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1. INTRODUCTION
This paper introduces a novel, integrated approach to two questions in auction design
and practice. First, is the auction design soundly specified, in the sense of possessing
the properties that its designers wish it to have? Second, does the actual auction faith-
fully implement the specification? Failure on either front can be hugely costly – both
financially and reputationally – especially in high-stakes, one-off auctions.

In some simple cases, these issues do not seem pressing. For these, theoretical res-
ults may exist (e.g. the well-known revenue equivalence results, or Vickrey’s theorem).
Further, leading auction theorists do not doubt the soundness of the major results
in auction theory, nor are there any well-known examples of costly errors being dis-
covered in manually-derived theorems in auction theory.

Typically, auction designers’ greater concern is that the auction must operate in
less restrictive conditions than theory typically assumes (e.g. risk-neutrality, or com-
mon knowledge of the support of bidders’ valuations). Thus, auction designs and their
software implementations are typically extensively tested before actual use, in experi-
mental labs, perhaps on test data such as that generated by CATS [Leyton-Brown and
Shoham 2006], or in ‘dry runs’ with the intended bidders. While necessary, such tests
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can only demonstrate that no anomalies have been discovered yet on the finite set of
test cases to which the auction has been exposed.

Dijkstra, recipient of the 1972 Turing Award, famously remarked that “testing
shows the presence, not the absence of bugs” [Buxton and Randell 1970]. NASDAQ’s
Facebook IPO provided a recent example of this, allowing “a race between new orders
and the print of the opening trade, an infinite loop that . . . hundreds of hours of testing
had missed” [Kirilenko and Lo 2013].

Using tools from mechanized reasoning, we formally prove that an auction design
has certain properties and extract verified executable code to run it, providing a higher
level of confidence both in its sound specification and its faithful implementation. Fig-
ure 1 outlines our approach, which uses Isabelle, a powerful and flexible mechanized
theorem prover. We first supply definitions specifying an auction and theorems stating
its properties in Isabelle’s formal language. For the most part, we also supply formal
proofs of the theorems to Isabelle (an example of interactive theorem proving); at some
points, we use Isabelle’s automated theorem proving tools to avoid the more tedious,
fine-grained steps. Isabelle then checks our proofs and extracts executable Scala code
directly from the designs whose properties we have mechanically verified.1

Theorems

Definitions

Formal Specification
(written in Isabelle
by auction designer)

Code
(executable Scala)

Proofs
(checked by Isabelle)

state properties of
implements

generate

prove

Figure 1: High-level outline of our approach

Mechanized reasoners do not eliminate all possibilities of error. First, an auction
designer must still correctly formalize the definitions and theorems, since a reasoner
cannot know what a definition is meant to specify, or whether a specification is in
line with common usage. Second, we replace trust in our manual proofs with trust in
mechanical tools.

To address the first concern, the task of checking statements’ correctness may be
easier in a single mechanized reasoner than under the standard, manual approach.
Manually, different notation may be used for the same objects, or the same notation to
denote slightly different objects. Manual statements are also more prone to ambiguity
and under-specification. Mechanized reasoners do not allow any logically necessary
step to be ignored, nor do they paper over inconsistencies in definitions.2 Mechanized

1Besides the Java-based Scala, Isabelle can also generate executable code in three more functional lan-
guages: SML, OCaml, and Haskell.
2For example, Aygün and Sönmez [2013] recently identified a hidden assumption in Hatfield and Milgrom
[2005] – which they view as “widely considered to be one of the most important advances of the last two
decades in matching theory” – without which many of their results fail to hold. The oversight arose from “an
ambiguity in setting the primitives of the model”, which would produce an error in a mechanized reasoner.
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reasoners’ advantage in this respect comes to the fore when, for example, changing the
specification of an object: the reasoner itself quickly checks whether the new statement
yields any inconsistencies, a laborious task to perform by hand. (The final section of
this paper returns to this point with an example.)

As to the second concern, theorem provers like Isabelle are designed to satisfy the
so-called de Bruijn criterion [Barendregt and Barendsen 1997], requiring that their
logical cores be small enough to be checked by hand. Indeed, the core for higher-order
logics need not exceed a page or two (q.v., for example, [Paulson 2014, Section 2.2]). If
these cores are open to public scrutiny, as is Isabelle’s, then – once they have been in-
vestigated by a large community – one has greater confidence that any result produced
by the core is sound.3 This is much more efficient than requiring a community to in-
vestigate, for example, each proof.4 The highest level of a widely used software security
specification is Evaluation Assurance Level 7 (EAL7), whereby properties of the soft-
ware’s design have been formally verified and tested. Even software written to much
lower levels of security is routinely trusted: compilers for high-level programming lan-
guages are much lengthier than the logical cores of theorem provers, but questions
about their reliability rarely arise; when human experts checked the computations
behind the proof of the four-color map theorem, they either confirmed the computer’s
output, or – when their calculations were in conflict with the computer’s – discovered
errors in their own [Wilson 2005].

We formally specify the combinatorial Vickrey’s auction, or – equivalently – the com-
binatorial Vickrey-Clarke-Groves (VCG) mechanism. This is, of course, well under-
stood (q.v. [Ausubel and Milgrom 2006]): there is no doubt that it is well defined, nor
that it has been faithfully implemented. We work with it for this reason, introducing
the novel techniques of mechanized reasoning and code generation in a simple, famil-
iar environment, thus removing doubts about the results themselves. Future work will
implement computationally efficient algorithms, and apply these techniques to auction
designs whose properties are not yet established, and whose implementations are not
yet verified. This should ensure a higher level of reliability of such auctions, as well as
easing alterations to them. These techniques are not, of course, restricted to auctions.
Indeed, a larger application domain may be finance, which relies upon algorithms at
almost every step [The Government Office for Science 2012].5

Section 2 introduces formal proofs and mechanized reasoning. Section 3 provides
a ‘paper’ definition of Vickrey’s auction. Section 4 translates this definition into Isa-
belle, and describes the ensuing Isabelle theorems, along with their proofs. Section 5
discusses code extraction in detail. Section 6 introduces the Auction Theory Toolbox
containing the code generated for this paper, allowing it to be reused and extended.
Section 7 discusses related work. Section 8 concludes and notes how easily our defini-
tions and proofs may be modified to specify combinatorial first-price auctions.

