
A Systematic Study of Functional
Language Implementations

RÉMI DOUENCE and PASCAL FRADET
INRIA/IRISA

We introduce a unified framework to describe, relate, compare, and classify functional
language implementations. The compilation process is expressed as a succession of program
transformations in the common framework. At each step, different transformations model
fundamental choices. A benefit of this approach is to structure and decompose the implemen-
tation process. The correctness proofs can be tackled independently for each step and amount
to proving program transformations in the functional world. This approach also paves the way
to formal comparisons by making it possible to estimate the complexity of individual
transformations or compositions of them. Our study aims at covering the whole known design
space of sequential functional language implementations. In particular, we consider call-by-
value, call-by-name, and call-by-need reduction strategies as well as environment- and
graph-based implementations. We describe for each compilation step the diverse alternatives
as program transformations. In some cases, we illustrate how to compare or relate compilation
techniques, express global optimizations, or hybrid implementations. We also provide a
classification of well-known abstract machines.

Categories and Subject Descriptors: D.1.1 [Programming Techniques]: Functional Pro-
gramming; D.2.4 [Software Engineering]: Program Verification—correctness proofs; D.2.8
[Software Engineering]: Metrics—complexity measures; D.3.4 [Programming Languag-
es]: Processors—code generation; compilers; optimization; F.4.1 [Mathematical Logic and
Formal Languages]: Mathematical Logic—lambda calculus and related systems

General Terms: Languages, Theory, Verification

Additional Key Words and Phrases: Abstract machines, compilers, combinators, functional
programming, program transformation

1. INTRODUCTION

One of the most studied issues concerning functional languages is their
implementation. Since Landin’s [1964] seminal proposal, 30 years ago, a
plethora of new abstract machines and compilation techniques have been
proposed. The list of existing abstract machines includes the SECD [Landin
1964], the Cam [Cousineau et al. 1987], the CMCM [Lins 1987], the Tim

Authors’ address: INRIA/IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France; email:
{douence; fradet}@irisa.fr.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1998 ACM 0164-0925/98/0300–0344 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998, Pages 344–387.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F276393.276397&domain=pdf&date_stamp=1998-03-01

[Fairbairn and Wray 1987], the Zam [Leroy 1990], the G-machine [Johnson
1987], and the Krivine-machine [Crégut 1991]. Other implementations are
not described via an abstract machine but as a collection of transformations
or compilation techniques such as compilers based on continuation passing
style (CPS) [Appel 1992; Fradet and Le Métayer 1991; Kranz et al. 1986;
Steele 1978]. Furthermore, numerous papers present optimizations often
adapted to a specific abstract machine or a specific approach [Argo 1989;
Burn et al. 1988; Joy et al. 1985]. Looking at these myriad distinct works,
obvious questions spring to mind: what are the fundamental choices? What
are the respective benefits of these alternatives? What are precisely the
common points and differences between two compilers? Can a particular
optimization, designed for machine A, be adapted to machine B? One finds
comparatively very few papers devoted to these questions. There have been
studies of the relationship between two individual machines [Lins et al.
1992; Peyton Jones and Lester 1992] but, to the best of our knowledge, no
global approach to study implementations.

The goal of this article is to fill this gap by introducing a unified
framework to describe, relate, compare, and classify functional language
implementations. Our approach is to express the whole compilation process
as a succession of program transformations. The common framework con-
sidered here is a hierarchy of intermediate languages, all of which are
subsets of the lambda calculus. Our description of an implementation

consists of a series of transformations LO¡
71

L1O¡
72

. . .O¡
7n

Ln, each one

compiling a particular task by mapping an expression from one intermedi-
ate language into another. The last language Ln consists of functional
expressions that can be seen as assembly code (essentially, combinators
with explicit sequencing and calls). For each step, different transformations
are designed to represent fundamental choices or optimizations. A benefit
of this approach is to structure and decompose the implementation process.
Two seemingly disparate implementations can be found to share some
compilation steps. This approach also has interesting payoffs as far as
correctness proofs and comparisons are concerned. The correctness of each
step can be tackled independently and amounts to proving a program
transformation in the functional world. Our approach also paves the way to
formal comparisons by estimating the complexity of individual transforma-
tions or compositions of them.

We concentrate on pure l-expressions and our source language L is E ::5
x u lx.E u E1 E2. Most fundamental choices can be described using this
simple language. The two steps that cause the greatest impact on the
compiler are the implementation of the reduction strategy (searching for
the next redex) and the environment management (compilation of the
b-reduction). Other steps include the implementation of control transfers
(calls and returns), the implementation of closure sharing and update
(implied by the call-by-need strategy), the representation of components
such as the data stack or environments, and various optimizations.

Functional Language Implementations • 345

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

In Section 2 we describe the framework used to model the compilation
process. In Section 3 we present the alternatives to compile the reduction
strategy (i.e., call-by-value and call-by-name). The compilation of control
used by graph reducers is peculiar. A separate section (3.3) is dedicated to
this point. Section 3 ends with a comparison of two compilation techniques
of call-by-value and a study of the relationship between the compilation of
control in the environment and graph-based models. Section 4 (resp.,
Section 5) describes the different options to compile the b-reduction (resp.,
the control transfers). Call-by-need is nothing but call-by-name with redex
sharing and update, and in Section 6 we present how it can be expressed in
our framework. Section 7 embodies our study in a taxonomy of classical
functional implementations. In Section 8 we outline some extensions and
applications of the framework. Section 9 is devoted to a review of related
work, and Section 10 concludes by indicating directions for future research.

In order to alleviate the presentation, some more involved material such
as proofs, variants of transformations, and other technical details have
been kept out of the main text. We refer the motivated reader to the
(electronically published) Appendix. A previous conference paper [Douence
and Fradet 1995] concentrates on call-by-value and can be used as a short
introduction to this work. Additional details can also be found in two
companion technical reports [Douence and Fradet 1996a; 1996b] and a
Ph.D. thesis [Douence 1996].

2. GENERAL FRAMEWORK

Each compilation step is represented by a transformation from an interme-
diate language to another one that is closer to machine code. In this article,
the whole implementation process is described via a transformation se-

quence LO¡
71

LsO¡
72

LeO¡
73

LkO¡
74

Lh starting with L and involving four
intermediate languages (very close to each other). This framework pos-
sesses several benefits:

—It has a strong formal basis. Each intermediate language can be seen
either as a formal system with its own conversion rules or as a subset of
the l-calculus by defining its constructs as l-expressions. The intermedi-
ate languages share many laws and properties, the most important being
that every reduction strategy is normalizing. These features facilitate
program transformations, correctness proofs, and comparisons.

—It is (relatively) abstract. Since we want to model implementations
completely and precisely, the intermediate languages must come closer to
an assembly language as we progress in the description. The framework
nevertheless possesses many abstract features that do not lessen its
precision. The combinators of the intermediate languages and their
conversion rules allow a more abstract description of notions such as
instructions, sequencing, stacks, etc., than an encoding as l-expressions.
As a consequence, the compilation of control is expressed more abstractly

346 • R. Douence and P. Fradet

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

than using CPS expressions, and the implementation of components (e.g.,
data stack, environment stack) is a separate step.

—It is modular. Each transformation implements one compilation step and
can be defined independently of the former steps. Transformations imple-
menting different steps are freely composed to specify implementations.
Transformations implementing the same step represent different choices
and can be compared.

—It is extendable. New intermediate languages and transformations can be
defined and inserted into the transformation sequence to model new
compilation steps (e.g., register allocation).

2.1 Overview

The first step is the compilation of control which is described by transfor-
mations from L to Ls. The intermediate language Ls (Figure 1) is defined
using the combinators +, pushs, and a new form of l-abstraction lsx.E.
Intuitively, + is a sequencing operator, and E1 + E2 can be read “evaluate E1
then evaluate E2”; pushs E returns E as a result, and lsx.E binds the
previous intermediate result to x before evaluating E. The pair (pushs, ls)
specifies a component (noted s) storing intermediate results (e.g., a data
stack). So, pushs and ls can be seen as “store” and “fetch” in s.

The most notable syntactic feature of Ls is that it rules out unrestricted
applications. Its main property is that the choice of the next weak redex is
no longer relevant: all weak redexes are needed. This is the key point to
view transformations from L to Ls as compiling the evaluation strategy.

Transformations from Ls to Le are used to compile the b-reduction. The
language Le excludes unrestricted uses of variables that are now needed
only to define macrocombinators. The encoding of environment manage-
ment is made possible using the new pair (pushe, le). They behave exactly
as pushs and ls; they just act on a (at least conceptually) different
component e (e.g., a stack of environments).

Transformations from Le to Lk describe the compilation of control
transfers. The language Lk makes calls and returns explicit. It introduces
the pair (pushk, lk) which specifies a component k storing return ad-
dresses.

The last transformations from Lk to Lh add a memory component in order
to express closure sharing and updating. The language Lh introduces the
pair (pushh, lh) which specifies a global heap h. The expressions of this
last language can be read as assembly code.

Ls E <5 x u E1 + E2 u pushs E u lsx.E
Le E <5 x u E1 + E2 u pushs E u lsx.E u pushe E u lex.E
Lk E <5 x u E1 + E2 u pushs E u lsx.E u pushe E u lex.E

u pushk E u lkx.E
Lh E <5 x u E1 + E2 u pushs E u lsx.E u pushe E u lex.E

u pushk E u lkx.E u pushh E u lhx.E

Fig. 1. The intermediate languages.

Functional Language Implementations • 347

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

2.2 Conversion Rules

The substitution and the notion of free or bound variables are the same as
in the l-calculus. The basic combinators can be given different definitions
(possible definitions are given in Section 2.5). We do not pick specific ones
at this point; we simply impose the associativity of sequencing and that the
combinators satisfy the equivalent of b- and h-conversions (Figure 2). We
consider only reduction rules corresponding to the classical b-reduction:

~push i F! + ~l ix.E! ➨ E@F/x#

As with all standard implementations, we are only interested in model-
ing weak reductions. In our framework, a weak redex is a redex that does
not occur inside an expression of the form pushiE or lix.E. Weak reduction
does not reduce under the pushi’s or li’s, and from here on we write “redex”
(resp., reduction, normal form) for weak redex (resp., weak reduction, weak
normal form).

The following example illustrates bi-reduction (note that pushs F +

lsz.G is not a (weak) redex of the global expression):

pushe E + pushs~pushs F + lsz.G! + lsx.ley.pushs~pushe y + x!

➨ pushe E + ley.pushs~pushe y + pushs F + lsz.G!

➨ pushs~pushe E + pushs F + lsz.G!

Any two redexes are clearly disjoint, and the bi-reductions are left-linear;
so the term-rewriting system is orthogonal, hence confluent [Klop 1992].
Alternatively, it is very easy to show that the relation ➨ is strongly
confluent, therefore confluent (see Appendix A). Furthermore, any redex is
needed (a rewrite cannot suppress a redex) thus the following property:

PROPERTY 1. All Li-reduction strategies are normalizing.

This property is the key point to view transformations from L to Ls as
compiling the reduction order.

2.3 A Typed Subset

All the expressions of the intermediate languages can be given a meaning
as l-expressions (Section 2.5). Using conversion rules such as (assoc) the
same expression can be represented differently. For example, one can write

(assoc) (E1 + E2) + E3 5 E1 + (E2 + E3)
(bi) (pushi F) + (l ix.E) 5 E[F/x]
(hi) l ix.(pushi x + E) 5 E if x does not occur free in E

Fig. 2. Conversion rules in Li (for i [{s,e,k,h}).

348 • R. Douence and P. Fradet

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

equivalently

pushs E1 + ~pushs E2 + lsx.lsy.E3!

or

~pushs E1 + pushs E2! + lsx.lsy.E3 .

This flexibility is very useful for transforming or reshaping the code.
However, unrestricted transformations may lose information about the
structure of the expression. Many laws and transformations (e.g., see laws
(L2) and (L3) in Section 2.4 or transformation *c in Section 6.1) rely on the
fact that a subexpression denotes a result (i.e., can be reduced to an
expression of the form pushi E) or a function (i.e., can be reduced to an
expression of the form lix.E). If we allow subexpressions such as (pushs
E1 + pushs E2) that neither denote a result nor a function, fewer laws and
transformations can be expressed. It is therefore convenient to restrict Li
using a type system (Figure 3).

The restrictions enforced by the type system are on how results and
functions are combined in Li. For example, the composition E1 + E2 is
restricted so that E1 denotes a result (i.e., has type Ris, Ri being a type
constructor) and E2 denotes a function. The type system restricts the set of
normal forms (which in general includes expressions such as pushi E1 +

pushj E2), and we have the following natural facts (see Appendix B).

PROPERTY 2. If a closed expression E:Ris has a normal form, then E *➨
pushi V. If a closed expression E:s 3i t has a normal form, then E *➨ lix.F.

So, the reduction of any well-typed expression A + F either reaches an
expression of the form pushi A9 + lix.F9 or loops.

