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GREEN’S FUNCTIONS FOR
STIELTJES BOUNDARY PROBLEMS

M. ROSENKRANZ AND N. SERWA

ABSTRACT. Stieltjes boundary problems generalize the customary
class of well-posed two-point boundary value problems in three
independent directions, regarding the specification of the boundary
conditions: (1) They allow more than two evaluation points. (2)
They allow derivatives of arbitrary order. (3) Global terms in
the form of definite integrals are allowed. Assuming the Stieltjes
boundary problem is regular (a unique solution exists for every
forcing function), there are symbolic methods for computing the
associated Green’s operator.

In the classical case of well-posed two-point boundary value
problems, it is known how to transform the Green’s operator into
the so-called Green’s function, the representation usually preferred
by physicists and engineers. In this paper we extend this trans-
formation to the whole class of Stieltjes boundary problems. It
turns out that the extension (1) leads to more case distinction, (2)
implies ill-posed problems and hence distributional terms, (3) has
apparently no effect on the structure of the Green’s function.

1. INTRODUCTION

Boundary problems for linear ordinary differential equations (LODES)
or linear partial differential equations (LPDESs) are certainly among the
most important model types in the engineering sciences. Interestingly,
their systematic treatment in Symbolic Computation started rather
recently [17]. For handling the central problems of solving and fac-
toring boundary problems, a differential algebra setting for LODESs is
employed in [20, 19] and for LPDEs in 21, [18]. An overarching ab-
stract framework based only on Linear Algebra is developed in [15].
For the classical treatment of boundary problems in Analysis, we refer
to [7, 10} 22], 24].

In this paper we restrict ourselves to LODESs, where the “industrial
standard” for solving boundary problems is their so-called Green’s func-
tion. This is in stark contrast to the operator-based methodology used
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in the above references. In fact, given a fundamental system, the al-
gorithm of [I7, 20] computes the solution of a boundary problem in
the form of its Green’s operator. In the classical setting of well-posed
two-point boundary value problems (see Section [2]), this algorithm ad-
mits an optional extra step for extracting the corresponding Green’s
function. Our goal here is to extend this postprocessing step to the con-
siderably larger class of Stieltjes boundary problems (see Section [2).

One way to understand the relationship between Green’s operators
and functions is to view the latter as a certain canonical form. For mak-
ing this precise we equip the ring of integro-differential operators with
a slightly different set of reduction rules favoring multiply initialized
integrals, leading to the ring of equitable integro-differential operators
(Section B]).

A simple example will make this clear—in fact the simplest of all
honest boundary problems [I7, §3.2]. Given a forcing function f €
|0, 1], we want to find v € C*°[0, 1] such that

The Green’s operator G: C*[0,1] — C*][0, 1] of this problem is de-
fined by Gf = u. Using the standard reduction system of [20], we
would distinguish one integral like [f := [ f(£)d€ and then obtain
the Green’s operator in the canonical form

(1) G=xf—Je+a[l|fz—z[1]],

where |« denotes the evaluation functional f — f(«) for any a € R,
in analogy to the multiplier notation of [I7]. For extracting the Green’s
function, however, it is more useful to use the alternative canonical form

(2) G:xfox—xflx—fox—i-xfl

where [ f := [T f(£)d¢ now denotes the integral initialized at the
point o € {0,1}. In fact, this is the form given in [I7], and we shall
see in Section [3] that the setting of biintegro-differential operators used
there is essentially a special case of the equitable operator ring em-
ployed in this paper. The point of the canonical form (2)) is that it
allows us to apply the defining relation G f(z) = fég(:c,g) f(&) d€§ of
the Green’s function directly to obtain the latter as

g(x’g):{(x—l)g for0<¢<z <1,

(3) 2E—1) for0<z<E<1,
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Heuristically speaking, one moves the fo terms to the upper and the fl
terms to the lower branch, at the same time translating the “x” after
the integrals into . Note incidentally that g(x,&) = g¢(&, x) in the
above Green’s function (B]). As is well known in Analysis [5, §7] [24]
§5], this is a consequence of the self-adjoint nature of this boundary
problem—a topic that we would wish to investigate in the future for
the more general class of Stieltjes boundary Problems (Section [).

