
Ignorance is Almost Bliss:
Near-Optimal Stochastic Matching With Few Queries ∗

Avrim Blum1, John P. Dickerson1, Nika Haghtalab1, Ariel D. Procaccia1, Tuomas Sandholm 1,
and Ankit Sharma† 2

1Carnegie Mellon University
2Solvvy Inc.

September 12, 2018

Abstract

The stochastic matching problem deals with finding a maximum matching in a graph whose edges
are unknown but can be accessed via queries. This is a special case of stochastic k-set packing, where the
problem is to find a maximum packing of sets, each of which exists with some probability. In this paper,
we provide edge and set query algorithms for these two problems, respectively, that provably achieve
some fraction of the omniscient optimal solution.

Our main theoretical result for the stochastic matching (i.e., 2-set packing) problem is the design of
an adaptive algorithm that queries only a constant number of edges per vertex and achieves a (1 − ε)
fraction of the omniscient optimal solution, for an arbitrarily small ε > 0. Moreover, this adaptive
algorithm performs the queries in only a constant number of rounds. We complement this result with a
non-adaptive (i.e., one round of queries) algorithm that achieves a (0.5 − ε) fraction of the omniscient
optimum. We also extend both our results to stochastic k-set packing by designing an adaptive algorithm
that achieves a (2

k − ε) fraction of the omniscient optimal solution, again with only O(1) queries per
element. This guarantee is close to the best known polynomial-time approximation ratio of 3

k+1 − ε for
the deterministic k-set packing problem [22].

We empirically explore the application of (adaptations of) these algorithms to the kidney exchange
problem, where patients with end-stage renal failure swap willing but incompatible donors. We show
on both generated data and on real data from the first 169 match runs of the UNOS nationwide kidney
exchange that even a very small number of non-adaptive edge queries per vertex results in large gains in
expected successful matches.

1 Introduction

In the stochastic matching problem, we are given an undirected graph G = (V,E), where we do not know
which edges in E actually exist. Rather, for each edge e ∈ E, we are given an existence probability pe. Of
∗This work was supported by the NSF under grants CCF-1101668, CCF-1116892, CCF-1215883,

CCF-1415460, IIS-0964579, IIS-1065251, IIS-1320620, and IIS-1350598, and by a National Defense
Science & Engineering Graduate Fellowship and a Sloan Research Fellowship. Authors’ addresses:
{avrim,dickerson,nhaghtal,arielpro,sandholm,ankits}@cs.cmu.edu.
†This work was done while the author was a graduate student at Carnegie Mellon University.

1

ar
X

iv
:1

40
7.

40
94

v2
 [

cs
.D

S]
 2

9
A

pr
 2

01
5

interest, then, are algorithms that first query some subset of edges to find the ones that exist, and based on
these queries, produce a matching that is as large as possible. The stochastic matching problem is a special
case of stochastic k-set packing, where each set exists only with some probability, and the problem is to find
a packing of maximum size of those sets that do exist.

Without any constraints, one can simply query all edges or sets, and then output the maximum matching
or packing over those that exist—but this level of freedom may not always be available. We are interested
in the tradeoff between the number of queries and the fraction of the omnsicient optimal solution achieved.
Specifically, we ask: In order to perform as well as the omniscient optimum in the stochastic matching
problem, do we need to query (almost) all the edges, that is, do we need a budget of Θ(n) queries per vertex,
where n is the number of vertices? Or, can we, for any arbitrarily small ε > 0, achieve a (1 − ε) fraction
of the omniscient optimum by using an o(n) per-vertex budget? We answer these questions, as well as their
extensions to the k-set packing problem. We support our theoretical results empirically on both generated
and real data from a large fielded kidney exchange in the United States.

1.1 Our theoretical results and techniques

Our main theoretical result gives a positive answer to the latter question for stochastic matching, by showing
that, surprisingly, a constant per-vertex budget is sufficient to get ε-close to the omniscient optimum. Indeed,
we design a polynomial-time algorithm with the following properties: for any constant ε > 0, the algorithm
queries at most O(1) edges incident to any particular vertex, requires O(1) rounds of parallel queries, and
achieves a (1− ε) fraction of the omniscient optimum.1

The foregoing algorithm is adaptive, in the sense that its queries are conditioned on the answers to
previous queries. Even though it requires only a constant number of rounds, it is natural to ask whether a
non-adaptive algorithm—one that issues all its queries in one round—can also achieve a similar guarantee.
We do not give a complete answer to this question, but we do present a non-adaptive algorithm that achieves
a 0.5(1−ε)-approximation (for arbitrarily small ε > 0) to the omniscient optimum. We extend our matching
results to a more general stochastic model in Appendix D.

We extend our results to the stochastic k-set packing problem, where we are given a collection of sets,
each with cardinality at most k. Stochastic Matching is a special case of Stochastic k-set packing: each set
(which corresponds to an edge) has cardinality 2, that is, k = 2. In stochastic k-set packing, each set s exists
with some known probability ps, and we need to query the sets to find whether they exist. Our objective
is to output a collection of disjoint sets of maximum cardinality. We present adaptive and non-adaptive
polynomial-time algorithms that achieve, for any constant ε > 0, at least (2k − ε) and (1− ε) (2/k)

2

2/k+1 fraction,
respectively, of the omniscient optimum, again using O(1) queries per element and hence O(n) overall.
For the sake of comparison, the best known polynomial-time algorithm for optimizing k-set packing in the
standard non-stochastic setting has an approximation ratio of 3

k+1 − ε [22].
To better appreciate the challenge we face, we note that even in the stochastic matching setting, we do

not have a clear idea of how large the omniscient optimum is. Indeed, there is a significant body of work
on the expected cardinality of matching in complete random graphs (see, e.g., [13, Chapter 7]), where the
omniscient optimum is known to be close to n. But in our work we are dealing with arbitrary graphs where
it can be a much smaller number. In addition, naı̈ve algorithms fail to achieve our goal, even if they are
allowed many queries. For example, querying a sublinear number of edges incident to each vertex, chosen
uniformly at random, gives a vanishing fraction of the omniscient optimum—as we show in Appendix A.

1This guarantee holds as long as all the non-zero pe’s are bounded away from zero by some constant. The constant can be
arbitrarily small but should not depend on n.

2

The primary technical ingredient in the design of our adaptive algorithm is that if, in any round r of the
algorithm, the solution computed by round r (based on previous queries) is small compared to the omniscient
optimum, then the current structure must admit a large collection of disjoint constant-sized ‘augmenting’
structures. These augmenting structures are composed of sets that have not been queried so far. Of course,
we do not know whether these structures we are counting on to help augment our current matching actually
exist; but we do know that these augmenting structures have constant size (and so each structure exists
with some constant probability) and are disjoint (and therefore the outcomes of the queries to the different
augmenting structures are independent). Hence, by querying all these structures in parallel in round r, in
expectation, we can close a constant fraction of the gap between our current solution and the omniscient
optimum. By repeating this argument over a constant number of rounds, we achieve a (1 − ε) fraction
of the omniscient optimum. In the case of stochastic matching, these augmenting structures are simply
augmenting paths; in the more general case of k-set packing, we borrow the notion of augmenting structures
from Hurkens and Schrijver [27].

1.2 Our experimental results: Application to kidney exchange

Our work is directly motivated by applications to kidney exchange, a medical approach that enables kidney
transplants. Transplanted kidneys are usually harvested from deceased donors; but as of April 26, 2015,
there are 101,671 people on the US national waiting list,2 making the median waiting time dangerously
long. Fortunately, kidneys are an unusual organ in that donation by living donors is also a possibility—as
long as patients happen to be medically compatible with their potential donors.

In its simplest form—pairwise exchange—two incompatible donor-patient pairs exchange kidneys: the
donor of the first pair donates to the patient of the second pair, and the donor of the second pair donates
to the patient of the first pair. This setting can be represented as an undirected compatibility graph, where
each vertex represents an incompatible donor-patient pair, and an edge between two vertices represents the
possibility of a pairwise exchange. A matching in this graph specifies which exchanges take place.

The edges of the compatibility graph can be determined based on the medical characteristics—blood
type and tissue type—of donors and patients. However, the compatibility graph only tells part of the story.
Before a transplant takes place, a more accurate medical test known as a crossmatch test takes place. This test
involves mixing samples of the blood of the patient and the donor (rather than simply looking up information
in a database), making the test relatively costly and time consuming. Consequently, crossmatch tests are
only performed for donors and patients that have been matched. While some patients are more likely to pass
crossmatch tests than others—the probability is related to a measure of sensitization known as the person’s
Panel Reactive Antibody (PRA)—the average is as low as 30% in major kidney exchange programs [20, 28].
This means that, if we tested a perfect matching over n donor-patient pairs, we would expect only 0.09n of
the patients to actually receive a kidney. In contrast, the omniscient solution that runs crossmatch tests on
all possible pairwise exchanges (in the compatibility graph) may be able to provide kidneys to all n patients;
but this solution is impractical.

Our adaptive algorithm for stochastic matching uncovers a sweet spot between these two extremes. On
the one hand, it only mildly increases medical expenses, from one crossmatch test per patient, to a larger,
yet constant, number; and it is highly parallelizable, requiring only a constant number of rounds, so the time
required to complete all crossmatch tests does not scale with the number of donors and patients. On the
other hand, the adaptive algorithm essentially recovers the entire benefit of testing all potentially feasible
pairwise exchanges. The qualitative message of this theoretical result is clear: a mild increase in number of

2http://optn.transplant.hrsa.gov

3

http://optn.transplant.hrsa.gov

crossmatch tests provides nearly the full benefit of exhaustive testing.
The above discussion pertains to pairwise kidney exchange. However, modern kidney exchange pro-

grams regularly employ swaps involving three donor-patient pairs, which are known to provide significant
benefit compared to pairwise swaps alone [32, 9]. Mathematically, we can consider a directed graph, where
an edge (u, v) means that the donor of pair u is compatible with the patient of pair v (before a crossmatch
test was performed). In this graph, pairwise and 3-way exchanges correspond to 2-cycles and 3-cycles, re-
spectively. Our adaptive algorithm for 3-set packing then provides a (2/3)-approximation to the omniscient
optimum, using only O(1) crossmatch tests per patient and O(n) overall. While the practical implications
of this result are currently not as crisp as those of its pairwise counterpart, future work may improve the
approximation ratio (using O(n) queries and an exponential-time algorithm), as we explain in Section 8.1.

To bridge the gap between theory and practice, we provide experiments on both simulated data and real
data from the first 169 match runs of the United Network for Organ Sharing (UNOS) US nationwide kidney
exchange, which now includes 143 transplant centers—approximatey 60% of the transplant centers in the
US. The exchange began matching in October 2010 and now matches on a biweekly basis. Using adaptations
of the algorithms presented in this paper, we show that even a small number of non-adaptive rounds, followed
by a single period during which only those edges selected during those rounds are queried, results in large
gains relative to the omniscient matching. We discuss the policy implications of this promising result in
Section 8.2.

2 Related work

While papers on stochastic matching often draw on kidney exchange for motivation—or at least mention it in
passing—these two research areas are almost disjoint. We therefore discuss them separately in Sections 2.1
and 2.2.

2.1 Stochastic matching

Prior work has considered multiple variants of stochastic matching. A popular variant is the query-commit
problem, where the algorithm is forced to add any queried edge to the matching if the edge is found to exist.
Goel and Tripathi [24] establish an upper bound of 0.7916 for graphs in which no information is available
about the edges, while Costello et al. [16] establish a lower bound of 0.573 and an upper bound of 0.898 for
graphs in which each edge e exists with a given probability pe. Similarly to our work, these approximation
ratios are with respect to the omniscient optimum, but the informational disadvantage of the algorithm stems
purely from the query-commit restriction.

