding
hyperplane H given by −3x1 − 2x2 + 5 = 0. It strictly separates (0, 2) ∈
newton(f) from supp(f)\{(0, 2)}, and its normal vector n = (−3,−2) is oriented
towards (0, 2). We now know that f(t−3, t−2) > 0 for sufficiently large positive
t. In fact, already

f(2−3, 2−2) = f

(
1
8 ,

1
4

)
= 1087

16384 .

9

The relevant part of the moment curve (t−3, t−2) for t ∈ [1, 2] is pictured in
Figure 1. Since both coordinates of n happen to be negative, the curve will for
t→∞ not extend to infinity but converge to the origin. In particular, the curve
will not leave the sign invariant region containing

(1
8 ,

1
4
)
.

Finally, we call construct-zero with
(1

8 ,
1
4
)
and (1, 1) to solve the system

−2x5
1 + x2

1x2 − 3x2
1 − x3

2 + 2x2
2 = 0
x1 = 1

8 + y ·
(
1− 1

8
)

x2 = 1
4 + y ·

(
1− 1

4
)

y > 0
y < 1.

Dropping a positive integer denominator, we obtain the univariate polynomial

ḡ = −16807y5 − 12005y4 − 934y3 − 20778y2 + 285y + 1087

and an isolating interval y ∈]0.2, 0.3[. Substitution of the real algebraic number〈
ḡ,]0.2, 0.3[

〉
into the equations for x1 and x2 yields an exact solution

x1 =
〈
686x5 − 78x3 + 584x2 − 150x− 13,]0.32, 0.33[

〉
,

x2 =
〈
16807x5 − 12005x4 + 2026x3 + 9122x2 − 4609x+ 323,]0.42, 0.43[

〉
,

where the intervals can, of course, be refined to arbitrary precision. Geometri-
cally, our solving has intersected the variety with the line segment connecting
the end points of our moment curve segment, which is also indicated in Figure 1.

2.4 Why Strictly Positive Coordinates?
In the present section, we have focused on roots with strictly positive coor-
dinates. This not only slightly simplifies the presentation. In fact, it is an
important feature of our algorithm to be able to perform such a directed search.

To start with, the research presented here was originally motivated by ques-
tions on the stability of chemical and biological reaction networks, where the
variables of the models typically are strictly positive. Our practical computa-
tions in Section 5 are taken from those areas. For details on the theoretical
background we refer the reader to [3, 28, 29, 33, 9, 8].

Furthermore, the concept of positive feasible points is well-known from linear
programming. Techniques used there can be straightforwardly transfered to
our situation: Consider f ∈ Z[x1, . . . , xd]. For finding zeros (z1, . . . , zd) with
sign(zi) = si ∈ {−1, 1} consider f(s1x1, . . . , sdxd), for z1 ∈]α,∞[consider
f(x1 +α, x2, . . . , xd), for z1 ∈]−∞, β[consider f(−x1− β, x2, . . . , xd), and for
x1 unbounded consider f(x1 − x′1, x2, . . . , xd) introducing a new variable x′1.

3 Finding Arbitrary Roots
3.1 Using a Transformation
Consider f ∈ Z[x1, . . . , xd]. At the end of the previous section we have addressed
a technique for turning a real feasibility test based on positive variables into a

10

general one. Using the observation that every real number is a difference of
two positive real numbers, on introduces additional variables x′1, . . . , x′d and
transforms f into f(x1−x′1, . . . , xd−x′d). That transformation is ubiquitous in
linear programming, if not explicitly then implicitly within the solvers.

From an efficiency point of view our procedure is clearly dominated by the
LP solving steps, where we have d+1 variables and |supp(f)| many constraints.
Thinking in terms of state-of-the-art LP solvers [13, 22] and the Simplex method
with the option of dualization [2, 20], the crucial complexity parameter is
min{d, |supp(f)|}. With our considered transformation the cardinality of the
support increases exponentially in d in the worst case, but the number of vari-
ables only doubles from d to 2d.