We will elaborate on the above principles to generalize it in three “or-
thogonal directions”: (1) We allow more than two evaluation points,
leading to an increased number of case branches. (2) Using deriva-
tives of arbitrary order in the boundary conditions leads to distribu-
tional terms. (3) Boundary conditions with integral terms (so-called
“non-local problems”) are also included; they do not lead to further
complications.

2. STIELTJES BOUNDARY PROBLEMS

For giving a precise definition of the class of admissible boundary
problems, we follow the setting of [20]. Hence let (F,d, [) be a fixed
ordinary integro-differential K-algebra (here ordinary means kerd =
K). Later we shall specialize this to F = C*°(IR), the real- or complex-
valued smooth function. This is theoretically convenient but of course
needs to be replaced by a suitable constructive subalgebra for actual
computations.

The ring of integro-differential operators over F, introduced in [20),
§3], will be denoted here by F¢[0, [] to emphasize its dependence of
the chosen set of characters ®, and also to mark the contrast to the
equitable operator ring F[0, [,] to be introduced in Section B, where
the integral operators are parametrized by ®. In the case of F =
C*(R), these characters will be evaluations at given points of R so
that we may take & C R.

We recall the standard decomposition
where F[0] denotes the subalgebra of differential operators (the K-
subalgebra of Fp[0, [] generated by F and 9), F|[] the nonunital subal-
gebra of integral operators (the nonunital K-subalgebra of Fg[0, [] gen-
erated by F and [), and (®) the two-sided ideal of F3[0, [] generated
by the characters in ®. The corresponding right ideal |®) = ®- Fp[0, []
is known as the ideal of Stieltjes conditions, and one may check that ()
is in fact the left F-module generated by the Stieltjes conditions.

From the viewpoint of applications, Stieltes conditions 5 € (®) are
easier to comprehend in terms of their F3[, []-normal form: They can



4 M. ROSENKRANZ AND N. SERWA

be described uniquely as sums

(5) B=3"3 a,i00 +Y off,

pED i>0 pED

with only finitely many a,; € K and f, € F nonzero. The double sum
in (B) is called the local part of 3, the subsequent sum its global part.
In the important C*°(R) case with distinguished integral [ = [7, this
yields

Blu) = D apiu () + 3 [51,(€) u(€) de,

for certain a,; € R and f, € C*(R).

An n-th order Stieltjes boundary problem is a pair (T, B) with a monic
differential operator T' € F[0] of order n and a boundary space B < F*
given as linear span B = [(31, ..., 3,] of n linearly independent Stieltjes
conditions. In traditional representation, such a boundary problem is
displayed as

Tu-=f,
(6) Bru="--=Bau=0,

with the understanding that v € F is desired for any prescribed forc-
ing function f € F. For the (usual) Green’s operator to be well-
defined, we need the boundary problem ([6) to be regular in the sense
that ker T+ B+ = F, where B* = {u € F | B(u) = 0 for all B € B} is
the corresponding space of admissible functions. Regularity is equiv-
alent to the requirement that (6) has a unique solution u € F for
every given f € F. An algorithmic method for testing regularity starts
from a fundamental system wuq,...,u, € F for T', meaning a K-basis
of ker T'. Then ([@)) is regular iff the evaluation matrix

Pr(ur) -+ Bilun)
Br(ur) -+ Bnlun)

is regular; see (15) of [20]. Given a fundamental system wuy,...,u,
for T', the solution algorithm of [20] computes the Green’s operator of
any regular Stieltjes boundary problem as an integro-differential oper-
ator G € Fg[0, [].