Our transformations implementing compilation steps will produce well-
typed expressions denoting results, and during all the compilation pro-
cesses, the compiled program will be well typed. Typing is used to maintain
some structure in the expression and does not impose any restrictions on
source l-expressions (Appendix B). It should be regarded as a syntactic
tool, not a semantic one. Ill-typed Li-expressions have a meaning in terms
of l-expressions as well (see Section 2.5).

2.4 Laws

This framework possesses a number of algebraic laws that are useful to
transform the functional code or to prove the correctness or equivalence of

G ø $ x;s%£x;s

G£E;s

G£push i E;Ris

G ø $ x;s%£E;t

G£l ix.E;s3 it

G£E1;Ris G£E2;s3 it

G£E1 + E2;t

Fig. 3. Li typed subset (Li
s) (for i [{s,e,k,h}).

Functional Language Implementations • 349

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

program transformations such as

If x does not occur free in F ~l i x.E! + F 5 l i x.~E + F!. (L1)

For all E1: Ris, if x does not occur free in E2

E1 + ~l i x.~E2 + E3!! 5 E2 + ~E1 + ~l i x.E3!!. (L2)

For all E1: Ris, E2: Rjt and x Ó y

E1 + ~E2 + ~l j x.l i y.E3!! 5 E2 + ~E1 + ~l i y.l j x.E3!!. (L3)

These rules permit code to be moved inside or outside function bodies or
to invert the evaluation order of two intermediate results (which is correct
because we consider only purely functional expressions (Appendix C)). To
illustrate the conversion rules at work, let us prove the law (L1). Note that
x does not occur free in (lix.E) nor, by hypothesis, in F and in the
following:

~l i x.E! + F 5 l i x.push i x + ~~l i x.E! + F! (hi)

5 l i x.~~push i x + ~l i x.E!! + F! (assoc)

5 l i x.~E@ x/x# + F! (bi)

5 l i x.~E + F!. (subst)

Even if using some rules or laws (e.g., (assoc) or (L1)) may lead to
untyped programs, we still may use them as long as the final program is
well typed. For example, a closed and well-typed expression

~pushs V + ~ls x.pushs E!! + ~ls y.F!

can be transformed using (assoc) and (L1) into the well-typed expression

pushs V + lsx.~pushs E + ~lsy.F!!.

To simplify the presentation, we often omit parentheses and write, for
example, pushi E + l ix.F + G for (pushi E) + (l ix.(F + G)). We also use
syntactic sugar such as tuples (x1, . . . , xn) and simple pattern matching
l i(x1, . . . , xn).E.

2.5 Instantiation

The intermediate languages Li are subsets of the l-calculus made of
combinators. An important point is that we do not have to give a precise
definition to combinators. We just assume that they respect properties (b i),
(hi), and (assoc). Definitions can be chosen only after the last compilation
step. This feature allows us to shift from the bi-reduction in Li to a

350 • R. Douence and P. Fradet

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

state-machine-like expression reduction. Moreover, it permits us to specify
the implementation of components independently of the other steps. For
example, we may eventually choose to implement the data component s and
the environment component e either as a single stack or as two separate
ones. In Section 7 we present an example of instantiation for the Cam.

In order to provide some intuition, we nevertheless give here some
possible definitions in terms of standard l-expressions. The most natural
definition for the sequencing combinator is + 5 labc.a (b c), i.e., E1 + E2 5
lc.E1 (E2 c). The (fresh) variable c can be seen as a continuation and
implements the sequencing.

The pairs of combinators (li, pushi) can be seen as encoding a compo-
nent of an underlying abstract machine and their definitions as specifying
the state transitions. A sequence of code such as pushi E1 + . . . + pushi En
+ . . . suggests that the underlying machine must possess a component i
(such as a stack, list, tree, or vector) in order to store intermediate results.
We can choose to keep the components separate or merge (some of) them.

Keeping all the components separate leads to the following possible
definitions (c, s, e, k, h being fresh variables):

pushs N 5 lc.ls.le.lk.lh.c~s,N!e k h

ls x.X 5 lc.l~s, x!.le.lk.lh.X c s e k h

pushe N 5 lc.ls.le.lk.lh.c s~e,N!k h

lex.X 5 lc.ls.l~e, x!.lk.lh.X c s e k h

pushk N 5 lc.ls.le.lk.lh.c s e~k,N!h

lk x.X 5 lc.ls.le.l~k, x!.lh.X c s e k h

pushh N 5 lc.ls.le.lk.lh.c s e k~h,N!

lhx.X 5 lc.ls.le.lk.l~h, x!.X c s e k h

Then, the reduction (using classical b-reduction and normal order) of our
expressions can be seen as state transitions of an abstract machine with
five components (code, data stack, environment stack, control stack, heap),
for example,

pushs N C S E K H3 C~S,N! E K H

pushh N C S E K H3 C S E K~H,N!.

According to the definition of +, the rewriting rule for sequencing is

~E1 + E2!C S E K H3 E1~E2 C!S E K H.

Functional Language Implementations • 351

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

Note that C plays the role of a continuation. A code can be seen as a state
transformer of type

~data3 env3 control3 heap3 Ans!

3 data3 env3 control3 heap3 Ans.

To be reduced, a code is applied to an initial continuation (e.g., id), initial
(empty) data, environment and control components, and an initial heap.

Keeping some components separate brings new properties such as

push i E + push j F 5 push j F + push i E if i Ó j,

allowing code motion and simplifications.
A second option is to merge all the components. The underlying abstract

machine has only two components (the code and a data-environment-
control-heap stack). Possible definitions are

pushs N 5 pushe N 5 pushk N 5 pushh N 5 lc.lz.c~ z,N!

ls x.X 5 le x.X 5 lkx.X 5 lh x.X 5 lc.l~ z, x!.X c z,

and the reduction of expressions is of the form pushi N C Z 3 C (Z,N) for
i [{s,e,k,h}.

Let us point out that our use of the term “abstract machines” should not
suggest a layer of interpretation. The abstraction only consists of the use of
components and generic code. At the end of the compilation process, we get
realistic assembly code, and the “abstract machines” resemble real ma-
chines.

3. COMPILATION OF CONTROL

We focus here on the compilation of the call-by-value and the call-by-name
reduction strategies. Call-by-need is only a refinement of call-by-name
involving redex sharing and update. It is described in Section 6. We first
present the two main choices taken by environment-based implementa-
tions. Following Peyton Jones’ [1992] terminology, these two options are
named the eval-apply model (presented in Section 3.1) and the push-enter
model (presented in Section 3.2). The graph-based implementations use an
interpretative implementation of the reduction strategy. They are pre-
sented in Section 3.3. Finally, we compare the eval-apply and the push-
enter schemes for call-by-value, and we relate environment machines and
graph reducers.

3.1 The Eval-Apply Model

In the eval-apply model, a l-abstraction is considered as a result, and the
application of a function to its argument is an explicit operation. This

352 • R. Douence and P. Fradet

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

model is the most natural choice to implement call-by-value where func-
tions can be evaluated as arguments.

3.1.1 Call-by-Value. In this scheme, applications E1 E2 are compiled
by evaluating the argument E2, the function E1, and finally applying the
result of E1 to the result of E2. Normal forms denote results; so l-abstrac-
tions and variables (which, in strict languages, are always bound to normal
forms) are transformed into results (i.e., pushs E). The compilation of
right-to-left call-by-value is formalized by the transformation Va in Figure 4.

This compilation choice is taken by the SECD machine [Landin 1964] and
the Tabac compiler [Fradet and Le Métayer 1991]. The rules can be
explained intuitively by reading “return the value” for pushs, “evaluate” for
Va, “then” for +, and “apply” for app. Although environment management is
tackled only in Section 4, it is also useful to keep in mind that a
Ls-expression returning a function (such as pushs (lsx.E)) will involve
building a closure (i.e., a data structure containing the function and an
environment recording the values of its free variables).

Strictly speaking, Va does not enforce a right-to-left evaluation (Va nE1m
could be reduced before Va nE2m). However, after instantiation, the normal
order of reductions will enforce the sequencing nature of “+.” It is easy to
check that Va produces well-typed expressions of result type Rss (see
Appendix D).

The correctness of Va is stated by Property 3 which establishes that the
reduction (*➨) of transformed programs simulates the call-by-value reduc-
tion ~O¡

cbv
) of source l-expressions (Appendix E). As it is standard, we

consider that the source program (i.e., the global expression) is a closed
L-expression.

PROPERTY 3. For all closed L-expressions E, EO¡
cbv

V if and only if Va nEm
*➨ Va nVm.

It is clearly useless to store a function to apply it immediately after. This
optimization is expressed by the following law:

pushs E + app 5 E ~pushs E + ls f.f 5bs f @E/f # 5 E! (L4)

Example. Let E [(lx. x)((ly.y)(lz.z)); after simplifications, we get

Va nEm [pushs~ls z.pushs z! + ~ls y.pushs y! + ~ls x.pushs x!

➨ pushs~ls z.pushs z! + ~ls x.pushs x!

➨ pushs~lsz.pushs z! ; Va nlz.zm.

Va;L 3 Ls
Va vxb 5 pushs x
Va vlx.Eb 5 pushs(lsx.VavEb)
Va vE1 E2b 5 Va vE2b + Va vE1b + app with app 5 lsf.f

Fig. 4. Compilation of right-to-left call-by-value in the eval-apply model (Va).

Functional Language Implementations • 353

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

The source expression has two redexes (lx. x)((ly.y)(lz.z)) and
(ly.y)(lz.z), but only the latter can be chosen by a call-by-value strategy.
In contrast, Va nEm has only the compiled version of (ly.y)(lz.z) as redex.
The illicit (in call-by-value) reduction E 3 (ly.y)(lz.z) cannot occur within
Va nEm. This illustrates the fact that the reduction strategy has been
compiled and that the choice of redex in Ls is not semantically relevant.

The law (L4) is central in the implementation of uncurrying (e.g., see
Appel [1992]). To illustrate a simple case of uncurrying, let us take the case
of a function applied to all of its arguments (lx1 . . . lxn.E0) E1 . . . En;
then

Va n~lx1. . . lxn .E0!E1. . . Enm

5Va nEnm + . . . + Va nE1m + pushs~ls x1. . . ~pushs~ls xn .Va nE0m!! . . . !

+ app +. . . + app.

Using (L4), (assoc), and (L1) this expression can be simplified into

5 Va nEnm + . . . + Va nE1m + ~ls x1 .ls x2. . . ls xn .Va nE0m!.

All the app combinators have been statically removed. In doing so, we have
avoided the construction of n intermediary closures corresponding to the n
unary functions denoted by lx1 . . . lxn.E0. An important point to note is
that, in Ls, ls x1 . . . lsxn.E always denotes an n-ary function, that is to say
a function that will be applied to at least n arguments (otherwise there
would be pushs’s between the ls’s).

There exist several variants of Va such as VaL (used by the Cam) which
implements a left-to-right call-by-value or Vaf (used by the SML-NJ com-
piler) which does not assume a data stack and disallows several pushes in a
row (Appendix F).

3.1.2 Call-by-Name. For call-by-name in the eval-apply model, appli-
cations E1 E2 are compiled by returning E2, evaluating E1, and finally
applying the evaluated function to the unevaluated argument. This choice
is implemented by the call-by-need version of the Tabac compiler [Fradet
and Le Métayer 1991], and it is described by the transformation Na in
Figure 5. The correctness of Na is stated by Property 4 which establishes
that the reduction of transformed expressions (*➨) simulates the call-by-
name reduction ~O¡

cbn
) of source l-expressions.

Na;L 3 Ls
Na vxb 5 x
Na vlx.Eb 5 pushs(lsx.NavEb)
Na vE1 E2b 5 pushs(Na vE2b) + Na vE1b + app with app 5 lsf.f

Fig. 5. Compilation of call-by-name in the eval-apply model (Na).

354 • R. Douence and P. Fradet

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

PROPERTY 4. For all closed L-expressions E, EO¡
cbn

V if and only if Na nEm
*➨ Na nVm.

Example. Let E [(lx. x)((ly.y)(lz.z)); after simplifications, we get

Na nE m [pushs~pushs~pushs~ls z.z!! + ls y.y! + ls x.x

➨ pushs~pushs~ls z.z!! + ls y.y

➨ pushs~ls z.z! ; Na nlz.zm.

The illicit (in call-by-name) reduction E 3 (lx. x)(lz.z) cannot occur
within Na nEm.

Like Va, the transformation Na has a variant that does not assume a data
stack (i.e., disallows several pushes in a row) (Appendix G).

3.2 The Push-Enter Model

In the eval-apply model, the straightforward compilation of a function
expecting n arguments produces a code building n closures. In practice,
much of this overhead can be removed by uncurrying, but this optimization
is not always possible for functions passed as arguments. The main
motivation of the push-enter model is to avoid useless closure buildings. In
the push-enter model, unevaluated functions are applied right away, and
application is an implicit operation.