Recall that our incomplete method relies on finding some p ∈ newton(f)
with coeff(f,p) > 0. We would like to point out that, doubling the dimension d
with the transformation, the ratio |newton(f)| / |supp(f)| will in general increase
for geometric reasons [6]. Furthermore the exponential increase of |supp(f)|
increases the absolute number of candidates for a suitable p. On the other hand,
the transformation does not add points to supp(f) but exchanges it entirely. It
would require either comprehensive empirical studies or a thorough average-case
analysis to make a precise statement about the quality of the transformation in
terms of incompleteness.

3.2 A Genuine Generalization
We are now going to describe a generalization of the function find-positive
in Algorithm 1, which searches for a suitable p not only in supp+(f) but also in
a subset of supp−(f). Recall that in case of success, find-positive identifies
the first row of B+ as corresponding to the exponent vector of a monomial with
positive coefficient that dominates f in the sense of Lemma 4. Then it constructs
a point p with large suitably balanced positive coordinates. The key idea for
our generalization is the following: If the coefficient of an otherwise suitable
monomial is negative but there is at least one odd exponent in the exponent
vector, then we can correct the “wrong” sign of the coefficient by replacing the
respective coordinate in the constructed point p with its additive inverse.

For p = (p1, . . . , pd) ∈ supp(f) define the minimal odd coordinate

moc(p) = min
{
i ∈ {1, . . . , d

} ∣∣ 2 - pi
}
,

where min ∅ =∞. We use the minimal odd coordinate to partition supp−(f) =
suppw−(f) ∪̇ supps−, where

suppw−(f) = {p ∈ supp− | moc(p) <∞},
supps−(f) = {p ∈ supp− | moc(p) =∞}.

The elements of suppw−(f) are called weakly negative. They have at least one
odd coordinate. The elements of supps−(f) are called strongly negative. They
have exclusively even coordinates. We furthermore define Bw−(f) and Bs−(f)
corresponding to suppw−(f) and supps−(f), respectively, and we obtain

B(f) = B+(f) ◦Bw−(f) ◦Bs−(f) ◦ (0,−1)∗.

Consider a matrix B obtained from B(f) by deleting rows. Then we define
moc(B) = moc(B11, . . . , B1d), i.e., the minimal odd coordinate of p ∈ supp(f)
corresponding to the first row of B.

11

function find-positive-general(f)
data : f ∈ Z[x1, . . . , xd]
result: p ∈ Qd or "failed"

1 B := B+(f) ◦Bw−(f)
2 Bs− := Bs−(f)
3 µ :=∞
4 h := "infeasible"
5 while h = "infeasible" and B 6= [] do
6 if the first row of B is in Bw−(f) then
7 µ := moc(B)
8 h := lpsolve(B+ ◦B ◦ (0,−1)∗)
9 delete the first row from B

10 if h = "infeasible" then
11 return "failed"

12 (n1, . . . , nd, c) := h
13 t := 2
14 (t1 . . . , td) := (tn1 , . . . , tnd)
15 if µ <∞ then
16 tµ := −tµ
17 while f(t1, . . . , td) ≤ 0 do
18 t := 2t
19 (t1 . . . , td) := (tn1 , . . . , tnd)
20 if µ <∞ then
21 tµ := −tµ

22 return (t1, . . . , td)
Algorithm 3: Function find-positive-general

After these preparations we can state our function find-positive-general
in Algorithm 3. A corresponding function find-zero-general is obtained by
replacing in find-zero in Algorithm 2 the call to find-positive with a call
to find-positive-general. Everything else remains unchanged.

For showing the correctness of find-positive-general we are going to use
the following variant of Lemma 4:

Lemma 8. Let f ∈ Z[x]\Z. Let (n, c) ∈ Rd+1 such thatN∗·B(f)·(n, c)T ≤ −1,
and let µ = moc(B(f)) < ∞. Then there is a0 ∈ N such that for all a ∈ N
with a ≥ a0 the following holds: Define t = (t1, . . . , td) ∈ Nd with tj = anj for
j ∈ {1, . . . , d} \ {µ} and aµ = −tnµ . Then

sign
(
f(t)

)
= − sign(f,p1).