Within the class of Stieltjes boundary problems, we make the fol-
lowing distinctions in order to characterize the classical scenario as a
certain special case.
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Definition 1. A Stieltjes boundary problem (7', B) of order n with B =
[B1s ..., Bn] is called well-posed if the f3; can be chosen with all deriva-
tives having order below n; otherwise it is called ill-posed. Furthermore,
we call (T, B) an m-point boundary problem if the maximal number of
evaluation points occurring in any K-basis (f;) of B is m, and we
call (T, B) local if the B; can be chosen without global parts.

Let us digress a bit on the notion of ill-posed boundary problems.
Following Hadamard, a problem is generally called well-posed [8, p. 86]
if it is regular (meaning its solution u exists and is unique for all given
data f) as well as stable (meaning u depends continuously on f). Oth-
erwise, one speaks of an ill-posed problem. In the case of boundary
problems ([6)), we search for u € C*°(R), and the data is given by the
forcing function f € C*°(R). Stability—and hence well-posedness—
depends on the topology chosen for the function space C*°(R). Using
the L? norm as in many application problems, the distinction between
well- and ill-posed boundary problems coincides with the one given
above.

Since local boundary problems involve only evaluations of the un-
known function (rather than definite integrals), we also call them “bound-
ary value problems”. We can now characterize the classical case, de-
scribed for example in [3, §7], by the following three-fold restriction:
They are the well-posed two-point boundary value problems. (Some-
times one meets the further restriction to self-adjoint boundary prob-
lems.)

The classical case (in the above sense) is clearly the most frequent
case in the applications (but this could also be due to a selection bias:
having a well-equipped toolbox for classical problems might tempt en-
gineers to restrict their attention to classical problems). Nevertheless,
multi-point boundary value problems are also important for some ap-
plications [I, Ex. 1.6], [23], [13], [14], [3]. Boundary problems with
nonlocal conditions are more seldom, they are usually studied for non-
linear equations [4], [I1]; the linear case serves as the initial approxi-
mation. Finally, the case of ill-posed boundary problems is—for obvi-
ous reasons—mostly avoided when engineering problems are modelled.
However, there are cases where their treatment is inevitable, typically
in the context of inverse problems [9]. Since the numerical treatment of
such problems is very delicate, it is of paramount importance to have
exact symbolic algorithms wherever this is possible.

We will lift all three of these restrictions for the algorithm of ez-
tracting Green’s functions, which will be given below (Section [). As
indicated in the Introduction, the crucial tool for this purpose—even in



6 M. ROSENKRANZ AND N. SERWA

the classical case—is the ring of equitable integro-differential operators
with its alternative canonical forms.

3. EQUITABLE OPERATORS

The passage from the standard integro-differential operator ring Fg |0, []
to its equitable variant F[9, [,] is based on the fundamental theorem
of calculus IZ (&) d¢ = f(x) — f(p) for any function f € C*(R)
and initialization point ¢ € R. Likewise, if (F,0, [) is an arbitary
integro-differential K-algebra and ¢ a character (multiplicative linear
functional), one can use the definition fw ;= (id —¢) [ to obtain the
corresponding relation J’wa = id —¢. In some contexts (especially in

the presence of several integral operators like [“ and [¥ on bivariate
functions), it may be useful to write the integral J;D as f; If v is

another character, one observes the relation wf@ = 5~ J;D, and it is

natural to write ij for both expressions.

