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Team Performance with Test Scores
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Team performance is a ubiquitous area of inquiry in the social sciences, and it motivates the problem of team
selection — choosing the members of a team for maximum performance. Influential work of Hong and Page
has argued that testing individuals in isolation and then assembling the highest-scoring ones into a team is
not an effective method for team selection. For a broad class of performance measures, based on the expected
maximum of random variables representing individual candidates, we show that tests directly measuring
individual performance are indeed ineffective, but that a more subtle family of tests used in isolation can
provide a constant-factor approximation for team performance. These new tests measure the “potential” of
individuals, in a precise sense, rather than performance; to our knowledge they represent the first time
that individual tests have been shown to produce near-optimal teams for a non-trivial team performance
measure. We also show families of subdmodular and supermodular team performance functions for which
no test applied to individuals can produce near-optimal teams, and discuss implications for submodular
maximization via hill-climbing.

1. INTRODUCTION

The performance of teams in solving problems has been a subject of considerable
interest in multiple areas of the mathematical social sciences [Gully et all 2002;
Kozlowski and Ilgen 2006; [Wuchty et al! 2007]. The ways in which groups of people
come together and accomplish tasks is an important issue in theories of organiza-
tions, innovation, and other collective phenomena, and the recent growth of interest in
crowdwork has brought these issues into focus for on-line platforms as well.

In formal models of team performance, a central issue is the problem of team se-
lection. Suppose there is a task to be accomplished and we can assemble a team to
collectively work on this task, drawing team members from a large set U of n can-
didates. (We can think of U as the job applicants for this task.) A team can be any
subset 7" C U, and its performance in collectively working on the task is given by a
set function ¢(7'). The central optimization problem is therefore a kind of set function
maximization: given a target size k < n for the team, we would like to find a set 7" of
cardinality k for which ¢(T) is as large as possible.

The generality of this framework has meant that it can be used to reason about a
wide range of settings in which we hire workers, solicit advice from a committee, run a
crowdsourced contest, admit college applicants, and many other activities — all cases
where we have an objective function (the outcome of the work performed, the quality of
the insights obtained, or reputation of the group that is assembled) that is a function
of the set of people we bring together.
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Models of Team Performance. Different models of team performance can be in-
terpreted as positing different forms for the structure of the set function ¢(-). Some of
the most prominent have been the following.

— Cumulative effects. Arguably the simplest team performance function is a linear one:
each individual can produce work at a certain volume, and the team’s performance is
simply the sum of these individual outputs. Formally, we assume that each individual
i € U has a weight w;, and then g(T) = ), w;.

— Contests. Much work has focused on models of team performance in which the “team”
is highly decoupled: members attempt the task independently, and the quality of the
outcome is the maximum quality produced by any member. Such formalisms arise
in the study of contest-like processes, where many competitors independently con-
tribute proposed solutions, and a coordinator selects the best one (or perhaps the h
best for some h < k) [Jeppesen and Lakhani [2010; [Lakhani et al![2013]. Note how-
ever that this objective function is applicable more generally to any setting with a
“contest structure,” even potentially inside a single organization, where proposed so-
lutions are generated independently and the outcome is judged by the quality of the
best one (or best few). It can also apply to a group whose reputation is judged on the
maximum future achievement of any of its members; for example, one could imagine
an admissions committee trying to select a group of k top applicants, with the goal of
optimizing the maximum future success of any of them.

— Complementarity. Related to contests are models in which each team member has a
set of “perspectives,” and the quality of the team’s performance grows with the num-
ber of distinct perspectives that they are collectively able to provide
12004; Marcolino et al!l2013].

—Synergy In a different direction, research has also considered models of team perfor-
mance in which interaction is important, using objective functions with terms that

nerate value from pairwise interaction between team members

1.

These settings are not just different in their motivation; they rely on functions g(-)
with genuinely different combinatorial properties. In particular, in the language of set
functions, the first class of instances is based on modular (i.e. linear) functions, the
second and third classes are based on submodular functions, and the fourth is based
on supermodular functions.

The second and third classes of functions — contests and complementarity — play
a central role in Scott Pae s highly influential line of work on the power of diversity
in team performance ]. The argument, in essence, is that a group with di-
versity that is reﬂected in 1ndependent solutions or complementary perspectives can
often outperform a group of high-achieving but like-minded members.

Evaluating Team Members via Tests. A key issue that Page’s work brings to the
fore is the question of tests and their effectiveness in identifying good team members
[Page2008]. In most settings one can’t “preview” the behavior of a set of team members
together, and so a fundamental approach to team formation is to give each candidate
i € U a test, resulting in a test score f(i) [2001]. It is natural to then select
the k candidates with the highest test scores, resulting in a team 7. We could think
of the test score f(i) corresponding to the SAT or GRE score in the case of college
or graduate school admissions, or corresponding to the quality of answers to a set of
technical interview questions in a job interview. We note that this issue of tests as
a method of selection is a contribution of Page’s work that is related to the issue of
diversity, but also has interesting implications independently of diversity, and it is the
properties of tests that serves as our focus in the present paper.
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Should we expect that the k individuals who score highest on the test will indeed
make the best team? In a simple enough setting, the answer is yes — for modular
functions g(T') = >, w;, it is enough to evaluate each candidate i in isolation, apply-
ing the test f(i) = g({i}) = w;. Let us refer to f(i) = g({i}) in general as the canonical
test — we simply see how ¢ would perform as a one-element set. For modular functions,
clearly the & candidates with the highest scores under the canonical test form the best
team.

On the other hand, Hong and Page construct an example, based on complementarity,
in which the k candidates who score highest on the canonical test perform significantly
worse as a team than a set of ¥ randomly selected candidates [Hong and Page [2004]]
Their mathematical analysis has a natural interpretation with implications for hiring
and admissions processes: the k& candidates who score highest on the test are too sim-
ilar to each other, and so with an objective function based on complementarity, they
collectively represent many fewer perspectives than a random set of k& candidates.

Beyond these compelling examples, however, there is very little broader theoretical
understanding of the power of tests in selecting teams. Thinking of tests as arbitrary
functions of the candidates is not a perspective that has been present in this earlier
work; a particularly unexplored issue is the fact that the failure of the canonical test
doesn’t necessarily rule out the possibility that other tests might be effective in assem-
bling teams. Does it ever help, in a formal sense, to evaluate a candidate using a mea-
sure f(¢) that is different from his or her actual individual performance at the task? In
real settings, we see many cases where employers, search committees, or admissions
committees evaluate applicants on their “potential” rather than on their demonstrated
performance — is this simply a practice that has evolved for reasons of its own, or does
it have a reflection in a formal model of team selection? Without a general formulation
of tests as a means for evaluating team members, it is difficult to offer insights into
these basic questions.

The Present Work: Effective Tests for Team Selection. In this paper we ana-
lyze the power of general tests in forming teams across a range of models. Our main
result is the finding that for team performance measures that have a contest struc-
ture, near-optimal teams can be selected by giving each candidate a test in isolation,
and then ranking by test scores, but only using tests that are quite different from the
canonical test. To our knowledge, this is the first result to establish that non-standard
tests can yield good team performance in settings where the canonical test provably
fails.

In more detail, in a contest structure each candidate i € U has an associated discrete
random variable X;, with all random variables mutually independent, and the perfor-
mance of a team 7' C U is the expected value of the random variable max;cr X;. More
generally, we may care about the top h values, for a parameter i < k, in which case the
performance of T" is the expected value of the sum of the h largest random variables in
T:

g(1)=FE

max E Xil.
SCT,|S|=h*
€S

The test that works well for these contest functions has a natural and appealing
interpretation. Focusing on the general case with parameter i < k, we define the test
score f(i) to be

E [maX(Xi(l), x® . ,Xi(k/h))} ,
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where X i(l), X 52), o X i(k/ k) represent k/h independent random variables all with the
same distribution as X;.