3.2.1 Call-by-Value. Instead of evaluating the function and its argu-
ment and then applying the results as in the eval-apply model, another
solution is to evaluate the argument and to apply the unevaluated function
right away. With call-by-value, a function can also be evaluated as an
argument. In this case it cannot be immediately applied but must be
returned as a result. In order to detect when its evaluation is over, there
has to be a way to distinguish if its argument is present or absent: this is
the role of marks. After a function is evaluated, a test is performed: if there
is a mark, the function is returned as a result (and a closure is built);
otherwise the argument is present, and the function is applied. This
technique avoids building some closures, but at the price of performing
dynamic tests. It is implemented in Zinc [Leroy 1990].

The mark « is supposed to be a value that can be distinguished from
others. Functions are transformed into grabs E which satisfies the reduc-
tion rules

pushs « + grabs E ➨ pushs E;

that is, a mark is present; the function E is returned; and

pushs V + grabs E ➨ pushs V + E ~V Ó «!;

that is, no mark is present, and the function E is applied to its argument V.

Functional Language Implementations • 355

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

The combinator grabs and the mark « can be defined in Ls (Appendix H).
In practice, grabs is implemented using a conditional testing the presence
of a mark. The transformation for right-to-left call-by-value is described in
Figure 6.

The correctness of Vm is stated by Property 5.

PROPERTY 5. For all closed L-expressions E, EO¡
cbv

V if and only if Vm nEm
*➨ Vm nVm.

Example. Let E [(lx. x)((ly.y)(lz.z)); then after simplifications

Vm nEm [pushs « + pushs~ls z.grabs z! + ~ls y.grabs y! + ~ls x.grabs x!

➨ pushs « + grabs~lsz.grabs z! + ~ls x.grabs x!

➨ pushs~ls z.grabs z! + ~ls x.grabs x!

➨ grabs~ls z.grabs z! ; Vmnlz.zm.

As before, when a function lx1 . . . lxn.E is known to be applied to n
arguments, the code can be optimized to save n dynamic tests. Actually, it
appears that Vm is subject to the same kind of optimizations as Va.
Uncurrying and related optimizations can be expressed based on the
reduction rules of grabs and (L2).

It would not make much sense to consider a left-to-right strategy here.
The whole point of this approach is to prevent building some closures by
testing if the argument is present. Therefore the argument must be
evaluated before the function. However, other closely related transforma-
tions using marks exist (Appendix I).

3.2.2 Call-by-Name. Contrary to call-by-value, the most natural choice
to implement call-by-name is the push-enter model. In call-by-name, func-
tions are evaluated only when applied to an argument. Functions do not
have to be considered as results. This option is taken by Tim [Fairbairn and
Wray 1987], the Krivine machine [Crégut 1991], and graph-based imple-
mentations (see Section 3.3.2). The transformation Nm formalizes this
choice; it is described in Figure 7.

Variables are bound to arguments that must be evaluated when accessed.
Functions are not returned as results but assume that their argument is
present. Applications are transformed by returning the unevaluated argu-
ment to the function. The correctness of Nm is stated by Property 6.

Vm;L 3 Ls
Vmvxb 5 grabs x
Vmvlx.Eb 5 grabs(lsx.VmvEb)
VmvE1 E2b 5 pushs « + VmvE2b + VmvE1b

Fig. 6. Compilation of right-to-left call-by-value in the push-enter model (Vm).

356 • R. Douence and P. Fradet

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

PROPERTY 6. For all closed L-expressions E, EO¡
cbn

V if and only if Nm nEm
*➨ Nm nVm.

Example. Let E [(lx. x)((ly.y)(lz.z)); then

Nm nEm [pushs~pushs~ls z.z! + ls y.y! + ls x.x

➨ pushs~ls z.z! + ls y.y

➨ ls z.z ; Nmnlz.zm.

Arguably, Nm is the simplest way to compile call-by-name. However, it
makes the compilation of call-by-need problematic. After the evaluation of
an unevaluated expression bound to a variable (i.e., a closure), a call-by-
need implementation updates it by its normal form. Contrary to Na, Nm

makes it impossible to distinguish results of closures (which have to be
updated) from regular functions (which are applied right away). This
problem is solved, as in Vm, with the help of marks. We come back to this
issue in Section 6.

Transformations from L to Ls share the goal of compiling control with
CPS transformations [Fischer 1972; Plotkin 1975]. Actually, with a prop-
erly chosen instantiation of the combinators, the transformation Vaf is
nothing but Fischer’s [1972] CPS transformation (Appendix J). As for
CPS-expressions [Danvy 1992], it is also possible to design an inverse
transformation mapping Ls-expressions back to L-expressions (Appendix
K).

3.3 Graph Reduction

Graph-based implementations manipulate a graph representation of the
source l-expression. The reduction consists of rewriting the graph more or
less interpretively. One of the motivations of this approach is to elegantly
represent sharing which is ubiquitous in call-by-need implementations. So,
even if call-by-value can be envisaged, well-known graph-based implemen-
tations only consider call-by-need. In the following, we focus on the push-
enter model for call-by-name which is largely adopted by existing graph
reducers. Its refinement into call-by-need is presented in Section 6.2.2.

3.3.1 Graph Building. As before, the compilation of control is ex-
pressed by transformations from L to Ls. However, this step is now divided
in two parts: the graph construction, then its reduction via an interpreter.
The transformation G (Figure 8) produces an expression that builds a graph

Nm;L 3 Ls
Nmvxb 5 x
Nmvlx.Eb 5 lsx.NmvEb
NmvE1 E2b 5 pushs(NmvE2b) + NmvE1b

Fig. 7. Compilation of call-by-name in the push-enter model (Nm).

Functional Language Implementations • 357

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

(for now, only a tree) when reduced. The three new combinators mkVars,
mkFuns, and mkApps take their arguments from the s component and
return graph nodes (resp., variable, function, and application nodes) on s.
The following condition formalizes the fact that the reduction of G nEm is just
the graph construction that terminates and yields a result in the s
component.

~CondG) For all L-expressions E, G nEm ➨* pushs V.

The graph is scanned and reduced using a small interpreter denoted by
the combinator unwinds. After the compilation of control, the global
expression is of the form G nEm + unwinds. This transformation is common
to all the graph reduction schemes we describe. The push-enter or eval-
apply models of the compilation of call-by-value or call-by-name can be
specified simply by defining the interactions of unwinds, with the three
graph builders mkVars, mkFuns, and mkApps.

3.3.2 Call-by-Name: The Push-Enter Model. This option is defined by
the three following conditions:

~GNm1! ~E + mkVars! + unwinds 5 E + unwinds

~GNm2! V + ~pushs F + mkFuns! + unwinds 5 ~V + F! + unwinds

~GNm3! ~E2 + E1 + mkApps! + unwinds 5 E2 + E1 + unwinds .

These conditions can be explained intuitively as follows:

—(GNm1) The reduction of a variable node amounts to reducing the graph
that has been bound to the variable. The combinator mkVars may seem
useless, since it is bypassed by unwinds. However, when call-by-need is
considered, mkVars is needed to implement updating without losing
sharing properties. As the combinator I in Turner [1979a], it represents
indirection nodes.

—(GNm2) The reduction of a function node amounts to applying the func-
tion to its argument and to reducing the resulting graph. This rule makes
the push-enter model clear. The reduction of the function node does not
return the function F as a result, but immediately applies it.

—(GNm3) The reduction of an application node amounts to storing the
argument graph and to reducing the function graph.

G;L 3 Ls
G vxb 5 pushs x + mkVars
G vlx.Eb 5 pushs(lsx.G vEb) + mkFuns
G vE1 E2b 5 G vE2b + G vE1b + mkApps

Fig. 8. Generic graph-building code (G).

358 • R. Douence and P. Fradet

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

Figure 9 presents one possible instance of the graph combinators. Here,
the graph is not encoded by data structures but by code performing the
needed actions. For example, mkFuns takes a function f and returns a code
(i.e., builds a closure) that will evaluate the function f applied to its
argument a using unwinds whereas mkApps takes two expressions x1 and
x2 and returns a code that will apply x1 to x2. This encoding simplifies the
interpreter which just has to trigger a code; that is, unwinds is just an
application. It is easy to check that these definitions verify the conditions
(CondG), (GNm1), (GNm2), and (GNm3). Moreover, the definition of mkVars
(the identity function in Ls) makes it clear that indirection chains can be
collapsed, i.e.,

@E [L, G nEm + mkVars 5 G nEm. (L5)

With this combinator instantiation, the graph is represented by closures.
More classical representations, based on data structures, are mentioned in
Section 3.3.3. The correctness of G with respect to conditions GNm is stated
by Property 7 (Appendix L).

PROPERTY 7. Let (CondG), (GNm1), (GNm2), (GNm3), and (L5) hold; then for
all closed L-expressions E, if E O¡

cbn
V, then G nEm + unwinds 5 G nVm +

unwinds.

Compared to the corresponding properties for the previous transforma-
tions (Va , Na , Vm , Nm), Property 7 is expressed using equality instead of
reduction (*➨). This is because the normal form of G nEm + unwinds may
contain indirection nodes (mkVars) and is not, in general, syntactically
identical to G nVm + unwinds. Actually, G verifies a stronger (but less easily
formalized) property than Property 7: G nEm + unwinds reduces to an
expression X which, after removal of indirection chains, is syntactically
equal to the graph of G nVm.

Example. Let E [(lx. x)((ly.y)(lz.z)) and

Iw ; ~lsa.~pushs a + ~lsw.pushs w + mkVars!! + unwinds!;

then

G nEm + unwinds

; ~G nlz.zm + G nly.ym + mkApps! + G nlx.xm + mkApps + unwinds

mkVars 5 ls x.pushs x
mkFuns 5 lsf.pushs(lsa.(pushs a + f) + unwinds)
mkApps 5 ls x1.ls x2.pushs(pushs x2 + x1)
unwinds 5 app 5 ls x. x

Fig. 9. Instantiation of graph combinators according to GNm (option node-as-code).

Functional Language Implementations • 359

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

➨* pushs~pushs~pushs Iz + Iy! + Ix! + unwinds

➨ pushs~pushs Iz + Iy! + ~lsa. ~pushs a + ~ls x.pushs x + mkVars!! + unwinds!

➨* pushs ~pushs Iz + Iy! + unwinds

➨ pushs Iz + ~lsa. ~pushs a + ~lsy.pushs y + mkVars!! + unwinds!

➨* ~pushs Iz + mkVars! + unwinds ➨ pushs Iz + unwinds .

In this example, there is no indirection chain, and the result is syntacti-
cally equal to the graph of the source normal form. That is, pushs Iz +

unwinds is exactly G nlz.zm + unwinds after the few reductions corre-
sponding to graph construction.

The first sequence of reductions corresponds to the graph construction.
Then unwinds scans the (leftmost) spine (the first pushs represents an
application node). The graph representing the function (lx. x) is applied.
The result is the application node pushs(pushs Iz + Iy) which is scanned by
unwinds. Then, the reduction proceeds in the same way until it reaches
the normal form.

Because of the interpretive essence of the graph reduction, a naive
implementation of call-by-need is possible without introducing marks (as
opposed to Nm in Section 3.2.2). Such a scheme performs many useless
updates, some of which can be detected by simple syntactic criteria or a
sharing analysis. An optimized implementation, performing selective up-
dates, can be defined by introducing marks. These two points are presented
in Section 6.2.2.

3.3.3 Other Choices. A graph and its associated reducer can be seen as
an abstract data type with different implementations [Peyton Jones 1987].
We have already used one encoding that represents nodes by code (i.e.,
closures). Another natural solution is to represent the graph by a data
structure. It amounts to introducing three data constructors VarNode,
FunNode, and AppNode and to defining the interpreter unwinds by a
case expression. A refinement, exploited by the G-machine, is to enclose in
nodes the code to be executed when it is unwound. Adding code in data
structures comes very close to the solution using closures described in
Figure 9. The interpreter unwinds can just execute the code and does not
have to perform a dynamic test. In any case, the new combinator defini-
tions should still verify the GNm properties in order to implement a
push-enter model of the compilation of call-by-name.

By far, the most common use of graph reduction is the implementation of
call-by-need in the push-enter model. However, the eval-apply model or the
compilation of call-by-value can be expressed as well. These choices are
specified by redefining the interactions of unwinds with the three graph

360 • R. Douence and P. Fradet

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

builders (mkVars, mkFuns, mkApps). In each case, it amounts to defining
new properties such as (GNm1), (GNm2), and (GNm3).

More details on these alternate choices can be found in Douence and
Fradet [1996b].

3.4 Comparisons

We compare the efficiency of codes produced by transformations Va (eval-
apply CBV) and Vm (push-enter CBV). Then we exhibit the precise relation-
ship between the environment and graph approaches. In particular, it is
shown how to derive the transformation Nm from G and the properties
(GNmi). We take only these two examples to show the advantages of a
unified framework in terms of formal comparisons. It should be clear that
such comparisons could be carried on for other transformations and compi-
lation steps.