2. BRIEF OVERVIEW OF MECHANIZED REASONING
The idea of mechanizing reasoning dates back at least to Leibniz [1686], who envisaged
a machine which could compute the validity of arguments and the truth of mathem-
atical statements. The development of formal logic from 1850 to 1930, the advent of
the computer, and the inception of artificial intelligence (AI) as a research field at the

3There may, of course, be inconsistencies in the logical core; however, since 1901 when Russell discovered
antinomies in Frege’s system, no more have been discovered.
4Harrison [2006b] takes this one step further, using HOL Light – another theorem prover – to formally
investigate its own core. Of course, if HOL Light is inconsistent, then it may not detect its own inconsistency.
5See Muhit [2014] for a recent commentary on the use of functional programming languages – the basis for
many theorem proving systems – in finance.
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1956 Dartmouth Conference all paved the way for the first mechanized reasoners in
the 1950s and 1960s, most notably de Bruijn’s Automath. Computer programs realiz-
ing this old idea are called mechanized reasoners, proof checkers, or proof assistants,
according to the varying functionalities they provide.

At their heart, all seek to certify whether a mathematical statement is provable, by
performing the complete sequence of simpler logical steps, many of which are often
omitted in a standard paper proof. Doing so requires first defining a mathematical
foundation (the axioms) and a set of basic inference rules (which specify the admissible
“simpler logical steps”). Together, these form a calculus.

In pure mathematics, mechanized support has been most famously provided in three
cases. First, over 100 years after the four-color map theorem was posed (four col-
ors suffice to color any planar map without any adjacent regions sharing a color), it
was proved by a combination of mathematical text and a purpose-built computer pro-
gram [q.v. Appel and Haken 1977; Appel et al. 1977]. Despite concerns about relying
on such ‘black box’ code, the proof has been grudgingly accepted, and has subsequently
been confirmed by Coq, a general-purpose theorem prover [Gonthier 2008].

Second, Robbins’ conjecture – that one of the axioms in Huntington’s basis for
Boolean algebras is equivalent to one of Robbins’ axioms – was resolved after 60 years
when a solver generated (after running for eight days) a 17-step proof that humans
could check manually; fine-tuning found an eight-step proof [McCune 1997].

Third, Kepler’s conjecture about optimal sphere packing was reduced, by the mid-
20th century, to an exploration of about 5,000 possible packings. Hales originally solved
that by minimizing a 150-variable function on each packing, generating some 100,000
linear programming problems [Hales 2005]. As 12 human referees could only – after a
five-year review – report that they were ‘99% certain’ the proof was correct, Hales set
out to use the HOL Light general-purpose theorem prover in the same way that Coq
had been used to prove the four-color map theorem. The Flyspeck project [Hales et al.
2015] was successfully completed in 2014.

However, mechanized reasoning has not yet been as widely adopted in pure math-
ematics as some of its advocates initially hoped. One reason for this seems to be the
quantity and diversity of mathematical knowledge that must be encoded to support
modern, research-level mathematics. Once encoded, however, the libraries are avail-
able for use in other applications. Thus, the better developed theorem provers have
good support for real and complex analysis, Euclidean geometry, combinatorics, and
basic algebraic structures (including monoids and groups).

Outside pure, research-level mathematics, mechanized reasoners have had clearer
successes in software and hardware verification, which both require more routine
mathematics, and whose costs of failures can easily justify the additional effort re-
quired to reach formal levels of verification. Hardware verification views computer
chips as sets of Boolean statements – including, for example, AND, OR, XOR gates. A
chip may then be viewed as defining a logical universe within which theorems may be
proved [Harrison 2006a]. Most famously, Intel has used theorem provers since the mid-
1990s, following an embarrassing and costly recall resulting from the discovery that
one of its chips did not correctly implement the IEEE floating point division standard.

Similarly, any computer program defines a logical universe in which theorem provers
may assess the truth of certain statements: in code controlling automated commuter
rail systems, e.g., the theorem that no two trains occupy the same location at the same
time has been proven [Woodcock et al. 2009]. With Facebook’s 2013 acquisition of Mon-
oidics, a start-up firm applying theorem proving to software code analysis, these tech-
niques may be gaining greater public attention.

We believe that the complexity and scope of many modern auctions is such that the
additional assurances provided by mechanized reasoning justify their additional costs.
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3. COMBINATORIAL VCG AUCTIONS
This section presents a standard specification of VCG auctions (q.v. Ausubel and Mil-
grom [2006]). The next section uses this to formally specify a VCG auction in Isabelle.
Let the set of agents be {0, . . . , N}, with agent 0 denoted as the seller and the rest
as bidders. The seller’s endowment is the set Ω 6= ∅ of indivisible goods. An alloca-
tion partitions the endowment. Denote by Xn agent n’s share of the allocation so that⋃N
n=0Xn = Ω. If Xn = ∅ then agent n is allocated nothing.6
Any given bidder n privately values each subset of the endowment X ⊆ Ω at vn (X);

we assume vn (∅) = 0. Bidders simultaneously submit bids to the seller, bn (X) ,∀X ⊆
Ω. For the purposes of this paper, it suffices to take the bids as primitives.