Within the query-commit setting, another thread of work [14, 2, 11] imposes an additional per-vertex
budget constraint where the algorithm is not allowed to query more than a specified number, bv, of edges
incident to vertex v. With this additional constraint, the benchmark that the algorithm is compared to
switches from the omniscient optimum to the constrained optimum, i.e., the performance of the best decision
tree that obeys the per-vertex budget constraints and the query-commit restriction. In other words, the
algorithm’s disadvantage compared to the benchmark is only that it is constrained to run in polynomial
time. Here, again, the best known approximation ratios are constant. A generalization of these results to
packing problems has been studied by Gupta and Nagarajan [26].

Similarly to our work, Blum et al. [12] consider a stochastic matching setting without the query-commit
constraint. They set the per-vertex budget to exactly 2, and ask which subset of edges is queried by the
optimal collection of queries subject to this constraint. They prove structural results about the optimal

4

solution, which allow them to show that finding the optimal subset of edges to query is NP-hard. In addition,
they give a polynomial-time algorithm that finds an almost optimal solution on a class of random graphs
(inspired by kidney exchange settings). Crucially, the benchmark of Blum et al. [12] is also constrained to
two queries per vertex.

There is a significant body of work in stochastic optimization more broadly, for instance, the papers of
Dean et al. [17] (Stochastic Knapsack), Gupta et al. [25] (Stochastic Orienteering), and Asadpour et al. [6]
(Stochastic submodular maximization).

2.2 Kidney exchange

Early models of kidney exchange did not explicitly consider the setting where an edge that is chosen to
be matched only exists probabilistically. Recent research by Dickerson et al. [20] and Anderson et al. [5]
focuses on the kidney exchange application and restricts attention to a single crossmatch test per patient (the
current practice), with a similar goal of maximizing the expected number of matched vertices, in a realistic
setting (for example, they allow 3-cycles and chains initiated by altruistic donors, who enter the exchange
without a paired patient). They develop integer programming techniques, which are empirically evaluated
using real and synthetic data. Manlove and O’Malley [29] discuss the integer programming formulation
used by the national exchange in the United Kingdom, which takes edge failures into account in an ad hoc
way by, for example, preferring shorter cycles to longer ones. To our knowledge, our paper is the first to
describe a general method for testing any number of edges before the final match run is performed—and to
provide experiments on real data showing the expected effect on fielded exchanges of such edge querying
policies.

Another form of stochasticity present in fielded kidney exchanges is the arrival and departure of donor-
patient pairs over time (and the associated arrival and departure of their involved edges in the compatibility
graph). Recent work has addressed this added form of dynamism from a theoretical [34, 3, 4] and exper-
imental [10, 18, 21] point of view. Theoretical models have not addressed the case where an edge in the
current graph may not exist (as we do in this paper); the more recent experimental papers have incorporated
this possibility, but have not considered the problem of querying edges before recommending a final match-
ing. We leave as future research the analysis of edge querying in stochastic matching in such a dynamic
model.

3 The Model

For any graph G = (V,E), let M(E) denote its maximum (cardinality) matching.3 In addition, for two
matchings M and M ′, we denote their symmetric difference by M∆M ′ = (M ∪ M ′) \ (M ∩ M ′); it
includes only paths and cycles consisting of alternating edges of M and M ′.

In the stochastic setting, given a set of edges X , define Xp to be the random subset formed by including
each edge of X independently with probability p. We will assume for ease of exposition that pe = p for
all edges e ∈ E. Our results hold when p is a lower bound, i.e., pe ≥ p for all e ∈ E. Furthermore,
in Appendix D, we show that we can extend our results to a more general setting where the existence
probabilities of edges incident to any particular vertex are correlated.

Given a graph G = (V,E), define M(E) to be E[|M(Ep)|], where the expectation is taken over the
random draw Ep. In addition, given the results of queries on some set of edges T , define M(E|T) to be

3In the notation M(E), we intentionally suppress the dependence on the vertex set V , since we care about the maximum
matchings of different subsets of edges for a fixed vertex set.

5

E[|M(Xp ∪ T ′)|], where T ′ ⊆ T is the subset of edges of T that are known to exist based on the queries,
and X = E \ T .

In the non-adaptive version of our problem, the goal is to design an algorithm that, given a graph
G = (V,E) with |V | = n, queries a subset X of edges in parallel such that |X| = O(n), and maximizes
the ratio M(X)/M(E).

In contrast, an adaptive algorithm proceeds in rounds, and in each round queries a subset of edges in
parallel. Based on the results of the queries up to the current round, it can choose the subset of edges to test
in the next round. Formally, an R-round adaptive stochastic matching algorithm selects, in each round r, a
subset of edges Xr ⊆ E, where Xr can be a function of the results of the queries on

⋃
i<rXi. The objective

is to maximize the ratio E[|M(
⋃

1≤i≤RXi)|]/M(E), where the expectation in the numerator is taken over
the outcome of the query results and the sets Xi chosen by the algorithm.

To gain some intuition for our goal of arbitrarily good approximations to the omniscient optimum, and
why it is challenging, let us consider a naı̈ve algorithm and understand why it fails. This non-adaptive
algorithm schedules R = O(log(n)/p) queries for each vertex as follows. First, order all vertices arbitrarily
and start with an empty set of queries. In order, for each vertex v, let NR(v) be the set of neighbors of v for
whom at most R queries have been scheduled. Schedule min{R,NR(v)} queries, each between v and an
element of NR(v), where these elements are selected uniformly at random from NR(v).

The next example shows that this proposed algorithm only achieves 5
6 fraction of the omniscient optimal

solution, as opposed to our goal of achieving arbitrarily good (1− ε) approximations to the omniscient op-
timal. Furthermore, in the following example when each edge exists with probability p > 5

6 , this algorithm
still only achieves a 5

6 fraction of the omniscient optimal solution, which is worse than a trivial algorithm of
just picking one maximum matching that guarantees a matching of size pn.

Example 3.1. Consider the graph G = (V,E) whose vertices are partitioned into sets A, B, C, and D,
such that |A| = |B| = n

2 and |C| = |D| = n. Let E consist of two random bipartite graphs of degree
R = O(log(n)/p) between A and B and similarly between C and D. And let B and C be connected with
a complete bipartite graph. Let p be the existence probability of any edge.

With high probability, there is a perfect matching that matches A to B and C to D. However, by the
time the algorithm has processed half of the vertices, expected half of the vertices in A, B, C, and D are
processed. For every vertex in B, this vertex has more neighbors in C than in D. So, at this point, with high
probability all vertices ofB already haveR queries scheduled from half of the vertices inC. Therefore, after
this point in the algorithm, no edges between A and B will be queried. So, 1

2 of the vertices in A remain
unmatched. Compared to the omniscient optimum—which is a perfect matching with high probability—the
approximation ratio of this algorithm is at most 5

6 .

For analysis of additional naı̈ve algorithms refer to Appendix A.

4 Adaptive Algorithm: (1− ε)-approximation

In this section, we present our main result: an adaptive algorithm—formally given as Algorithm 1—that
achieves a (1− ε) approximation to the omniscient optimum for arbitrarily small ε > 0, using O(1) queries
per vertex and O(1) rounds.

The algorithm is initialized with the empty matching M0. At the end of each round r, our goal is to
maintain a maximum matching Mr on the set of edges that are known to exist (based on queries made so
far). To this end, at round r, we compute the maximum matching Or on the set of edges that are known to
exist and the ones that have not been queried yet (Step 2a). We consider augmenting paths in Or∆Mr−1,

6

and query all the edges in them (Steps 2b and 2c). Based on the results of these queries (Qr), we update
the maximum matching (Mr). Finally, we return the maximum matching MR computed after R = log(2/ε)

p2/ε

rounds. (Let us assume that R is an integer for ease of exposition.)

Algorithm 1 ADAPTIVE ALGORITHM FOR STOCHASTIC MATCHING: (1− ε) APPROXIMATION

Input: A graph G = (V,E).
Parameter: R = log(2/ε)

p2/ε

1. Initialize M0 to the empty matching and W1 ← ∅.
2. For r = 1, . . . , R, do

(a) Compute a maximum matching, Or, in (V,E \Wr).
(b) Set Qr to the collection of all augmenting paths of Mr−1 in Or∆Mr−1.
(c) Query the edges in Qr. Let Q′r and Q′′r represent the set of existing and non-existing edges.
(d) Wr+1 ←Wr ∪Q′′r .

(e) Set Mr to the maximum matching in
(
V,
⋃r
j=1Q

′
j

)
.

3. Output MR.

It is easy to see that this algorithm queries at most log(2/ε)

p2/ε
edges per vertex: In a given round r, the algo-

rithm queries edges that are in augmenting paths of Or∆Mr−1. Since there is at most one augmenting path
using any particular vertex, the algorithm queries at most one edge per vertex in each round. Furthermore,
the algorithm executes log(2/ε)

p2/ε
rounds. Therefore, the number of queries issued by the algorithm per vertex

is as claimed.
The rest of the section is devoted to proving that the matching returned by this algorithm after R rounds

has cardinality that is, in expectation, at least a (1− ε) fraction of M(E).

Theorem 4.1. For any graph G = (V,E) and any ε > 0, Algorithm 1 returns a matching whose expected
cardinality is at least (1− ε) M(E) in R = log(2/ε)

p(2/ε)
rounds.

As mentioned in Section 1, one of the insights behind this result is the existence of many disjoint aug-
menting paths of bounded length that can be used to augment a matching that is far from the omniscient
optimum, that is, a lower bound on the number of elements in Qr of a given length L. This observation is
formalized in the following lemma. (We emphasize that the lemma pertains to the non-stochastic setting.)

Lemma 4.2. Consider a graph G = (V,E) with two matchings M1 and M2. Suppose |M2| > |M1|. Then
inM1∆M2, for any odd length L ≥ 1, there exist at least |M2|−(1+ 2

L+1)|M1| augmenting paths of length
at most L, which augment the cardinality of M1.

Proof. Let xl be the number of augmenting paths of length l (for any odd l ≥ 1) found in M1∆M2 that
augment the cardinality of M1. Each augmenting path increases the size of M1 by 1, so the total number
of augmenting paths

∑
l≥1 xl is at least |M2| − |M1|. Moreover, each augmenting path of length l has l−1

2

edges in M1. Hence,
∑

l≥1
l−1
2 xl ≤ |M1|. In particular, this implies that L+1

2

∑
l≥L+2 xl ≤ |M1|. We

conclude that
L∑
l=1

xl =
∑
l≥1

xl −
∑
l≥L+2

xl ≥ (|M2| − |M1|)−
2

L+ 1
|M1| = |M2| −

(
1 +

2

L+ 1

)
|M1|.

7

The rest of the theorem’s proof requires some additional notation. At the beginning of any given round
r, the algorithm already knows about the existence (or non-existence) of the edges in

⋃r−1
i=1 Qi. We use Zr

to denote the expected size of the maximum matching in graph G = (V,E) given the results of the queries⋃r−1
i=1 Qi. More formally, Zr = M(E|

⋃r−1
i=1 Qi). Note that Z1 = M(E).

For a given r, we use the notation EQr [X] to denote the expected value of X where the expectation
is taken only over the outcome of query Qr, and fixing the outcomes on the results of queries

⋃r−1
i=1 Qi.

Moreover, for a given r, we use EQr,...,QR [X] to denote the expected value of X with the expectation taken
over the outcomes of queries

⋃R
i=rQi, and fixing an outcome on the results of queries

⋃r−1
i=1 Qi.

In Lemma 4.3, for any round r and for any outcome of the queries
⋃r−1
i=1 Qi, we lower-bound the ex-

pected increase in the size of Mr over the size of Mr−1, with the expectation being taken only over the
outcome of edges in Qr. This lower bound is a function of Zr.

Lemma 4.3. For any r ∈ [R], odd L, and Q1, · · · , Qr−1, it holds that EQr [|Mr|] ≥ (1− γ)|Mr−1|+αZr,

where γ = p(L+1)/2
(

1 + 2
L+1

)
and α = p(L+1)/2.