The fact that this test works for assembling near-optimal teams in our contest set-
ting has a striking interpretation — it provides a formalization of the idea that we
should indeed sometimes evaluate candidates on their potential, rather than their
demonstrated performance. Indeed, max (X 1-(1), X 1-(2), X Z-(k/ h)) is precisely a measure
of potential, since instead of just evaluating i’s expected performance E [X;], we're in-
stead asking, “If i were allowed to attempt the task k/h times independently, what
would the best-case outcome look like?” Like the argument of Hong and Page about
diversity, this argument about potential has qualitative implications for evaluating
candidates in certain settings — that we should think about upside potential using a
thought experiment in which candidates are allowed multiple independent tries at a
task.

Following this result, we then prove a number of other theorems that help round out
the picture of general tests and their power. We first show a closely related test that
also provides a method for constructing near-optimal teams, in which f(7) is defined to
be the conditional expectation of X, conditioned on its taking a value in the top (1/k)
fraction of its distribution. We also show that there exists an absolute constant ¢ > 1
such that no test can construct teams under our objective function with performance
guaranteed to come within a factor ¢ of optimal.

Next, we show that there are natural objective functions for which no test can yield
near-optimal results for team selection — these include certain submodular functions
capturing complementarity and certain supermodular functions representing synergy.
Note that this is a much stronger statement than simply asserting the failure of the
canonical test, since it says that no test can produce near-optimal teams. Finally, we
identify some further respects in which team performance functions ¢(-) based on con-
test structures have tractable properties, in particular showing that for the special
case in which the random variables corresponding to all the candidates are weighted
Bernoulli variables, greedy hill-climbing on the value of ¢(-) in fact produces an exactly
optimal set of size k.

The Power of Tests in Competitive Settings. Our discussion of test scores can be
viewed as pursuing a family of questions of the following general form: “When evalu-
ating the effectiveness of an individual, to what extent can we perform this evaluation
in isolation, and to what extent do we need the context in which they are operating?”

This type of question can be asked in settings other than team formation, and in the
final section we show how it leads to interesting results if we ask it in a setting with
competition between individuals. Specifically, suppose we have a collection of competi-
tors, and these competitors will be matched up in pairwise competitions. Each competi-
tor ¢ is represented by a random variable X, representing the distribution of perfor-
mance quality that i exhibits in competition. When i and j are paired in a competition,
we imagine that they draw values independently from X; and X; respectively, and
the competitor who draws the larger value wins. (We’'ll say that they tie if the values
drawn are equal.) Thus the probability that X; wins or ties is P(X; > X;).

We’d like to assign each competitor with random variable X a score f(X), based only
on X and not any of the other random variables, so that when two competitors are
paired up, the one with the higher score has a reasonably large probability of winning
(or tieing). In other words, we’d like to find a function f defined on arbitrary random
variables, and an absolute constant ¢ > 0, such that if f(X) > f(Y),thenP(X >Y) > c.

Is this possible, and if so, how large can we make ¢? We give a tight answer to this
question: the largest possible ¢ is ¢ = 1/4. To do this, we first establish ¢ = 1/4 can be
achieved by the function f that maps each X to its median f(X). We then establish
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that ¢ cannot be any larger using an argument based on the notion of non-transitive
dice.

We feel that the emergence of rich questions in this very different domain suggests
that there may be other unexpected settings in which an understanding of test scores
might lead to interesting insights.

2. TEAM SELECTION BY TEST SCORE

In this section, we formalize our goal of picking individual via a test score to maximize
a notion of team performance. We precisely define our measure of team performance,
and also define a test that can be applied to individuals for team selections. This test is
particularly remarkable, because no matter the size of the team we pick using this test,
we can give a constant (independent of team size) order performance guarantee on our
test selected team compared to the optimal team. The latter parts of this section build
the necessary mathematical tools and definitions needed, and then prove this result.

In doing so, we build on basic properties of the maximum over sets of random vari-
ables, and expect that these results will be useful more broadly.

2.1. Problem Setting and Key Definitions

Suppose we are trying to assemble a team of fixed size k. We have N possible can-
didates for this team, each associated with a non-negative discrete random variable
X,;. Each X, represents the latent ability of the candidate. For example, if X; took val-
ues (1,0.4,0) with probabilities (0.75,0.2,0.05), candidate i, when put to test, will most
likely (with probability 0.75) perform with skill 1, and with lower chance (probability
0.2) perform with skill 0.4. There is also a small chance (probability 0.05) that they
might perform very poorly, with skill 0. Setting up notation, we assume each X; has a
distribution (ps, ..., p,,) over nonnegative values (z1, ..., z,,), with 1 > xa,... >z, > 0.

To select our team, we can test any of our candidates individually but not as a group.
Testing a candidate individually corresponds to applying a scoring function f(X;) to
the random variable X; representing the candidate. We can then rank candidates ac-
cording to their scores, and pick the top k& to form our team. The performance of our
team is measured by a team scoring function g.

Our work first looks at devising a test function f when the team scoring function ¢
is the expected maximum. Having picked our team to comprise of X7, ..., Xj, the team
performance is given by

9(X1, ..., Xi) = E(max{ Xy, ..., Xp})

If the team scoring function is the expected maximum, an immediate first candidate
for f might be the expectation, f(X;) = E(X;), which we refer to as the canonical
test. However, as discussed in Section 3, this first choice is highly suboptimal: we can
show that picking a team according to this test results in a multiplicative factor k
performance difference between the chosen team and the optimal team. Instead, we
define the following, more subtle test. Let X () be iid copies of the random variable X.
Then:

f(X) = E (max(XD, ..., X))

We can interpret f as a better test of the potential of X, where instead of taking the
expectation, we take the best effort when X is given multiple (k) attempts. Remark-
ably, picking a team according to this test results in a constant factor (independent of
k) guarantee on the chosen team’s performance compared to the optimal team.

In the following subsections, we build towards and culminate with a proof of this re-
sult. In fact, we work with a more general individual test function f, and team scoring
function g:
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Definition 2.1. (Team Performance Scoring Function) For (nonnegative) random

variables X1, ..., X}, and fori < k, let X ((21 LX) denote the i*" largest random variable

out of X1, ..., X;. Then for 1 < h <k, let:
_ (1) (2) (h)
gn(X1, ..., X)) =E (X<x1.,....,xk> X%, oxo Tt XX X@)

Definition 2.2. (Individual Testing Function) For a nonnegative discrete random
variable X, and h < k&, let

where X () denotes an iid copy of X.

These definitions provide a natural interpolation between potential and expected
performance. For 1 = 1, the team performance function g again becomes the expected
maximum, and similarly the individual scoring function f is the corresponding ‘poten-
tial’ test function defined earlier. Recall that in this setting, the canonical test (the test
of expected performance), is a very poor test for assembling a team. However for h = £,
the team performance function becomes E(> X;), and the individual testing function
collapses to the canonical test E(X;). But as E(}_ X;) = Y E(X;), the canonical test is
in this case the perfect test.

2.2. Preliminary Mathematical Results: The top //2k quantile

In the previous section, we defined our general team performance scoring function (for
h = 1, the expected maximum and more generally the expectation of the sum of the top
h performances of our team of size k), and our corresponding individual test function
(for h = 1 the expected maximum of k copies of X and more generally the expectation
of the sum of the top h performances of & copies of X).

In this section, we derive important definitions and lemmas to allow us to prove the
central result relating team performance when selecting with our test function: the
constant factor performance guarantee with respect to the optimal team. Central to all
of these is the notion of the top quantile of a random variable’s distribution. Intuitively
speaking, for some proportion ¢, we can define the top ¢ quantile of a discrete random
variable to be the largest values taken by the random variable that are responsible
for proportion t of its probability mass. Returning to our example of X; with values
(1,0.4,0) and probabilities (0.75,0.2,0.05), the top 0.6 quantile of X; would be {1}, as
X, takes value 1 with probability > 0.6. The top 0.8 quantile of X; would be {1,0.4}, as
the probability mass of 1 alone is less than 0.8, but the probability mass of both values
combined is > 0.8.

To formalize this, we turn to the notion of a random variable’s sample space, treating
our random variable X as a function on events w € [0,1]. We formalize this in the
definition below[]

1We note that some of our basic definitions can be expressed in the language of order statistics, in which
we take a set of given random variables X1, ..., X,, and a parameter k, and we construct a new random
variable equal to the k' largest value among X1, ..., X, [David and Nagaraja [2003]. However, for our
purposes, the general results about order statistics do not seem to provide more direct ways of handling any
of the constructs in our analysis, and so we instead use the presentation developed in this section.