We assume that the seller seeks to maximize value, as proxied by bids. The seller
therefore solves for the value-maximizing allocation:

X∗ ∈ arg max
X1,...,XN

N∑
n=1

bn (Xn) s.t.
N⋃
n=1

Xn ⊆ Ω and Xn ∩Xn′ = ∅ for n 6= n′ (1)

at prices

pn ≡ αn −
∑
m6=n

bm (X∗m) (2)

where

αn ≡ max
Xm

m=1,...,N,m6=n

∑
m6=n

bm (Xm)
∣∣ ⋃
m6=n

Xm ⊆ Ω and Xm ∩Xm′ = ∅ for m 6= m′

 (3)

is the value generated by the value maximization problem when solved without n’s
bids. Thus, pn is the opportunity cost of the items won by bidder n: the maximal sum
of the goods’ value to all bidders other than n, αn, less the reported value of the items
n did not win. Expression (1) is the winner determination problem (WDP). When there
are multiple solutions X∗ we denote the set of them by X ∗; a tie-breaking rule must
then be used to adjudicate. A typical solution involves assigning random numbers to
each possible bundle, denoted by b′n (X), including the empty set, b′n (∅). The WDP is
then run once more over X ∗ to maximize the sum of the random numbers:

X∗∗ ≡ arg max
X∗∈X∗

N∑
n=1

b′n (X∗n) . (4)

We conclude by fixing these concepts in the context of a standard example.

Example 3.1 ([Ausubel and Milgrom 2006, p. 23]). Assume N = 3 bidders submit
the following bids for two items, A and B:

b1 (AB) = b2 (A) = b2 (B) = b3 (A) = b3 (B) = 2;

and bn (X) = 0 for all other n ∈ {1, 2, 3} and item sets X ⊆ {A,B}. This yields two
equivalent value-maximizing allocations; we focus on X∗∗ = (∅, A,B), omitting the

6Typically, in mathematics Xn = ∅ would not be an element of a partition on X, whereas in computer
science it would.
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seller.7 Then

α1 = max
X2,X3

{
b2 (X2) + b3 (X3)

∣∣ X2 +X3 ⊆ Ω
}

= b2 (A) + b3 (B) = 2 + 2 = 4;

and
α2 = max

X1,X3

{
b1 (X1) + b3 (X3)

∣∣ X1 +X3 ⊆ Ω
}

= 2;

where α2 may be determined by either b1 (0)+b3 (B) = 2 or b1 (AB)+b3 (0) = 2. Finally,
by symmetry, α3 = α2 = 2. Prices are then

p1 = 4− [b2 (X∗∗2 ) + b3 (X∗∗3 )] = 4− [2 + 2] = 0;

p2 = 2− [b1 (X∗∗1 ) + b3 (X∗∗3 )] = 2− [0 + 2] = 0;

and, by symmetry, p3 = p2 = 0.

In the special case of a single good, the combinatorial Vickrey’s auction awards the
good to the highest bidder, who pays a price equal to the highest remaining bid; no
other bidder pays anything.

4. FORMALLY SPECIFYING A VCG AUCTION
The previous section defined a VCG auction in a way familiar to economists. We now
do so in the Isabelle proof assistant which is based on higher-order logic (HOL) – a
classical logic whose expressions are close to those of paper mathematics. Particular
properties of the formal specification can be formally proved to be correct. Here, we
prove that our VCG specification defines a function mapping from inputs to unique out-
comes, allocates goods no more than once, and assigns non-negative prices to bundles.
We cannot, however, formally prove that our formalization faithfully implements the
informal definitions: here, human scrutiny must be used.8

Translating equations (2) and (4) into Isabelle is conceptually simple: as higher-
order logic recognizes functions, anything that needs to be computed can be expressed
as a function. Our VCG specification consists of two functions: vcga, yielding equation
(4)’s final allocation, X∗∗; and vcgp, yielding equation (2)’s prices, pn.

Each of these functions take four arguments: a set of bidders (corresponding to N in
(1)); a list of goods (corresponding to Ω in (1)); a bid vector (corresponding to b in (1));
and a random number r (used to obtain the randomized bid vector b′ occurring in (4)).

To construct vcga and vcgp in Isabelle, we first split equations (1) and (2) into simpler
parts, which we also write as functions.

For example, arg maxX1,...,XN

∑N
n=1 bn (Xn) found in (1) is decomposed into the func-

tions arg max and
∑N
n=1 bn (Xn), each of which has immediate counterparts in the Isa-

belle library. Denoting their composition by f (written as argmax ◦ setsum in Isabelle),
running a VCG auction consists of applying f twice to a set of allocations, given some
vectors of bids (the actual bids, b, initially, then the random b′):

X f(b)7→ X ∗
⊆X

f(b′)7→ {X∗∗}
⊆X∗

(5)

In the next subsection, we present a proof that appropriate choice of b′, the randomized
bid vector, can guarantee that {X∗∗} is a singleton. We apply f twice, even when X ∗ is
a singleton, to avoid reasoning with case analyses.

7We use (∅, A,B) as a shorthand notation for x∗ = {∅, {A}, {B}}.
8In our case, in addition to our formalization having the properties that we prove in this section, we can
prove Vickrey’s theorem on it, and replicate known examples.
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It remains to specify X and b′. The former is the set of feasible allocations, or the ad-
missible tuples (X1, . . . , XN ) satisfying the “such that” requirements of expression (1).
It, therefore, depends on N and Ω alone. We implement it by the function allAllocations.

To obtain X ∗, we compute allAllocations on the set of participants {0, . . . , N}.9

abbreviation “vcgas N Ω b r == Outside{seller}‘
((argmax ◦ setsum) (randomBids N Ω b r)
((argmax ◦ setsum) b (allAllocations ({seller} ∪N) (set Ω))))” (6)

The first term in the abbreviation defines a function, vcgas which takes N ,Ω , b and r
as arguments; this notation is common to functional programming languages, such as
Isabelle. The function is computed from the innermost term, the third line in this case,
which applies the f operator mentioned above to return the set of value-maximizing
allocations, given bid vector b. The function next computes the second line. This applies
the f operator a second time: now, the set of feasible allocations is that produced in the
third line, while the bid vector is a random vector, b′, generated by the randomBids
function from a random natural number r. Its construction, which we now explain,
guarantees that this second WDP yields exactly one solution.10

Let the natural number r be drawn from a sufficiently large domain that each realiz-
ation represents a unique permutation of the set of bidders (σN ) and of the powerset of
goods (σΩ). Then, b′n (X) ≡ 2|Ω|

σN (n)
σΩ (X). Thus, sums of b′n (Xn) over allocations yield

(N + 1)-digit numbers in base 2|Ω|, with the nth digit uniquely indexing the powerset
of goods. Such sums therefore uniquely encode allocations, ensuring a unique outcome
to the WDP when b′ is constructed from r in this way.