3.4.1 Va versus Vm. Let us first emphasize that our comparisons focus
on finding complexity upper bounds. They do not take the place of bench-
marks which are still required to take into account complex implementa-
tion aspects (e.g., interactions with memory cache or the garbage collector).

A code produced by Vm builds less closures than the corresponding
Va-code. Since a mark can be represented by one bit (e.g., in a bit stack
parallel to the data stack), Vm is likely to be, on average, more efficient with
respect to space resources. Concerning time efficiency, the size of compiled
expressions provides a first approximation of the cost entailed by the
encoding of the reduction strategy (assuming pushs, grabs, and app have a
constant time implementation). It is easy to show that code expansion is
linear with respect to the size of the source expression. More precisely, for
Vx 5 Va or Vm, we have

If Size~E! 5 n, then Size~Vx nEm! , 3n.

This upper bound can be reached by taking, for example, E [lx. x . . . x
(n occurrences of x). A more thorough investigation is possible by associat-
ing costs with the different combinators encoding the control: push for the
cost of “pushing” a variable or a mark, clos for the cost of building a closure
(i.e., pushs E), and app and grab for the cost of the corresponding
combinators. If we take nl for the number of l-abstractions and nv for the
number of occurrences of variables in the source expression, we have

Cost~VanEm! 5 nl clos 1 nv push 1 ~nv 2 1! app

and

Cost~VmnEm! 5 ~nl 1 nv! grab 1 ~nv 2 1! push.

The benefit of Vm over Va is to sometimes replace a (useless) closure
construction by a test. When a closure has to be built, Vm involves a useless
test compared to Va. So if clos is comparable to the cost of a test (e.g., when

Functional Language Implementations • 361

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

returning a closure amounts to building a pair as in Section 4.1.2) Vm will
produce more expensive code than Va. If closure building is not a constant
time operation (as in Section 4.1.3), Vm can be arbitrarily better than Va.
Actually, it can change the program complexity in contrived cases. In
practice, however, the situation is not so clear. When no mark is present,
grabs is implemented by a test followed by an app. If a mark is present,
the test is followed by a pushs (i.e., a closure building for l-abstractions).
So, we have

Cost~VmnEm! 5 ~nl 1 nv!test 1 p# ~nl 1 nv!app

1 p nl clos 1 p nvpush 1 ~nv 2 1!push,

with p (resp., p#) representing the likelihood (p 1 p# 5 1) of the presence
(resp., absence) of a mark that depends on the program. The best situation
for Vm is when no closure has to be built, i.e., p 5 0 and p# 5 1. If we take
some reasonable hypothesis such as test 5 app and nl , nv , 3nl, we find
that the cost of closure construction must be 3 to 5 times more costly than
app or test to make Vm advantageous. With less favorable odds such as p 5
p# 5 1/2, clos must be worth 7 or 8 app.

We are led to conclude that Vm should be considered only when closure
building is potentially costly (such as the Ac2 transformation in Section
4.1.3 which builds closures by copying part of the environment). Even so,
tests may be too costly in practice compared to the construction of small
closures. The best way would probably be to perform an analysis to detect
cases when Vm is profitable. Such information could be taken into account
to get the best of each approach. In Douence and Fradet [1996a] we present
how Va and Vm could be mixed.

3.4.2 Environment Machine versus Graph Reducer. Even if their start-
ing points are utterly different, graph reducers and environment machines
can be related. This has been done for specific implementations such as
Peyton Jones and Lester [1992] which shows how to transform a G-machine
into a Tim. We focus here on the compilation of control and compare the
transformation Nm with the GNm approach to graph reduction.

The two main departures of graph reduction from the environment
approach are the following:

—The potentially useless graph constructions: For example, the rule G nE1
E2m 5 G nE2m + G nE1m + mkApps builds a graph for E2 even if E2 is never
reduced (i.e., if it is not needed). On the other hand, Nm suspends all
operations (such as variable instantiation) on E2 by building a closure
(Nm nE1 E2m 5 pushs (Nm nE2m) + Nm nE1m).

—The interpretative nature of graph reduction: Even in the “node-as-code”
instantiation, each application node (mkApps) is “interpreted” by un-
winds. In the environment family no interpreter is needed, and this
approach can be seen as the specialization of the interpreter unwinds
according to the source graph built by G nm.

362 • R. Douence and P. Fradet

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

In order to formalize these two points, we first change the rule for graph
building in the case of applications by

G nE1 E2m 5 pushs~G nE2m + unwinds! + G nE1m + mkApps .

This corresponds to a lazy graph construction where the graph argument is
built only if needed. In particular, variables will be bound to unbuilt
graphs. This new kind of graph entails replacing property (GNm1) with

~GNm1) (pushs E + mkVars! + unwinds 5 E.

We can now show that Nm nEm is merely the specialization of unwinds with
respect to the graph of E, i.e.,

Nm nEm 5 G nEm + unwinds .

For example, the specialization for the application case is

G nE1 E2m + unwinds

5 pushs~G nE2m + unwinds! + G nE1m + mkApps + unwinds (unfolding G)

5 pushs~G nE2 m + unwinds! + G nE1m + unwinds (GNm3)

5 pushs~NmnE2m! + Nm nE1m (induction hypothesis)

5 Nm nE1 E2m. (folding Nm)

This property shows that, as far as the compilation of control is con-
cerned, environment-based transformations are more efficient than their
graph counterparts. However, optimized graph reducers avoid as much as
possible interpretative scans of the graph or graph building and are similar
to environment-based implementations.

4. COMPILATION OF THE b-REDUCTION

This compilation step implements the substitution using transformations
from Ls to Le. These transformations are akin to abstraction algorithms
and consist of replacing variables with combinators. Compared to Ls, Le
adds the pair (pushe, le) encoding an environment component, and it uses
variables only to define combinators. Graph reducers use specific (usually
environmentless) transformations. We express in our framework the SKI
abstraction algorithm (Section 4.2).

4.1 Environment-Based Abstractions

In the l-calculus, the b-reduction is defined as a textual substitution. In
environment-based implementations, substitutions are compiled by storing
the value to be substituted in a data structure (an environment). Values

Functional Language Implementations • 363

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

are then accessed in the environment only when needed. This technique
can be compared with the activation records used by imperative language
compilers. The main choice is using list-like (shared) environments or
vector-like (copied) environments. For the latter choice, there are several
transformations, depending on when the environments are copied.

4.1.1 A Generic Abstraction. The denotational-like transformation Ag

(Figure 10) is a generic abstraction that is specialized to model several
choices in the following sections. It introduces an environment from which
the values of variables are stored and fetched. The transformation is done
with respect to a compile-time environment r (initially empty for a closed
expression). We denote xi as the variable occurring at the ith entry in the
environment.

Ag needs six new combinators to express environment saving and restor-
ing (duple, swapse), closure building and calling (mkclos, appclos), access
to values (accessi), and adding a binding (mkbind).

The first combinator pair (duple, swapse) is defined in Le by

duple 5 lee.pushe e + pushe e swapse 5 lsx.lee.pushs x + pushe e.

Note that swapse is needed only if s and e are implemented by a single
component. In our approach, this choice is made in the final implementa-
tion step (see Section 2.5). If eventually e and s are implemented by, say,
two distinct stacks, then new algebraic simplifications become valid; in
particular, swapse can be removed (its definition as a l-expression will be
the identity function).

The closure combinators (mkclos, appclos) can have different defini-
tions in Le as long as they satisfy the condition

~pushe E + pushs X + mkclos! + appclos 1
➨ pushe E + X.

That is, evaluating a closure made of the function X and environment E
amounts to evaluating X with the environment E. For example, two
possible definitions are

mkclos 5 lsx.lee.pushs~ x,e! appclos 5 ls~ x,e!.pushe e + x

or

mkclos 5 lsx.lee.pushs~pushe e + x! appclos 5 app 5 lsx. x.

Ag;Ls 3 env 3 Le
Ag vE1 + E2br 5 duple + Ag vE1br + swapse + Ag vE2br
Ag vpushs Ebr 5 pushs(Ag vEbr) + mkclos
Ag vlsx.Ebr 5 mkbind + Ag vEb(r, x)
Ag vxib(. . .((r, xi), xi21). . . , x0) 5 accessi + appclos

Fig. 10. A generic abstraction (Ag).

364 • R. Douence and P. Fradet

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

The first option uses pairs and is, in a way, more concrete than the other
one. The second option abstracts from representation considerations. It
simplifies the expression of correctness properties, and it is used in the rest
of the article.

In the same way, the environment combinators (mkbind, accessi) can
have several instantiations in Le. Let us denote combi as the sequence
comb + . . . + comb (i times); then the definitions of mkbind and accessi
must satisfy the condition

~pushs X0 +. . . + pushs Xi + pushe E + mkbindi11! + accessi ➨
1

pushs Xi .

This property simply says that adding i 1 1 bindings Xi, . . . , X0 in an
environment E then accessing the ith value is equivalent to returning Xi
directly. Examples of definitions for mkbind and accessi appear in Fig-
ures 11 and 12.

The transformation Ag can be optimized by adding the rules

AgnE + appmr 5 AgnEmr + appclos

Ag nlsx.Emr 5 popse + Ag nEmr if x not free in E with popse 5 lee.lsx.pushe e.

Variables are bound to closures stored in the environment. With the
original rules, Ag npushs xim would build yet another closure. This useless
“boxing,” which may lead to long indirection chains, is avoided by the
following rule:

Ag npushs xim~. . . ~~r,xi!,xi21!. . . ,x0! 5 accessi .

Whether this new rule duplicates the closure or only its address depends on
the memory management (Section 6). In call-by-need, one has to make sure
that accessi returns the address of the closure, since closure duplication
may entail a loss of sharing.

4.1.2 Shared Environments. A first choice is to instantiate Ag with
linked environments. The structure of the environment is a tree of closures,
and a closure is added to the environment in constant time. On the other
hand, a chain of links has to be followed when accessing a value. The access
time complexity is O(n) where n is the number of ls’s from the occurrence of
the variable to its binding ls (i.e., its de Bruijn index). This specialization,
denoted As, is used by the Cam [Cousineau et al. 1987], the SECD [Landin
1964], and the strict and lazy versions of the Krivine machine [Leroy 1990;
Crégut 1991].

mkbind 5 lee.lsx.pushe(e, x) accessi 5 fsti + snd
fst 5 le(e, x).pushe e snd 5 le(e, x).pushs x
with ci 5 c + . . . + c (i times)

Fig. 11. Combinator instantiation for shared environments (A s).

Functional Language Implementations • 365

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

Specializing Ag into As amounts to defining the environment combinators
as in Figure 11.

Example.

Asnlsx1.lsx0.pushs E + x1mr 5 mkbind + mkbind + duple +

pushs~AsnEm~~r,x1!,x0!! + mkclos + swapse + access1 + appclos.

Two bindings are added (mkbind + mkbind) to the current environment,
and the x1 access is coded by access1 5 fst + snd.

The correctness of As is stated by Property 8 (Appendix M).

PROPERTY 8. For all closed well-typed Ls-expressions E, pushe () + As nE m
() 5 E.

4.1.3 Copied Environments. Another choice is to provide a constant
access time. In this case, the structure of the environment must be a vector
of closures. A code copying the environment (an O(length r) operation) has
to be inserted in Ag in order to avoid links. This scheme is less prone to
space leaks, since it permits suppressing useless variables during copies.

The macrocombinator Copy r produces code performing this copy accord-
ing to r’s structure.

Copy~· · ·~~!, xn!,· · ·, x0!

5 ~duple + accessn + swapse! + . . . + ~duple + access1 + swapse!

+ access0 + pushe~! + mkbindn11.

The combinators duple and swapse are needed to pass the environment to
each accessi which will store each value of the environment in s. With all
the values in s, a fresh copy of the environment can be built (using pushe ()
+ mkbindn11). If we still see the structure of the environment as a tree of
closures, the effect of Copy r is to prevent sharing. Environments can thus
be represented by vectors. The combinator mkbind now adds a binding in
a vector, and accessi becomes a constant time operation (Figure 12).

The index next designates the first free cell in the vector. It can be
statically computed as the rank of the variable (associated with the
mkbind occurrence) in the static environment r. For example, in

Ac nls y.Em~~~~!,x2!,x1!,x0! 5 mkbind + Ac nEm~~~~~!,x2!,x1!,x0!,y!

we have next 5 rank y (((((), x2), x1), x0),y) 5 4, and y is stored in the
fourth cell of the environment. The maximum size of each vector can be

mkbind 5 lee.lsx.pushe(e[next];5 x) accessi 5 lee.pushs(e[i])
where e[next];5 x adds the value x in the first empty cell of the vector e

Fig. 12. Combinator instantiation for abstraction with copied environments (Aci).

366 • R. Douence and P. Fradet

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

statically calculated too. To simplify the presentation, we leave these
administrative tasks implicit.