Proof. By Lemma 4.2, there exist at least |Or| − (1 + 2
L+1)|Mr−1| augmenting paths in Or∆Mr−1 that

augment Mr−1 and are of length at most L. The Or part of every augmenting path of length at most L
exists independently with probability at least p(L+1)/2. Therefore, the expected increase in the size of the
matching is:

EQr [|Mr|]− |Mr−1| ≥ p
L+1
2

(
|Or| −

(
1 +

2

L+ 1

)
|Mr−1|

)
= α|Or| − γ|Mr−1| ≥ αZr − γ|Mr−1|,

where the last inequality holds by the fact that Zr, which is the expected size of the optimal matching
with expectation taken over non-queried edges, cannot be larger than Or, which is the maximum matching
assuming that every non-queried edge exists.

We are now ready to prove the theorem.

OF THEOREM 4.1. LetL = 4
ε−1; it is assumed to be an odd integer for ease of exposition.4 By Lemma 4.3,

we know that for every r ∈ [R], EQr [|Mr|| ≥ (1 − γ)|Mr−1| + αZr, where γ = p(L+1)/2(1 + 2
L+1), and

α = p(L+1)/2. We will use this inequality repeatedly to derive our result. We will also require the equality

EQr−1 [Zr] = EQr−1

[
M(E|

r−1⋃
i=1

Qi)

]
= M(E|

r−2⋃
i=1

Qi) = Zr−1. (1)

First, applying Lemma 4.3 at round R, we have that EQR [|MR|] ≥ (1 − γ)|MR−1| + αZR. This
inequality is true for any fixed outcomes of Q1, . . . , QR−1. In particular, we can take the expectation over
QR−1, and obtain

EQR−1,QR [|MR|] ≥ (1− γ) EQR−1
[|MR−1|] + α EQR−1

[ZR].

4Otherwise there exists ε/2 ≤ ε′ ≤ ε such that 4
ε′ − 1 is an odd integer. We use a similar simplification in the proofs of other

results in the appendix.

8

By Equation (1), we know that EQR−1
[ZR] = ZR−1. Furthermore, we can apply Lemma 4.3 to EQR−1

[|MR−1|]
to get the following inequality:

EQR−1,QR [|MR|] ≥ (1− γ) EQR−1
[|MR−1|] + α EQR−1

[ZR]

≥ (1− γ) ((1− γ) |MR−2|+ α ZR−1) + α ZR−1

= (1− γ)2 |MR−2|+ α (1 + (1− γ)) ZR−1.

We repeat the above steps by sequentially taking expectations over QR−2 through Q1, and at each step
applying Equation (1) and Lemma 4.3. This gives us

EQ1,...,QR [|MR|] ≥ (1− γ)R|M0|+ α (1 + (1− γ) + · · ·+ (1− γ)R−1)Z1

= α
1− (1− γ)R

γ
Z1,

where the second transition follows from the initialization of M0 as an empty matching. Since L = 4
ε − 1

and R = log(2/ε)

p2/ε
, we have

α

γ

(
1− (1− γ)R

)
=

(
1− 2

L+ 1

)(
1− (1− γ)R

)
≥ 1− 2

L+ 1
− e−γR ≥ 1− ε

2
− ε

2
= 1− ε, (2)

where the second transition is true because e−x ≥ 1−x for all x ∈ R. We conclude that EQ1,...,QR [|MR|] ≥
(1 − ε) Z1. Because Z1 = M(E), it follows that the expected size of the algorithm’s output is at least
(1− ε) M(E).

In Appendix D, we extend our results to the setting where edges have correlated existence probabilities—
an edge’s probability is determined by parameters associated with its two vertices. This generalization gives
a better model for kidney exchange, as some patients are highly sensitized and therefore harder to match in
general; this means that all edges incident to such vertices are less likely to exist. We consider two settings,
first, where an adversary chooses the vertex parameters, and second, where these parameters are drawn from
a distribution. Our approach involves excluding from our analysis edges whose existence probability is too
low. We do so by showing that (under specific conditions) excluding any augmenting path that includes such
edges still leaves us with a large number of constant-size augmenting paths.

5 Non-adaptive algorithm: 0.5-approximation

The adaptive algorithm, Algorithm 1, augments the current matching by computing a maximum matching
on queried edges that are known to exist, and edges that have not been queried. One way to extend this
idea to the non-adaptive setting is the following: we can simply choose several edge-disjoint matchings,
and hope that they help in augmenting each other. In this section, we ask: How close can this non-adaptive
interpretation of our adaptive approach take us to the omniscient optimum?

In more detail, our non-adaptive algorithm—formally given as Algorithm 2—iterates R = log(2/ε)

p2/ε

times. In each iteration, it picks a maximum matching and removes it. The set of edges queried by the
algorithm is the union of the edges chosen in some iteration. We will show that, for any arbitrarily small
ε > 0, the algorithm finds a 0.5(1 − ε)-approximate solution. Since we allow an arbitrarily small (though
constant) probability p for stochastic matching, achieving a 0.5-approximation independently of the value
of p, while querying only a linear number of edges, is nontrivial. For example, a naı̈ve algorithm that only

9

queries one maximum matching clearly does not guarantee a 0.5-approximation—it would guarantee only a
p-approximation. In addition, the example given in Section 3 shows that choosing edges at random performs
poorly.

Algorithm 2 NON-ADAPTIVE ALGORITHM FOR STOCHASTIC MATCHING: 0.5-APPROXIMATION

Input: A graph G(V,E).
Parameter: R = log(2/ε)

p2/ε

1. Initialize W1 ← ∅.
2. For r = 1, . . . , R, do

(a) Compute a maximum matching, Or, in
(
V,E \

⋃
1≤i≤r−1Wi

)
.

(b) Wr ←Wr−1 ∪Or.
3. Query all the edges in WR, and output the maximum matching among the edges that are found to

exist in WR.

The number of edges incident to any particular vertex that are queried by the algorithm is at most log(2/ε)

p2/ε
,

because the vertex can be matched with at most one neighbor in each round. The next theorem, whose proof
appears in Appendix B, establishes the approximation guarantee of Algorithm 2.

Theorem 5.1. Given a graph G = (V,E) and any ε > 0, the expected size M(WR) of the matching
produced by Algorithm 2 is at least a 0.5(1− ε) fraction of M(E).

As explained in Section 8.1, we do not know whether in general non-adaptive algorithms can achieve
a (1 − ε)-approximation with O(1) queries per vertex. However, if there is such an algorithm, it is not
Algorithm 2! Indeed, the next theorem (whose proof is relegated to Appendix B) shows that the algorithm
cannot give an approximation ratio better than 5/6 to the omniscient optimum. This fact holds even when
R = Θ(log n).

Theorem 5.2. Let p = 0.5. For any ε > 0 there exists n and a graph (V,E) with |V | ≥ n such that
Algorithm 2, with R = O(log n), returns a matching with expected size of at most 5

6M(E) + ε.

Despite this somewhat negative result, in Section 7, we show experimentally on realistic kidney ex-
change compatibility graphs that Algorithm 2 performs very well for even very small values of R, across a
wide range of values of p.

6 Generalization to k-Set Packing

So far we have focused on stochastic matching, for ease of exposition. But our approach directly generalizes
to the k-set packing problem. Here we describe this extension for the adaptive (Section 6.1) and non-adaptive
(Section 6.2) cases, and relegate the details—in particular, most proofs—to Appendix C.

Formally, a k-set packing instance (U,A) consists of a set of elements U , |U | = n, and a collection of
subsetsA, such that each subset S inA contains at most k elements of U , that is, S ⊆ U and |S| ≤ k. Given
such an instance, a feasible solution is a collection of sets B ⊆ A such that any two sets in B are disjoint.
We use K(A) to denote the largest feasible solution B.

Finding an optimal solution to the k-set packing problem is NP-hard (see, e.g., [1] for the special case
of k-cycle packing). Hurkens and Schrijver [27] designed a polynomial-time local search algorithm with an

10

approximation ratio of (2k −η), using local improvements of constant size that depends only on η and k. We
denote this constant by sη,k. More formally, consider an instance (U,A) of k-set packing and let B ⊆ A be
a collection of disjoint k-sets. (C,D) is said to be an augmenting structure for B if removing D and adding
C toB increases the cardinality and maintains the disjointness of the resulting collection, i.e., if (B∪C)\D
is a disjoint collection of k-sets and |(B ∪ C) \D| > |B|, where C ⊆ A and D ⊆ B.

Hurkens and Schrijver [27] have also shown that an approximation ratio better than 2/k cannot be
achieved with structures of constant size. While subsequent work [22] has improved the approximation
ratio, their local search algorithm finds structures of super-constant size. This is inconsistent with our
technical approach, as we need each queried structure to exist (in its entirety) with constant probability.

To be more precise, Hurkens and Schrijver [27] prove:

Lemma 6.1 ([27]). Given a collection B of disjoint sets such that |B| < (2/k − η)|K(A)|, there exists an
augmenting structure (C,D) for B such that both C and D have at most sη,k sets, for a constant sη,k that
depends only on η and k.

However, we need to find many augmenting structures. We use Lemma 6.1 to prove:

Lemma 6.2. If |B| < |K(A)|, then there exist 1
k sη,k

(|K(A)| − |B|
2
k
−η) disjoint augmenting structures that

augment the cardinality ofB, each with size at most sη,k. Moreover, this collection of augmenting structures
can be found in polynomial time.

Proof. We prove the lemma using Algorithm 3. We claim that if we run this algorithm on the k-set packing
instance (U,A) and the collection B, then it will return a collection Q of at least T = 1

k sη,k
(|K(A)|− |B|

2
k
−η)

disjoint augmenting structures (C,D) for B. By Step 2c, we are guaranteed that Q consists of disjoint
augmenting structures. Hence, all that is left to show is that in each of the first T iterations, at Step 2a, we
are able to find a nonempty augmenting structure (C,D) for B.

By Lemma 6.1, we know that if at iteration t it is the case that |B| < (2k − η)|K(At)|, then we will
find an augmenting structure (C,D) of size sη,k for B. To prove that the inequality holds at each iteration
t ≤ T , we first claim that for all t,

|K(At)| ≥ |K(A)| − (t− 1) · k · sη,k (3)

We prove this by induction. The claim is clearly true for the base case of t = 1. For the inductive step,
suppose it is true for t, then we know that |K(At)| ≥ |K(A)| − (t − 1) · k · sη,k. At iteration t, the
augmenting structure (C,D) can intersect with at most sη,k · k sets of K(At). This is true since K(At)
consists of disjoint sets, and the augmenting structure (C,D) is of size at most sη,k. Hence, Step 2c reduces
|K(At)| by at most k ·sη,k. So, |K(At+1)| ≥ |K(At)|−k ·sη,k. Combining the two inequalities, |K(At)| ≥
|K(A)| − (t− 1) · k · sη,k and |K(At+1)| ≥ |K(At)| − k · sη,k, we have |K(At+1)| ≥ |K(A)| − t · k · sη,k.
This establishes Equation (3).

We conclude that if the for-loop adds non-empty augmenting structures only for the first t rounds, it must
be the case that |B| ≥ (2k − η)|K(At+1)|, and therefore |B| ≥ (2k − η)(|K(A)| − t · k · sη,k) which implies
that t ≥ 1

k sη,k
(|K(A)| − |B|

2
k
−η).

11

Algorithm 3 FINDING CONSTANT-SIZE DISJOINT AUGMENTING STRUCTURES FOR k-SETS

Input: k-set packing instance (U,A) and a collection B ⊆ A of disjoint sets.
Output: Collection Q of disjoint augmenting structures (C,D) for B.
Parameter: sη,k (the desired maximum size of the augmenting structures)

1. Initialize A1 ← A and Q← φ (empty set).
2. For t = 1, · · · , |A|

(a) Find an augmenting structure (C,D) of size sη,k for B on the k-set instance (U,At).
(b) Add (C,D) to Q. (If C is an empty set, break out of the loop.)
(c) Set At+1 to be At minus the collection C and any set in At \B that intersects with C.