Proof. We have tj = anj > 0 for j ∈ {1, . . . , d} \ {µ}, tµ = −anµ < 0, and p1µ
is odd by definition of the minimal odd coordinate. It follows that

0 < anp1 = −tp1 . (8)

For i ∈ {2, . . . , s} we have at least |anpi | = |tpi |. This allows us to conclude

12

from Lemma 4 (i) that

|coeff(f,p1) · tp1 | >

∣∣∣∣∣
s∑
i=2

coeff(f,pi) · tpi

∣∣∣∣∣ .
Hence coeff(f,p1) · tp1 determines the sign of f(t). Using the inequality in (8)
we obtain

sign
(
f(t)

)
= sign

(
coeff(f,p1) · tp1

)
= − sign(f,p1).

Theorem 9 (Correctness of find-positive-general). Consider f ∈ Z[x].
Then the following hold:

(i) If the function find-positive in Algorithm 1 does not fail on f , then
find-positive-general(f) = find-positive(f).

(ii) The function find-positive-general terminates.

(iii) The function find-positive-general returns either "failed" or p ∈ Qd
with f(p) > 0.

Proof. (i) The function find-positive-general operates on B+(f)◦Bw−(f)◦
Bs−(f) ◦ (0,−1)∗ while find-positive operates on B+(f) ◦ B− ◦ (0,−1)∗
so that there is possibly a different order of rows lying below B+(f). How-
ever, when find-positive does not fail, then the same feasible solution is
found in both functions before touching anything outside B+, and in line 10 of
find-positive-general we have exited the while-loop with µ =∞. It follows
that the if-conditions in lines 15 and 20 of find-positive-general are always
false, and the rest of the code after the while-loop is computationally equivalent
to the corresponding part of find-positive except for an expanded notation.

Accordingly, a proof of parts (ii) and (iii) can be straightforwardly de-
rived from the proof of (i) and (ii) of Theorem 5, respectively: If the function
find-positive in Algorithm 1 does not fail on f , then there is nothing else to
do. Otherwise we always reach lines 15 and 20 with µ <∞, replace tµ with its
additive inverse, and apply Lemma 8 instead of Lemma 4 (ii), where we know
that that sign(f,pn) < 0.

4 Practical Issues
In this section we would like to discuss issues and share experiences related to
a practical implementation of our method.

One major benefit of our approach is the reduction of an algebraic problem to
linear programming (LP). Linear programming is a field with more than 50 years
of active algorithmic research, strongly driven by practical applicability and
aiming at robust implementations. Our own implementation combines the the
Codemist Standard Lisp (CSL)-based version of the computer algebra system
Reduce [16, 24, 25] with the Gurobi Optimizer [13]. Technically, CSL provides
a foreign function interface that allows us to dynamically load the Gurobi C-
library at runtime and call its functions from within symbolic mode Reduce
functions. Gurobi uses the Simplex algorithm. So far we have got no experience

13

with the use of implementations of polynomial methods for LP, like the interior
point method [17].

Gurobi uses floating point arithmetic with a limited precision. We want to
adress some issues related to this, which we consider of general inteterst, because
that floating point approach is typical for Simplex-based LP software.

On the one hand, LP solvers are quite good at controlling numerical stability.
With our comprehensive computations we have never encountered any problems
with false results due to LP rounding errors. On the other hand, in line 15 of
Algorithm 1 we obtain n1, . . . , nd, c as floats with small rounding errors. These
rounding errors do not affect correctness but cause a subtle problem: Convert-
ing n1, . . . , nd into fractions, the GCD of their denominators will typically be
1 so that the principal denominator m computed in line 18 becomes the very
large product of those denominators. Consequently, in line 19 we obtain our
final n with very large relatively prime integer coordinates. This, in turn, ren-
ders infeasible the exponentiation of increasing powers of 2 with those integer
coordinates and substitution of the result into f in line 11 of Algorithm 1 or in
lines 14, 17, and 19 of Algorithm 3. There are two principle ways out, which we
call the pure LP approach and the MIP approach, respectively. Of course, the
single design decisions made with these approaches can be recombined to yield
further, mixed, approaches.