Finally, the first line of the vcgas function removes the seller’s allocation from the
calculations, to correspond to paper definitions (1) and (3), whose expressions are in⋃N
n=1Xn ⊆ Ω rather than

⋃N
n=0Xn = Ω. This is done by means of the Outside{seller}‘

operator, which restricts the domain of its argument to the complement of the singleton
{seller}; the ‘ infix symbol applies this restriction to each element of the argument set.

Thus, vcgas returns the set {X ∗∗}, from which vcga extracts its unique element, X ∗∗:
abbreviation “vcga N Ω b r == the elem(vcgas N Ω b r)” . (7)

This unique element is extracted by means of the Isabelle function, the elem.
The VCG pricing function, vcgp, has a more direct definition, a straightforward Isa-

belle translation of (2):

abbreviation “vcgp N Ω b r n ==
Max (setsum b ‘ (soldAllocations (N−{n}) (set Ω))) − (setsum b (vcga N Ω b r −−n))”. (8)

The notation N − {n} denotes set subtraction; the −− removes a single element from
the domain of a function or relation. Thus, vcga N Ω b r −− n is the winning allocation
without considering participant n.

The term command allows us to confirm that the definitions vcga and vcgp return
the expected type of object:

term “vcga (N :: participant set) (Ω :: good list)(b :: bidvector) (random :: nat)”

Isabelle’s output is :: “(nat × nat set) set”, which is the right type for an allocation:
a function whose argument is of type a (concretely nat) which yields a value of type b

9If we had defined allocations to exclude the seller, it would be harder to use mathematical theorems about
partitions.
10See Theorem vcgaDefiniteness, below.
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(concretely nat set) has type (a × b) set ; an allocation is a function associating to each
participant (type nat) a subset of the goods (type nat set , a set of natural numbers).

Establishing more sophisticated properties of defined auctions typically requires
more effort. The remainder of this section demonstrates how to establish three such
properties in Isabelle.

4.1. VCG auctions are functions
One basic desideratum of an auction is that it associates a unique output to each feas-
ible input:

THEOREM 4.1. Consider a combinatorial VCG auction. Given any set of goods, any
set of feasible bid vectors, {bn (X)}Nn=0, and a random number r, then there is exactly one
solution to the winner determination problem (4) at prices pn as defined in equation (2).

Failure of this theorem to hold would clearly be problematic, implying either that
admissible bidding did not allow the auction’s successful completion, or that differ-
ent runs of the auction might – given some fixed input – allocate the same goods to
different bidders at different prices.

In Isabelle – as in any functional language – attempting to define a function (e.g.
vcga) causes the system to check that the object can be confirmed to be a function; the
definition is accepted only if this is so. Beyond obvious misspecifications (e.g. syntax
errors), a definition will not be accepted if it fails to terminate (e.g. provides an endless
recursion), or if it fails to associate a uniquely determined value to an admissible input.
As vcgas is a total function, it maps from every element of its domain, and hence always
computes a unique result. the elem is meaningful only if its argument is a singleton;
when it is not, Isabelle cannot determine the function’s value and hence cannot reason
about it.11 That is, in order to show that the definition (7) defines a total function it is
necessary to prove that vcgas is a singleton.

In Isabelle, we state this condition as:

theorem vcgaDefiniteness :
assumes “distinct Ω” and “set Ω 6= {}” and “finite N”
shows “card (vcgas N Ω b r) = 1”

The “distinct” keyword states that the list representing the set of goods, Ω, contains
each good exactly once: this allows it to contain multiple versions of the same good, but
grants each version a unique identifier.

This is easily proven:

1 proof−
2 have “card ((argmax ◦ setsum) (randomBids N Ω b r)
3 ((argmax ◦ setsum) b (allAllocations (N ∪ seller) (set Ω)))) = 1”
4 (is “card ?X = ”) using assms lm08 by blast
5 moreover have “(Outside′{seller}) ‘ ?X = vcgas N Ω b r” by blast
6 ultimately show ?thesis using cardOneImageCardOne by blast
7 qed

The proof ’s structure is typical of many in Isabelle. The proof keyword begins the
proof. Invoked alone, Isabelle would automatically select inference rules to apply;
proof– performs manual inference. The have . . . using . . . by statements structure
the ensuing proof: have asserts the expressions to be proved; using introduces the facts
to be used in discharging the proof obligation; by invokes a specified proof method.

11By contrast, the “card” function – introduced below – is defined to return the cardinality of finite sets, but
returns 0 for empty and infinite sets.
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Lines 2 and 3 claim that the cardinality of the set of solutions to the second WDP
(prior to removing the seller’s allocation) is one (q.v. the second and third lines of ab-
breviation (6), above). Line 4 introduces an abbreviation labeled by ?X and establishes
the statement by applying a proof method called blast to the assumptions (called assms)
of the theorem and a lemma (lm08 ) previously proved. From this cardinality result,
in line 5 an intermediate result – for any function g , g ‘A is a singleton whenever A
is; with g corresponding to Outside{seller} – is established by again using the blast
method. The ultimately keyword in line 6 refers to results established in the previous
lines prefixed by moreover; the show keyword informs Isabelle that we next seek to
establish ?thesis, the proof obligation at the proof ’s current level of reasoning.

The blast tool manipulates ‘simple’ objects in higher-order logic [Nipkow 2013]. Here,
Lemma cardOneImageCardOne quantifies over all functions g and sets A. While such
quantification is inherently higher-order, the proof of the present theorem only re-
quires manipulation of a specific g and a specific A – which can be expressed and
manipulated in first-order logic (FOL). FOL is less expressive than HOL but has a
complete calculus: if an FOL formula follows from premises, then that formula can be
derived from those premises. This, in principle, eases automation such as that per-
formed by blast . However, FOL’s calculus is not decidable, but only semi-decidable.12

Thus, in practice, blast either succeeds, fails, or runs until the user cancels it.
This establishes that our formalization returns a unique allocation given bids and

a natural number. A similar theorem, labeled vcgpDefiniteness, establishes the same
result for payments. We now demonstrate that it only allocates the available goods.