3. Output Q.

6.1 Adaptive algorithm for k-set packing

Turning to the stochastic version of the problem, given (U,A), letAp be a random subset ofAwhere each set
from A is included in Ap independently with probability p. We then define K(A) to be E[|K(Ap)|], where
the expectation is taken over the random draw Ap. Similarly to the matching setting, this is the omniscient
optimum—our benchmark.

We extend the ideas introduced earlier in the paper for matching, together with Lemma 6.2 and additional
ingredients, to obtain the following result for the adaptive problem.

Theorem 6.3. There exists an adaptive polynomial-time algorithm that, given a k-set instance (U,A) and
ε > 0, uses O(1) rounds and O(n) queries overall, and returns a set BR whose expected cardinality is at
least a (1− ε) 2k fraction of K(A).

With an eye toward Theorem 6.3, Algorithm 4 is a polynomial-time algorithm that can be used to find
such a packing that approximates the omniscient optimum. In each round r, the algorithm maintains a
feasible k-set packing Br based on the k-sets that have been queried so far. It then computes a collection
Qr of disjoint, small augmenting structures with respect to the current solution Br, where the augmenting
structures are composed of sets that have not been queried so far. It issues queries to these augmenting
structures, and uses those that are found to exist to augment the current solution. The augmented solution is
fed into the next round.

Similarly to our matching results, for any element v ∈ U , the number of sets that it belongs to and are
also queried is at mostR. Indeed, in each of theR rounds, Algorithm 4 issues queries to disjoint augmenting
structures, and each augmenting structure includes at most one set per element.

6.2 Non-adaptive algorithm for k-set packing

Once again, when going from the adaptive case to the non-adaptive case, the fraction of the omniscient
optimum that we can obtain becomes significantly worse.

Theorem 6.4. There exists a non-adaptive polynomial-time algorithm that, given a k-set instance (U,A)

and ε > 0, usesO(n) queries overall and returns a k-set packing with expected cardinality (1−ε) (2/k)
2

2/k+1K(A).

We present such a polynomial-time non-adaptive algorithm, Algorithm 5, that proceeds as follows. For
R rounds, at every round, using the local improvement algorithm of Hurkens and Schrijver [27], we find a
(2k − η)-approximate solution to the k-set instance and remove it. Then, we query every set that is included

12

Algorithm 4 ADAPTIVE ALGORITHM FOR STOCHASTIC k-SET PACKING

Input: A k-set instance (U,A), and ε > 0.

Parameters: η = ε
k and R =

(2
k
−η) k sη,k
p
sη,k log(2ε) (For a (1− ε)(2k)-approximation)

1. Initialize r ← 1, B0 ← ∅ and A1 ← A.
2. For r = 1, . . . , R, do

(a) Initialize Br to Br−1.
(b) Let Qr be the set of augmenting structures given by Algorithm 3 on the input consisting of the

k-set packing instance (U,Ar), the collection Br, and the parameter sη,k.
(c) For each augmenting structure (C,D) ∈ Qr.

i. Query all sets in C.
ii. If all the sets of C exist, augment the current solution: Br ← (Br \D) ∪ C.

(d) Set Ar+1 to be Ar after removing queried sets that were found not to exist.

3. Return BR.

in these R solutions. We show that the expected cardinality of the maximum packing on the chosen sets is
a (1− ε) (2/k)

2

2/k+1 approximation of the expected optimal packing. As usual, it is easy to see that O(n) queries
are issued overall.

Importantly, the statements of Theorems 4.1 and 5.1 are special cases of the statements of Theorems 6.3
and 6.4, respectively, for k = 2, although on a technical level the k = 2 case must be handled separately
(as we did, with less cumbersome terminology and technical constructions than in the general k-set packing
setting).

Algorithm 5 NON-ADAPTIVE ALGORITHM FOR STOCHASTIC k-SET PACKING

Input: A k-set packing instance (U,A), and ε > 0.

Parameters: η = ε
2k and R =

(2
k
−η) k sη,k
p
sη,k log(2ε). (For (1− ε) (2/k)

2

2/k+1 -approximation)

1. Let B0 ← ∅.
2. For r = 1, . . . , R, do

(a) Or ← a (2k −η)-approximate solution to the k-set instance (U,A\
⋃r−1
i=1 Bi). (Or is found using

the local improvement algorithm of Hurkens and Schrijver [27].)
(b) Set Br ← Br−1 ∪Or.

3. Query the sets in O1, and assign Q1 to be the sets that are found to exist.
4. For r = 2, · · · , R, do

(a) Find augmenting structures in Or that augment Qr−1. This is achieved by giving the instance
(U,Qr−1 ∪Or) and solution Qr−1 as input (with parameter sη,k) to Algorithm 3.

(b) Query all the augmenting structures in Or, and augment Qr−1 with the ones that are found to
exist. Call the augmented solution Qr.

5. Output QR.

13

7 Experimental results on kidney exchange compatibility graphs

In this section, we support our theoretical results with empirical simulations from two kidney exchange
compatibility graph distributions. The first distribution, due to Saidman et al. [33], was designed to mimic
the characteristics of a nationwide exchange in the United States in steady state. Fielded kidney exchanges
have not yet reached that point, though; with this in mind, we also include results on real kidney exchange
compatibility graphs drawn from the first 169 match runs of the UNOS nationwide kidney exchange. While
these two families of graphs differ substantially, we find that even a small numberR of non-adaptive rounds,
followed by a single period during which only those edges selected during the R rounds are queried, results
in large gains relative to the omniscient matching.

As is common in the kidney exchange literature, in the rest of this section we will loosely use the term
“matching” to refer to both 2-set packing (equivalent to the traditional definition of matching, where two
vertices connected by directed edges are translated to two vertices connected by a single undirected edge)
and k-set packing, possibly with the inclusion of altruist-initiated chains.

This section does not directly test the algorithms presented in this paper. For the 2-cycles-only case, we
do directly implement Algorithm 2. However, for the cases involving longer cycles and/or chains, we do not
restrict ourselves to polynomial time algorithms (unlike in the theory part of this paper), instead choosing
to optimally solve matching problems using integer programming during each round, as well as for the final
matching and for the omniscient benchmark matching. This decision is informed by the current practice
in kidney exchange, where computational resources are much less of a problem than human or monetary
resources (of which the latter two are necessary for querying edges).

In our experiments, the planning of which edges to query proceeds in rounds as follows. Each round of
matching calls as a subsolver the matching algorithm presented by Dickerson et al. [20], which includes edge
failure probabilities in the optimization objective to provide a maximum discounted utility matching. The set
of cycles and chains present in a round’s discounted matching are added to a set of edges to query, and then
those cycles and chains are constrained from appearing in future rounds. After all rounds are completed, this
set of edges is queried, and a final maximum discounted utility matching is compared against an omniscient
matching that knows the set of non-failing edges up front.

7.1 Experiments on dense generated graphs due to Saidman et al. [33]

We begin by looking at graphs drawn from a distribution due to Saidman et al. [33], hereafter referred to
as “the Saidman generator.” This generator takes into account the blood types of patients and donors (such
that the distribution is drawn from the general United States population), as well as three levels of PRA
and various other medical characteristics of patients and donors that may affect the existence of an edge.
Fielded kidney exchanges currently do not uniformly sample their pairs from the set of all needy patients and
able donors in the US, as assumed by the Saidman generator; rather, exchanges tend to get hard-to-match
patients who have not received an organ through other means. Because of this, the Saidman generator tends
to produce compatibility graphs that are significantly denser than those seen in fielded kidney exchanges
today (see, e.g., [7, 8]).

Figure 1 presents the fraction of the omniscient objective achieved by R ∈ {0, 1, . . . , 5} non-adaptive
rounds of edge testing for generated graphs with 250 patient-donor pairs and no altruistic donors, constrained
to 2-cycles only (left) and both 2- and 3-cycles (right). Note that the case R = 0 corresponds to no edge
testing, where a maximum discounted utility matching is determined by the optimizer and then compared
directly to the omniscient matching. The x-axis varies the uniform edge failure rate f from 0.0, where edges
do not fail, to 0.9, where edges only succeed with a 10% probability. Given an edge failure rate of f in the

14

figures below, we can translate to the p used in the theoretical section of the paper as follows: 2-cycles exists
with probability p2-cycle = (1−f)2, while a 3-cycle exists with p3-cycle = (1−f)3. For example, in the case
of f = 0.9, a 3-cycle exists with very low probability p = 0.001.

0.0 0.2 0.4 0.6 0.8 1.0

Edge Failure Rate
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
O

m
ni

sc
ie

nt

Saidman, 2-cycles, no chains
R = 0

R = 1

R = 2

R = 3

R = 4

R = 5

0.0 0.2 0.4 0.6 0.8 1.0

Edge Failure Rate
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
O

m
ni

sc
ie

nt

Saidman, 2- and 3-cycles, no chains
R = 0

R = 1

R = 2

R = 3

R = 4

R = 5

Figure 1: Saidman generator graphs constrained to 2-cycles only (left) and both 2- and 3-cycles (right).

The utility of even a small number of edge queries is evident in Figure 1. Just a single round of testing
(R = 1) results in 50.6% of omniscient—compared to just 29.8% with no edge testing—for edge failure
probability f = 0.5 in the 2-cycle case, and there are similar gains in the 2- and 3-cycle case. For the
same failure rate, setting R = 5 captures 84.0% of the omnsicient 2-cycle matching and 69.3% in the 2-
and 3-cycle case—compared to just 22.2% when no edges are queried. Interestingly, we found no statistical
difference between non-adaptive and adaptive matching on these graphs.

7.2 Experiments on real match runs from the UNOS nationwide kidney exchange

We now analyze the effect of querying a small number of edges per vertex on graphs drawn from the real
world. Specifically, we use the first 169 match runs of the UNOS nationwide kidney exchange, which began
matching in October 2010 on a monthly basis and now includes 143 transplant centers—that is, 60% of the
centers in the U.S.—and performs match runs twice per week. These graphs, as with other fielded kidney
exchanges [8], are substantially less dense than those produced by the Saidman generator. This disparity
between generated and real graphs has led to different theoretical results (e.g., efficient matching does not
require long chains in a deterministic dense model [9, 19] but does in a sparse model [7]) and empirical
results (both in terms of match composition and experimental tractability [15, 23, 5]) in the past—a trend
that continues here.

Figure 2 shows the fraction of the omniscient 2-cycle and 2-cycle with chains match size achieved by
using only 2-cycles or both 2-cycles and chains and some small number of non-adaptive edge query rounds
R ∈ {0, 1, . . . , 5}. For each of the 169 pre-test compatibility graphs and each of edge failure rates, 50
different ground truth compatibility graphs were generated. Chains can partially execute; that is, if the third
edge in a chain of length 3 fails, then we include all successful edges (in this case, 2 edges) until that point
in the final matching. More of the omniscient matching is achieved (even for the R = 0 case) on these
real-world graphs than on those from the Saidman generator presented in Section 7.1. Still, the gain realized
even by a small number of edge query rounds is stark, with R = 5 achieving over 90% of the omniscient

15

objective for every failure rate in the 2-cycles-only case, and over 75% of the omniscient objective when
chains are included (and typically much more).

0.0 0.2 0.4 0.6 0.8 1.0

Edge Failure Rate
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
O

m
ni

sc
ie

nt

UNOS, 2-cycles, no chains

R = 0

R = 1

R = 2

R = 3

R = 4

R = 5

0.0 0.2 0.4 0.6 0.8 1.0

Edge Failure Rate
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
O

m
ni

sc
ie

nt

UNOS, 2-cycles, with chains

R = 0

R = 1

R = 2

R = 3

R = 4

R = 5

Figure 2: Real UNOS match runs constrained to 2-cycles (left) and both 2-cycles and chains (right).