EC’15, June 15-19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.



X7

Definition 2.3. For a nonnegative discrete random variable X, we define, for w €
[0, 1],
r ifw>1-—p;

X(w) =< 2y ifl—Zézlpi<w§ 1—2?2171]%
0 ifwgl—zzl:lpi

With this definition, we can also make precise what we mean by the top values of X:

Definition 2.4. For nonnegative discrete X with sample space [0, 1], the event A
that X takes values in its top h/2k quantile is
h

A={w:w>1—%

The top values of X are then
{z;:1<i<n,FweAd X(w)=u}
Similarly, we can define the tail values to be
{z;:1<i<n,Jwe A X(w) =2}

Returning to our example, if h/2k = 0.6, then the top values of X would be {1}, and
the tail values would be {1,0.4,0}. If h/2k = 0.4, then the top values would be {1,0.4},
and the tail values {0.4,0}. Note that there are values that appear in both top and tail
in both the top and tail values, and indeed more generally, that the top values and
tail values are usually not disjoint — for the boundary value z;, we may have to split
{w: X(w) =} into A and A°.

Before proceeding with the lemmas, we make a short comment on notation: from
now on, all random variables X are assumed to be discrete and nonnegative, with
probabilities (p1, ..., p,) over values (in decreasing order) (z1, ..., x,). We define ¢; to be
the cumulative sum of the top ¢ probabilities, i.e.

i
4 = Zpl
=1

We will also often use (z1,...,2;) to denote the top values of X, with the probability
mass associated with x; split so that ¢; = % exactly.

Our first two lemmas rely on the explicit form of our testing function f}. In particu-
lar, with the definition of ¢;, we have:

fn(X) = (1=(1=g)* ")+ ((1=g)"" = (1=g2)" "o ..+ (1= gn1)*" = (1=g0)" "))

In the first two lemmas, we (1) bound the proportion that the top ~/2k quantile con-
tributes to f,(X), (2) upper bound the contribution of the tail values of X to f,,(X).
Splitting according to the top h/2k is important as for the main result, we bound g, by
/n by evaluating the top and tail contributions separately.

LEMMA 2.5. Let X be a random variable, with underlying sample space [0, 1]. De-
fine X' as

/ X(w) ifw>1—2
X(w):{o()gf/w> *

Then

fo(X') > fn(X) (1 - \/LE)
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PROOF. First note that if B is the event that some X (V) in the k/h copies of X in
fn(X) takes one of its top values, (z1, ..., z;), then certainly

fn(X|B) =E (max(X<1>, ...,X(k/h))|B) > fa(X)

(as we are conditioning on an event concentrated on the highest possible values). But
the left hand side can be written out in full as

; — (1 — g \k/P _ k/h _ (1 _ . \k/h
(1-—(1-— Qt)k/h) ((1 (1 qi) ) 1+ ...+ ((1 C]t—l) (1—aq) ) :vt) > fn(X)
But this is just
1
—_— (X)) > X
(1_(1_qt)k/h) fh( )_fh( )
Noting that 1 — (1 — g;)*/" > (1 — ﬁ) gives the result. O

We have therefore shown that a transformation mapping X to X’, non zero only on
the top h/2k quantile of X, does not result in too large a loss in the value of f;,(X).

LEMMA 2.6. Let X have (x1,...,x¢) as its top values, with g = % Then

X
) < —lfh( 1)
Ve

foranyl >t
PROOF. Note that
(1- =)/} < fu(X)
The Lemma then follows by noting that (1 - (1- Qt)k/h) >1— ie, and that z; < 2; for
[>t. O

Next we prove a simple lemma on certain functions increasing in value, and then
invoke this lemma to show that for random variables with total probability mass cor-
responding to positive values less than n/2k, we can bound our test function f; with
respect to the canonical test of expected value, and with respect to a conditional expec-
tation. Again, these lemmas will bound specific parts of bounds relating f, and g.

LEMMA 2.7. For a > 1, the functions
(I1—2)—-(1-ax)

(1 — g:c) —(1-a)°

and

. ) 1
are increasing for x € [0, 2—]
a

ProoOF. Differentiating, and removing the positive factor of a, we have

1—(1—z) !

which is > 0 for = € [0, 1] and
1
(-2t =

which achieves its minimum value at # = 5- but remains nonnegative fora > 1. O
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LEMMA 2.8. For a random variable X, with total probability mass for positive val-
ues < h/2k (i.e. q, < h/2k), we have

hfn(X) E(X) < 2hfn(X)
k k
PROOF. f3,(X) can be written explicitly as

(1 —(1- ql)k/h) x1 + ((1 — g —(1 - qg)k/h) To + ...+ ((1 — g )M — (1= qn)k/h) x

Noting that ¢; < ¢;11, a straightforward application of Lemma [2.7] gives
kpit1 k
2;; <(1-g)f"— (1 — i) < 7P+l
Substituting this into the expression for f;,(X) gives
n k
():Zp < fu(x) < 3 Rpm (X)

2h ; 2h ‘ h h
=1 i=1

O

LEMMA 2.9. For a random variable X, underlying sample space [0, 1], let A be as
in Definition 2.4 Then

E(X|4) < 4fn(X)

PRrROOF. Splitting the the boundary value z; if necessary, assume ¢; = % But then
for X’ as in Lemma [2.5]

fu(X") = (1 - (1- QI)k/h) @1+ ((1 — g = (1 Qt)k/h) vy < fu(X)
As g, = £, we can use Lemma [27l(with a = k/h, q; € [0,k/2h],i < t) to get

FB(X) < fu(X) < fulX)

Also
1 [ 2% [ < 2k
B(X[A) = — | > pjz; | =5 | Dopiwy | = EX)
@\ = j=1
Therefore,
E(X|A) <4fn(X)
O

In summary, we've seen that we can bound contributions of the top h/2k quantile to
fn, and upper bound the contribution of the tail. We’ve also seen that we can upper
and lower bound the expectation and the conditional expectation of X using fj.

2.3. A Test with Constant Factor Approximation to Optimal

Using the preliminary results we proved in the previous section, this section puts them
together to give our main result:

THEOREM 2.10. If X1, ..., Xy are the top scorers for the test function fp, and Y1, ..., Y}
is the true optimal team with respect to the team performance scoring function gy, then
for constant )\, (A < 30),

g (Y1, ..., Y%) < Agn(X1, ..., Xi)
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The proof proceeds in two steps. First, we show an upper bound for g; in terms of
fn. In particular, if every member of the team X; has f,(X;) < ¢, we show that the
team performance (according to g;) is < Ac, where A is a constant. After proving a
similar lower bound, we can put the two together to get our desired constant factor
approximation.

The Upper Bound
THEOREM 2.11. Let X;, ..., X} be random variables with f1(X;) < c¢. Then
h
gn(X1, o Xi) < 2he + < =
Ve

PROOF. Assume the underlying sample space is [0, 1]*. Let S C [k], and
h
Bs:{we[O,l]k:wi>1—% — iecS}

i.e. the event that X; takes values in its top h/2k quantile iff i € S. For a sample point
w € Bg, note that

h
(XS, o X ) <Y Xi(w) +

Indeed, if the top h values are X,,, ..., X,,,, with the first m, nq, ..., n,,, in S then

DX @) <Y Xiw)

€S

The remaining random variables, X , X,,, take tail values (as in Definition [2.4),

so by Lemma [2.6],

Nm419 *°°

c he

h
Z Xm((,u)<(h—m)1_L §1_

i=m+1 Ve

1
Ve
giving the inequality. Summing up over all w € Bg, we get

hc
gn (X1,..., Xp)1p,) <E <1BSZXZ-> +P(Bs)—
: 1— L
€S Ve
But letting A; be the event that w; > 1 — %, and using independence of the X; and
linearity of expectation

E (135 ZXZ'> =P(Bs) Y E(Xi|4)

i€S ics
Using the bound in Lemma[2.9] this becomes

E <1Bs ZXZ-> < P(Bs)|S)4c

ies
Finally, as P(Bs) = [[;c5 P(4i) [L1¢5(1 — P(4))),

S (2%{)5 (1_ %y—s
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i.e. the number of X; taklng their top values follows a Binomial distribution, parame-
ters (k, o). So, summing up over Bg for all S C [k], we get

k i k—i
k h h . he
i=0 Ve

Noting that the first term on the right hand side is just the mean (//2) of the Binomial
distribution scaled by 4c gives the result. O

The Lower Bound. We now move on to a lower bound. We first give a lower bound
for the case h = 1, when g5, = E(max(-)), and show how to extend this for general h. To
prove the h = 1 case, we will use our transformation in Lemma to zero all values
lower than the top 1/2k quantile, and prove a lower bound on random variables with
total positive probability mass < 1/2k. We thus first state and derive this.