The Pure LP Approach The pure LP approach tries to get along with the
delivered floats. Specifically, lines 18–20 in Algorithm 1 are skipped, and a
floating point vector is returned. The while-loops in line 11 of Algorithm 1 and
line 17 of Algorithm 3 remain correct with floating point exponents n. Later, in
lines 11–12 of Algorithm 2 it is important to convert to rationals. In particular
the substitution of floats into a high-degree polynomial f in line 12 could cause
considerable numerical instabilities. Subsequent root isolation to floating point
precision in line 13 and back-substitution of the obtained floats in line 14 worked
well with all our computations.

The MIP Approach MIP stands for mixed integer (linear) programming.
Our Lemma 3 allows us to declare n1, . . . , nd as integers to the LP solver right
away, while c remains real. As MIP is NP-hard [18], the MIP approach is con-
siderably harder than the pure LP approach in terms of theoretical complexity.
In practice there are several advanced algorithms for Simplex-based MIP solv-
ing, which rely in some way on considering an LP relaxation, i.e., considering
integer variables as real variables, and, in the feasible case, trying to construct
a mixed real integer feasible point on the basis of an LP solution. The Gurobi
solver specifically uses advanced cutting plane [12] methods for that construc-
tion. For the largest problems discussed with our practical computations in
Section 5 below, we have observed factor of about 3 for MILP solving compared
to LP solving.

There is an interesting optimization with the MIP approach: Since in out
situation MIP feasibility is equivalent to LP feasibility by Lemma 3, one can
generally first check the latter in lines 14–15 of Algorithm 1, and in the feasible
case rerun for the corresponding MIP problem. Using this strategy, there is
always at most one MIP solving step per root finding problem. Furthermore, one
runs MIP solving only on feasible instances. This excludes the really problematic

14

13 (y1, . . . , yd) = (yn1 , . . . , ynd) for a new variable y
14 if µ <∞ then
15 yµ = −yµ
16 f1 := f(y1, . . . , yd) ∈ Z(y)
17 t := 2
18 while f1(t) ≤ 0 do
19 t := 2t
20 return (y1(t), . . . , yd(t))

Algorithm 4: Code to replace lines 13–22 in Algorithm 3

cases, which are LP feasible but not MIP feasible problems.
In rare cases one obtains integer solutions which are so large that they render

exponentiation and substitution in line 11 of Algorithm 1 or in lines 14, 17, and
19 of Algorithm 3 infeasible. One can impose a suitable bound on the absolute
values of the solutions, and in case of exceeding that bound treat the problem
as infeasible, and proceed to the next candidate.

Another noteworthy optimization is the symbolic precomputation of a uni-
variate rational function for the while-loop in line 17 of Algorithm 3. See Algo-
rithm 4 for details. A corresponding simpler variant, of course, works also for
lines 10–12 in Algorithm 1.

For root isolation in line 13 of Algorithm 2 we use the Vincent–Collins–
Akritas method [4]. We obtain a real algebraic number encoded by a univariate
defining polynomial and an open isolating interval, which is back-substituted in
line 14, yielding a vector of such real algebraic numbers as the final solution z.

5 Some Practical Computations
We consider input polynomials originating from 4 different chemical and bio-
logical models. This yields 929 instances altogether. For all of these instances
we are checking for zeros with strictly positive coordinates. It turns out that
for 640 of the instances we find B+ = [] in line 1 of Algorithm 1, which tells
us that the corresponding polynomial is positive definite (on the interior of the
first hyperoctant). Running our method on the 289 remaining instances, it fails
in only 7.3 percent of the cases. Table 1 shows detailed information for the
single models. It also shows size (number of monomials), dimension (number
of variables), and the largest degree of an occurring variable for the respective
largest instance. It furthermore shows the maximal computation time for a sin-
gle instance and the sum of computation times.1 All computations have been
carried out on a 2.8 GHz Xeon E5-4640 with the MIP approach, yielding exact
algebraic number solutions:

Notice that for our particular application the detection of definiteness by
our implementation establishes a perfect result. From that point of view, one
could argue that our method fails in only 3 percent of the cases.