4.2. VCG allocations are pairwise disjoint
The second property that we establish is that the outcome allocates all goods at most
once, and allocates nothing else:

THEOREM 4.2. Consider a combinatorial VCG auction. Then the sets X∗∗1 , . . . , X∗∗N
(as defined at the start of Section 3) are pairwise disjoint.

THEOREM 4.3. Consider a combinatorial VCG auction. Then g ∈ X∗∗m implies g ∈ Ω.

The Isabelle formalization of Theorem 4.2 is:

theorem PairwiseDisjointAllocations :
assumes “distinct Ω” and “set Ω 6= {}” and “finite N” and “n1 6= n2”
shows “(vcga ′ N Ω b r), , , n1 ∩ (vcga ′ N Ω b r), , , n2 = {}”
This formalization explicitly makes four assumptions on N and Ω which are tacitly

assumed in the paper version (Theorem 4.2). First, is the “distinct” keyword, which has
already been explained above. Second, Ω contains at least one good. Third, the number
of participants is finite. The fourth assumption means that the bidders are not the
same. Under these assumptions the theorem states that the intersection of the sets of
goods allocated to the two participants is empty.

The Isabelle proof of Theorem 4.2 reads:

proof−
have “vcga ′ N Ω b r ∈ allocationsUniverse”

using vcgaIsAllocationAllocatingGoodsOnly assms by blast
then show ?thesis using allocationDisjoint assms by fast

qed

12A calculus is called decidable if a procedure exists to decide whether an arbitrary formula follows from
arbitrary premises. It is called semi-decidable if it does so only if the formula actually follows from the
premises, but may not be able to show that it does not if the formula actually does not follow.
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The proof ’s first step uses an existing lemma, vcgaIsAllocationAllocatingGoodsOnly , to
certify that vcga ′ N Ω b r belongs to allocationsUniverse, the set of feasible allocations.13

Second, the proof invokes another lemma, allocationDisjoint , which states that any
allocation has the pairwise-disjoint property. This step is proven by the fast proof tool.
As their names suggest, blast and fast are related: the former, intended as an improve-
ment on the latter, handles a wider range of problems and is generally faster; the
latter, however, is simpler, so does occasionally perform better [Paulson 1999].

Finally, Theorem 4.3 becomes:

theorem OnlyGoodsAllocated :
assumes “distinct Ω” and “set Ω 6= {}” and “finite N” and “g ∈ ((vcgaN Ω b r), , ,m)”
shows “g ∈ set Ω”

The proof uses a more general lemma stating that any allocation belonging
to soldAllocations X Y has a range that is a subset of the powerset of Y . Since
vcga N Ω b r belongs to soldAllocations N (set Ω), this implies that the union of its
range is a subset of Ω . Since, by assumption, g is in an element of that range, this
yields the thesis.

4.3. Prices in VCG auctions are non-negative
The final property that we establish is that VCG prices are non-negative:

THEOREM 4.4. For a combinatorial VCG auction as defined above, ∀n ∈ N, pn ≥ 0
(as defined in expression (2)).

The translation into Isabelle is again straightforward:

theorem NonnegPrices :
assumes “distinct Ω” and “set Ω 6= {}” and “finite N”
shows “vcgp N Ω b r n ≥ (0 :: price)”

The theorem’s last line defines 0 to have type price in order to prevent Isabelle from
mistakenly inferring it to have a different, but still syntactically correct type (e.g. the
least element of a bounded lattice). Presently, price is an alias for real ; changing the
definition of price would allow us to, for example, restrict prices to be natural numbers.

Intuitively, the proof is straightforward. By equation (2), we want to show that the
minuend, αn, is not smaller than the subtrahend,

∑
m6=n bm (X∗∗m ). As αn is the max-

imum of a sum of bids over a set of possible allocations, and {X∗∗m }m6=n belongs to that
set, we are done.

In Isabelle, this becomes:

1 proof −
2 let ?a = “vcga N Ω b r” let ?A = soldAllocations let ?f = “setsum b”
3 have “?a ∈ ?A N (set Ω)” using assms by (rule onlyGoodsAreAllocated)
4 then have “?a −− n ∈ ?A (N − {n}) (set Ω)” by (rule lm099)
5 moreover have “finite (?A (N − {n}) (set Ω))”

using assms(3 ) soldAllocationsFinite finite set finite Diff by blast
6 ultimately have “Max (?f ‘(?A (N − {n}) (set Ω))) ≥ ?f (?a −− n)”

by (rule maxLemma)
7 then show ?thesis by linarith
8 qed

13Some of our reasoning about allocations does not depend on N and Ω; in these cases, we may work with
the generic allocationsUniverse, the set of all injective functions which have a partition as their range. Our
Isabelle code contains other such generic definitions, identified by the suffix Universe.
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Line 2 of the proof defines abbreviations, which are introduced by the identifier let.
Line 3 applies Lemma onlyGoodsAreAllocated to establish that the result of vcga is an
allocation. Line 4 states that restricting the allocation to N\ {n} or, in Isabelle par-
lance, ?a−−n, yields an allocation on the remaining bidders of the same set of goods.

Line 5 then states that the set of all allocations restricted to the remaining bidders is
finite. We already have soldAllocationsFinite, stating that the set obtained by applying
the function soldAllocations to any pair of arguments is finite as soon as the arguments
themselves are finite sets. Hence, to use soldAllocationsFinite, we must in turn establish
that N − {n} and set Ω are both finite. assms(3 ) is the third assumption in the current
theorem’s statement (N is finite), while finite Diff states that the difference between a
finite set and any set is finite: together, they yield that N − {n} is finite. The finiteness
of set Ω is obtained directly from finite set , which says that the function set applied to
any list (in our case, Ω ), is finite. These facts are passed to blast by listing them after
the using keyword; the order in which they are listed does not matter.