LEMMA 2.12. Let Xy,..., X} all have total positive probability mass < i, with
f1(X;) > c for all i. Then

E (max(X1, .. Xz)) > 2c <1 - %)

e

PROOF. For any X;, let A; be the event that X; is nonzero. We lower bound the
expected maximum as follows: given X, ..., X; in that order, we output the value of
the first nonzero random variable we come across (starting from X; and finishing at
X.)

This output value is pointwise less than or equal to the true maximum, so its ex-
pected value is a lower bound on the expected maximum. But its expected value is
just
k

1:[1 ) E(Xk)

=1

P(A1)E(X1]A1) + (1 = P(A1))P(A2)E(X2|A2) + ... + <

Noting that P(4;)E(X;|4;) = E(X;) and that (1 — P(4;)) > (1 — 5), we get

1

E (max(X1, ..., X3)) > E(X31) + (1 — ﬂ) E(X2) + ... + (1 - i)k 1 E(X)

Using the lower bound of E(X;) > : 1(Xl) from Lemma [2.8] summing up the geometric

series, and noting (1 — 5-)F > (1 — —) we have

1
E (max(X7y, ..., X)) > 2¢ <1 — %>
as desired. O
We now prove our lower bound for » = 1.

THEOREM 2.13. Let X;, ..., X) be random variables with f1(X;) > cfor all i. Then

E (max(X1, ..., Xi)) > 2c (1 - %)2

PROOF. For any X; with total positive probability mass > 5 k, we apply the trans-
formation in Lemma [2.5]to get X/, which is a lower bound on X;. So certainly

E (max(Xy, ..., Xg)) > E(max(X7, ..., X}.))
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and by Lemma [2.5]
fX) ze <1 - i)

Ve
so using Lemma[2.12], the statement of the theorem follows. O

We now apply this to prove the main lower bound theorem
THEOREM 2.14. Let X, ..., X} be random variables with f;,(X;) > c for all i. Then

2

1

X1,....Xp) >2hc|1 - —
gh( 1y-ey k)— C( \/E)

PROOF. Note that certainly
gn(X1, ...y Xi) > E(max(Xy, ..., Xk/h)) + ..+ Emax(Xg—pi1y .oy Xi))

2
But each term on the right hand side is bounded below by 2¢ (1 — %) by using Theo-

rem[2.13] So summing together, we have

1 2
Xqi....X)>2he |1 - —
gn( X1, ., Xi) > C( \/E)

as desired. O

Finishing the proof With established lower and upper bounds, Theorem [2.10]fol-
lows easily.

PROOF. (Theorem First note that if [ < h, we can define g, (X1, ..., X;) to be
the sum of the expectations of all the X; as this is the same as adding h — [ random
variables, each deterministically 0.

Without loss of generality, let {Y1,..., Y} = {Y1, ..., Y, Xi41, ..., Xi} 1.e. Xig1, ..., X 18
the intersection of the team formed of best test scorers and the optimal team. Now, if
¢ = min; fr(X;), then for j <[, as any Y is not in the top & scorers, f1,(Y;) < c.

Note that

2gh(X17 7Xk) > gh(Xla ey Xk) + gh(Xl+la ey Xk)

Using the lower bound from Theorem [2.14] we get

2
1
2g1(X1, ...y X)) > 2he (1 — %> + g0 (X141, oy Xi)

On the other hand,
gn(Y1, o, Xig1, oo Xi) < gn(Y1, 0, Y1) + gn( Xy, oy Xi)
Using the upper bound from Theorem [2.11] then gives

he
s + 9n (X141, s Xi)

/e

gh (}/17 "'7Xl+17 7Xk) < 2hc + 1

So we get that
g (Y1, ..., Y%) < Agn(Xy, ..., Xi)
where

A72(1—%)“

)
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O

2.4. A Different Test

In the previous section we proved the main result of the paper, that there exists a
test function, f5,, evaluating ‘potential’, that can be used to select a team whose perfor-
mance, according to a team performance function g, is only a constant factor from the
optimal, independent of team size.

A natural follow up question is whether f}, is the only such test. From the proof, we
can see that this is not the case. If E = {w : w > 1 — 2} for w € [0,1], the underlying
sample space, then choosing X according to the value of

E(X|E)
also provides a constant-factor approximation to the optimal set.

THEOREM 2.15. If X1,..., X\ are random variables with the k highest values of
E(X;|E;), where E; is the event that X, takes its top h/k quantile of values, and Y1, ..., Y,
is the optimal set size k, then for a constant 1 independent of k,

gn(Y1, ., Yi) < pgn(X, ..., Xi)

The two proofs are similar, which is expected, as the analysis of the function fj,(-)
makes use of quantities derived from E(X|E). The function f},(-) seems the more natu-
ral of the two, however: it is arguably more direct to think about testing an individual
through repeated independent evaluations than to try quantifying what their top /&
values are likely to be. The full proofis included in the Appendix.

2.5. A Best Approximation?

In this section we've seen that there exists a natural individual test, the potential test,
that can get to within a constant factor (=~ 30) of optimal. We then outlined a different
test (arguably slightly less natural to implement) which also gets to within a constant
factor of the optimal (= 16).

Seeing these constants, we might ask whether we can say something on whether
there is some constant factor C' > 1 which no test can achieve. We prove that such a C'
does indeed exist:

THEOREM 2.16. No test function f can guarantee a constant factor approximation
to the optimal closer than 9/8 = 1.125 when evaluating team performance with the
expected maximum.

PROOF. Our proofis with a bad example. Assume we have three weighted Bernoulli
random variables X1, X5, X3 from which we wish to pick a team of size 2. A weighted
Bernoulli random variable is one that takes exactly one nonzero value v with some
probability p, and can thus be characterized by the vector (p, v).

In that format, let our three Bernoulli random variables be X; = (1/2,2), X, =
(1,1), X5 = (1/2,4/3). Note that X; is monotonically better than X3, so any sensible
test function f should definitely pick X; and one of X5, X3. Indeed, if the team were to
comprise of (Xo, X3), this would result in an expected maximum of 7/6, a factor of 9/7
away from the optimal team’s expected maximum of 3/2.

Breaking ties adversarially (as we can always perturb an example slightly in a tie),
if f(X3) > f(X2), then our team becomes (X, X3), but the expected maximum of this
team is 4/3, whereas the expected maximum of the team (X7, X2) is 3/2, and so f is
9/8 from optimal.
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If on the other hand f(X2) > f(X3), then consider a new triple of random variables
Y1=(1,1),Y,=(1,1), Y5 =(1/2,4/3). As Y1,Y> = X5 and Y3 = X3, f will pick the team
(Y1,Y3), which has an expected maximum of 1 compared to picking a team of (Y7, Y3)
where the expected maximum is 7/6, meaning f is 7/6 away from optimal.

So the best any test statistic can manage in this setting is a constant factor approx-
imation of 9/8 = 1.125. O

3. SUBMODULARITY AND NEGATIVE EXAMPLES

In this section, we recap properties of submodularity, prove the pointwise submodu-
larity of g;, and study the failure of the canonical test. We then more broadly look at
submodular functions in general. We show that among submodular functions, the ex-
istence of an individual test function f;, which can be used for a proof of constant factor
optimality is an uncommon feature, relying on the unique properties of the expected
maximum.