Note that (F, 9, J;D) is again an ordinary integro-differential K-algebra,
and the preference of f over J;O can appear arbitrary in certain settings.
Accordingly, one may build the ring of integro-differential operators by
adjoining all Iso while the characters ¢ themselves are now redundant
due to the above fundamental relation. The precise formulation of the
resulting ring F[9, [,] as a quotient is described in [16] §5.1]. For our
present purposes, we shall only list its relations (see Table [Il where -
denotes the natural action of the operators), which are an easy con-
sequence of the relations of the standard integro-differential operator

ring Fs0, [].

fg - f-g|of = 9-f+f0]0f] — 1
Jofly = gy —JaUs - f)

Jofd = =20 ) —e-f+(p- )0
TABLE 1. Equitable Integro-Differential Relations

Similar to the standard decomposition (@), we have also the equi-
table decomposition F|0, [,] = F|[0] + F[[s] + F[,0] where F[[,] is
the nonunital subalgebra of equitable integral operators > . f,-f;gi
and F[[,0] the F-submodule consisting of 7 f,-fi@i; this leads to

the obvious normal forms in F|[0, [,].
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The so-called translation isomorphism v: Fo[0, [] — F|0, [,] leaves
f € F and 0 invariant while using the above fundamental relation
via i(p) = id—[ 0 and () = (id—¢)[. Note that this holds
also for the character € := id — [ associated to the distinguished
integral | = [ underlying F5(0, [].

Specializing to F = C*°(R) and & = {0, 1}, we can deal with the ez-
ample in the Introduction, where we have the normal form G € Fy[0, ]
in () along with its equitable variant «(G) € F[0, [¢] in [@). In
such two-point cases with characters ® = {«, 5}, the equitable op-
erator ring F[0, fq)] is essentially the same as the ring of biintegro-
differential operators. More precisely, we obtain a biintegro-differential
algebra (F,0, [7, [,) with integral [* := [ and cointegral [ := —fﬁ
in the sense of [16, Def. 3.23]. Note that [~ and [ are adjoint with

respect to the inner product defined by (f|g) := ("4 [,)(fg) = fifg.
Incidentally, the notion of biintegro-differential algebra coincides with
the (badly named) notion of “analytic algebra” introduced in [17,
Def. 2] and replicated in [20, Ex. 5]. Clearly, the operator ring re-
sulting from F[9] by adjoing [~ and [ is the same as F[0, [,], modulo
the sign change in the cointegral.

Note that also J;D € Fo[0, [] and ¢ € F[0, [,] are legitimate expres-
sions via the above translation isomorphism. They are not in canonical
form but we may think of them as a kind of abbreviation for the corre-
sponding canonical expression.

In fact, the extraction of Green’s functions is based on the fol-
lowing slight variation of the equitable integro-differential operator
ring F[0, [,]. Writing any element U € Fg[0, [] in the form U =
T+ K+ Bwith T € F[9], K € F[f] and B € (®) according to (),
we let T e F[0, [,] and K € F[[.] € F[[,] invariant while translat-
ing B € (®) as follows. Since (®) is the left F-module generated by
Stieltjes conditions (), we may split B = A+ into a left F-linear com-
bination A of local Stieltjes conditions and a left F-linear combination ~
of global Stieltjes conditions. It turns out to be expedient to keep A
in this form, without eliminating the characters via ¢ = id —J;DE?, but

to translate vy via o[, = [¢ — J;D =: [£. This is what we mean when
referring in the sequel to the equitable form of an integro-differential
operator U.

4. EXTRACTING GREEN’S FUNCTIONS

We now turn to the central task of this paper, the extraction of the
Green’s function g(z,&) corresponding to the Green’s operator G €
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F|0, [,] computed by the algorithm of [20] and converted to equitable
form as described in SectionBl Hence we specialize now to F = C*°(R).
Note that we may think of g(z, §) as a kind of coordinate representation
of the induced operator action G: F — F; in quantum mechanics this
would correspond to the “position basis” (as opposed to the “momen-
tum basis” in the Pontryagin dual reached via the Fourier transform).
Hence we will use the notation g(z,{) = Gy, thinking of the z, £ rather
like continuous indices similar to the discrete indices 4, j in the matrix
elements A;; of some A € K™*™.