Figure 3 expands these results to the case with 2- and 3-cycles, both without and with chains. Slightly
less of the omniscient matching objective is achieved across the board, but the overall increases due to
R ∈ {1, . . . , 5} non-adaptive rounds of testing is once again prominent. Interestingly, we did not see a
significant difference in results for adaptive and non-adaptive edge testing on the UNOS family of graphs,
either.

0.0 0.2 0.4 0.6 0.8 1.0

Edge Failure Rate
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
O

m
ni

sc
ie

nt

UNOS, 2- and 3-cycles, no chains

R = 0

R = 1

R = 2

R = 3

R = 4

R = 5

0.0 0.2 0.4 0.6 0.8 1.0

Edge Failure Rate
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
O

m
ni

sc
ie

nt

UNOS, 2- and 3-cycles, with chains

R = 0

R = 1

R = 2

R = 3

R = 4

R = 5

Figure 3: Real UNOS match runs with 2- and 3-cycles and no chains (left) and with chains (right).

We provide additional experimental results in Appendix E. Code to replicate all experiments is avail-
able at https://github.com/JohnDickerson/KidneyExchange; this codebase includes graph
generators but, due to privacy concerns, does not include the real match runs from the UNOS exchange.

16

https://github.com/JohnDickerson/KidneyExchange

8 Conclusions & future research

In this paper, we addressed stochastic matching and its generalization to k-set packing from both a theoreti-
cal and experimental point of view. For the stochastic matching problem, we designed an adaptive algorithm
that queries only a constant number of edges per vertex and achieves a (1 − ε) fraction of the omniscient
solution, for an arbitrarily small ε > 0—and performs the queries in only a constant number of rounds. We
complemented this result with a non-adaptive algorithm that achieves a (0.5− ε) fraction of the omniscient
optimum.

We then extended our results to the more general problem of stochastic k-set packing by designing an
adaptive algorithm that achieves a (2k − ε) fraction of the omniscient optimal solution, again with only O(1)
queries per element. This guarantee is quite close to the best known polynomial-time approximation ratio
of 3

k+1 − ε for the standard non-stochastic setting [22].
We adapted these algorithms to the kidney exchange problem and, on both generated and real data from

the first 169 runs of the UNOS US nationwide kidney exchange, explored the effect of a small number of
edge query rounds on matching performance. In both cases—but especially on the real data—a very small
number of non-adaptive edge queries per donor-patient pair results in large gains in expected successful
matches across a wide range of edge failure probabilities.

8.1 Open theoretical problems

Three main open theoretical problems remain open. First, our adaptive algorithm for the matching setting
achieves a (1− ε)-approximation in O(1) rounds and using O(1) queries per vertex. Is there a non-adaptive
algorithm that achieves the same guarantee? Such an algorithm would make the practical message of the
theoretical results even more appealing: instead of changing the status quo in two ways—more rounds of
crossmatch tests, more tests per patient—we would only need to change it in the latter way.

Second, for both our adaptive and non-adaptive algorithms, the number of rounds (R = Õ(p−1/ε))
— even though independent of the number of donor-patient pairs — is exponential in 1

ε . On the other
hand, our experiments show gains as high as 85% for even small values of R ≤ 5. This leaves open an
interesting question regarding the dependence of R on the values of p and ε. Can a similar 1 − ε guarantee
for general graphs be obtained using a number of rounds with better dependence on p and ε? If not, are there
structural properties of kidney exchange graphs that we can exploit to achieve theoretical results with better
dependence of R on p and ε?

Third, for the case of k-set packing, we achieve a (2k−ε)-approximation usingO(n) queries—in polyno-
mial time. In kidney exchange, however, our scarcest resource is crossmatch tests; computational hardness
is circumvented daily, through integer programming techniques [1]. Is there an exponential-time adaptive al-
gorithm for k-set packing that requiresO(1) rounds andO(n) queries, and achieves a (1−ε)-approximation
to the omniscient optimum? A positive answer would require a new approach, because ours is inherently
constrained to constant-size augmenting structures, which cannot yield an approximation ratio better than
2
k − ε, even if we could compute optimal solutions to k-set packing [27].

8.2 Discussion of policy implications of experimental results

Policy decisions in kidney exchange have been linked to economic and computational studies since before
the first large-scale exchange was fielded in 2003–2004 [30, 31]. A feedback loop exists between the reality
of fielded exchanges—now not only in the United States but internationally as well—and the theoretical and
empirical models that inform their operation, such that the latter has grown substantially closer to accurately

17

representing the former in recent years. That said, many gaps still exist between the mathematical models
used in kidney exchange studies and the systems that actually provide matches on a day-to-day basis.

More accurate models are often not adopted quickly, if at all, by exchanges. One reason for this is
complexity—and not in the computational sense. Humans—doctors, lawyers, and other policymakers who
are not necessarily versed in optimization or theoretical economics and computer science—and the organi-
zations they represent rightfully wish to understand the workings of an exchange’s matching policy. The
techniques described in this paper are particularly exciting in that they are quite easy to explain in accessible
language and they involve only mild changes to the status quo. At a high level, we are proposing to test
some small number of promising potential matches for some subset of patient-donor pairs in a pool. As
Section 7.2 shows, even a single extra edge test per pair will produce substantially better results.

Any new policy for kidney exchange has to address three practical restrictions in this space: (i) the
monetary cost of crossmatches, (ii) the number of crossmatches that can be performed per person, as there
is an inherent limit on the amount of blood that can be drawn from a person, and (iii) the time it takes to
find the matches, as time plays a major role in the health of patients and crossmatches become less accurate
as time passes and the results get old. For both our non-adaptive and adaptive algorithms, even a very small
number of rounds (R ≤ 5) results in a very large gain in the objective. This is easily within the limits of
considerations (i) and (ii) above. Our non-adaptive algorithm performs all chosen crossmatches in parallel,
so the time taken by this method is similar to the current approach. Our adaptive algorithm, in practice,
can be implemented by a one-time retrieval of R rounds worth of blood from each donor-patient pair, then
sending that blood to a central wet laboratory. Most crossmatches are performed via an “immediate spin”,
where the bloods are mixed together and either coagulate (which is bad) or do not (which is good). These
tests are very fast, so a small number of rounds could be performed in a single day (assuming that tests in
the same round are performed in parallel). Therefore, the timing constraint (iii) is not an issue for small R
(such as that used in our experiments) for the adaptive algorithm.

Clearly, more extensive studies would need to be undertaken before an exact policy recommendation
could be made. These studies could take factors like the monetary cost of an extra crossmatch test or vari-
ability in testing prowess across different medical laboratories into account explicitly during the optimization
process. Furthermore, various prioritization schemes could be implemented to help, for example, hard-to-
match pairs find a feasible match by assigning them a higher edge query budget than easier-to-match pairs.
The positive theoretical results presented in this paper, combined with the promising experimental results
on real data, provide a firm basis and motivation for this type of policy analysis.

References

[1] ABRAHAM, D. J., BLUM, A., AND SANDHOLM, T. 2007. Clearing algorithms for barter exchange
markets: Enabling nationwide kidney exchanges. In Proceedings of the 8th ACM Conference on Elec-
tronic Commerce (EC). 295–304.

[2] ADAMCZYK, M. 2011. Improved analysis of the greedy algorithm for stochastic matching. Information
Processing Letters 111, 15, 731–737.

[3] AKBARPOUR, M., LI, S., AND GHARAN, S. O. 2014. Dynamic matching market design. In Proceed-
ings of the ACM Conference on Economics and Computation (EC). 355.

18

[4] ANDERSON, R., ASHLAGI, I., GAMARNIK, D., AND KANORIA, Y. 2015a. A dynamic model of barter
exchange. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
1925–1933.

[5] ANDERSON, R., ASHLAGI, I., GAMARNIK, D., AND ROTH, A. E. 2015b. Finding long chains in
kidney exchange using the traveling salesman problem. Proceedings of the National Academy of Sci-
ences 112, 3, 663–668.

[6] ASADPOUR, A., NAZERZADEH, H., AND SABERI, A. 2008. Stochastic submodular maximization. In
Proceedings of the 4th International Workshop on Internet and Network Economics (WINE). 477–489.

[7] ASHLAGI, I., GAMARNIK, D., REES, M. A., AND ROTH, A. E. 2011. The need for (long) chains in
kidney exchange. Manuscript.

[8] ASHLAGI, I., JAILLET, P., AND MANSHADI, V. H. 2013. Kidney exchange in dynamic sparse het-
erogenous pools. In Proceedings of the 14th ACM Conference on Electronic Commerce (EC). 25–26.

[9] ASHLAGI, I. AND ROTH, A. 2014. Free riding and participation in large scale, multi-hospital kidney
exchange. Theoretical Economics. Forthcoming; preliminary version in EC’11.

[10] AWASTHI, P. AND SANDHOLM, T. 2009. Online stochastic optimization in the large: Application
to kidney exchange. In Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI). 405–411.

[11] BANSAL, N., GUPTA, A., LI, J., MESTRE, J., NAGARAJAN, V., AND RUDRA, A. 2012. When LP
is the cure for your matching woes: Improved bounds for stochastic matchings. Algorithmica 63, 4,
733–762.

[12] BLUM, A., GUPTA, A., PROCACCIA, A. D., AND SHARMA, A. 2013. Harnessing the power of two
crossmatches. In Proceedings of the 14th ACM Conference on Electronic Commerce (EC). 123–140.

[13] BOLLOBÁS, B. 2001. Random Graphs 2nd Ed. Cambridge University Press.

[14] CHEN, N., IMMORLICA, N., KARLIN, A. R., MAHDIAN, M., AND RUDRA, A. 2009. Approximating
matches made in heaven. In Proceedings of the 36th International Colloquium on Automata, Languages
and Programming (ICALP). 266–278.

[15] CONSTANTINO, M., KLIMENTOVA, X., VIANA, A., AND RAIS, A. 2013. New insights on
integer-programming models for the kidney exchange problem. European Journal of Operational Re-
search 231, 1, 57–68.

[16] COSTELLO, K. P., TETALI, P., AND TRIPATHI, P. 2012. Matching with commitment. In Proceedings
of the 39th International Colloquium on Automata, Languages and Programming (ICALP). 822–833.

[17] DEAN, B. C., GOEMANS, M. X., AND VONDRAK, J. 2004. Approximating the stochastic knapsack
problem: The benefit of adaptivity. In Proceedings of the 45th Symposium on Foundations of Computer
Science (FOCS). 208–217.

[18] DICKERSON, J. P., PROCACCIA, A. D., AND SANDHOLM, T. 2012a. Dynamic matching via weighted
myopia with application to kidney exchange. In Proceedings of the 26th AAAI Conference on Artificial
Intelligence (AAAI). 1340–1346.

19

[19] DICKERSON, J. P., PROCACCIA, A. D., AND SANDHOLM, T. 2012b. Optimizing kidney exchange
with transplant chains: Theory and reality. In Proceedings of the 11th International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS). 711–718.

[20] DICKERSON, J. P., PROCACCIA, A. D., AND SANDHOLM, T. 2013. Failure-aware kidney exchange.
In Proceedings of the 14th ACM Conference on Electronic Commerce (EC). 323–340.

[21] DICKERSON, J. P. AND SANDHOLM, T. 2015. FutureMatch: Combining human value judgments and
machine learning to match in dynamic environments. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI).

[22] FÜRER, M. AND YU, H. 2013. Approximate the k-set packing problem by local improvements.
CoRR abs/1307.2262.

[23] GLORIE, K. M., VAN DE KLUNDERT, J. J., AND WAGELMANS, A. P. M. 2014. Kidney exchange
with long chains: An efficient pricing algorithm for clearing barter exchanges with branch-and-price.
Manufacturing & Service Operations Management 16, 4, 498–512.