3.1. Submodaularity, Pointwise Submodularity and the Canonical Test

Earlier, we claimed that E(max(+)) is submodular. In fact, a stronger statement is true.
To state it, we recall our notation in which, for a set T" of random variables, X:(Fj ) denotes
the j*" largest in the set.

THEOREM 3.1. Let U be a large finite ground set of nonnegative random variables,
with ) being the underlying sample space. In a slight abuse of notation, for w € ), and
h >0, let

Wh - P(U) — R
be defined by
wi(T) = (X + ...+ X8 (w)

i.e. the sum of the top h values of the random variables in T evaluated at the sample
point w. Then wy(+) is submodular.

In summary, we prove that if A = S\ {y}, with S C U, then for x ¢ S, the submodular
property
wn(S U{}) = wnl(S) < wal(A U {a}) — wa(A)
holds. We show this by fixing an order of elements in S under w and considering what
each side of the inequality looks like. Chaining a set of inequalities of this form by
removing one element each time gives the result for arbitrary subsets of S.

(Note that if |A| < h, only the first |A| terms are possibly nonzero - we can increase
|A| by adding a number of deterministically zero random variables.)

PROOF. (Theorem [3.1)
Assume S = {X1,...,X,,}, and A = {X1,...,, X,,_1}. Rearranging, the submodularity
inequality becomes

WwAU{X, X, }) +wid) <w(AU{X})+w(AU{X,})

First note that X, X, are interchangeable in the above inequality. We examine two
cases.

(1) At least one of X, X,,, wlog X (by symmetry) is not in the top /4 values in w. This has
two easy subcases. If |A| > h, then

wh(AU{X, X,}) + wn(A) =wn(AU{X,,}) + win(A)
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and
wn(AU LX) +wn(AU{X,}) = wn(4) + wn(AU {X,})
so equality holds. In the other case, we have |A| < h, so we get
wr(AU{X}) +wn(AU{X,}) = win(A) + X (w) + wi(A) + X (w)
The left hand side of the target inequality becomes
wh(AU{X, Xn}) +wn(4) < (A+ X + X;)(w) + A(w)

with strict inequality if |[A] = h — 1, as X would be omitted in this case. So again, the
desired inequality holds.
(2) Now, we may assume that X,,, X are both in the top h. Assume

_ @
Xn(w) = XAu{X,Xn}
and
_ v
X(w) = X400x.x0)

and wlog i > j. In AU {X, X,,}, let the top h + 2 elements (with appropriately many
zero elements) be ordered as below:

Xy (W) > Xy (W) > 0 Xy (W) 2 Xp(w) > Xy (W) > 00X, (W) 2> X (W) > Xy (W) >0 Xy, ()
Then we get
h—2
wh(AULX, X)) +wn(A) = [ 2| Y X, | + X + X0+ Xy + X | (@)
and
h—2
wh(AU{X D) +wn(AU{Xa}) = [ 2| Y X | + X + X0 +2X,0,,, | (@)
Fs
Noting that X,,, ., > X,,, ., gives the result.
O

A useful corollary is:
COROLLARY 3.2. For h > 1, gi(-) is submodular.

which follows from the theorem by taking expectations.

There are many results about the tractability (or approximate tractability) of opti-
mization problems associated with submodular functions. For our purposes here, the
most useful among these results is the approximate maximization of arbitrary mono-
tone submodular functions over sets of size k. This can be achieved by a simple greedy
algorithm, which starts with the empty set, and at each stage, iteratively adds the el-
ement providing the greatest marginal gain; the result is a provable (1 — 1/¢) approx-
imation to the true optimum [Nemhauser and Wolsey [1978]. Note that this means we
can find a good approximation of the optimal set even when the random variables X;
are dependent. (See Section 4 for further discussion of this.)
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The Canonical Test. In Section 2, our motivation for studying f;, a measure of
potential, was the failure of the canonical test, selecting a team according to E(X).
Here we use the property of submodular functions to prove the failure of this test.

OBSERVATION 3.3. If f is a submodular function on P(U), then for every S C U

£08) <Y f({=})
€S

This naturally leads to:

PROPOSITION 3.4. If g,(-) is the team evaluation metric, with Yi,...,Y), being the
true optimal set, and X1, ..., X} the random variables with the k highest expectations
(with E(X;) > E(X,) if i > j) then

k
gh(Yh ,Yk) S Egh(Xl’ ...,Xk)

and this bound is tight.
PROOF. By the observation, we note that

k k
gn(Y1, o Vi) ) gn(Vi) = > E(Y))
=1

i=1

But as X, ..., X} are the elements with the & highest expectations,

h
ZE(Xi)

the last inequality following from the assumption on the ordering of the X;. Finally,

k

k
SE(Y) < SE(X) <

i=1

>

h
gn(X1, e Xi) = gn(X1, .00, Xn) = Y E(X)
the last equality as there are only / values. Putting it together, we have

k k
gn(Y1,...,Yy) < Egh(Xh e Xp) < Egh(Xh ey Xi)

as desired. For tightness, let X; be deterministically 1 + ¢ and Y; be n with probability
1/n for large n. Then

o)) (-2) (- (0-2)) o)

Also,
gh(Xla "'an) =h (1 + 6)

So as n — oo and € — 0, we have

k
gn(Y1, ..., Yy) — Egh(Xla ey Xip)
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3.2. Test Scores for Other Submodular Functions

In the previous section, we saw that for ¢ = E(max(-)), a submodular function, we
were able to define an individual test score with a constant factor approximation to
the optimal. Furthermore we were able to define a family of submodular functions g,
interpolating between the expected maximum and a sum of expectations, which all
had this property. It is therefore natural to wonder whether this is a property shared
by many submodular functions. One way to formalize this question might be:

QUESTION 3.5. Given a (potentially infinite) universe U, for which associated sub-
modular functions g does there exist a test score f

f:U—=R"
such that for any subset S C U, if x1,...,x; € S are the elements with the k highest
values of f, then g(x1, ..., x1) is always a constant-factor approximation to

a T
Tcgl.,\TX\:kg( )

Despite the positive result in Section 2, we find that many common submodular
functions depend too heavily on the interrelations between elements for independent
evaluations of elements to work well. We present two such examples.

Cardinality Function. One of the canonical examples of a submodular function is
the set cardinality function. Let U = P(N). Then for T = {11, ..., T,,}, with T; € U,

9(T) = UL, T3

This function has a natural interpretation for team performance. We can imagine each
candidate as a set T;, consisting of the set of perspectives they bring to the task.
g(T1, T, ...,T,,) is then the total number of distinct perspectives that the team mem-
bers bring collectively; this objective function is used in arguments that diverse teams

can be more effective [Hong and Page [2004; Marcolino et al![2013].

We show a negative result for the use of test scores with this function.

THEOREM 3.6. In the above setting, with universe U, and g the set cardinality func-
tion, no such test score f exists.

PROOF. Suppose for contradiction such an f did exist. Assume ties are broken in
the worst way possible (no information is gained from a tie.) Let Uy, Us, ... be disjoint
intervals in N with

U={(i-1)k+1)+1,..,i(k+1)}
And let
Vi={ScU:|S| =k}

i.e. the set of all size k& subsets of U;. We will find it useful to label elements of V; based
on their f value, so let

Vi ={Xi1, .., Xig41}
with
f(Xi1) < f(Xi2)... < f(Xikg1)
Call aset Vj, j > k bad with respect to V; if
f(Xj1) < f(Xq12)
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and good otherwise. Note that we cannot have more than & V; bad with respect to V;.
Else, supposing V,,,, ..., V,,, were all bad with respect to V4, in the set

S = {Xlg, ...,X1k+1,Xn11, ---7Xnk1}

the k set chosen by f would be X3, ..., X151, for a g value of k + 1, but the optimum is
given by X,,,1,..., X1, for a g value of k? - a factor of ~ k difference.