There are several abstractions according to the time of the copies. We
present them by indicating only the rules that differ from Ag. A first
solution (Figure 13) is to copy the environment just before adding a new
binding (as in Fairbairn and Wray [1987] and Plasmeijer and van Eekelen
[1993]). From the first compilation step we know that n-ary functions
(lsx1 . . . lsxn.E) are fully applied and cannot be shared: they need only
one copy of the environment. The overhead is placed on function entry, and
closure building remains a constant time operation. The transformation
Ac1 produces (possibly oversized) environments that can be shared by
several closures but only as a whole. So, there must be an indirection when
accessing the environment. The environment r̄ represents r restricted to
variables occurring free in the subexpression E.

Example. Ac1 nls x1.lsx0.pushs E1 + x1m r 5 Copy r̄ + mkbind2 + duple +

pushs~Ac1nEm~~r# ,x1!,x0!! + mkclos + swapse + access1 + appclos.

The code builds a vector environment made of a specialized copy of the
previous environment and two new bindings (mkbind2); the x1 access is
now coded by a constant time access1.

A second solution (Figure 14) is to copy the environment when building
and opening closures (as in Fradet and Le Métayer [1991]). The copy at
opening time is necessary in order to be able to add new bindings in contigu-
ous memory (the environment has to remain a vector). The transformation Ac2
produces environments that cannot be shared but may be accessed directly
(they can be packaged with a code pointer to form a closure).

A refinement of this last option, the Ac3 abstraction (see Appendix N), is
to copy the environment only when building closures. Variations of Ac3 are
used in the SML-NJ compiler [Appel 1992] and the spineless tagless
G-machine [Peyton Jones 1992]. In order to be able to add new bindings
after closure opening, an additional local environment is needed.

Starting from different properties a collection of abstractions can be
systematically derived from Ag. Some of these abstractions are new; some
have already been used in well-known implementations. For example, starting
from the equation Ags nEm r 5 swapn + Ag nEm r one can derive the swapless
transformation Ags. With this variation, the references to environments stay
at a fixed distance from the bottom of the stack until they are popped (the
references are no longer swapped). These variations introduce different envi-
ronment manipulation schemes avoiding stack element reordering (swapless),

Ac1vlsxi . . . lsx0. Ebr 5 Copy r# + mkbindi11 + Ac1vEb(. . .(r# , xi). . . , x0)

Fig. 13. Copy at function entry (Ac1).

Functional Language Implementations • 367

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

environment duplication (duplless), environment building (mkbindless), or
closure building (mkclosless) (Appendix O).

4.1.4 Comparison. Assuming each basic combinator can be imple-
mented in constant time, the size of the abstracted expressions gives an
approximation of the overhead entailed by the encoding of the b-reduction.
It is easy to show that As entails a code expansion which is quadratic with
respect to the size of the source expression. More precisely

if Size~E! 5 n, then Size~As~VanEm!! # nlnv 2 nv 1 6n 1 6

with nl the number of l-abstractions and nv the number of variable
occurrences (n 5 nl 1 nv) of the source expression. This expression
reaches a maximum with nv 5 (n 2 1)/ 2. This upper bound can be
approached with, for example, lx1 . . . lxnl. x1 . . . xnl. The product nlnv
indicates that the efficiency of As depends equally on the number of
accesses (nv) and their length (nl). For Ac1 we have

if Size~E! 5 n, then Size~Ac1~VanEm!! # 6nl
2 2 6nl 1 7n 1 6,

which makes clear that the efficiency of Ac1 is not dependent on accesses.
The two transformations have the same complexity order; nevertheless one
may be more adapted than the other to individual source expressions.
These complexities highlight the main difference between shared environ-
ments, that favor building, and copied environments, that favor access. Let
us point out that these bounds are related to the quadratic growth implied
by Turner’s [1979a] abstraction algorithm. Balancing expressions reduces
this upper bound to O(n log n) [Joy et al. 1985]. It is very likely that this
technique could also be applied to l-expressions to get an O(n log n)
complexity for environment management.

The abstractions also can be compared according to their memory usage.
Ac2 copies the environment for every closure, where Ac1 may share a bigger
copy. So, the code generated by Ac2 consumes more memory and implies
frequent garbage collections, whereas the code generated by Ac1 may create
space leaks and needs special tricks to plug them (see Peyton Jones and
Lester [1991, Section 4.2.6]).

4.2 A SKI Abstraction Algorithm

Some abstraction algorithms do not use the environment notion, but encode
every substitution separately. A simple algorithm [Curry and Feys 1958]
uses only three combinators {S, K, I} but is inefficient with respect to code
expansion. Different refinements, which use extended combinator families
(e.g., {S, K, I, B, C, S9, B9, C9}), have been proposed [Joy et al. 1985; Turner
1979a; 1979b]. They usually lower the complexity of code expansion from

Ac2vpushs Ebr 5 Copy r# + pushs(Copy r# + Ac2vEbr#) + mkclos

Fig. 14. Copy at closure building and opening (Ac2).

368 • R. Douence and P. Fradet

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

exponential with {S, K, I} to quadratic or even O(n log n). We describe only
the SKI abstraction algorithm in this article. It should be clear that the
optimized versions could be expressed as easily in our framework.

It is possible to define a transformation Ski nEm x that can be applied to all
Ls-expressions [Douence and Fradet 1996b]. In particular, it can be com-
posed with the transformations for the compilation of graph reduction
control (Section 3.3). The resulting code, although correct, does not accu-
rately model the classical compilation scheme of the SKI-machine. The
easiest way to model it precisely is to define a transformation specialized
for graph code (Figure 15).

The Ss, Ks, and Is combinators build or select a graph. They can be
defined as

Ss 5 lse2.lse1.lsx.~pushs x + pushs e1 + mkApps!

+ ~pushs x + pushs e2 + mkApps! + mkApps

Ks 5 lse.lsx.pushs e Is 5 lsx.pushs x

In the same way, the transformation Agdsb (a duplless, swapless, and
mkbindless abstraction algorithm) can be specialized for graph code
[Douence and Fradet 1996b]. It would then precisely model the classical
abstraction of the G-machine [Johnsson 1987].

5. COMPILATION OF CONTROL TRANSFERS

A conventional machine executes linear sequences of basic instructions. In
our framework, reducing expressions of the form appclos + E involves
evaluating a closure and then returning to E. We have to make calls and
returns explicit. We present here two solutions.

The first solution, adopted by most implementations, is to save the
return address on a call stack k. The transformation S (Figure 16) saves the
code following the function call using pushk and returns to it with rtsi (5
l ix.lkf.pushi x + f and i [s or e) when the function ends. Intuitively
these combinators can be seen as implementing a control stack. Compared
to Le, Lk 5 expressions do not have appclos + E code sequences. The
correctness of S is stated by Property 9.

Ski;Ls 3 var 3 Le
Ski vEbx 5 E + (pushs Ks + mkFuns) + mkApps x not free in E
Ski vE1 + E2 + mkAppsbx

5 Ski vE1bx + (Ski vE2bx + (pushs Ss + mkFun) + mkApps) + mkApps
Ski vpushs(lsy.E) + mkFunsbx 5 Ski vSki vEbybx
Ski vpushsx + mkVarsbx 5 pushs Is + mkFuns

Fig. 15. Abstraction SKI (Ski).

Functional Language Implementations • 369

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

PROPERTY 9. For all closed well-typed Le-expressions E and N being a
normal form,

if E ➨* N, then S nEm ➨* S nNm.

An optimized version of S for the different previous transformations
could easily be derived. For example, we get

S nduple + E1 + swapse + E2m

5duple + pushk~swapse + S nE2m! + swapke + S nE1m.

The second solution is to use a transformation S , between the control
and the abstraction phases (S ,: Ls 3 Ls). It transforms the expression
into CPS. The continuation k encodes return addresses and will be ab-
stracted as an ordinary variable. Let us present only two transformation
rules:

S ,npushs Em 5 lsk.pushs~S , nEm) + k

S ,nE1 + E2m 5 lsk.pushs~pushs k + S , nE2m! + S , nE1m

The first rule replaces returns by continuation calls, and the second rule
encodes the return stack of S by a continuation composition. This solution
is used in the SML-NJ compiler [Appel 1992].

6. SHARING AND UPDATES

The call-by-need strategy is an optimization of the call-by-name strategy
that shares and updates closures. In order to express sharing, we introduce
a memory component to store closures. The evaluation of an unevaluated
argument amounts to accessing a closure in the memory, reducing it, and
updating the memory with its normal form. This way, every argument is
reduced at most once. The new intermediate language Lh adds to Lk the
combinator pair (pushh, lh) that specifies a memory component h. This
component is represented and accessed via a heap pointer. A first transfor-
mation *c from Lk to Lh threads the component h in which closures are
allocated and accessed. Then we express updating and present several
options specific to graph reduction.

S;Le 3 Lk with i [s, e
S vE1 + E2b 5 pushk(S vE2b) + S vE1b
S vpushi Eb 5 pushi(S vEb) + rtsi with rtsi 5 l ix.lkk.pushi x + k
S vlix.Eb 5 l ix.S vEb
S vxb 5 x

Fig. 16. General compilation of control transfers (S).

370 • R. Douence and P. Fradet

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

6.1 Introduction of a Heap

The transformation *c (Figure 17) introduces a new component h, which
encodes a heap threaded through the expression. Throughout the reduction
of such an expression, there is only one reference to the heap (i.e., h is
single-threaded [Schmidt 1986]).

The transformed expression *cnEm takes the heap as an argument and
returns the heap as the result. The last two rules of *c are responsible for
making closure allocation and access explicit. In our framework, construc-
tions of updatable closures are of the form pushs E with E:Rss, and
accesses of updatable closures are of the form x:Rst where x is bound by a
ls. These rules use two contexts. The context Store[E] can be read as:
allocate a new cell in the heap, write the code E in this cell, and return its
address a and the heap. The context Call[E] can be read as: access the
expression stored in the heap in the cell of address E, and then reduce it
(with the heap as an argument). Henceforth, the argument of a function is
a closure address rather than the closure itself. A closure address is
represented by an integer, and the heap is represented by a pair made of a
list of written cells and the address of the next free cell ((tail, {add, val}),
free). The initial empty heap is denoted emptyH and is defined as ((),0).
The three combinators alloc, write, and read perform basic heap manip-
ulations. Since h is single-threaded, these combinators can be implemented
efficiently as constant time operators on a mutable data structure.

We can apply the transformation *c to get new versions of the combina-
tors introduced by the previous compilation steps. When a combinator
neither creates nor calls a closure, the transformation *c threads the heap
without interaction. For example, for the combinator duple introduced by
the abstraction Ag, we get

dupleh 5 *cnduplem 5 lhh.lee.pushe e + pushe e + pushh h.

*c;Lk3 Lh with i [s, e or k and h a fresh variable
*cvE1 + E2b 5 *cvE1b + *cvE2b
*cvl ix.Eb 5 lhh.l ix.pushh h + *cvEb with i [s, e or k
*cvpushi Eb 5 Store[*cvEb] if i [s and E;Rss

5 lhh.pushi(*cvEb) + pushh h otherwise (i [s, e or k)
*cvxb 5 Call[x] if x;Rst bound by lsx.

5 x otherwise

with Store[E] [lhh.pushh h + alloc + lhh.lsa.
pushs E + pushs a + pushh h + write +
lhh.pushs a + pushh h

Call[E] [lhh.pushs E + pushh h + read + lsy.pushh h + y
alloc 5 lh(heap, free).pushs free + pushh(heap, free 1 1)
write 5 lh(heap, free).lsadd.lsval.pushh((heap, {add, val}), free)
read 5 lh((heap, {add1, val}), free).lsadd2. if add1 5 add2

then pushs val else pushh(heap, free) + pushs add2 +
read

Fig. 17. Introducing a heap where closures are allocated and accessed (*c).

Functional Language Implementations • 371

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

On the other hand, combinators such as appclos and mkclos create or
call closures. So, their transformed definitions use Call and Store:

appclosh 5 *cnappclosm 5 *cnlsx.xm 5 lhh.lsx.pushh h + Call@x#

mkclosh 5 *cnmkclosm

5 lhh.lsx.lee.pushh h + Store@lhh.pushe e + pushh h + x#

6.2 Updating

The transformation *c only makes memory management explicit. A heap-
stored closure is still reduced every time it is accessed. The call-by-need
strategy updates the heap-allocated closures with their normal forms.

The main choice is whether the update is performed by the caller (i.e., by
the code from which the closure is accessed) or by the callee (i.e., by the
code of the closure itself). The caller update scheme updates a closure every
time it is accessed, whereas the callee-update scheme updates closures only
the first time they are accessed: once in normal form, other accesses will
not entail further (useless) updates. This last scheme is more efficient and
is implemented by all the realistic, environment-based implementations.
We model only callee updates here.

6.2.1 Callee Update. In order to have self-updating closures, the trans-
formation Ucallee (Figure 18) changes the rule of *c for pushs E. It intro-
duces a combinator updt which takes as its arguments the heap h, the
address b of the result, and the address a of the closure to be updated. It
returns the address b and a new heap where the cell a contains an
indirection to b. The combinator swapsh reorders the address x and the
heap.