In fact, we will use this notation G, for any equitable integro-
differential operator G € F[0, [,]. Its result will in general contain
Dirac distributions [22, §2] and their derivatives but nothing beyond
that. Since all boundary problems considered in this paper have only
finitely many evaluation points o € ® C R, one may choose an inter-
val J C R containing all the a. Hence the C(J?)-module G C D’'(J?)
generated by the Dirac distributions 0, and their derivatives will be
sufficient to capture all Green’s “functions” G, € G. Here and in
the sequel we shall follow the common engineering (and also applied
maths) practice of referring to distributions like d,, as functions. In the
same vein, we shall also write §(§ — «) in place of J,, in view of the
defining property fJ (& —a) f(&)dE = fla).

The transformation from Green’s operators to Green’s functions
FlO, [4] = G, G Gy

is clearly an R-linear map, hence it will be sufficient to define it on the
canonical R-basis of Fy[0, [] = F[0, [,]. Following the strategy of the
example in the Introduction, the easiest part is F[[] C Fg[0, [], which
is handled by setting

(ff9)ee = f(2) g(E) [0 <€ <a] — f(2) g(§) [x < £ < 0],

where we use the Iverson bracket notation [P] signifying 1 if the prop-
erty P is true and zero otherwise. Note that at most one of the two
summands above is nonzero for fixed (z,§). Since (®) C Fs[d, [] is a
left F-module over |®), we settle this part via

(f [a)0)ze = (=1)'f(2) 89(€ ~ @),
(f L] Jg)ag = sgn(a) f(z) g(§) 0 < & < o],
Finally, on F[0] we define
(fO)ee = (=1)" f(x) 69 (2 — €),

and the definition is complete in view of (). Moreover, it is easy to
check that the assignment G — (¢ is correct in the sense that Gf =
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I 5 Gue f(€) d§. The isomorphism ¢ of Section [3] may now be employed
to obtain the required transformation F[9, [,] — G. In fact, the above
case f[g € F[[] generalizes immediately to

(ff, Dae = f(@) g(&) [a <E<a]— f(x)g(&) [z <& < al,

which will turn out to be the essential clause for extracting Green’s
functions of (well-posed) multi-point boundary problems. For seeing
this, we need a more detailed description of the underlying Green’s
operators.

We turn first to the easy case of a one-point boundary problem, more
appropriately known under the name of initial value problems (T, [€, ...
for T € F[0] of order n. The corresponding Green’s operator is
called the fundamental right inverse 7° and can be computed eas-
ily via the well-known “variation of constants” formula [16], Thm. 6.4]:
If uq,...,u, is a fundamental system for 7" with Wronskian matrix W,
the fundamental right inverse is given by

j=1

Here d = det(W) and d; = det(W;), where W, denotes the matrix
resulting from W when replacing the i-th column by the n-th unit
vector of K.

What we shall need in the sequel is how T reacts to left multipli-

cation by FI[0J].

Lemma 2. Let T' € F[J] be any monic differential operator of order n,

and choose a fundamental system uy, ..., u, for T with Wronskian ma-
trix W. Then we have
n k
d; ,
® EAED WIS S
j=1 j=1

, I~ e
with PEi= Zu§k l)dj € F,
j=1

where d and d; are as above.

Note that p; = --- = p,—1 = 0 by the definition of the d;; hence the
second sum in O¥T is only present for k > n, and we may equivalently
write its range as 7 = n, ..., k. Furthermore, we have p, = 1 from the

definition of d. For k > n, however, the p; are functions of F, so in
general they do not commute with the 9~/ in the second summand

of ).
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Proof. We use induction on k. In the base case k = 0, this is the usual
variation-of-constants formula as given in [5, p. 74]; see [20, Prop. 22]
and [16, Thm. 6.4] for its operator formulation. Now assume (&) for
fixed k > 0; we show it for k + 1. By the induction hypothesis we
obtain

n n k
d; 1 :
k41 k _
T = D G Yl Y,
j=1 j=1 j=1
which is just (8) for k£ + 1 since the middle sum is pxy; and can be
absorbed into the third. U

Lemma 3. The Green’s operator of any reqular Stieltjes boundary prob-
lem is contained in F[[,]+ L, where L denotes the left F-module gen-
erated by the local Stieltjes conditions.