So there are at most k& bad sets with respect to Vi. But the same logic applies to
Va, ..., Vie.Soin Vip1, ..., Vi2 141 thereis at least one set, say Vj, that is good with respect
to Vi, ..., V.. But then in the set

S ={X11, ., Xu1, Xj1, o0, Xji}

the k set chosen by f would be X1, ..., X;i, with a g value of k£ + 1, but the optimum
would be X1, ..., X1 with a g value of k2. O

Linear Matroid Rank Functions. Another class of measures of team performance
is given by assigning each candidate a vector v; € R™, and the performance of a team
v1, V2, ..., Uk is the rank of the span of the set of corresponding vectors. Such a measure
has a similar motivation to the previous set cardinality example: if the team is trying
to solve a classification problem over a multi-dimensional feature space, then v; may
represent the weighted combination of features that candidate i brings to the problem,
and the span of vy, v, ..., v, establishes the effective number of distinct dimensions
the team will be able to use.

More generally, the rank of the span of a set of vectors is a matroid rank function,
and we can ask the question in that context. Given a matroid (V,;Z) and a set S C V,
the matroid rank function g is

g(S)=max{|T|: T C S, T €T}

i.e. the maximal independent set contained in S. It is well known that matroid rank
functions are submodular [Birkhoff(1933]. To come back to our vector space example,
we show that when our underlying set is R, and 7 are subsets that are linearly inde-
pendent, no single element test can capture the relation between vectors well.

THEOREM 3.7. For U, g as above, no test score with good approximation exists.

The proof of this theorem relies on the fundamental property of R. We show that
for any sequence along a specific direction, the f values for this sequence must be
bounded. By the defining property of R, each sequence then has a convergent sub-
sequence. Looking at these convergent subsequences along each of k£ coordinate axes
e1, ..., e, we can then pick our bad set fooling f into choosing O(k) points in the same
direction. See the Appendix for a full proof.

3.3. Result for a Supermodular Function

The above two examples show bad cases for submodular functions. As is expected,
supermodular functions also have a negative answer to Question 3.5.
A classic example of a supermodular function is the edge count function.

Definition 3.8. Given a graph G = (V. E), and a set S C V, g(S) is the number of
edges in the induced subgraph with vertex set S.

It is easy to check that g is supermodular. ¢ also forms our bad example for super-
modular functions.

THEOREM 3.9. Let U be a very large graph, containing at least N disjoint complete
graphs with k + 1 vertices - i.e. K;1. Then there is no test score [ with a constant
(independent of k) order approximation property to the optimal k set with respect to g
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The proof is very similar to the cardinality function case. In that, we wanted to
avoid picking subsets of the same set; in this, we would like to pick as many vertices
in a single clique as possible. We adjust the notion of bad accordingly to ensure this
doesn’t happen, and arrive at our desired contradiction identically to before.

A particularly interesting feature of this case, is that, without the canonical statisti-
cal test for submodular functions, we can have an arbitrarily bad approximation ratio
- even if f is defined to be constant on each vertex, the counterexample demonstrates
that f may pick a set with no induced edges.

4. HILL CLIMBING AND OPTIMALITY

For most non-trivial submodular functions, finding the optimal solution is computa-
tionally intractable. This is the case for the maximum of a set of random variables
that are not necessarily independent. In particular, suppose that S = {X1, Xo, ..., X,,}
is a set of dependent random variables. For a set 7' of them, we can define g(T") to be
the expected maximum of the random variables in 7. We now argue that maximizing
g(T) is an NP-hard problem in general. We will do this by reducing an instance of Set
Cover to the problem.

Recall that in set cover, we have a universe U, and a set T' = {51, .., S,,} of subsets of
Ui.e. S; C U for all i. We wish to know if there is a subset 7/ C T, with |T’| < k, such
that (Jg, o7 Si = U. To model this with random variables, let the underlying sample
space be U, and each X; = 1g, the indicator function for the set S;. Then it is easy to
see that there exists a team size k with expected maximum 1 if and only if there exists
T’ as above, |T'| < k. So maximizing the expected maximum of a set size k provides an
answer to the NP complete decision problem.

In terms of approximation, we can apply the general hill-climbing result mentioned
earlier [Nemhauser and Wolsey [1978] to provide a (1 — 1/¢) approximation for finding
the set of k£ dependent random variables with the largest expected maximum.

A natural question is whether independence is a strong enough assumption to guar-
antee a better approximation ratio. Indeed, we may even be tempted to ask

QUESTION 4.1. If X4,..., X, are (discrete) independent random variables, does hill-
climbing find the size k set maximizing the expected maximum?

Unfortunately, this is false. For a simple counterexample, take X taking positive
values (9/5,6/5) with respective probability masses (1/3,1/3),Y deterministically 1+¢
for e very small, and Z taking a positive value 3/2 with probability 2/3. Then E(Y) >
E(X),E(Z) which means in the first step, hill-climbing would choose Y. But,

E(max(X, Z)) > E(max(Y, Z)), E(max(X,Y))

so hill-climbing would not find the optimal solution. In this counterexample, Y, Z are
both examples of weighted Bernoulli random variables.

Definition 4.2. We say a random variable X has the weighted Bernoulli distribu-
tion, if X = x for some = > 0 with probability p, and X = 0 otherwise.

What is surprising is that when all our random variables are weighted Bernoulli,
Question 4.1 has an affirmative answer.

THEOREM 4.3. Given a pool of random variables, each of weighted Bernoulli dis-
tribution, performing hill-climbing with respect to E(max(-)) finds the size k set maxi-
mizing the expected maximum.

In the context of forming teams, we can think of candidates with weighted Bernoulli
distributions as having a sharply “on-off” success pattern — they have a single way to
succeed, producing a given utility, and otherwise they provide zero utility.
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For X as above, we will find it convenient to denote X as (p,z). For two weighted
Bernoulli random variables X = (p,z) and Y = (¢,y), we use X > Y to mean z > y.
For X; = (p;,x;), with X7 > .. > X, the expected maximum has an especially clean
form:

k—1

E (max(Xy,..., X%)) = p1z1 + (1 — p1)paza + ... H DETE
i=1

Rewriting this slightly, it also has an intrinsically recursive structure
E (max(X7y, ..., Xx)) = p1z1 + (1 — p1)E(max(Xs, ..., Xi))

As a step towards proving Theorem [4.3] we need two useful lemmas on when ran-
dom variables can be exchanged without negatively affecting the expected maximum.
Assume from now on all random variables are weighted Bernoulli.

Our first lemma shows that if one random variable dominates another in both
nonzero value and expectation, we may always substitute in the dominating variable.
So given two random variables with the same expected value, we always prefer the
’riskier’ random variable.

LEMMA 44. If X > Y, and E(X) > E(Y), then for any X1, ..., Xk,
E(max(X, X1, ..., Xx)) > E(max(Y, X1, ..., Xx))

PROOF. (Lemma Assume X; are in value order. Wlog assume X > X, for all i
(an almost identical proof works if that is not the case) and that X; > Y > X; ;. Let-
ting X = (p,x), X; = (pi, z;). Also, assume that Y = (¢,y). By the recursive structure
of the expected maximum for weighted Bernoulli random variables,

E(max(X, X1, ..., Xx)) = px + (1 —p)b+ (1 — p)sc
and that
E(max(Y, X1, ..., Xx)) = b+ sqy + s(1 — q)c
where

b = E(max(X1, ..., Xt))
s = P(Xla ceey Xt = O)
Cc = E(maX(Xt+17 ceey Xk))

Note b+ sc<zxas X > Xy,..., X;. So,if p > ¢,
pr+ (1 =p)(b+sc) > gz + (1 — q)(b+ sc)

The left hand side of the above is just E(max(X, Xi,..., Xx)), S0 we can assume
p < ¢ by decreasing p to ¢ if necessary, and this will only decrease the value of
E(max(X, X1, ..., Xx)). Now, note that

E(max(X, X1, ..., X§)) > E(max(Y, X1, ..., X§)) <= pzr —pb—sqy+ (¢ —p)sc >0
But b/(1 — s) is a convex combination of X7, ..., X¢, so b/(1 — s) < z. So,
pr —pb—sqy + (¢ — p)sc > spr — sqy + (q — p)sc
Finally, by assumption, E(X) > E(Y), and p < ¢, so the result holds. O

The next lemma describes a slightly technical variant of the above substitution rule:
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LEMMA 4.5. Let X >Y, and E(max(X, X1, ..., X)) > E(max(Y, X1, ..., Xi)). Then if
Y1, ..., Yy, such that Y >Y; for all i,

E(max(X, X1, ..., X5, Y1, ..., Yin)) > E(max(Y, X1, ..., Xp, Y1, ..., Vi)

The proof of this lemma is similar to the first lemma and is in the Appendix.
We can now easily prove Theorem [£.3]

PROOF. (Theorem We prove this inductively, showing that the element chosen
by hill-climbing at time i is part of the optimal set from then on. Our base case is
proving the first element chosen, X = (z,p), which has greatest expectation, is always
in the optimal set. Suppose the optimal set size k is {Y7, ..., Y;}. Then if some Y; < X,
by Lemma [£.4] we could replace Y; by X. So X < Y;. But as Y} only appears as E(Y})
in E(max(Y7, ..., Y:), and X has greatest expectation, we can replace Y} by X.