In line 4 we established that the set ?A (N − {n}) (set Ω) includes ?a − −n. Hence,
the maximum of a real valued function (such as ?f ) over this set will be at least as big
as the function applied to an arbitrary element of the set, such as line 6’s ?a−−n. Line
6’s ultimately keyword is similar to then, in that it allows to use the preceding line’s
statement to justify the current step. However, while then can refer only to the single
preceding line, ultimately combines those preceding lines prefixed by the moreover
keyword, together with the line immediately preceding the first moreover. Thus, here,
the results of lines 4 and 5 are used as assumptions for line 6’s maxLemma, which
establishes that the maximum of a function (in our case, ?f ) over a set (in our case,
?A (N − {n}) (set Ω)) is not less than the value of that function taken in any element
of that set (in our case, ?a −−n). As the price is the difference between the two terms
in line 6, line 7 produces the result by simple arithmetic.

5. EXTRACTING VERIFIED EXECUTABLE CODE
This section explains how executable code can be automatically extracted from the
Isabelle specification on which the preceding theorems have been proved.

Traditionally, the design and the implementation of auctions have been done in two
separate stages: an auction designer develops the auction principles and performs pre-
liminary tests on them before handing them on to a programmer for implementation.
This creates the possibility of translation errors: the programmer may misunderstand
the design, may make decisions in the case of an underspecification which contravene
the designer’s intentions, or may introduce programming bugs. These problems are
essentially eliminated by our approach: an automatic procedure translates from Isa-
belle into a target executable language. Insofar as the code performing this is general,
and has been applied to a range of problems, it is more trustworthy than a one-off
translation.14 Against this, Isabelle’s code generation features are newer than its HOL
core, and have – therefore – been less thoroughly scrutinized, but confidence in them
increases with each application.

To support the extraction of executable code, the original Isabelle specification must
be written in a constructive, rather than a classical, logic. To illustrate the difference
between classical and constructive proofs, consider the theorem that there are two ir-
rational numbers a and b such that ab is rational. A classical proof goes as follows: if
√

2
√

2
is rational, the theorem holds as a = b =

√
2, which are irrational; if, on the other

hand,
√

2
√

2
is irrational, then the theorem also holds as a =

√
2
√

2
and b =

√
2 are

14See Haftmann and Nipkow [2010] for a more detailed description, which includes proofs of partial correct-
ness (to certify that, if the executable code terminates, it faithfully implements the Isabelle definition).
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irrational, and ab = 2 is rational. This classical proof establishes the existence of satis-
factory numbers a and b, but does not provide a means – or algorithm – of constructing
them. By contrast, a constructive proof does not allow proofs by contradiction and the
law of the excluded middle; thus, it would require explicit construction of a and b.

In our case, vcga and vcgp cannot be used to extract code, as they both use
the non-constructive allAllocations. (The other objects used, such as argmax , setsum,
the elem, and Max , are constructive.) We therefore develop two, parallel, definitions
for allAllocations: the classical definition eases the previous section’s theorem proving;
the constructive one allows code extraction.

The classical definition of allAllocations relies, in turn, on two non-computable terms,
namely all partitions and injections:

“allAllocations N Ω =

Union{{a−1|a. a ∈ injections Y N}|Y. Y ∈ all partitions Ω}”.
For expositional clarity’s sake, we illustrate the process of developing parallel defin-
itions for injections, rather than the slightly more complex all partitions. The set
injections Y N contains all the injections (one-to-one functions) defined on the whole
of Y which yield values in N .

In turn, the classical definition of the set of injections from a set X to a set Y is

“injections X Y = {R. DomainR = X ∧ Range R ⊆ Y ∧ runiq R ∧ runiq(R−1)}”.
This defines a set of objects, R, with the following properties: R is right unique
(runiq R), so that any element in the domain of R is associated with at most one ele-
ment in its range; further, the inverse operation is also right unique (runiq (R−1 ));
finally, R is defined on the whole of X and yields values in Y . The definition is not
constructive: it merely states properties of injections between X and Y .

The function, fun injections alg , constructively defines the same entity for finite X
and Y :15

fun injections alg
where “injections alg [] Y = [{}]” |

“injections alg (x#xs) Y = concat [[R+ ∗{(x, y)}.
y ← sorted list of set(Y −Range R)]. R← injections alg xs Y ]”

This works by recursion on X , distinguishing between the base case (empty X ) and
the step case (non-empty X ). As sets’ elements are not ordered, we identify the first
element in the non-empty X – to be added by the recursive step – by representing X
as a list; concrete lists are denoted in Isabelle by square brackets. The two cases are
separated by “|”.

The base case addresses [] Y , the set of all injections from the empty list to Y , which
is defined to be a single-element list containing only the empty function, “[{}]”. In the
step case, X is “x#xs”, obtained by prepending an element x to a given list xs. The re-
cursive step uses the set of all injections defined on xs – assumed to have already been
computed – to build that on the enhanced list. Its final term, “R← injections alg xs Y ”
iteratively passes to R each injective function from the list of all injections from xs to
Y . Next, these functions are extended by using the +∗ operator to add pairs (x, y) to R
to obtain functions from X to Y . In order to compute all injective functions, this addi-
tion is subject to (denoted by “.”) the requirement that we consider all possible y ∈ Y ,
but which are not in the range of R (denoted Y − Range R). The sorted list of set term
converts the (unordered) set to a list to allow computation.

15This provides a second motive for maintaining classical definitions: in addition to their more explicit
statements of the desired properties of objects, they are not restricted to finite sets.
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Maintaining dual definitions requires that we supply Isabelle with bridging theor-
ems proving that the classical and the constructive definitions are equivalent when
restricted to the finite case. We require two, one for injections and the other for parti-
tions.16 We discuss in detail the bridging theorem for injections.

After restricting sets to be finite, we seek to prove that
“set (injections alg X Y ) = injections (set X) Y ”.

The left hand side of the thesis presents the computable definition, which is respons-
ible for generating the list of possible injections from X to Y ; having done so, the set
function converts the list so generated to a set. The right hand side presents the clas-
sical definition, which is defined on sets. As we do not generally require that Y is a
list, we define it as a set; X , defined as a list, is converted to a set for conformity to
the classical definition. In general, lists are better for computing as their elements are
inherently ordered, making them easier to parse. Sets, on the other hand, are often
better for reasoning and theorem proving as they are closer to paper mathematics,
and more general (e.g. they can be infinite).