1All input and log files are available at http://research-data.redlog.eu/arXiv/2015/
subtropical/.

15

http://research-data.redlog.eu/arXiv/2015/subtropical/
http://research-data.redlog.eu/arXiv/2015/subtropical/

METH OMBO MBO MAPK Total
number of instances 7 496 405 21 929
number of definite instances 3 338 283 16 640
number of remaining instances 4 158 122 5 289
found zero in 4 144 107 5 260
failed on 0 14 15 0 29
failed on (% of remaining) 0 8.9 12.3 0 7.3
size of largest instance 347 9787 9706 863438 863438
dimension of largest instance 7 7 7 10 10
degree of largest instance 6 10 9 12 12
maximal time (s) 0.16 4.68 10.00 15.87 15.87
total time (s) 0.21 199.91 162.88 15.92 379.92

Table 1: Statistics for our practical computations

Acknowledgments
We would like to thank D. Grigoriev, H. Errami, W. Hagemann, M. Košta,
and A. Weber for valuable discussions. A. Norman realized a robust foreign
function interface for CSL Reduce. We are also grateful to Gurobi Optimization
Inc. and to the GeoGebra Institute for making their excellent software free
for academic purposes. This research was supported in part by the German
Transregional Collaborative Research Center SFB/TR 14 AVACS and by the
ANR/DFG project SMArT.

References
[1] A. G. Akritas and A. W. Strzebonski. A comparative study of two real root

isolation methods. Nonlinear Analysis: Modelling and Control, 10(4):297–
304, 2005.

[2] E. M. L. Beale. An alternative method for linear programming. Math-
ematical Proceedings of the Cambridge Philosophical Society, 50:513–523,
1954.

[3] F. Boulier, M. Lefranc, F. Lemaire, P.-E. Morant, and A. Ürgüplü. On
proving the absence of oscillations in models of genetic circuits. In Pro-
ceedings of the Algebraic Biology 2007, volume 4545 of LNCS, pages 66–80,
2007.

[4] G. E. Collins and A. G. Akritas. Polynomial real root isolation using
Descarte’s rule of signs. In Proceedings of SYMSAC ’76, pages 272–275,
ACM Press, 1976.

[5] G. B. Dantzig. Linear programming and extensions. Princeton University
Press, Princeton, NJ, 1963.

[6] R. A. Dwyer. On the convex hull of random points in a polytope. Journal
of Applied Probability, 25(4):688–699, 1988.

[7] M. El Kahoui and A. Weber. Deciding Hopf bifurcations by quantifier elim-
ination in a software-component architecture. Journal of Symbolic Compu-
tation, 30(2):161–179, 2000.

16

[8] H. Errami, M. Eiswirth, D. Grigoriev, W. M. Seiler, T. Sturm, and A. We-
ber. Efficient methods to compute hopf bifurcations in chemical reaction
networks using reaction coordinates. In Proceedings of the CASC 2013,
volume 8136 of LNCS, pages 88–99, 2013.

[9] H. Errami, W. M. Seiler, T. Sturm, and A. Weber. On Muldowney’s criteria
for polynomial vector fields with constraints. In Proceedings of the CASC
2011, volume 6885 of LNCS, pages 135–143, 2011.

[10] K. Gatermann, M. Eiswirth, and A. Sensse. Toric ideals and graph theory
to analyze hopf bifurcations in mass action systems. Journal of Symbolic
Computation, 40:1361–1382, 2005.

[11] K. Gatermann and S. Hosten. Computational algebra for bifurcation the-
ory. Journal of Symbolic Computation, 40(4–5):1180–1207, 2005.