Suppose we have chosen t random variables, X; > ... > X, with the ' random
variable chosen being X;. By the induction hypothesis, we know X for j # i are part
of any > ¢ sized optimal set. For an optimal solution size k, let Y1 > ... > Y, (where
m may equal 0) be the random variables distinct from X;, inbetween X; ; and X,
value-wise. Similarly, let Z; > ... > Z,, be the random variables inbetween X,;,; and
X.. We have a few cases.

First note if m > 0, and X; > Y, some j, then as E(max(Xj,..,X;)) >
E(max(Y;j, Xit1, ..., X¢)), by applying Lemma [4.5] we can swap Y; with X;. So X; <]
for all j, or m = 0. In either case, if h > 0, applying Lemma again, we may swap
X, with Z;. So h = 0, and so in order value, the final string of random variables in the
optimal set is just X;, X; .1, ..., Xi. Note that if we take the smallest random variable
distinct from the X; larger than X, say Y, X; > Y > X, then as

E(max(Xy, ..., X;)) > E(max(Y, X1, ..., Xi—1, Xi11,...X4))
from the choice of elements by the hill-climbing algorithm, by the recursive structure
of the expected maximum, we must have
E(max(X;, Xji1, oy X,y X1)) > E(max(X;, Y, o, Xic1, Xit1s o Xy))
so we can swap Y with X;. This completes the induction step, and the proof. O

This proof method gives us a simple condition which is sufficient (though slightly
stronger than necessary) for when the hill climbing algorithm finds the optimal set:

CONDITION 4.6. Let f be a submodular function on a universe U. If S; = {x1, ...,z }
is the set picked by hill climbing at time t, (with S = ()) at t = 0, and x4, is the next
element chosen by hill climbing, then for any Z C U \ S, must have

max f (St U{ze1} UZ\{z}) 2 f(Se U Z)

For submodular functions satisfying Condition[4.6] it is possible to prove the optimality
of hill-climbing as above. Given that .S, is part of the optimal set, we show that we can
always substitute in x;.; into the optimal solution and ensure the value of f doesn’t
decrease. Hence, ;1 must be part of the optimal set.

5. TEST SCORES FOR COMPETITION

Thus far we have considered a setting in which we want to assemble a collaborative
team, and we use test scores to identify team members. But there are other natural
contexts where we can ask about the power of fixed “scores” to identify the quality
of participants, and one of these is a setting in which there is competition between
individuals.
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There is a large literature on the use of numerical scores to represent the quality
of participants in a competitive domain (e.g. [1978; Herbrich et al! [2006]). Our
purpose in this short section is to describe a basic result establishing a tight limit on
the power of such scores in an abstract setting.

We consider the following simple model of competition between pairs of individuals.
Each possible competitor 7 in our setting is represented by a random variable X;; we
can think of X; as representing the distribution of how well i will perform in any
given competition. Thus, when competitors i and j are paired against each other, each
draws independently from their respective random variables X; and X;; these draws
represent their performance in this instance of the i-7 competition. The competitor who
draws the larger number is the winner. (If they draw equal values, we declare them to
have tied.)

Now, by analogy with previous sections — but adapted here to our competitive set-
ting — we would like to assign a numerical score to each competitor so that by com-
paring the scores of i and j, we can form an estimate of which is likely to win in a
competition between them.

A natural question is whether we can find a score for each competitor so that the
competitor with the higher score in a pairwise competition is more likely to win. For-
mulating this to allow for the possibility of ties as well, we’d like a function f that
maps random variables to real numbers, so that if X; and X; are random variables
with f(X;) > f(X;) then

P(X; > X;) > 5

It turns out that such a function does not exist. To establish this fact, we use a
counter-intuitive probabilistic structure known as non-transitive dice. A set of non-
transitive dice is a collection of random variables Xy, ..., X, for which P(X; > X; ;1) >
1/2 (with addition taken modulo n, so that P(X,, > X;) > 1/2 as well).

Here is a simple example, using six-sided dice X,Y, 7 with non-standard sets of
numbers written on their six faces. Suppose

— X has sides 2,2,4,4,9,9;
—Y has sides 1,1,6,6,8,8;
— Z has sides 3,3,5,5,7, 7.

Then it is easy to compute that
5
P(X>Y)=PB(Y >2)=FZ>X)=¢ *)

It is known that for all v < 3/4, there exist sets of non-transitive dice X1, ..., X,, for
which P(X; > X;41) > v [Li-Chien 1961; Trybula 1965; Usiskinl 1964].

Using non-transitive dice, one can directly put a limit on the power of test scores for
competition.

THEOREM 5.1. Let f be any function mapping random variables to real numbers,
and let B > 1/4. Then there exist random variables X and Y for which f(X) > f(Y) but
P(X >Y) < 8.

PROOF. Since 1 — 8 < 3/4, we can find a set of non-transitive dice X3, ..., X,, for
which P(X; > X,;;) > 1 — . For any function f mapping random variables to real
numbers, let us apply f to each of X;,..., X,,. Let f(X;) be a maximum value among
f(X1),..., f(Xy). Then we have f(X;) > f(X;_1) (since f(X;) is a maximum value),
but P(X,;_1 > X;) > 1 — /3 by the definition of the sequence of non-transitive dice; and
hence P(X; > X, 1) < 5. O
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Let us state this result in slightly different language. A test score is any function
/ mapping random variables to real numbers. We say that f has resolution « if for
all random variables X and Y with f(X) > f(Y), we have P(X > Y) > «. Then
Theorem [5.1] shows that there is no test score with resolution 1/2, and in fact no test
score with resolution « for any a > 1/4.

Suppose, then, that we were to weaken our goal and simply ask: is there a test score
with some positive resolution o« > 0? We now show, via a simple construction, that
this is the case: in fact, there is a test score with resolution 1/4, establishing that the
negative result of Theorem [5.1]is tight.

THEOREM 5.2. Let [ be a function that maps a random variable X to a median
value — that is, a number x such that P(X > z) > 1/2 and P(X < z) > 1/2. (Note that
such an x need not be unique.)

Then if X and Y are random variables with f(X) > f(Y), we have P(X >Y) > 1/4.
That is, f is a test score with resolution 1/4.

PROOF. The proof follows directly from the definition of a median value. Suppose
J(X) > f(Y). Then

PX>Y)>P(X > f(X))PY < f(Y) >

DO
DO
I

O

6. CONCLUSION AND OPEN PROBLEMS

In this paper, we have demonstrated that for a natural family of submodular perfor-
mance metrics, team selection can happen solely on an individual basis, with minimal
concession in team quality. However, this selection criterion is more intricate than the
canonical test (singleton set value), the performance of which we also characterized.
Not all submodular functions are amenable to such an approximation, and we exhib-
ited examples where no function could always guarantee a constant order bound. This
leads to the natural question of whether it is possible to characterize the truly sub-
modular functions (functions for which, like the expected maximum, the canonical test
performs poorly) which can approximated in such a fashion. There may be an opportu-
nity to connect such questions to a distinct literature on approximating a submodular
function with only a small number of values known [Goemans et al! 2009], and ap-
proximation by juntas [Feldman and Vondrak 2013]. Another interesting direction is
to relax the assumption of knowing the distribution of our random variables X;. In
many real life scenarios, we may not have a true skill distribution for candidates, but
may instead have to rely on noisy samples. This problem may have links to work on
robust estimation, [1964].