The proof works by structural induction on the first argument, X .17 This means that
we want to apply the general lemma:
lemma structInduct : assumes “P []” and “∀x xs. P (xs) −→ P (x#xs)”

shows “P L”.
The lemma establishes that if a predicate P holds for the empty list (the base case),
and if it holds for a list extended by a single element, x#xs, when it holds for the
original list, xs, (the induction step), then P holds for any list, L. Hence, the task is
now to identify a suitable P . We choose:

“P L ←→ (distinct L −→ (set (injections alg L Y ) = injections (set L) Y ))”.
This reads: given a list, L, define a predicate P such that, iff the list L has distinct
elements, then the sets produced by the two definitions are identical. The property
distinct L makes sure that the list representing the set contains each element of the
set only once.

Hence, our bridging theorem for injections, establishing the equivalence of the clas-
sical and constructive definitions in the finite case, is:
theorem injections equiv : assumes “finite Y ” and “distinct X”

shows “set (injections alg X Y ) = injections (set X) Y ”
The Isabelle proof is:

1 proof−
2 let ?P = “λL. (distinct L −→ (set (injections alg L Y ) = injections (set L) Y ))”
3 have “?P []” using injectionsFromEmptyAreEmpty list .set(1 ) lm099 by metis
4 moreover have “∀x xs. ?P xs −→ ?P (x#xs)”

using assms(1 ) lm101 by (metis distinct .simps(2 ) list .simps(15 ))
5 ultimately have “?P X” by (rule structInduct)
6 then show ?thesis using assms(2 ) by presburger
7 qed

Intuitively, the main step in the proof establishes that injections alg (x#xs) Y
contains all the new injections from the set x#xs into Y which are added when

16The prevalence of these objects in mathematics increases the likelihood that our parallel definitions and
their corresponding bridging theorems will be reused by other Isabelle coders.
17The more familiar induction occurs over natural numbers. In this case, that would restrict induction to
range over the length of the list, rather than over the list itself.
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the original set, xs, is augmented by x to become x#xs. In Isabelle, the proof ’s
first step defines the right recursion predicate (line 2). The second step (line 3)
proves the base case which, looking at the definition of ?P , reduces to showing that
set (injections alg [] Y ) = injections (set []) Y . We employed Isabelle’s Sledgehammer
tool [Blanchette and Paulson 2014] to suggest methods for doing so. It suggested chain-
ing together the equalities “set (injections alg [] Z) = {{}}” (established in Lemma
injectionsFromEmptyAreEmpty) and “injections {} Y = {{}}” (established in Lemma
lm099 ), which yields the desired result, once one recognizes that set [] = {}; this last
fact is provided by the lemma list .set(1 )18, also suggested by Sledgehammer. Sledge-
hammer’s job is over as soon as it suggests the strategy for a particular step: hence,
in the final proofs, it is not possible to discern whether the code has been input by the
user or generated by Sledgehammer.

The third step proves the induction step (line 4). We apply an auxiliary lemma,
lm101 , which proves the induction step passing from xs to x#xs. Here, Sledgeham-
mer was not only able to suggest proof tools, but also suggested auxiliary lemmas
needed to apply lm101 to this particular step. Here, we know (from the definition
of ?P ) that the components of x#xs are distinct, while to trigger lm101 we require
that x is different from any element of xs and that the components of xs are distinct.
As these two conditions are trivially equivalent, Sledgehammer recommended using
distinct .simps(2 ) (the list x#xs is distinct if and only if xs is distinct and does not in-
clude x ) and list .simps(15 ) (the elements of the list x#xs are the elements of xs, plus
x ) as an alternative to manually supplying the details.

Now, line 5 applies structInduct , establishing that our predicate is characterized by
the implication that a list with distinct items implies the equality between the two
definitions of injections. Thus, it remains for line 6 to apply modus ponens (if p implies
q and if p is true, then so is q), to strip out the implication and leave the equality. We
initially used the try0 command, which – like sledgehammer – tries a range of methods
to find the most appropriate. In this case, it suggested presburger , which performs oper-
ations in Presburger arithmetic (a simpler arithmetic than Peano’s, insofar as it lacks
multiplication). While modus ponens is not an operation in Presburger arithmetic, it
was placed in the presburger tool in order to simplify arithmetic expressions.

By replacing the classical definitions of injections and all partitions with their con-
structive counterparts within vcga and vcgp, we obtain Isabelle functions that con-
structively define a VCG auction, allowing extraction of Scala code from them; the
bridging theorems ensure that the executable code faithfully implements the original
sound specification.19

6. AUCTION THEORY TOOLBOX
An advantage of mechanized reasoning is that the objects defined may be used with
equal facility in other applications. We have therefore initiated an auction theory tool-
box (ATT) to assist in the formalization and verification of other auction designs. The
ATT code base is freely available at https://github.com/formare. It currently contains
the formalizations for the present paper, as well as specifications of a single-good Vick-
rey auction, and formalizations of Vickrey’s theorem developed for Kerber et al. [2014].

18Any Isabelle label can be prefixed by a dot and the name of the object or file it refers to. Additionally, some
Isabelle theorems can be grouped together, in which case a number in brackets will be appended to the label
to refer to a particular theorem in a group. The labels list .set(1 ), and distinct .simps(2 ) and list .simps(15 )
employ both these features.
19See https://github.com/formare/auctions/blob/master/scala/VCG.scala for the code.
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All proofs can be checked within seconds on a standard laptop. The toolbox also con-
tains the Scala code generated by our constructive definitions.20

SetUtils Code_Abstract_Nat

Code_Target_Nat

RelationOperators

RelationProperties

Discrete Indicator_Function Argmax

Partitions

MiscTools

StrictCombinatorialAuction

Universes

UniformTieBreaking

CombinatorialAuction

[Pure]

[HOL]

Figure 2: Theory graph generated by Isabelle

Figure 2 presents the structure of
our Isabelle code. The theory files
[Pure], [HOL], Code Abstract Nat,
Discrete, Indicator Function, and
Code Target Nat come with Isabelle.
SetUtils (size 6kB) contains some
results in set theory (e.g. theorems
about sets with at most one ele-
ment and injective functions). Argmax
(8kB) defines the maximal argument
of a function mapping to a linearly
ordered set. The theories Partitions
(38kB), RelationOperators (8kB),
and RelationProperties (10kB) are
self-explanatory. MiscTools (42kB)
contains theorems which combine
entities from the parent theories
shown feeding into it. An example is
lemma lm23 , stating that for two fi-
nite sets X and Y with “card(X ∩
Y ) = card(X)” it follows that “X ⊆
Y ”.