Proof. Assume (T, B) is any regular Stieltjes boundary problem of or-
der n with Green’s operator GG, and let P be the projector onto ker T’
along B*. By the proof of 20, Thm. 26] we have G = (1 — P)T°,
and we know that P is an F-linear combination of Stieltjes conditions
by [20, (16)] in that same proof. From (8) it is clear that T° € F[[,],
so it suffices to show PT® € F[[,] + £. Each summand of P is either
of the form fla]d* or fla)fg = flcg—[f[, g9 € Flfy]- In the lat-
ter case we obtain an expression in F[[;] since F[[;] is a (nonunital)
subalgebra of F[0, [;]. It remains to prove fla] T € F[[,] + L.
From (8) we see that

n k
fLOKJ 8kT<> — Z fugk)(a) fg% —+ Z fLO(J ak—jpj.

The first sum is clearly contained in F[[;], while the second is in £
because 9" 7 p; € F[0] may be rewritten in canonical form as a sum of
terms ¢;0" so that [a] 8" 7p; is a sum of local conditions a(g;) |« &
and hence itself local. O

We are now ready to state the main structure theorem for Green’s
functions of regular Stieltjes boundary problems.

Theorem 4. The Green’s function of any reqular Stieltjes boundary
problem with m evaluations o, . .., &, has the form g(z, &) = g(x, &) +
§(x,€), where the functional part g € C(J?) is defined by the 2(m —
1) case branches

5 S [Oéi,OéH_l] (O <1 < m),x < f,

¢ e [Oéi,OéH_l] (O <1< m),f <uz,
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while the distributional part §(x, &) is an F-linear combination of the §(§—
«;) and their derivatives.

Proof. If G is the Green’s operator of the given Stieltjes boundary
problem, Lemma B says that G = G + G with G € Fl[4) and GecL.
We will show that §(z, &) = Gue and §(x,€) = G are as described in
the theorem. Starting with the former, we may write

G = Z fi‘faigia
i=1

where o; = a; is possible for ¢ # j. Using the transformation F[0, fq)] —
G, we obtain g(z,§) as

Z (fz(x) gi(&) [ay < €€ < 2] — filx) 9:(&) [€ < [z < 5])
> (X 5@ 0©)lay1 <€ < alle <l

i=1  oj<q

-3 (> £ 66y <€ < alle <)

a;>a;

where the two inner sums are restricted by j > 0 and j < n. Col-
lecting terms, this is a sum of 2(m — 1) characteristic functions over
disjoint domains in R?, hence one may also write g(z,&) in terms of a
corresponding case distinction with 2(m — 1) branches.

The distributional part g(x,&) is even easier. Writing G as an F-
linear combination of local conditions we obain g(z, ) via

Cog = (X fra®) =D (1) fuale) 69 ~ ),

a,l

which is clearly of the stated form. O

The above theorem is constructive, and we plan to implement the
underlying algorithm on top of the Maple package IntDiff0p [12].

Remark 5. If the distinguished character € = |0] is not used in
the boundary conditions, a straightforward translation of the Green’s
operator G may introduce two spurious extra case branches in the
Green’s function G since fg occurs in the formula for G. For avoiding
this, one has to use a different version of T that replaces |0] by any
one of the characters | ;| used in the boundary conditions.
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5. EXAMPLES

Our first example (in addition to the minimal one from the Introduc-
tion) is a four-point boundary value problem taken from [2] (2.1,2.2)],
where we have specialized the parameters and rescaled the interval
to J = [0,1] for the sake of simplicity. Hence we are dealing with the
boundary problem