A closure is allocated in the heap when it is created as in *c, but its code
is modified. The closure now stores its own address (pushs a), and its
evaluation is followed by updt. Note that a is a variable bound in the
context Store[] (see the definition of Store) and denotes the address of a
freshly allocated cell. Of course, when E is already (syntactically) in normal
form, the simple rule Ucallee npushs Em 5 Store[Ucallee nEm] suffices. Thus, a
closure is updated at most once (i.e., after the first access) because the
compiled code of its normal form (*c npushs Nm) contains no updt.

Ucallee;Lk 3 Lh with E;Rss
Ucalleevpushs Eb 5 Store[pushs a + swapsh + UcalleevEb + updt]
with swapsh 5 lsa.lhh.pushs a + pushh h
and updt 5 lhh.lsb.lsa.pushs(lhh.pushs b + pushh h) + pushs a +

pushh h + write + lhh.pushs b + pushh h
Fig. 18. Callee closure update (Ucallee).

372 • R. Douence and P. Fradet

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

The callee-update scheme can be used with Nm. However, as noted in
Section 3.2.2, marks have to be inserted in expressions to suspend the
reduction before performing an update. The rule for l-abstractions becomes

Nm nlx.Em 5 grabs~lsx.Nm nEm!,

and Ucallee is specialized for the push-enter model as follows:

Ucalleenpushs Em

5 Store@pushs a + swapsh + pushs « + swapsh + Ucallee nEm +

updt + resumeh]

with resumeh 5 lhh.lsx.pushs h + grabh x.

An evaluation context is isolated by inserting a mark « after the update
address (pushs a), and resumeh resumes the reduction once the update
has been performed. The combinator grabh is defined by *c ngrabsm. Marks
are used by Tim [Fairbairn and Wray 1987], Clean [Plasmeijer and van
Eekelen 1993], the Krivine Machine [Crégut 1991], and the spineless
tagless G-machine [Peyton Jones 1992]. The codes produced by Na and Nm

have the same update opportunities. As in call-by-name, the call-by-need
version of Nm may prevent building unnecessary intermediate closures.

6.2.2 Updating and Graph Reduction. The previous transformations
can be employed to transform the call-by-name graph reduction schemes
into call-by-need. Here we present two updating techniques (spineless and
spine variations) that have been introduced for the G-machine.

The spineless G-machine [Burn et al. 1988] updates only selected appli-
cation nodes. Unwinding application nodes entails stacking either their
address (updatable) or only the argument address (nonupdatable). So, in
general, the complete leftmost spine of the graph does not appear in the
stack. The code must annotate updatable nodes, and marks are necessary
to dynamically detect when an update must be performed. Updatable nodes
are distinguished using the combinator mkAppSs which has the same
definition as mkApps, and mkFuns must be redefined to detect marks:

mkAppSs 5 lsx1.lsx2.pushs~pushs x2 + x1!

mkFuns 5 lsf.pushs~grabs~lsa.~pushs a + f ! + unwinds!!

Functional Language Implementations • 373

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

The transformation Ucallee for the push-enter model can be applied to the
graph constructors. For mkAppSs we get

Ucallee nmkAppSsm

5lhh.lsx1.lsx2.Store@pushs a + swapsh + pushs « + swapsh

+ Ucallee npushs x2 + x1 m + updt + resumeh#.

As suggested in Section 3.3.2, the use of marks is not mandatory for
expressing updating in the G-machine [Johnsson 1987] where graph building
and graph reduction are separate steps. Application nodes must stack their
addresses as they are unwound; then updates can be systematically inserted
between each graph building and reduction step. However, this naive scheme
(that we call the spine variation) cannot be expressed using the previous
transformations. Indeed, the canonical definition of mkApps for GNm is

mkApps 5 lsx1.lsx2.pushs~pushs x2 + x1!

where pushs x2 + x1: s13s s2 .

Since *c shares only expressions of the form pushs E with E:Rss,
application nodes will not be considered for updating with this definition of
mkApps. In order to model the G-machine scheme, a new transformation
should be defined (see Uspine in Douence and Fradet [1996b]).

The introduction of the threaded memory component in our functional
intermediate code makes formal manipulations more complicated. For
example, a property ensuring that the reduction of *c nEm simulates the
reduction of E should use a decompilation transformation in order to replace
the addresses in reduced expressions by their actual values that lie in the
heap. This prevented us from finding a simple and convincing formulation of
correctness properties for the transformations presented in this section.

7. CLASSICAL FUNCTIONAL IMPLEMENTATIONS

The description of the compilation process is now complete. A compiler can
be described by a simple composition of transformations. Figure 19 states
the main design choices structuring several classical implementations.
There are cosmetic differences between our descriptions and the real
implementations. Some descriptions of the literature leave the compilation
of control transfers implicit (e.g., the Cam and Tim). Also, some extensions
and optimizations are not described here.

Let us describe precisely our modeling of the categorical abstract ma-
chine and state the differences with the description in Cousineau et al. [1987].
The Cam implements the left-to-right call-by-value strategy using the eval-
apply model and has linked environments. In our framework, this is expressed

374 • R. Douence and P. Fradet

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

as Cam 5 As z VaL. By simplifying this composition of transformations, we get:

Cam nximr 5 fsti + snd

Cam nlx.Emr 5 pushs ~mkbind + ~Cam nEm~r,x!!! + mkclos

Cam nE1 E2mr 5 duple + ~Cam nE1mr! + swapse + ~Cam nE2mr! + appclosL

with

appclosL 5 lsx.lsf.pushs x + f.

To illustrate its output, let us consider the expression E [(lx. x)
((ly.y)(lz.z)); then

Cam nEm 5 duple + pushs C1 + mkclos + swapse + duple + pushs C1

+ mkclos + swapse + pushs C1 + mkclos + appclosL + appclosL

with

C1 ; mkbind + snd.

The code is made of two linear code sequences, each of them composed of
combinators that can be implemented by a few standard assembly instruc-
tions. The minor step consisting of naming code fragments has been left
implicit. By instantiating the combinators, we get the rules of the machine. In
the Cam, both components s and e are merged; the instantiation is therefore

+ 5 labc.a~b c! pushs N 5 pushe N 5 lc.lz.c~ z,N!

lsx.X 5 lex.X 5 lc.l~ z, x!.X c z.

Compiler Transformations Components
L 3 Ls 3 Le 3 Lk 3 Lh

Cam VaL As Id Id s [e
Clean Nml Ac1 Id UCallee s e k h
G-machine GNm Ac1dsb9 Id USpine s e k h
Spineless G-machine GNml Ac1dsb9 Id Ucallee s e k h
Spineless tagless G-machine Nml Ac3 Id UCallee (s [k) e h
Mak(cbn) Nml As Id UCallee s [e [k h
Maks(cbv) Vm As S Id s [e [k
Secd Va As S Id s (e [k)
Ski-machine GNm Ski Id USpine s h
Sml-Nj Vaf Ac3 S , Id s e (registers)
Tabac(cbv) Va Ac2dsb S Id (s [e) k
Tabac(cbn) Na Ac2dsb S UHybrid (s [e) k h
Tim Nml Ac1m Id Ucallee s e k h

Fig. 19. Several classical compilation schemes.

Functional Language Implementations • 375

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

The definitions of the (macro) combinators follow:

duple 5 lee.pushe e + pushe e 5 lc.l~ z,e!.c~~ z,e!,e!

mkbind 5 lee.lsx.pushe~e, x! 5 lc.l~~ z,e!, x!.c~ z,~e, x!!

snd 5 le~e, x!.pushs x 5 lc.l~ z,~e, x!!.c~ z, x!

If these combinators are considered as the basic instructions of an abstract
machine, their definitions imply the following state transitions:

duple

mkbind
snd

C~Z,E!

C~~Z,E!,X!

C~Z,~E,X!!

3
3
3

C~~Z,E!,E!

C~Z,~E,X!!

C~Z,X!

The fst, snd, duple, and swapse combinators correspond to Cam’s Fst,
Snd, Push, and Swap. The sequence pushs (E) + mkclos is equivalent to
Cam’s Cur(E). The only difference comes from the place of mkbind (at the
beginning of each closure in our case). Shifting this combinator to the place
where the closures are evaluated and merging it with appclosL, we get
ls(x,e).pushe e + mkbind + x, which is exactly Cam’s sequence Cons;App.

Figure 19 gathers our modelings of 13 implementations of strict or lazy
functional languages. It refers to a few transformations not described in
this article, but which can be found in Douence and Fradet [1996a; 1996b].

Let us quickly review the differences between Figure 19 and real imple-
mentations. The Clean implementation is based on graph rewriting; how-
ever, the final code is similar to environment machines (e.g., a closure is
encoded by an n-ary node). Our replica is an environment machine that we
believe is close. However, the numerous optimizations and especially the
lack of clear description (Plasmeijer and van Eekelen [1993] detail only
examples of final code) make it difficult to precisely determine the compi-
lation choices.

The G-machine [Johnsson 1987] and the spineless G-machine [Burn et al.
1988] perform only one test for all the arguments of the function (by
comparing the arity of the function with the activation record size) whereas
our grabs combinator performs a test for every argument. So, an n-ary
combinator grabsn should be introduced.

The spineless tagless G-machine [Peyton Jones 1992] also uses an n-ary
version of grabs and a local and a global environment. The abstraction with
two environments (Ac3 in our framework) is not directly compatible with
grabs and extra environment copies must be inserted. The simplest way to
model the real machine faithfully would be to introduce a specialized
abstraction algorithm.

The Grab instruction of the Krivine abstract machine (Mak) [Crégut
1991; Leroy 1990] is a combination of our grabs (in fact, a recursive
version; see Appendix I) and mkbind combinators.

376 • R. Douence and P. Fradet

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

The SECD machine [Landin 1964] saves environments a bit later than in
our scheme. Furthermore, the control stack and the environment stack are
grouped into a component called a “dump.” The data stack is also (useless-
ly) saved in the dump. Actually, our replica is closer to the idealized version
derived in Hannan [1992].

The SKI-machine [Turner 1979a] reduces a graph made of combinators
S, K, I, and application nodes. The graph representing the source expres-
sion is totally built at compile time. The machine is made of a recursive
interpreter and a data stack to store the unwound spine. Our modeling is
close to the somewhat informal description of the SKI-machine in Turner
[1979a].

The SML-NJ compiler [Appel 1992] uses only the heap, which is repre-
sented in our framework by a unique environment e. It also includes
registers and numerous optimizations not described here.

The Tabac compiler is a by-product of our work in Fradet and Le Métayer
[1991] and has greatly inspired this study. It implements strict or nonstrict
languages by program transformations. Tabac integrated many optimiza-
tions that we have not described here.

Our call-by-name Tim description is accurate according to Fairbairn and
Wray [1987]. The environment copying included in the transformation Ac1
has the same effect as the preliminary lambda-lifting phase of Tim. A n-ary
grabs should be added to our call-by-need version.

8. EXTENSIONS AND APPLICATIONS

Our framework is powerful enough to handle realistic languages and to
model optimizing compilers or hybrid implementations. We illustrate each
point in turn. We first present the integration of constants, primitive
operators, and data structures; then we take an example of how to express
a classical global optimization, and finally we describe a hybrid transforma-
tion.

8.1 Constants, Primitive Operators, and Data Structures

We have only considered pure l-expressions because most fundamental
choices can be described through this simple language. Realistic implemen-
tations also deal with constants, primitive operators, and data structures
that are easily taken into account in our framework.

Concerning basic constants, one question is whether results of basic type
are returned in s or whether another component (pushb, lb) is introduced.
The latter has the advantage of marking a difference between pointers and
values that can be exploited by the garbage collector. But in this case,
precise type information must also be available at compile time to trans-
form variables and l-abstractions correctly. In a polymorphic setting, this
information is not available in general (a variable x of polymorphic type a
can be bound to anything), so constants, functions, and data structures
must be stored in s. The fix-point operator, the conditional, and primitive
operators acting on basic values are introduced in our language in a

Functional Language Implementations • 377

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

straightforward way. The compilation of control using the eval-apply model
for these constructs is described in Figure 20.

A naive compilation of b-reduction for letrec expressions yields a code
building a closure at each recursive call. Two optimizations exist: building
a circular environment or graph and, for environment-based machines,
implementing recursive calls to statically known functions by a jump to
their address (Appendix P).

As far as data structures are concerned, we can choose to represent them
using tags or higher-order functions [Fairbairn and Wray 1987]. Figure 20
describes a possible extension using the data stack to store constants and
tagged cells of lists. It just indicates one simple way to accommodate data
structures in our framework. The efficient implementation of data struc-
tures brings a whole new collection of choices (e.g., see Peyton Jones [1992])
and optimizations (e.g., see Hall [1994] and Shao et al. [1994]). A thorough
description of this subject is beyond the scope of this article.