Finally, we also explored the implications of independence of random variables when
using hill-climbing to approximate the size-k set maximizing the expected maximum.
We established that for certain random variables, we could find the true optimum this
way. A natural question is then, for what distributional assumptions can we guaran-
tee optimality, or a significantly better approximation ratio? Much work has been done
on structural properties of ensembles of random variables with different distributions
[Daskalakis et all(20124d], [Daskalakis et al!|[2012b], and it is possible that such tech-

niques may be useful here.
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7. APPENDIX

Here we provide a proof of

PROOF. Note that if we find upper and lower bounds like Theorem [2.11] and The-
orem [2.14] then we can use the final part of the proof of Theorem unchanged to
give our desired result.

First, note that if E(X|E) < ¢, then any value of X not in its top &/k quantile must
be < c (conditioning on E ensures the the expectation of X is a linear combination of
the top values of X.) Now, if X1, ..., X} such that E(X;|E;) < ¢ for all 7, then letting
T C [k] and

h
CT:{we[O,l]k:wi>1—E — iecT}
be defined analogously to before, we get

gh((Xl, ey Xk)lcT) < ]P)(OT)|T|C + ]P)(OT)}LC

as before. Summing up we note

o) <%>T (1_%>k—T

so we have a Binomial distribution parameters (k, h/k), similar to before, so

k B\ R\ AN
gn( X1, ...y Xk) S;ia (2) (E) <1_E) + he = 2he

This gives us an upper bound. The lower bound is of a similar flavor to the upper
bound. Suppose X1, ...X}; such that E(X;|E;) > ¢ for all i, and T and Cr are as above.
Then note that

gh((le ) Xk)lcT) > ]P)(OT) ! mln(|T|a h)C
i.e. for an event w € Crp, g (X7, ..., Xi) is greater than summing the minimum of » and
|T'| of the random variables that take values in their top ~/k quantile. Noting we have
the same Binomial distribution as before

k i k—1
he [k h h he
i=h/2

where the last inequality follows by noting that as the mean of this distribution is 5,
the median certainly contained in the range h/2 < i < k.

Note that to be entirely precise, we should replace h/2 with | 2|. The h = 1 case then
needs to be dealt with separately. For i = 1, note that the proi)ablhty at least one of
the X; takes a value in its top h/k = 1/k quantlle is

1 1 1k>1 !
k - e

So for the h = 1 case we can bound below by
(1 — l) c
e
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We finish using the same proof as in Theorem[2.10], getting . = 16. O

7.1. Submodularity and Negative Examples: Proofs

We first give a proof of Theorem [3.1]
Below is the full proof of Theorem [3.7]

PROOF. (Theorem[3.7) Like before, we assume for contradiction that such an f does
exist. We need a Lemma.

LEMMA 7.1. Let x € R™. Then the set
{f(Ax): X e R}
is bounded.

PROOF. Suppose not, then there is a sequence (\,,),ecn such that

But letting ey, ...,e;, be the standard basis vectors, and ¢ = max f(e;), there are
Anys ooy Any, With
FAn,x) > ¢

sointhe set {e1, ..., ex, A, T, ..., A, 2}, the optimal set has rank % but the highest scoring
k sethasrank 1. O

The consequence (from the fundamental property of the real numbers) is that any
sequence of vectors along a particular direction have a convergent subsequence. In
particular, defining
n=1(2)
n

we see that for each 4, (a;,) has a convergent subsequence. Relabelling if necessary, let
this convergent subsequence be (a;, ), with

Ain — bl

for each i. Wlog, we assume that b; > bs... > by. We now complete the theorem by
examining a few cases.

Case 1:b; > by /2 In this case, we can take terms very close to b; and terms very close to b; for
1 > k/2 to ensure we pick all the a;,, terms which only have rank 1.
In more detail, let § < b; — b;/2. Then as we have a finite number of convergent
sequences, N such that for all m > N, |a;,, — b;| < 6/3 for all i. So for I, m > N, and
for all i > k/2 we have

A1m > A

In particular, in the set

{@1m, s Q1 (mtk) s Ak 2015 -+ Q1 }

the k set with the maximum f values are the first k, for a rank of 1, but the optimal
set can achieve rank k/2 + 1 (taking say the last k/2 + 1 elements), providing the
desired contradiction.

Case 2b; = ... = by, = b Here we derive a contradiction by looking more closely at what
each sequence a;; for i < k/2 can do and deriving a contradiction. Assume from now
on that i < k/2.
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(i) If for some i, say i = 1, there was n,,...n;, and 6 > 0 such that ay,, > b + 4, then
for j # 1, picking aj;; within §/2 of b would mean {a1,, : 7 < k} U{aj, : j < k/2}
would form a bad set for f, with a 2/k approximation ratio.

(i1) So certainly only finitely many terms > b for any i. Discarding them, assume the
sequences a;; < b for all 7, j. If for some ¢, say ¢ = 1, k or more terms were equal
to b, say ain,, ..., a1, then for any j (noting we break ties as in the worst case), f
performs poorly (2/k approximation) on the set {a1,,, ..., a1n, } U {a21, ..., a(x/2)1}-

(iii) So for each i, only finitely many terms = b. Discarding those, assume all a;; < b
Let ¢ = min,; a;;. Then picking ni,...,n; so a1,, > ¢, f has the same poor 2/k
approximation on {ai1, ..., a(x/2)1, @1ny s -, Q1 }-

This completes the proof of the Theorem. []
We now give the full proof for the bad example for supermodular functions.

PROOF. (Theorem

Assume such an f does exist. Let K, ..., K be the set of size-(k+1) complete graphs.
Let the vertices of K7 be {vj1, ..., Vj(k+1)} in increasing order of f-value, Consider K L
For j > k, say K7 is bad with respect to K if f(v;(x41)) > f(vix). If K™, ..., K"* are all
bad with respect to K, then in the set {vi1, ..., vix, vy, (k1) -+ Uny (k+1) }» the set chosen
by the test score would be vy, (r41), -+, Un, (k+1), for no induced edges, while the optimal

setis vll,...,v1; with k(k — 1)/2 induced edges.
So there are less than k& graphs bad with respect to K. Similarly to before, applying

the same argument to K2, ..., K*, we note that in K**!, ..., K**+k+1 there is at least
one graph that is not bad with respect to all of k', ... k¥, say K™. But then taking the
set {V1(kt1) - Vk(kt1)> Umls s Umk }» the test score pick vy g1y, .- Ug(r+1) again with no
induced edges, while the optimal set is vy,1, ..., Ui With k(k — 1)/2 edges. O

7.2. Hill-Climbing and Optimality

Below is the proof of the second lemma to show optimality in the weighted Bernoulli
case.

PROOF. (Lemma We prove this by contradiction. Again, we may assume that
X > X, for all i, X; are in value order, and X; > Y > X,,; as before. Using the
notation of Lemma [£.4] first note that p < ¢, as otherwise, E(X) > E(Y), and we could
directly apply Lemma 4.4l Our assumption gives the following inequality:

pr+ (1 —=p)b+ (1 —p)sc > b+ sqy+ (1 —q)sc
Suppose the Lemma is false. Then, we have
pr+ (1 —p)b+ (1 —p)sd <b+sqy+ (1 —q)sd
where
d =E(max(Xi11, ..., X, Y1, ..., Vi)

We show that both of these inequalities cannot hold simultaneously.
As p < ¢, we have that

E(max(X, X1, ..., Yin)) — E(max(X, X1, ..., Xi)) = (1 = p)s(d — ¢) > (1 — ¢)s(d — ¢)
But
E(max(Y, X1, ..., Y)) — E(max(Y, X1, ..., X;)) = (1 — ¢q)s(d — ¢)
Writing
E(max(X, X1, ., Yin)) = (E(max(X, X1, ..., Yin)) — E(max(X, X1, ..., X3)))+E(max(X, X1, ..., Xz))

EC’15, June 15-19, 2015, Portland, OR, USA, Vol. X, No. X, Article X, Publication date: February 2015.



X:28

and E(max(Y, X1,...,Y,,)) analogously and comparing contradicts the falsity of the
Lemma. O
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