_u// — f’
w(0) + u(1/3) = u(1) + u(2/3) = 0,

where we may assume u, f € C*[—2,2]. Note that this is a well-
posed boundary problem, so the Green’s function will not have a dis-
tributional part. Computing the Green’s operator with the IntDiff0p
package yields after some rearrangements the result

G=uaf—[z+(-5/24+2/4)1/3][
+ (5/8 = 3x/4)[1/3] [z + (1/8 — 3z /4)| 1] [=
+ (1/12 = 2/2)[2/3] [ + (—=1/8 4 3z/4)[2/3] [

Transforming G to equitable form is simple, via o] [~ [ — 7. We
can then determine the corresponding Green’s function g(z, §) = g(x, &)
with 6 cases, and its terms may be computed according to Theorem [l
The result for g(x, &) is summarized in the table below.

Case Term

0<E<1/3,6<x | (3/4)x§ — (5/8)€
0<E<1/3,a<g | (3/4)x§+ (3/8)€ —
1/3<€<2/3, <w | (3/2)z — (5/4)€ — (1/4)»’0 +5/24
1/3<€<2/3,x < | (3/2)z{ — (1/4)§ —(5/4)x +5/24
2/3<€<1,£<x | (3/4)x€—(9/8)§ + (1/4)x +1/8
2/3<{<lx<¢ | (3/4)z{—(1/8)§—(3/4)x+1/8

Our second example is, as it were, totally unclassical: It is ill-posed,
has nonlocal conditions and contains three evaluation points —1,0, 1.
In our standard notation, we write this boundary problem as

u’ —u-f

/// f(] é—dé-_o
u’( +f £)d¢ =0,

where we assume now u, f € C*[—1,1]. Using the method of [20],
it is straightforward to compute the Green’s operator G. In fact, the
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IntDiff0p package yields the result
oG =0/2("[e™® —e " [e")
+ 2(_6x+3 + e:c+2 _ 6x+1 + e—x+2 _ e‘”l)(L—lJ@ + |_1J J‘x)
+(e—1)(=e"? = 2" e ([0 [+ [1]))

( T+2 e*t +1 3e —z+1 + 36—:(:) Lljj‘ex
(2€x+2 :c+1)(e J‘e—m + 6 J‘e
( 6 o gc+2 4 2€:v+1 4 e—w+2 e—:v+1) UJ

using the abbreviation o := 2(2e — 3)(e — 1) while collecting and fac-
toring some terms for enhanced readability. After transforming this to
equitable form (which is again straightforward), we can apply Theo-
rem [ to extract the Green’s function g(z,§) = g(x, &) + g(x, &) with
the distributional part

Uﬁ(l’,{) — (_696-‘,-3 o 690-1—2 + 2696-‘1-1 + e—x+2 _ e—x-i—l) 5(5 o 1)
+ 2 (_em+3 4 €x+2 . em—l—l 4 e—m+2 - €_m+1)5/(£ o 1)
coming from the (...) |1 and (...) |1]0 terms, and with the functional

part defined by the case distinction for o g(x, ) as given in the table
below.

Case Term

—1<E€<0,6 < | 3e"TTE 4378 — 27178 2377 T
+63+CL‘ + 6fz+1 + ez+2 _ €7z+2 _ 2ez+1
1< €S0, <E | —2e"F 4 2072 _ g IHE _ gpmH2=¢
_263+w+5 +3671+§ + efz+1 _|_ecc+2
43T 4 3er I8 | 32 F2HE _ gt
0<E<TL,E<z | —2%F7E —2e FTE 42" T2 + 2 " T2