[24] GOEL, G. AND TRIPATHI, P. 2012. Matching with our eyes closed. In Proceedings of the 53rd
Symposium on Foundations of Computer Science (FOCS). 718–727.

[25] GUPTA, A., KRISHNASWAMY, R., NAGARAJAN, V., AND RAVI, R. 2012. Approximation algorithms
for stochastic orienteering. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA). 1522–1538.

[26] GUPTA, A. AND NAGARAJAN, V. 2013. A stochastic probing problem with applications. In Proceed-
ings of the 16th Conference on Integer Programming and Combinatorial Optimization (IPCO). 205–216.

[27] HURKENS, C. A. J. AND SCHRIJVER, A. 1989. On the size of systems of sets every t of which have
an SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM Journal on
Discrete Mathematics 2, 1, 68–72.

[28] LEISHMAN, R., FORMICA, R., ANDREONI, K., FRIEDEWALD, J., SLEEMAN, E., MONSTELLO,
C., STEWART, D., AND SANDHOLM, T. 2013. The Organ Procurement and Transplantation Network
(OPTN) Kidney Paired Donation Pilot Program (KPDPP): Review of current results. In American Trans-
plant Congress (ATC). Talk abstract.

[29] MANLOVE, D. AND O’MALLEY, G. 2015. Paired and altruistic kidney donation in the UK: Algo-
rithms and experimentation. ACM Journal of Experimental Algorithmics. To appear.

[30] ROTH, A. E., SÖNMEZ, T., AND ÜNVER, M. U. 2004. Kidney exchange. Quarterly Journal of
Economics 119, 2, 457–488.

[31] ROTH, A. E., SÖNMEZ, T., AND ÜNVER, M. U. 2005. Pairwise kidney exchange. Journal of
Economic Theory 125, 151–188.

[32] ROTH, A. E., SÖNMEZ, T., AND ÜNVER, M. U. 2007. Efficient kidney exchange: Coincidence of
wants in markets with compatibility-based preferences. American Economic Review 97, 3, 828–851.

20

[33] SAIDMAN, S. L., ROTH, A. E., SÖNMEZ, T., ÜNVER, M. U., AND DELMONICO, F. L. 2006. In-
creasing the opportunity of live kidney donation by matching for two and three way exchanges. Trans-
plantation 81, 773–782.

[34] ÜNVER, M. U. 2010. Dynamic kidney exchange. Review of Economic Studies 77, 1, 372–414.

A Additional Naı̈ve Algorithm and its Performance

Consider a non-adaptive algorithm which queries o(n) random neighbors of each vertex. The following
example shows that this algorithm performs poorly.

B C DA

Figure 4: Illustration of the construction in Example A.1, for t = 4 and β = 1/2.

Example A.1. Consider the graph G = (V,E) whose vertices are partitioned into sets A, B, C, and D,
such that |A| = |D| = tβ and |B| = |C| = t, for some 1 > β > 0. Note that in this graph n = Θ(t).
Let E consist of one perfect matching between vertices of B and C, and two complete bipartite graphs, one
between A and B, and another between C and D. See Figure 4 for an illustration. Let p = 0.5 be the
existence probability of any edge.

The omniscient optimal solution can use any edge, and, in particular, it can use the edges between B
and C. Since, these edges form a matching of size t and p = 0.5, they alone provide a matching of expected
size t/2. Hence, M(E) ≥ t/2.

Now, for any α < β, consider the algorithm that queries tα random neighbors for each vertex. For
every vertex in B, the probability that its edge to C is chosen is at most tα

tβ+1
(similarly for the edges from C

to B). Therefore, the expected number of edges chosen between B and C is at most 2t1+α

tβ+1
, and the expected

number of existing edges between B and C, after the coin tosses, is at most t1+α

tβ+1
. A and D each have tβ

vertices, so they contribute at most 2tβ edges to any matching. Therefore, the expected size of the overall
matching is no more than t1+α−β + 2tβ . Using n = Θ(t), we conclude that the approximation ratio of the
naı̈ve algorithm approaches 0, as n→∞. For α = 0.5 and β = 0.75, the approximation ratio of the naı̈ve
algorithm is O(1/n0.25), at best.

B Missing Proofs from Section 5

B.1 Analysis of the Non-Adaptive Algorithm

Lemma B.1. Let E1 be an arbitrary subset of edges of E, and let E2 = E \ E1. Then M(E) ≤M(E1) +
M(E2).

21

Proof. Let E′ be an arbitrary subset of edges of E, and let E′1 = E1 ∩ E′ and E′2 = E2 ∩ E′. We claim
that |M(E′)| ≤ |M(E′1)| + |M(E′2)|. This is because if T is the set of edges in a maximum matching in
graph (V,E′), then clearly T ∩ E′1 and T ∩ E′2 are valid matchings in E′1 and E′2 respectively, and thereby
it follows that |M(E′1)| ≥ |T ∩ E′1| and |M(E′2)| ≥ |T ∩ E′2|, and hence |M(E′)| ≤ |M(E′1)|+ |M(E′2)|.
Expectation is a convex combination of the values of the outcomes. For every subset E′ of edges in E,
multiplying the above inequality by the probability that the outcome of the coin tosses on the edges of E is
E′, and then summing the various inequalities, we get M(E) ≤M(E1) +M(E2).

In order to lower bound M(WR), we first show that for any round r, either our current collection of
edges has an expected matching size M(Wr−1) that compares well with M(E), or in round r, we have a
significant increase in M(Wr) over M(Wr−1).

Lemma B.2. At any iteration r ∈ [R] of Algorithm 2 and odd L, if M(Wr−1) ≤M(E)/2, then

M(Wr) ≥
α

2
M(E) + (1− γ)M(Wr−1),

where γ = p(L+1)/2(1 + L+1
2) and α = p(L+1)/2.

Proof. Define U = E \ Wr−1. Assume that M(Wr−1) ≤ M(E)/2. By Lemma B.1, we know that
M(U) ≥M(E)−M(Wr−1). Hence, |Or| = |M(U)| ≥M(U) ≥M(E)−M(Wr−1) ≥M(E)/2.

In a thought experiment, say at the beginning of round r, we query the set Wr−1 and let W ′r−1 be the set
of edges that are found to exist. By Lemma 4.2, there are at least |Or| − (1 + 2

L+1)|M(W ′r−1)| augmenting
paths of length at most L in Or∆M(W ′r−1) that augment M(W ′r−1). Each of these paths succeeds with
probability at least p(L+1)/2. We have,

M(Or ∪W ′r−1|W ′r−1)− |M(W ′r−1)| ≥ p(L+1)/2

(
|Or| − (1 +

2

L+ 1
)|M(W ′r−1)|

)
≥ p(L+1)/2

(
1

2
M(E)− (1 +

2

L+ 1
)|M(W ′r−1)|

)
,

where the expectation on the left hand side is taken only over the outcome of the edges in Or. Therefore, we
have M(Or ∪W ′r−1|W ′r−1) ≥ α

2 M(E) + (1− γ)|M(W ′r−1)|, where α = p(L+1)/2 and γ = p(L+1)/2 (1 +
2

L+1). Taking expectation over the coin tosses on Wr−1 that create outcome W ′r−1, we have our result, i.e.,

M(Wr) ≥ EWr−1 [M(Or ∪W ′r−1|W ′r−1)] ≥M(Or ∪Wr−1) ≥
α

2
M(E) + (1− γ)M(Wr−1).

OF THEOREM 5.1. For ease of exposition, assume L = 4
ε − 1 is an odd integer. Then, either M(WR) ≥

M(E)/2 in which case we are done. Or otherwise, by repeatedly applying Lemma B.2 for R steps, we have

M(WR) ≥ α

2
(1 + (1− γ) + (1− γ)2 + · · ·+ (1− γ)R−1)M(E) ≥ α

2

(1− (1− γ)R)

γ
M(E).

Now, α
γ (1 − (1 − γ)R) ≥ 1 − 2

L+1 − e
−γR ≥ 1 − ε for R = log(2/ε)

p2/ε
. Hence, we have our 0.5(1 − ε)

approximation.

22

B.2 Example Graph for the Non-Adaptive Algorithm

Lemma B.3. LetG = (U ∪V,U×V) be a complete bipartite graph between U and V with |U | = |V | = n.
For any constant probability p, M(E) ≥ n− o(n).

Proof. Denote by Ep the random set of edges formed by including each edge in U × V independently with
probability p. We show that with probability at least 1 − 1

n8 , over the draw Ep, the maximum matching in
the graph (U ∪ V,Ep) is at least n− c log(n), where c = 10/ log(1

(1−p)), and this will complete our claim.
In order to show this, we prove that with probability at least 1− 1

n8 , over the draw Ep, all subsets S ⊆ U
of size at most n − c log(n), have a neighborhood of size at least |S|. By Hall’s theorem, our claim will
follow.

Consider any set S ⊆ U of size at most n−c log(n). We will call set S ‘bad’ if there exists some set T ⊆
V of size (|S|− 1) such that S does not have edges to V \T . Fix any set T ⊆ V of size |S|− 1. Over draws
of Ep, the probability that S has no outgoing edges to V \T is at most (1−p)|S||V \T | = (1−p)|S|(n−|S|+1).
Hence, by union bound, the probability that S is bad is at most

(
n
|S|−1

)
(1− p)|S|(n−|S|+1).

Again, by union bound, the probability that some set S ⊆ U of size at most n − c log(n) is bad is at
most

∑
1≤|S|≤n−c log(n)

(
n
|S|
)(

n
|S|−1

)
(1− p)|S|(n−|S|+1) and this in turn is at most∑

1≤|S|≤n−c log(n)

n|S|n|S|(1− p)|S|(n−|S|+1) ≤
∑

1≤|S|≤n−c log(n)

e|S|·(2 log(n)+(n+1) log(1−p)−|S| log(1−p))

Note that the exponent in the summation achieves its maximum for |S| = 1. For c = 10/ log(1
1−p), we

have that the given sum is at most exp(−n
2 log(1

1−p)), and hence with high probability, no set S ⊆ U of size
at most n− c log(n) is bad.

of Theorem 5.2. Let (V,E) be a graph, illustrated in Figure 5, whose vertices are partitioned into sets A,
B, C, and D, such that |A| = |D| = t

2 , |B| = |C| = t. The edge set E consists of one perfect matching
between vertices ofB andC, and two complete bipartite graphs, one betweenA andB, and another between
C and D. Let p = 0.5 be the existence probability of any edge.

We first examine the value of the omniscient optimal, M(E). Since p = 0.5, in expectation, half of the
edges in the perfect matching between B and C exist, and therefore half of the vertices of B and C will get
matched. By Lemma B.3, with high probability, the complete bipartite graph between the remaining half
of B and A has a matching of size at least t/2 − o(t). And similarly, with high probability, the complete
bipartite graph between remaining half of C and D has a matching of size at least t/2 − o(t). Therefore,
M(E) is at least 3

2 t− o(t).
Next, we look at Algorithm 2. For ease of exposition, let B1 and B2 denote the top and bottom half of

the vertices in B. Similarly, define C1 and C2. Since Algorithm 2 picks maximum matchings arbitrarily,
we show that there exists a way of picking maximum matchings such that the expected matching size of the
union of the edges picked in the matching is at most 5

4 t (= 5
6

3
2 t).

Consider the following choice of maximum matching picked by the algorithm: In the first round, the
algorithm picks the perfect matching between B1 and C1, and a perfect matching between A and B2, and a
perfect matching between C2 andD. In the second round, the algorithm picks the perfect matching between
B2 and C2, and a perfect matching each betweenA andB1, and between C1 andD. After these two rounds,
we can see that there are no more edges left between B and C. For the subsequent R − 2 rounds, in each
round, the algorithms picks a perfect matching between A and B1, and a perfect matching between C1 and
D. It is easy to verify that in every round, the algorithm has picked a maximum matching from the remnant
graph.

23

...

...

...

...

...
...