Until now, we considered only pure l-expressions, and the typing of the
source language was not an issue. When constants and data structures are
taken into account two cases arise, depending on the typing policy of the
source language. If the source language is statically typed, then the code
produced by our transformation does not need to be modified (however,
supporting polymorphism efficiently involves new and specific optimiza-
tions such as unboxing of floats and tuples [Leroy 1992]). For dynamically
typed languages, functions, constants, and data structures must carry a
type information that will be checked by combinators or primitive operators
at run-time.

8.2 Optimizations

Let us take the example of the optimization brought by strictness analysis
in call-by-need implementations. It changes the evaluation order and, more
interestingly, avoids some thunks using unboxing [Burn and Le Métayer
1996]. If we assume that a strictness analysis has annotated the code E1 E2
if E1 denotes a strict function and x if the variable is defined by a strict
l-abstraction, then Na can be optimized as follows:

Na nxIm 5 pushs x Na nEI 1 E2m 5 NanE2m + Na nE1m + app.

V vletrec f 5 Eb 5 pushs(lsf.V vEb) + Ys
with pushs F + Ys ➨ pushs(pushs F + Ys) + F

V vnb 5 pushs n
V vif E1 then E2 else E3b 5 V vE1b + conds(V vE2b, V vE3b)
with pushs True + conds(E, F) ➨ E

and pushs False + conds(E, F) ➨ F
V vE1 1 E2b 5 V vE2b + V vE1b + pluss

with pushs n2 + pushs n1 + pluss ➨ pushs n1 1 n2
V vheadb 5 heads with heads 5 ls(tag, h, t).pushs h
V vcons E1 E2b 5 V vE2b + V vE1b + with conss 5 lsh.lst.pushs(tag, h, t)

Fig. 20. An extension with constants, primitive operators, and lists.

378 • R. Douence and P. Fradet

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

Underlined variables are known to be already evaluated; they are repre-
sented as unboxed values. For example, without any strictness information,
the expression

~lx. x 1 1!2

is compiled into pushs(pushs 2) + (lsx. x + pushs 1 + pluss).
The code pushs 2 is represented as a closure and evaluated by the call x;

it is the boxed representation of 2. With strictness annotations we have

pushs 2 +~lsx.pushs x + pushs 1 + pluss!,

and the evaluation is the same as with call-by-value (no closure is built).
Actually, more general forms of unboxing (as in Leroy [1992] or Peyton
Jones and Launchbury [1991]) and optimizations (e.g., let-floating [Peyton
Jones et al. 1996]) could be expressed as well.

8.3 Hybrid Implementations

The study of the different options showed that there is no universal best
choice. It is natural to strive to get the best of each world. Our framework
makes intricate hybridizations and related correctness proofs possible. It
is, for example, possible to mix the eval-apply and push-enter models and
to design a Va –Vm hybrid transformation [Douence and Fradet 1996a]).
Here, we describe how to mix shared and copied environments. We suppose
that a static analysis has produced an annotated code indicating the chosen
mode for each subexpression.

One solution could be to use coercion functions to fit the environment
into the chosen structure (list or vector). Instead, we describe a more
sophisticated solution (Figure 21) that allows lists and vectors to coexist
within environments (as in Shao and Appel [1994]). Motivations for this
feature may be to optimize run-time using vectors (resp., links) when
access (resp., closure building) cost is predominant or to optimize space
usage by using a copy scheme (e.g., vectors) when it eliminates a space leak
that would be introduced by linking environments.

Each l-abstraction is annotated by a new mixed environment structure u
and Q ([{v, l}) that indicates how to bind the current value (as a vector “v”
or as a link “l”). Mixed structures are built by mkbindv, mkbindl, and the
macrocombinator Mix which copies and restructures the environment r
according to the annotation u (Figure 21). Paths to values are now ex-

MixA vlsx.Eu,Qbr 5 Mix r u + mkbindQ + MixA vEb(u Q x)
MixA vxib(. . .(r, r i), . . . , r0) 5 accessl

i + MixA vxibr i with xi in r i
MixA vxib[r;r i; . . . ;r0] 5 accessv

i + MixA vx ibri with xi in r i
MixA vxib(. . .(r, xi), . . . , x0) 5 accessl

i + appclos
MixA vxib[r;xi; . . . ;x0] 5 accessv

i + appclos
with accessl

i(resp., accessv
i) is the accessi version which accesses a

list (resp., a vector)
Fig. 21. Hybrid abstraction (extract).

Functional Language Implementations • 379

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

pressed by sequences of accessi
l and accessi

v. The abstraction algorithm
distinguishes vectors from lists in the compile time environment using
constructors “:” and “,”.

9. RELATED WORK

In this section we review the different formalisms used in the description of
functional implementations: the l-calculus, l-calculi with explicit substitu-
tions, combinators, and monads. We also present papers comparing specific
implementations and the related area of semantic-directed compiler deriva-
tion.

Our approach and this article stem from our previous work on compila-
tion of functional languages by program transformation [Fradet and Le
Métayer 1991]. Our goal then was to show that the whole implementation
process could be described in the functional framework. The two main steps
were the compilation of control using a CPS conversion and the compilation
of the b-reduction using indexed combinators that could be seen as basic
instructions on a stack. We remained throughout within the l-calculus and
did not have to introduce an ad hoc abstract machine. We described only
one particular implementation; our main motivation was to make correct-
ness proofs of realistic implementations simpler, not to describe and
compare various implementation techniques. The SML-NJ compiler has
also been described using program transformations including CPS and
closure conversions [Appel 1992]. Other compilers use the CPS transforma-
tion to encode the reduction strategy within the l-calculus [Kranz et al.
1986; Steele 1978]. Encoding implementation issues within the l-calculus
leads to complex expressions (e.g., sequencing is coded as a composition of
continuations). The constructors pushi, +, and li make our framework more
abstract and simplify the expressions. The instantiation of these construc-
tors as l-expressions provides an interesting new implementation step
(Section 2.5): the choice of the number and the representation of the
components of the underlying abstract machine are kept apart. Within the
l-calculus, one has to choose before describing an implementation whether,
for example, data and environments are stored in two separate components
or in a single one.

The de Bruijn [1972] l-calculus, which uses indices instead of variables,
has been used as an intermediate language by several abstract machines.
As we saw in Section 4.1.2, a de Bruijn index can be seen as the address of
a value in the run-time environment. A collection of formalisms, the
l-calculi with explicit substitutions, also emphasizes the environment
management and can be seen as calculi of closures [Abadi et al. 1990].
These calculi help formal reasoning on substitution and make some imple-
mentation details explicit. However, important implementation choices
such as the representation of the environments (lists or vectors) are, in
general, not tackled in these formalisms. Hardin et al. [1996] introduce
lsw, a weak l-calculus with explicit substitutions, which can serve as the
output language of functional compilers. They describe several abstract

380 • R. Douence and P. Fradet

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

machines in this framework. However, their goal is to exhibit the common
points of implementations, not to model existing implementations pre-
cisely. Another variant, lsw

a [Benaissa et al. 1996], can describe sharing
and eases the proofs concerning memory management. The lsw

a -expres-
sions stay at a higher level than real machine code, since, for example,
sharing is modeled by formal labels and parallel reductions.

A closely related framework used as an intermediate language is combi-
natory logic [Curry and Feys 1958]. Combinators have been used to encode
the compilation of the b-reduction. Some compilation issues are usually not
dealt with, such as the representation of environments. Different sets of
combinators, such as {S, K, I, B, C} [Turner 1979a], have been used to
define abstraction algorithms for graph reducers [Joy et al. 1985; Lins
1987]. The categorical combinators [Curien 1993] have been used in envi-
ronment machines such as the Cam [Cousineau 1987] and the Krivine
machine [Asperti 1992].

Arising from different roots, our first intermediate language Ls is sur-
prisingly close to Moggi’s [1991] computational metalanguage. In particu-
lar, we may interpret the monadic construct [E] as pushs E and (let x d
E1 in E2) as E1 + lsx.E2 and get back the monadic laws (let.b), (let.h), and
(ass). The monadic framework is more abstract. For example, one can write
monadic expressions such as

let_ d writeStack~X!in~let e d readEnv~!in E!,

whereas, in our formalism, we need to reorder data and environment with a
swap combinator:

pushs X + swapse + lee.E

These administrative combinators allow us to merge several components
in the instantiation step. The abstract features of monads can be a
hindrance to expressing low-level implementation details and to getting
closer to a machine code. For example, the monadic call-by-value CPS
expression (let a d A in (let f d F in [f a])) evaluates the argument A, the
function F, and returns the application (f a), but does not state if the
application is reduced before it is returned. In Ls, we disallow unrestricted
applications and make the previous reduction explicit with an app combi-
nator. A key feature of our approach is to describe and structure the
compilation process as a composition of individualized transformations.
The monadic framework does not appear to be well suited to this purpose,
since monads are notoriously difficult to compose. Liang et al. [1995] need
complex parameterized monads to describe and compose different compila-
tion steps. The difficulties of composing monads and representing low-level
details are serious drawbacks with respect to our goals. Overall, the
monadic framework is a general tool for structuring functional programs
[Wadler 1992], whereas our small framework has been tailormade to
describe implementations.

Functional Language Implementations • 381

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

Except for benchmarks, few functional language implementations have
been compared. Some particular compilation steps have been studied. For
example, Joy et al. [1985] compare different abstraction algorithms, and
Hatcliff and Danvy [1994] express CPS transformations in the monadic
framework. A few works explore the relationship between two abstract
machines such as CMC and Tim [Lins et al. 1992] and Tim and the
G-machine [Peyton Jones and Lester 1992]. Their goal is to show the
equivalence between seemingly very different implementations. CMC and
Tim are compared by defining transformations between the states of the
two machines. The comparison of Tim and the G-machine is more informal,
but highlights the relationship between an environment machine and a
graph reducer. Also, let us mention Asperti [1992], who provides a categor-
ical understanding of the Krivine machine and an extended Cam, and
Crégut [1991], who has studied the relationship between the Tim and the
Krivine machine. All these implementation comparisons focus on particular
compilation steps or machines, but do not define a global approach to
compare implementations.

Related work also includes the derivation of abstract machines from
denotational or operational semantics. Starting from a denotational seman-
tics with continuations, Wand [1982] compiles the b-reduction using combi-
nators and linearizes expressions in sequences of abstract code. The seman-
tics of the program is translated into a sequence representing the code and
a machine to execute it. In our approach, semantics or machines do not
appear explicitly. Hannan [1992] and Sestoft [1994] start from a “big step”
(natural) operational semantics, incrementally suppress ambiguities (e.g.,
impose a left-to-right reduction order), and refine complex operation (e.g.,
b-reduction), until they get a “small step” (structural) operational seman-
tics. Some of the refinement steps have to deal with operations specific to
their framework (e.g., suppressing unification). Meijer [1992] uses program
algebra to calculate some simple compilers from a denotational semantics
via a series of refinements. All these derivation techniques aim at provid-
ing a methodology to formally develop implementations from semantics.
Their focus is on the refinement process and correction issues, and usually
they describe the derivation of a single implementation. Not surprisingly,
the derived compilers do not model existing implementations precisely.
They are best described as idealized rather than sophisticated or optimized
implementations. Comparisons of implementation choices seem harder
with a description based on semantics refinement than with a description
by program transformations. Also, some choices seem difficult to naturally
obtain by derivation (e.g., the push-enter model for call-by-value). On the
other hand, these semantics-based methodologies can potentially be ap-
plied to any language that can be described in their semantics framework.

10. CONCLUSION

Let us review the implementation choices encountered in our study. The
most significant choice for the compilation of control is using the eval-apply

382 • R. Douence and P. Fradet

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

model (Va, Na) or the push-enter model (Vm, Nm). There are other minor
options such as stackless variations (Vaf, Naf) or right-to-left versus left-to-
right call-by-value. We have shown that the transformations employed by
graph reducers can be seen as interpretive versions of the environment-
based transformations. For the compilation of b-reduction, the main choice
is using environmentless (e.g., SKI) abstraction algorithms, list-like
(shared) environments (As), or vector-like (copied) environments (Ac). For
the last choice, there are several transformations depending on the way
environments are copied (Ac1, Ac2, Ac3). Actually, a complete family of
generic transformations modeling different managements of the environ-
ment stack can be derived. For control transfers, one can introduce a return
address stack or use CPS conversion. Self-updatable closures (i.e., callee
update) are the standard way to implement updating, but graph reduction
brings other options.

Our approach focuses on (but is not restricted to) the description and
comparison of fundamental options. The transformations are designed to
model a precise compilation step; they are generic with respect to the other
steps. It is then not surprising that, often, simple compositions of transfor-
mations do not accurately model real implementations whose design is
more ad hoc than generic. In most cases, the differences are nevertheless
superficial and it is sufficient to specialize the transformations to obtain
existing implementations.