—2e™TE 4 3™ T2 4 36778 — 5= TLTE
_|_2efz+1+5 _ et tIHE g t2+E 4 28 T2—¢

_63+x _ 67x+1 _ ex+2 + efac+2 + 26x+1

0<E<L,z <€ | =276 —2e7 " T1E £ 27 T2€ £ 207 "T7¢

_2ez+1£ 4 367:v+§ + 3ez+2+§ _ 63+z
_67x+1 _ 6x+2 + efac+2 + 261+1

_3e ¥t IHE _ it

Incidentally, this example shows also that the representation of Green’s
operators in terms of Green’s functions—despite its long tradition in
engineering and physics—is not always the most useful and economi-
cal way of representing the Green’s operator. For many purposes it is
better to take the Green’s operator just as an element of the operator

ring Fo[0, [] or F[0, [,].
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6. CONCLUSION AND FUTURE WORK

While we have focused our attention to semi-inhomogeneous bound-
ary problems (those with an inhomogeneous differential equation and
homogeneous boundary conditions), one may also consider the oppo-
site case of semi-homogeneous boundary problems—this is especially
important in the case of LPDEs. The corresponding semi-homogeneous
Green’s operator maps the prescribed boundary values to the solu-
tion [18]. In the case of LODES, one often restricts attention to well-
posed two-point boundary value problems (in the sense of Definition [T]).
Writing the two evaluations as |a| and |b] and their action on u as u(a)
and u(b), one may consider the extended evaluation matrix

up(a) .- Uy (a)

- SR
u" V@) - ul VN (a)

la,b|(u) := w®) o un(b) € K2nxn

i) )

which is similar to (7]) except that it is rectangular since we consider
more boundary functionals than we could possibly impose for one reg-
ular boundary problem. If we do prescribe all 2n boundary derivatives,
they must satisfy n relations given by the kernel of the map R** —
R", X +— X - |a,b|(u). For the simple example in Section [ the ex-
tended evaluation matrix for the fundamental system u; = 1,us = x
is

I_O’ lJ (u) =

O = O
— == O

whose kernel has basis (—1,1,1,0), (0, —1,0, 1). Written in terms of the
boundary functionals, they encode the two relations u(1) —u(0) = u/(0)
and u/(0) = u/(1). The analogous case for LPDEs gives rise to the
interesting notion of universal boundary problem [25].

There is another, more fundamental, way of extending the results
in this paper: Currently our method for extracting Green’s functions
works for arbitrary Stieltjes boundary problems (7', B), but only in the
standard integro-differential algebra F = C*°(R). Of course, it requires
a Green’s operator G € Fy[0, [] = F[0, [,] and hence a fundamental
system for T'.



GREEN’S FUNCTIONS FOR STIELTJES BOUNDARY PROBLEMS 15

It would be interesting to extend the concept of Green’s function
and the corresponding extraction method to arbitrary ordinary integro-
differential algebras (F,d, [). For the functional part g(x,§), it is
clear how to achieve this since one sees from the structure of Green’s
operators that necessarily g € F®F. The ring F ® F has the structure
of a partial integro-differential algebra with derivations and integrals

O (f®g)=(0f)®g and 9,(f®g)=f®(9g),
[ffeg=fHog and ["(fog) =f2([g)

This structure will be useful for studying various properties of Green’s
function, in particular their symmetry: For well-posed two-point bound-
ary value problems (7', B) it is known [22, §3.3] that the Green’s func-
tion g(z,&) is symmetric whenever (7', 5) is self-adjoint. Otherwise
one may associate to (T, B) an adjoint boundary value problem whose
Green’s function is then ¢g(&, z). It would be useful to know how these
results generalizes to arbitrary Stieltjes boundary problems.

Having an abstract integro-differential algebras (F, 9, [), the other
problem is Green’s function will in general have a distributional part §(x, £)
that does not fit into F ® F. For accommodating distributions into the
setting of integro-differential algebras, it is probably necessary to con-
struct a integro-differential module generated over F ® F by a suitable
notion of abstract Dirac distributions. (It is well known that distribu-
tions do not enjoy a convenient ring structure, hence it seems to be
more reasonable to go for a module. This is also the path followed in
the algebraic analysis of D-modules; see [6l, §6.1] for example.)
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