B1

B2

C1

C2

DA

Figure 5: The blue and red edges represent the matching picked at rounds 1 and 2, respectively. The green
edges represent the edges picked at round 3 and above. The dashed edges are never picked by the algorithm.

We analyze the expected size of matching output by the algorithm. For each of the vertices in B2 and
C2, the algorithm has picked only two incident edges. For any vertex in B2 and C2, with probability at
least (1− p)2 = 1

4 , none of these two incident edges exist. Hence, the expected number of vertices that are
unmatched in B2 and C2 is at least 1

4(t2 + t
2) = t

4 . Since the vertices in A can only be matched with vertices
in B, and the vertices in D can only be matched with vertices in C, it follows that at least t

4 of the vertices
in A and C are unmatched in expectation. Hence, the total number of edges included in the matching is at
most 5

4 t. This completes our claim.

C Missing Proofs from Section 6

In this section, we fill in the missing proofs for stochastic k-set packing. A notation that we will use in some
parts of the analysis is K(A|B) that we define as follows: Given a collection B ⊆ A that has been queried
and B′ ⊆ B that exists, we use K(A|B) to denote E[|K(Xp ∪B′)|] where Xp is the random set formed by
including every element of A \B independently with probability p.

C.1 Adaptive Algorithm for k-Set Packing

We introduce some notation that is used in the remainder of the proofs in this section. At the beginning of the
rth iteration of Algorithm 4, we know the results of the queries

⋃r−1
i=1 Qi. We define Zr to be the expected

cardinality of the instance (U,A) given the result of these queries. More formally, Zr = K(A|
⋃r−1
i=1 Qi).

We note that Z1 = K(A).
For a given r, we use the notation EQr [X] to denote the expected value of X where the expectation

is taken over only the outcome of query Qr, and fixing the outcomes on the results of queries
⋃r−1
i=1 Qi.

Moreover, for a given r, we use EQr,...,QR [X] to denote the expected value of X with the expectation taken
over the outcomes of queries

⋃R
i=rQi, and fixing an outcome on the results of queries

⋃r−1
i=1 Qi.

The next result, Lemma C.1, proves a lower bound on the expected increase in the cardinality of Br (the
solution at round r) with respect to Br−1 (the solution in the previous round).

Lemma C.1. For every r ∈ [R], it is the case that EQr [|Br|] ≥ (1 − γ)|Br−1| + γ(2k − η)Zr, where

γ = p
sη,k

(2
k
−η)k sη,k

.

24

Proof. By Lemma 6.2, Qr is a collection of at least 1
k sη,k

(|K(Ar)| − |Br−1|
2
k
−η) disjoint sη,k-size augmenting

structures (C,D) forBr−1. Since in each augmenting structure (C,D),C has at most sη,k sets, on querying,
the set C exists with probability at least psη,k . Therefore, the expected increase in the size of the solution at
Step 2c is:

EQr [|Br|]− |Br−1| ≥ pksη,k |Qr| ≥
psη,k

k sη,k

(
|K(Ar)| −

|Br−1|
2
k − η

)
≥ γ

(
(
2

k
− η) |K(Ar)| − |Br−1|

)
.

Noting that |K(Ar)| ≥ Zr, we have our result.

OF THEOREM 6.3. First, we make a technical observation about Zr: For every r ≤ R, EQr−1 [Zr] = Zr−1.
This is since

EQr−1 [Zr] = EQr−1 [K(A|
r−1⋃
i=1

Qi)] = K(A|
r−2⋃
i=1

Qi) = Zr−1. (4)

Now, similar to the proof of Theorem 4.1, we first apply Lemma C.1 to theRth step and get EQR [|BR|] ≥
(1 − γ)|BR−1| + γ(2k − η)ZR. Next taking expectation on both sides with respect to QR−1, we get
EQR−1,QR [|BR|] ≥ (1−γ)EQR−1

[|BR−1|]+γ(2k −η)EQR−1
[ZR]. Applying Lemma C.1 to EQR−1

[|BR−1|]
and Equation (4) to EQR−1

[ZR], we get

EQR−1,QR [|BR|] ≥ (1− γ)((1− γ)|BR−2|+ γ(
2

k
− η)ZR−1) + γ(

2

k
− η) ZR−1

= (1− γ)2|BR−2|+ γ(
2

k
− η)(1 + (1− γ)) ZR−1.

We can repeat the above steps, by sequentially taking expectation over QR−2 through Q1, and applying
Lemma C.1 and Equation (4) at each step, to achieve

EQ1,...,QR [|BR|] ≥ (1− γ)R|B0|+ γ(
2

k
− η)(1 + (1− γ) + · · ·+ (1− γ)R−1) Z1

≥ (
2

k
− η)(1− (1− γ)R) K(A) ≥ 2

k
(1− ηk

2
)(1− e−γR). K(A)

We complete the claim by noting that

2

k
(1− ηk

2
)(1− e−γR) ≥ 2

k
(1− ε

2
)(1− ε

2
) ≥ (1− ε) 2

k
,

where the penultimate inequality comes from the fact that η = ε/k and

R =
(2k − η) k sη,k

psη,k
log(

2

ε
) =

1

γ
log(

2

ε
).

Therefore, the cardinality of BR in expectation is at least a (1− ε) 2kK(A).

25

C.2 Non-Adaptive Algorithm for k-Set Packing

To prove Theorem 6.4, we analyze the non-adaptive Algorithm 5 from the main paper. Before proving
Theorem 6.4, we present a technical claim.

Claim C.2. Let A1 ⊆ A and A2 = A \A1. Then K(A) ≤ K(A1) +K(A2).

Proof. LetA′ be any subset ofA, A′1 = A1∩A′, andA′2 = A2∩A′. Since the k-set packing ofA′ restricted
to A′1 and A′2 are valid k-set packings for these subsets, hence |K(A′)| ≤ |K(A′1))| + |K(A′2)|. For every
A′ ⊆ A, the above inequality holds. Expectation is a linear combination of the values of the outcomes, and
so this inequality also holds in expectation. That is, K(A) ≤ K(A1) +K(A2).

OF THEOREM 6.4. We claim that the expected cardinality of the k-set solution output by Algorithm 5 is at

least (1− ε
2)

(2
k
−η)2

1+ 2
k
−ηK(A). The claimed approximation will follow since η = ε

2k .

For ease of exposition, let α =
2
k
−η

1+ 2
k
−η , and now note that (2

k
−η)2

1+ 2
k
−η = α(2k − η) = (1− α)(2k − η)2.

Assume that K(BR) ≤ α ·K(A) (else it will be immediately follow that the expected cardinality of the
k-set solution output by the algorithm is at least (2k − η)αK(A) and this will complete the claim).

First, we make an observation. For each round r ∈ [R], we have K(Br) ≤ K(BR) ≤ αK(A). If we
denote Ar = A \Br−1, then it follows that

|Or| ≥ (
2

k
− η)|K(Ar)| ≥ (

2

k
− η)K(Ar) ≥ (

2

k
− η)(K(A)−K(Br−1)) ≥ (

2

k
− η)(1− α)K(A) ,

where the first inequality follows from the fact that Or is (2k − η)-approximation to Ar, and the second
inequality follows from Claim C.2.

We analyze the expected cardinality of the output solution QR by analyzing the R stages that the algo-
rithm adopts at Steps 3 and 4 to create solution QR. For this analysis, we use the following notation: For
a given r, we use the notation EOr [X] to denote the expected value of X where the expectation is taken
over only the outcome of query Or, and fixing the outcomes on the results of queries

⋃r−1
i=1 Oi. Moreover,

for a given r, we use EOr,...,OR [X] to denote the expected value of X with the expectation taken over the
outcomes of queries

⋃R
i=r Oi, and fixing an outcome on the results of queries

⋃r−1
i=1 Oi.

In the first stage, Q1 is assigned to the collection of k-sets that are found to exist in O1. In the second
stage, we try to augment Q1 by finding augmenting structures from O2 and querying them. By Lemma 6.2,
it finds at least 1

ksη,k

(
|O2| − |Q1|

2
k
−η

)
disjoint augmenting structures from O2 that have size at most sη,k

and augment Q1. Since each augmenting structure exists independently with probability at least psη,k , in
expectation over the outcomes of queries to O2, the size of Q2, EO2 [Q2], is at least

|Q1|+ psη,k

(
1

ksη,k

(
|O2| −

|Q1|
2
k − η

))
=
psη,k

ksη,k
|O2|+ (1− psη,k

ksη,k(
2
k − η)

)|Q1|

≥ p
sη,k

ksη,k
(
2

k
− η)(1− α)K(A) + (1− psη,k

ksη,k(
2
k − η)

) |Q1|,

and hence the expected size of Q2 is at least β K(A) + (1 − γ)|Q1|, where β = p
sη,k

ksη,k
(2k − η)(1 − α) and

γ = p
sη,k

k sη,k (2
k
−η) .

For the third stage, a similar analysis shows that the expected size of Q3, EO3 [Q3], with expectation
taken only over the outcomes of the queries to O3, is at least β K(A) + (1− γ)|Q2|. If we now, in addition,

26

take expectation over the outcomes of queries to O2, we get the expected size of Q3, EO2,O3 [Q3], is at least
β K(A) + (1− γ) (β K(A) + (1− γ)|Q1|) = β(1 + (1− γ)) K(A) + (1− γ)2 |Q1|.

Repeating the above steps, the procedure creates the k-set solution QR (from O1, · · · , OR) whose ex-
pected size, with expectation taken over the outcomes of queries to O2 through OR, is at least

β(1 + (1− γ) + · · ·+ (1− γ)R−2)K(A) + (1− γ)R−1|Q1| .

Finally, taking expectation over outcomes of queries to O1, since the expected size of |Q1| is at least
p|O1| ≥ p (2k − η)K(A) ≥ β K(A), we have that the expected size of QR is at least

β (1 + (1− γ) + · · ·+ (1− γ)R−1)K(A)

=
β

γ
(1− (1− γ)R)K(A) ≥ β

γ
(1− e−γR)K(A) ≥ (1− ε

2
)

(2k − η)2

2
k − η + 1

K(A)

D Matching Under Correlated Edge Probabilities

In this section, we extend our framework to a more general setting. Here, the existence probability of an
edge depends on parameters that are associated with the endpoints of the edge. Specifically, every vertex
vi ∈ V is associated with parameter pi, and an edge eij = (vi, vj) exists with probability pipj .

Importantly, this model is a generalization of the model studied above: we can still think of each edge e ∈
E as existing with a given probability, and these events are independent. However, using vertex parameters
gives us a formal framework for correlating the probabilities of edges incident to any particular vertex. The
motivation for this comes from kidney exchange: Some highly sensitized patients are less likely than other
patients to be compatible with potential donors. Such patients correspond to a small pi parameter.

We consider two settings: adversarial and stochastic. In the adversarial setting, the vertex parameters pi
are selected by an adversary, whereas in the stochastic model, the parameters are drawn from a distribution.
In the former setting, for δ > 0, define fδ to be the number of vertices that have pi < δ. In the latter
setting, for a distribution D and δ > 0, let gδ indicate the probability that a vertex has its parameter less
than δ, i.e., gδ = Prpi∼D[pi < δ]. We formulate our results in terms of δ, fδ, and gδ, and the desired value
of δ can depend on the application. For example, in kidney exchange, δ would be the probability that a
highly-sensitized patient is compatible with a random donor (a patient is typically considered to be highly
sensitized when this probability is 0.2), and fδ would be the number of highly-sensitized patients in the
kidney exchange pool.

D.1 Adaptive Algorithm in Adversarial Setting

In this section, we consider the case where an adversary chooses the values of vertex parameters. We give
guarantees on the performance of Algorithm 1 in this setting.

Theorem D.1. For any graph (V,E), any ε > 0, and δ > 0, Algorithm 1 returns a matching with expected
size of (1− ε)(M(E)− fδ) in R = log(2/ε)

δ4/ε
iterations.