The final four theory files are auction specific, and use the set theoretical, list based,
and number theoretic tools formalized in the above. StrictCombinatorialAuction
(5kB) contains combinatorial auctions, including classical (set theoretical) and com-
putational properties (such as winner and price determination, excluding tie break-
ing). General properties of the set of all possible allocations are proved in the the-
ory Universes (52kB). UniformTieBreaking (43kB) introduces and proves properties
of randomBids as described in Section 4. Finally, CombinatorialAuction (40kB) proves
the main theorems described in Section 4.

7. RELATED WORK
The three categories of work most closely related to that in this paper are: mechanized
theorem proving on auctions; verifying executable auction code; and confirming that
an auction design is well specified by model checking.

As regards theorem proving on auctions, Lange et al. [2013] presented a comparative
study of proving Vickrey’s theorem for single-good auctions in four different systems.
[Kerber et al. 2014] is a complementary paper, presenting the Isabelle implementation
of Vickrey’s theorem in greater depth.

20Interested readers can interact with the Scala code at http://www.cs.bham.ac.uk/research/projects/
formare/vcg.html.
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As to verifying executable code, the consequences of an auction’s failure have been
known for some time. As yet, however, only limited steps have been taken towards
formally verifying executable auction code. For example, the Smith Institute for indus-
trial mathematics and system engineering has “assessed for correctness the software
implementations of [. . . ] algorithms” used in UK spectrum auctions.21 The results have
not been published, but this work seems to involve traditional methods of running per-
formance tests on test cases. The Smith Institute’s Robert Leese has called for auction
software to be added to the Verified Software Repository [Woodcock et al. 2009].

The third category, model checking, involves automated, exhaustive searches over
finite state spaces; thus, it requires less expert human guidance [Dennis et al. 2012].
Tadjouddine et al. [2009] used SPIN, a widely-used commercial model checker to verify
Vickrey auctions’ strategy-proofness property.22 As bids are real numbers, the authors
discretized bid values (e.g. i’s bid exceeds its valuation, bi > vi) to obtain finite state
spaces. They manually proved the soundness of this reduction. They are thereby able
to verify strategy-proofness for any number of agents in a Vickrey auction in a quarter
of a second on a desktop computer.

Dennis et al. [2012] developed open source model checking tools, using small auc-
tions as their primary test cases. In a simple auction in which between three and five
bidders submit sealed bids to an auctioneer, who awards a good to the highest bidder,
they formally verified that the bidder with the highest bid will eventually believe that
it has won the auction [Webster et al. 2009]. With just four bidders, each restricted to
making one of three possible bids, this property took over an hour to verify.

8. CONCLUSIONS
We have presented a step towards applying mechanized reasoning to the design and
practice of auctions. Specifically, we confirmed a number of soundness properties in the
context of combinatorial Vickrey auctions: they are functions from their input (bids) to
their outcome (allocation and transfers); they allocate all the goods exactly once, and
nothing else; prices are non-negative. We have also generated verified executable code
that faithfully implements a combinatorial Vickrey auction with the above properties.

Specifying and implementing the auction from within a single mechanized reason-
ing system both reduces the risk of error and eases extension of the results to other
auction designs. For example, our VCG formalizations are easily modified to formalize
a first price auction: the WDP is again specified by expression (1); the prices are not
determined by equation (2) but by

pn ≡ bn (X∗n) . (9)

Correspondingly, we replace vcgp with:

abbreviation “firstPriceP N Ω b r n == b (n,winningAllocationAlg N Ω r b, , n)”

The theorems in Sections 4.1 and 4.2 carry through directly. The price non-negativity
theorem in section 4.3 is now so trivial that Isabelle finds the proof by itself:

lemma assumes “∀X. b (n,X) ≥ 0” shows
“firstPriceP N Ω b r n ≥ 0 ” using assms by blast .

In this case, the simplicity of the proof implies that it does not need intermediate steps:
hence, there is no need of the keywords proof and qed to enclose them.

21q.v. http://www.smithinst.co.uk/case-study/verifying-algorithms/
22SPIN is based on a linear temporal logic (LTL), which models states in a linear fashion, thus excluding
the consideration of multiple possible future states. Kamp’s theorem established the equivalence of LTL to
a first-order logic.
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In closing, we note two extensions of the present work. First, the present work is
intended as a proof of concept, rather than as operationalizable. Thus, our algorithms’
computational efficiency must be improved before our code can be used in real auc-
tions: on a standard laptop, it handles two-good examples in less than two seconds,
and three-good in 10 seconds, but takes over 12 minutes to handle a four-good example.
Improving these times will require both standard software engineering techniques, as
well as awareness of methods for efficiently addressing the winner-determination prob-
lem, which is NP-hard [q.v. Cramton et al. 2006, Part III]. Second, dynamic features
must be added to the ATT, allowing bids (or feasible sets of bids) to be updated over
time, and feedback received by bidders. This work is already underway.

Modern auctions are becoming increasingly complex: the FCC’s forthcoming ‘incent-
ive auctions’ are widely regarded as unprecedented in their complexity Federal Com-
munications Commission [2014, pp. 158–167]. Thus, the challenge of ensuring that
auctions are soundly specified and implemented is more pressing than ever. We hope
that, as the tools presented here develop, they will assist in doing so, both for auctions,
and in economics and finance more generally.
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