[12] R. Gomory. An algorithm for integer solutions to linear programs. In R. L.
Graves and P. Wolfe, editors, Recent Advances in Mathematical Program-
ming, pages 269–302. McGraw-Hill, 1963.

[13] Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual, 2014.

[14] E. Hairer, S. Norsett, and G. Wanner. Solving Ordinary Differential Equa-
tions I. Nonstiff Problems, volume 8 of Series in Computational Mathemat-
ics. Springer, 1993.

[15] J. K. Hale and H. Kocak. Dynamics and Bifurcations, volume 3 of Texts
in Applied Mathematics. Springer, 1991.

[16] A. C. Hearn and R. Schöpf. Reduce User’s Manual, Free Version, October
2014.

[17] N. Karmakar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4(4):373–395, 1984.

[18] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller,
J. W. Thatcher, and J. D. Bohlinger, editors, Complexity of Computer
Computations, The IBM Research Symposia Series, pages 85–103. Springer,
1972.

[19] L. G. Khakhiyan. A polynomial algorithm in linear programming. Soviet
Mathematics Doklady, 20(1):191–194, 1979.

[20] C. E. Lemke. The dual method of solving the linear programming problem.
In Naval Research Logistics Quarterly, volume 1, pages 36–47. 1954.

[21] R. Loos and V. Weispfenning. Applying linear quantifier elimination. The
Computer Journal, 36(5):450–462, 1993.

[22] A. Makhorin. GNU Linear Programming Kit. Department for Applied
Informatics, Moscow Aviation Institute, Moscow, Russia, August 2014.

[23] B. Mishra. Algorithmic Algebra. Texts and Monographs in Computer Sci-
ence. Springer, 1993.

17

[24] A. C. Norman. Codemist Standard Lisp (CSL) technical overview and
details, July 1991.

[25] A. C. Norman. Thirty years of Lisp support for REDUCE. In Proceedings
of the A3L 2005. BOD, Norderstedt, Germany, 2005.

[26] H. Peyrl and P. A. Parrilo. Computing sum of squares decompositions with
rational coefficients. Theor. Comput. Sci., 409(2):269–281, 2008.

[27] J. C. F. Sturm. Mémoire sur la résolution des équations numériques. In
Mémoires présentés par divers Savants étrangers à l’Académie royale des
sciences, section Sc. math. phys., volume 6, pages 273–318, 1835.

[28] T. Sturm and A. Weber. Investigating generic methods to solve hopf bifur-
cation problems in algebraic biology. In Proceedings of Algebraic Biology
2008, volume 5147 of LNCS, pages 200–215, 2008.

[29] T. Sturm, A. Weber, E. O. Abdel-Rahman, and M. El Kahoui. Investigat-
ing algebraic and logical algorithms to solve Hopf bifurcation problems in
algebraic biology. Mathematics in Computer Science, 2(3):493–515, 2009.

[30] B. Sturmfels. Solving Systems of Polynomial Equations. AMS, Providence,
RI, 2002.

[31] A. J. H. Vincent. Sur la résolution des équations numériques. Journal de
Mathématiques Pures et Appliquées, 1:341–372, 1836.

[32] D. Wang and B. Xia. Stability analysis of biological systems with real
solution classification. In Proceedings of the ISSAC 2005, pages 354–361.
ACM Press, 2005.

[33] A. Weber, T. Sturm, and E. O. Abdel-Rahman. Algorithmic global criteria
for excluding oscillations. Bull. Math. Biol., 73(4):899–916, 2011.

18

	1 Introduction
	2 Finding Roots with Positive Coordinates
	2.1 Finding a Point with Positive Value
	2.2 Finding a Zero
	2.3 An Illustrating Example
	2.4 Why Strictly Positive Coordinates?

	3 Finding Arbitrary Roots
	3.1 Using a Transformation
	3.2 A Genuine Generalization

	4 Practical Issues
	5 Some Practical Computations