The proof of this theorem and the subsequent lemmas are similar to the proofs of Section 4, and are
included here for completeness. In the next lemma, EQr [|Mr|] indicates the expected size of Mr, where the

27

expectation is over the query outcome of Qr. More formally, EQr [|Mr|] = M(
⋃r
j=1Qj |

⋃r−1
j=1Qj). We use

Zr to denote the expected size of the maximum matching in graph (V,E) given the results of the queries⋃r−1
j=1Qj . More formally, Zr = M(E|

⋃r−1
j=1Qi). Note that Z1 = M(E).

Lemma D.2. For all r ∈ [R] and odd L, EQr [|Mr|] ≥ (1− γ)|Mr−1|+ α(Zr − fδ), where γ = δL+1(1 +
2

L+1) and α = δL+1.

Proof. By Lemma 4.2, there exists |Or| − (1 + 2
L+1)|Mr−1| many augmenting paths in Or∆Mr−1 that

augment Mr−1 and have length at most L. These augmenting paths are disjoint, so at most fδ of them
include a vertex vi, with pi ≤ δ. We will ignore these paths. Among the remaining augmenting paths, each
path of length L, has at most L+1

2 edges that have not been queried yet. These edges do not share a vertex,
so each one exists, independently of others, with probability at least δ2. Therefore, the expected increase in
the size of the matching from these augmenting paths is:

EQr [|Mr|]− |Mr−1| ≥ δL+1

(
|Or| − (1 +

2

L+ 1
)|Mr−1| − fδ

)
≥ α(Zr − fδ)− γ|Mr−1|.

where the last inequality holds by the fact that Zr, which is the expected size of the optimal matching with
expectation taken over the non-queried edges, cannot be larger than Or, which is the maximum matching
assuming that every non-queried edge exists.

SKETCH OF THEOREM D.1. Let L = 4
ε − 1. First note that for all r, it is true that

EQr−1 [Zr − fδ] = EQr−1 [Zr]− fδ = EQr−1

[
M(E|

r−1⋃
i=1

Qi)

]
− fδ

= M(E|
r−2⋃
i=1

Qi)− fδ = Zr−1 − fδ.

The remainder of the proof is similar to that of Theorem 4.1 with Zr − fδ replacing Zr. Following similar
analysis, we have

EQ1,...,QR [|MR|] ≥ α
1− (1− γ)R

γ
(M(E)− fδ).

Since R = log(2/ε)

δ4/ε
, we have

α

γ

(
1− (1− γ)R

)
≥ (1− 2

L+ 1
)
(
1− (1− γ)R

)
≥ (1− ε

2
)(1− e−γR) ≥ (1− ε). (5)

Therefore, Algorithm 1 returns a matching with expected size of (1− ε)(M(E)− fδ).

D.2 Adaptive Algorithm in Stochastic Setting

In this section, we consider the case where the vertex parameters are drawn independently from a distribu-
tion.

Corollary D.3. Given any graph (V,E) with vertex parameters that are drawn from distribution D and
any ε, δ > 0, Algorithm 1 returns a matching with expected size of (1 − ε)(M(E) − ngδ) in R = log(2/ε)

δ4/ε

iterations.

28

Proof. The result of Theorem D.1 holds for any value of fδ. Hence, on taking expectation over the value of
fδ, we have our result.

The next corollary shows the implication of Corollary D.3 for the uniform distribution.

Corollary D.4. For a given graph (V,E) with vertex parameters that are drawn from the uniform dis-
tribution, and any ε > 0, Algorithm 1 returns a matching with expected size of (1 − ε)(M(E) − εn) in
R = log(2/ε)

ε4/ε
iterations.

Proof. This follows from Corollary D.3 by setting δ = ε and noting that gε = ε for the uniform distribution.

D.3 Non-adaptive algorithm in Adversarial Setting

In this section, we consider the case where an adversary chooses the values of vertex parameters. We prove
performance guarantees for Algorithm 2 in this adversarial setting.

Theorem D.5. Given a graph (V,E) with vertex parameters that are selected by an adversary, and any
ε, δ > 0, Algorithm 2 returns a matching with expected size of 1

2(1 − ε)(M(E) − fδ) in R = log(2/ε)

δ4/ε

iterations.

The proof of Theorem D.5 and the subsequent lemma are similar to Section 5, and are included here for
completeness.

Lemma D.6. For any iteration r ∈ [R] of Algorithm 2 and odd L, ifM(Wr−1) ≤M(E)/2, thenM(Wr) ≥
α
2 (M(E)− fδ) + (1− γ)M(Wr−1), where α = δL+1 and γ = δL+1(1 + 2

L+1).

Proof. Define U = E \Wr−1. Assume that M(Wr−1) ≤M(E)/2. By Claim B.1, we know that M(U) ≥
M(E)−M(Wr−1). Hence, |Or| = |M(U)| ≥M(U) ≥M(E)−M(Wr−1) ≥M(E)/2.

Let W ′r−1 represent one possible outcome of existing edges when edges are drawn from Wr−1. By
Lemma 4.2, there are at least |Or| − (1 + 2

L+1)|M(W ′r−1)| augmenting paths of length at most L in
Or∆M(W ′r−1) that augment M(W ′r−1). Among these paths, at most fδ have a vertex vi, with pi < δ.
We ignore these paths. Each remaining path succeeds with probability (δ2)(L+1)/2. Hence, the expected
increase in the size of |M(W ′r−1)| using the remaining paths of length L is,

M(Or ∪W ′r−1|W ′r−1)− |M(W ′r−1)| ≥ δL+1

(
|Or| − (1 +

2

L+ 1
)|M(W ′r−1)| − fδ

)
≥ δL+1

(
1

2
M(E)− (1 +

2

L+ 1
)|M(W ′r−1)| − fδ

)
.

Re-arranging the inequality, we get M(Or ∪W ′r−1|W ′r−1) ≥ α
2 (M(E)−fδ) + (1−γ)|M(W ′r−1)|. Taking

expectation over the coin tosses on Wr−1 that create outcome W ′r−1, we have

M(Wr) ≥ EWr−1 [M(Or ∪W ′r−1|W ′r−1)] ≥
α

2
(M(E)− fδ) + (1− γ)M(Wr−1).

29

SKETCH OF THEOREM D.5. Let L = 4
ε − 1. The proof is similar to that of Theorem 5.1 with the value of

M(E) being replaced by M(E)− fδ. Following a similar analysis, we get

M(WR) ≥ α

2

(1− (1− γ)R)

γ
(M(E)− fδ).

Now, αγ (1− (1− γ)R) ≥ (1− 2
L+1)(1− e−γR) ≥ (1− ε) for R = log(2/ε)

δ4/ε
. Hence, Algorithm 2 returns a

matching with expected size of 0.5(1− ε)(M(E)− fδ).

D.4 Non-adaptive algorithm in Stochastic Setting

We examine the performance of Algorithm 2 in the setting where the vertex parameters are chosen indepen-
dently from a distribution.

Corollary D.7. Given a graph (V,E) with vertex parameters that are selected from distribution D, and
ε, δ > 0, Algorithm 2 returns a matching with expected size of 1

2(1 − ε)(M(E) − ngδ) with R = log(2/ε)

δ4/ε

non-adaptive queries.

Proof. The result of Theorem D.5 holds for any value of fδ. Hence, on taking expectation over the values
of fδ, we have our result.

Corollary D.8. For any G = (V,E) with vertex parameters that are drawn from the uniform distribution,
and any ε > 0, Algorithm 2 returns a matching with expected size of 0.5(1−ε)(M(E)−nε) withR = log(2/ε)

ε4/ε

non-adaptive queries.

Proof. This follows from Corollary D.7 by setting δ = ε and noting that gε = ε for the uniform distribution.

E Additional experimental results on UNOS compatibility graphs

In this section, we include additional experimental results on the same 169 compatibility graphs drawn from
the real UNOS kidney exchange used in Section 7. These experiments mimic those of Section 7.2, only
this time including in the analysis empty omniscient matchings. If an omniscient matching is empty, then
our algorithm will achieve at most zero matches as well. In the body of this paper, we removed these cases
from the experimental analysis because achieving zero matches (using any method) out of zero possible
matches trivially achieves 100% of the omniscient matching; by not including those cases, we provided a
more conservative experimental analysis. In this section, we include those cases and rerun the analysis.

Figure 6 mimics Figure 2 from the body of this paper. It shows results for 2-cycle matching on the UNOS
compatibility graphs, without chains (left) and with chains (right), for R ∈ {0, 1, . . . , 5} and varying levels
of f ∈ {0, 0.1, . . . , 0.9}. We witness a marked increase in the fraction of omniscient matching achieved as
f gets close to 0.9; this is due to the relatively sparse UNOS graphs admitting no matchings for high failure
rates.

Figure 7 shows the same experiments as Figure 6, only this time allowing both 2- and 3-cycles, without
(left) and with (right) chains. It corresponds to Figure 3 in the body of this paper, and exhibits similar but
weaker behavior to Figure 6 for high failure rates. This demonstrates the power of including 3-cycles in
the matching algorithm—we see that far fewer compatibility graphs admit no matchings under this less-
restrictive matching policy.

30

0.0 0.2 0.4 0.6 0.8 1.0

Edge Failure Rate
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
O

m
ni

sc
ie

nt

UNOS, 2-cycles, no chains

R = 0

R = 1

R = 2

R = 3

R = 4

R = 5

0.0 0.2 0.4 0.6 0.8 1.0

Edge Failure Rate
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
O

m
ni

sc
ie

nt

UNOS, 2-cycles, with chains

R = 0

R = 1

R = 2

R = 3

R = 4

R = 5

Figure 6: Real UNOS match runs, restricted matching of 2-cycles only, without chains (left) and with chains
(right), including zero-sized omnsicient matchings.

0.0 0.2 0.4 0.6 0.8 1.0

Edge Failure Rate
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
O

m
ni

sc
ie

nt

UNOS, 2- and 3-cycles, no chains

R = 0

R = 1

R = 2

R = 3

R = 4

R = 5

0.0 0.2 0.4 0.6 0.8 1.0

Edge Failure Rate
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
O

m
ni

sc
ie

nt

UNOS, 2- and 3-cycles, with chains

R = 0

R = 1

R = 2

R = 3

R = 4

R = 5

Figure 7: Real UNOS match runs, matching with 2- and 3-cycles, without chains (left) and with chains
(right), including zero-sized omnsicient matchings.

31

	1 Introduction
	1.1 Our theoretical results and techniques
	1.2 Our experimental results: Application to kidney exchange

	2 Related work
	2.1 Stochastic matching
	2.2 Kidney exchange

	3 The Model
	4 Adaptive Algorithm: (1-)-approximation
	5 Non-adaptive algorithm: 0.5-approximation
	6 Generalization to k-Set Packing
	6.1 Adaptive algorithm for k-set packing
	6.2 Non-adaptive algorithm for k-set packing

	7 Experimental results on kidney exchange compatibility graphs
	7.1 Experiments on dense generated graphs due to SRSU+06
	7.2 Experiments on real match runs from the UNOS nationwide kidney exchange

	8 Conclusions & future research
	8.1 Open theoretical problems
	8.2 Discussion of policy implications of experimental results

	A Additional Naïve Algorithm and its Performance
	B Missing Proofs from Section ??
	B.1 Analysis of the Non-Adaptive Algorithm
	B.2 Example Graph for the Non-Adaptive Algorithm

	C Missing Proofs from Section ??
	C.1 Adaptive Algorithm for k-Set Packing
	C.2 Non-Adaptive Algorithm for k-Set Packing

	D Matching Under Correlated Edge Probabilities
	D.1 Adaptive Algorithm in Adversarial Setting
	D.2 Adaptive Algorithm in Stochastic Setting
	D.3 Non-adaptive algorithm in Adversarial Setting
	D.4 Non-adaptive algorithm in Stochastic Setting

	E Additional experimental results on UNOS compatibility graphs