The use of program transformations appears to be well suited to precisely
and completely modeling the compilation process. Many standard optimiza-
tions (uncurrying, unboxing, hoisting, peephole optimizations) can be ex-
pressed as program transformations as well. This unified framework sim-
plifies correctness proofs. For example, we do not explicitly introduce an
abstract machine, and therefore we do not have to prove that its opera-
tional definition is coherent with the semantics of the language (as in
Plotkin [1975] and Lester [1989]). Program transformations make it possi-
ble to reason about the efficiency of the produced code as well as about the
complexity of transformations themselves. Actually, these advantages ap-
pear clearly before the last compilation step. The introduction of a threaded
state seriously complicates program manipulations and correctness proofs.
This is not surprising because our final code is similar to a real assembly
code.

Our main goal was to structure and clarify the design space of functional
language implementations. The exploration is still far from complete. There
are still many avenues for further research:

—It would be interesting to give a concrete form to our framework by
implementing all the transformations presented. This compiler construc-
tion workbench would make it possible to implement a wide variety of
implementations just by composing transformations. This would be use-
ful for trying completely new associations of compilation choices and for
assessing the implementations and optimizations in practice.

Functional Language Implementations • 383

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

—A last step toward high-quality machine code would be the modeling of
register allocation. This could be done via the introduction of another
component: a vector of registers.

—A systematic description of standard optimizations and program trans-
formations should be undertaken. A benefit would be to clarify the
impact of a program transformation, depending on the implementation
choices. Let us consider, for example, l-lifting, a controversial transfor-
mation [Johnsson 1987; Meijer and Paterson 1991]. Intuitively, l-lifting
can be beneficial for implementations using linked environments.
Indeed, in this case, its effect is to shorten accesses to variables by
performing copies. Whether the gain is worth the cost depends on how
many times a variable is accessed. We believe that this question could
be studied and settled in our framework. Also, proving the correctness
of optimizations based on static analyses is a difficult (and largely
neglected) problem [Burn and Le Métayer 1996]. Expressing these
optimizations as program transformations in our unified framework
should make this task easier.

—Another research direction is the design of hybrid transformations (mix-
ing several compilation schemes). We hinted at a solution to mix copied
and linked environments in Section 8.3 and a solution to mix the
eval-apply and the push-enter model in Douence and Fradet [1996b].
Other hybrid transformations as well as the analyses needed to make
these transformations worthwhile have yet to be devised. Without the
help of a formal framework, such transformations would be quite difficult
to design and prove correct. The description of previously unknown
compositions of transformations, the mechanical derivation of new ab-
straction algorithms, and hybrid transformations all indicate that our
approach can also suggest new implementation techniques.

—Many interesting formal comparisons of transformations remain to be
done. At the moment, we have just compared a few couples of transfor-
mations (Va and Vm, Na and Nm [Douence and Fradet 1996b], As and Ac1).
It might be the case that a specific choice for a compilation step
designates a best candidate for the compilation of another step. This
could be established by comparing compositions of transformations (e.g.,
As z Va and Ac1 z Va).
We believe that the accomplished work already shows that our frame-

work is expressive and powerful enough to tackle these problems.

ACKNOWLEDGMENTS

We are grateful to Luke Hornof and Daniel Le Métayer for their comments
on several versions of this article. Thanks are also due to the referees who
provided helpful suggestions.

384 • R. Douence and P. Fradet

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

ONLINE-ONLY APPENDIX

Appendices A–P are available online only and are retrievable from the
citation page for this article:

http://www.acm.org/pubs/citations/journals/toplas/1998-20-2/p344-douence

Alternative instructions on how to obtain online-only appendices are
given on the back inside cover of current issues of ACM TOPLAS or on the
ACM TOPLAS web page:

http://www.acm.org/toplas

REFERENCES

ABADI, M., CARDELLI, L., CURIEN, P. L., AND LEVY, J. J. 1990. Explicit substitutions. In
Proceedings of POPL 1990. ACM, New York, 31–46.

APPEL, A. W. 1992. Compiling with Continuations. Cambridge University Press, Cam-
bridge, Mass.

ARGO, G. 1989. Improving the three instruction machine. In Proceedings of FPCA ’89,
100–115.

ASPERTI, A. 1992. A categorical understanding of environment machines. J. Funct. Pro-
gram. 2, 1, 23–59.

BARENDREGT, H. P. 1981. The Lambda Calculus. Its Syntax and Semantics. North-Holland,
Amsterdam.

BARENDREGT, H. P. AND HEMERIK, K. 1990. Types in lambda calculi and programming
languages. In Proceedings of the 3rd European Symposium on Programming. Lecture Notes
in Computer Science, vol. 432. Springer-Verlag, Berlin, 1–35.

BENAISSA, Z., LESCANNE, P., AND ROSE, K. H. 1996. Modeling sharing and recursion for weak
reduction strategies using explicit substitution. In Proceedings of PLILP 1996, 393–407.

BURN, G. AND LE MÉTAYER, D. 1996. Proving the correctness of compiler optimisations based
on a global analysis. J. Funct. Program. 6, 1, 75–110.

BURN, G., PEYTON JONES, S. L., AND ROBSON, J. D. 1988. The spineless G-machine. In
Proceedings of LFP ’88, 244–258.

COUSINEAU, G., CURIEN, P.-L., AND MAUNY, M. 1987. The categorical abstract machine. Sci.
Comput. Program. 8, 2, 173–202.

CRÉGUT, P. 1991. Machines à environnement pour la réduction symbolique et l’évaluation
partielle. Ph.D. thesis, Université Paris VII, Paris, France.

CURIEN, P. L. 1993. Categorical Combinators, Sequential Algorithms and Functional Pro-
gramming. Birkhauser.

CURRY, H. B. AND FEYS, R. 1958. Combinatory Logic, Vol. 1, North-Holland.
DANVY, O. 1992. Back to direct style. In Proceedings of ESOP ’92. Lecture Notes in

Computer Science, vol. 582. Springer-Verlag, Berlin, 130–150.
DE BRUJIN, N. G. 1972. l-calculus notation with nameless dummies: A tool for automatic

formula manipulation, with application to Church–Rosser theorem. Indagationes Math. 34,
381–392.

DOUENCE, R. 1996. Décrire et comparer les mises en œuvre de langages fonctionnels. Ph.D.
thesis, University of Rennes I, Rennes, France.

DOUENCE, R. AND FRADET, P. 1995. Towards a taxonomy of functional language implemen-
tations. In Proceedings of PLILP ’95. Lecture Notes in Computer Science, vol. 982. Springer-
Verlag, Berlin, 27–44.

DOUENCE, R. AND FRADET, P. 1996a. A taxonomy of functional language implementations.
Part I: Call-by-value. INRIA Res. Rep. 2783, INRIA, Rennes, France.

DOUENCE, R. AND FRADET, P. 1996b. A taxonomy of functional language implementations.
Part II: Call-by-name, call-by-need, and graph reduction. INRIA Res. Rep. 3050, INRIA,
Rennes, France.

Functional Language Implementations • 385

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

FAIRBAIRN, J. AND WRAY, S. 1987. Tim: A simple, lazy abstract machine to execute super-
combinators. In Proceedings of FPCA ’87. Lecture Notes in Computer Science, vol. 274.
Springer-Verlag, Berlin, 34–45.

FISCHER, M. J. 1972. Lambda-calculus schemata. In Proceedings of the ACM Conference on
Proving Properties about Programs. SIGPLAN Not. 7, 1, 104–109.

FRADET, P. AND LE MÉTAYER, D. 1991. Compilation of functional languages by program
transformation. ACM Trans. Program. Lang. Syst. 13, 1, 21–51.

HALL, C. 1994. Using Hindley–Milner type inference to optimise list representation. In
Proceedings of LFP ’94, 162–172.

HANNAN, J. 1992. From operational semantics to abstract machines. Math. Struct. Comput.
Sci. 2, 4, 415–459.

HARDIN, T., MARANGET, L., AND PAGANO, B. 1996. Functional back-ends within the lambda-
sigma calculus. In Proceedings of ICFP 1996, 25–33.

HATCLIFF, J. AND DANVY, O. 1994. A generic account of continuation-passing styles. In
Proceedings of POPL ’94. ACM, New York, 458–471.

JOHNSSON, T. 1987. Compiling lazy functional languages. Ph.D. thesis, Chalmers Univ. of
Technology, Göteborg, Sweden.

JOY, M. S., RAYWARD-SMITH, V. J., AND BURTON, F. W. 1985. Efficient combinator code.
Comp. Lang. 10, 3/4, 211–224.

KLOP, J. W. 1992. Term rewriting systems. In Handbook of Logic in Computer Science. Vol.
2, Oxford University Press, New York, 2–108.

KRANZ, D., KESLEY, R., REES, J., HUDAK, P., PHILBIN, J., AND ADAMS, N. 1986. ORBIT: An
optimizing compiler for Scheme. SIGPLAN Not. 21, 7, 219–233.

LANDIN, P. J. 1964. The mechanical evaluation of expressions. Comput. J. 6, 4, 308–320.
LEROY, X. 1990. The Zinc experiment: An economical implementation of the ML language.

INRIA Tech. Rep. 117, INRIA, Rennes, France.
LEROY, X. 1992. Unboxed objects and polymorphic typing. In Proceedings of the ACM

Symposium on Principles of Programming Languages. ACM, New York, 177–188.
LESTER, D. 1989. Combinator graph reduction: A congruence and its application. Ph.D.

thesis, Oxford Univ., Oxford, U.K.
LIANG, S., HUDAK, P., AND JONES, M. P. 1995. Monad transformers and modular interpret-

ers. In Proceedings of POPL ’95. ACM, New York, 333–343.
LINS, R. D. 1987. Categorical multi-combinators. In Proceedings of FPCA ’87. Lecture Notes

in Computer Science, vol. 274. Springer-Verlag, Berlin, 60–79.
LINS, R., THOMPSON, S., AND PEYTON-JONES, S. L. 1992. On the equivalence between CMC

and TIM. J. Funct. Program. 4, 1, 47–63.
MEIJER, E. 1992. Calculating compilers. Ph.D. thesis, Katholieke Universiteit Nijmegen,

Netherlands.
MEIJER, E. AND PATERSON, R. 1991. Down with lambda lifting. Unpublished paper. Copies

available at: {erik@cs.kun.nl}.
MOGGI, E. 1991. Notions of computation and monads. Inf. Comput. 93, 55–92.
PEYTON JONES, S. L. 1987. The Implementation of Functional Programming Languages.

Prentice-Hall, Englewood Cliffs, N.J.
PEYTON JONES, S. L. 1992. Implementing lazy functional languages on stock hardware: The

spineless tagless G-machine. J. Funct. Program. 2, 2, 127–202.
PEYTON JONES, S. L. AND LESTER, D. 1992. Implementing Functional Languages, A Tutorial.

Prentice-Hall, Englewood Cliffs, N.J.
PEYTON JONES, S. L. AND LAUNCHBURY, J. 1991. Unboxed values as first class citizens in a

non-strict functional language. In Proceedings of FPCA ’91. Lecture Notes in Computer
Science, vol. 523. Springer-Verlag, Berlin, 636–666.

PEYTON JONES, S. L., PARTAIN, W., AND SANTOS, A. 1996. Let-floating: Moving bindings to
give faster programs. In Proceedings of ICFP ’96, 1–12.

PLASMEIJER, R. AND VAN EEKELEN, M. 1993. Functional Programming and Parallel Graph
Rewriting. Addison-Wesley, Reading, Mass.

PLOTKIN, G. D. 1975. Call-by-name, call-by-value and the lambda-calculus. TCS 1, 2,
125–159.

386 • R. Douence and P. Fradet

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

SCHMIDT, D. 1986. Denotational Semantics, A Methodology for Language Development.
W. C. Brown, Dubuque, Iowa.

SESTOFT, P. 1994. Deriving a lazy abstract machine. Tech. Rep. 1994-146, Technical Univ.
of Denmark.

SHAO, Z. AND APPEL, A. 1994. Space-efficient closure representations. In Proceedings of LFP
’94, 150–161.

SHAO, Z., REPPY, J., AND APPEL, A. 1994. Unrolling lists. In Proceedings of LFP ’94, 185–195.
STEELE, G. L. 1978. Rabbit: A compiler for Scheme. Tech. Rep. AI-TR-474, MIT, Cambridge,

Mass.
TURNER, D. A. 1979a. A new implementation technique for applicative languages. Softw.

Pract. Exper. 9, 31–49.
TURNER, D. A. 1979b. Another algorithm for bracket abstraction. J. Symbol. Logic 44,

267–270.
WADLER, P. 1992. The essence of functional programming. In Proceedings of POPL ’92.

ACM, New York, 1–14.
WAND, M. 1982. Deriving target code as a representation of continuation semantics. ACM

Trans. Program. Lang. Syst. 4, 3, 496–517.

Received February 1997; revised July 1997; accepted September 1997

Functional Language Implementations • 387

ACM Transactions on Programming Languages and Systems, Vol. 20, No. 2, March, 1998.

