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The outcome of interpersonal interactions depends not only on the contents that we communicate verbally,
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In this work, we present NovA (Nonverbal behavior Analyzer), a system that analyzes and facilitates the
interpretation of social signals automatically in a bidirectional interaction with a conversational agent. It
records data of interactions, detects relevant social cues, and creates descriptive statistics for the recorded
data with respect to the agent’s behavior and the context of the situation. This enhances the possibilities
for researchers to automatically label corpora of human—agent interactions and to give users feedback on
strengths and weaknesses of their social behavior.

Categories and Subject Descriptors: H.1.2 [User/Machine Systems]: Human Information Processing
General Terms: Social Signal Processing, Serious Games, Virtual Agents, Affective Computing

Additional Key Words and Phrases: Social cue recognition, virtual job interviews, serious games, automated
behavior analysis, interaction design

ACM Reference Format:

Tobias Baur, Gregor Mehlmann, Ionut Damian, Florian Lingenfelser, Johannes Wagner, Birgit Lugrin, Elisa-
beth André, and Patrick Gebhard. 2015. Context-aware automated analysis and annotation of social human—
agent interactions. ACM Trans. Interact. Intell. Syst. 5, 2, Article 11 (June 2015), 33 pages.

DOI: http:/dx.doi.org/10.1145/2764921

1. INTRODUCTION

In interpersonal communication, nonverbal social signals play an important role be-
cause they convey a large part of information that may have an even deeper influence
on the outcome of a conversation than the word meanings themselves. In stressful
situations, such as job interviews, humans often employ nonverbal behavior that has a

This work has been partially funded by the European Commission within FP7-ICT-2011-7 (Project TARDIS,
grant agreement no. 288578) and has received funding from the European Unions Horizon 2020 research
and innovation programme (Project ARIA-VALUSPA, grant agreement no. 645378).

We thank the teachers Bernhard Pietzowski and Richard Endrass from the Parkschule Stadtbergen for
helping to organize the evaluation study and the pupils for their participation. We also thank Julia Brombach
and Claudia Lange from the Career Service of the Augsburg University for volunteering as practitioners.
Furthermore, we thank the people from Charamel GmbH for their continuous support and for providing us
with the virtual character Gloria.

Authors’ addresses: T. Baur, G. Mehlmann, I. Damian, F. Lingenfelser, J. Wagner, B. Lugrin, and E. André, Hu-
man Centered Multimedia, Augsburg University, Universitatsstr. 6a, D-86159 Augsburg, Germany; emails:
{baur, mehlmann, damian, lingenfelser, wagner, lugrin, andre}@hcm-lab.de; P. Gebhard, DFKI Stuhlsatzen-
hausweg 3, D-66123 Saarbriicken, Germany; email: patrick.gebhard@dfki.de.

This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The
definitive Version of Record was published in: ACM Transactions on Interactive Intelligent Systems, 5, 2,
S. 1-33

© 2015 ACM
DOTI: http://dx.doi.org/10.1145/2764921

11


http://dx.doi.org/10.1145/2764921
http://dx.doi.org/10.1145/2764921

11:2

negative impact on how they are perceived. However, particularly in such scenarios, it
is especially important to give the impression of confidence and attentiveness to con-
vince others of one’s strengths and competence. In recent years, a variety of research
projects tackled the problem of tutoring users to improve social behaviors. With the
help of serious games or similar training environments, such systems aim to simu-
late interpersonal communication with conversational agents or robots. Compared to
real human trainers, this also comes with several advantages for training purposes,
such as the avoidance of additional stress, lower costs, permanent availability, and
reproducibility of training sessions. Examples for rather specific use cases are public
speeches [Batrinca et al. 2013], social humor situations [Niewiadomski et al. 2013;
Mancini et al. 2014], intercultural communication [Endraf} et al. 2013], negotiation
scenarios [Traum et al. 2012], or psychotherapy [Kang et al. 2012].

A first step toward helping people effectively improve their performance typically
consists of finding critical behaviors during a training session. Therefore, it is common
practice for experts to take notes on what attracted their attention. In more sophis-
ticated environments, data are annotated alongside audiovisual recordings following
a predefined annotation scheme, so users can reflect on their behavior while feed-
back is given by experts. A negative aspect of this approach is that the annotation
of such recordings requires several iterations and is often extremely time-consuming.
Additionally, annotations often vary greatly between annotators because subjective
perception differs from person to person. Some more advanced training systems partly
process human behavior, such as the amount of smiles or the prosody of speech [Hoque
et al. 2013], but are still limited in the range of modalities that are automatically
analyzed. Depending on the application focus, the main goals from a social coach’s
point of view are particularly the analysis and control of high-level concepts, such as
signaling engagement and attention, the establishment of rapport and trust, and ef-
fective and fluent communication through grounding. Such concepts are based on bi-
and multidirectional behavior patterns that are generated by the temporal alignment
of the interlocutors’ actions. Examples for this purpose are directed gaze, declarative
pointings, gaze following, turn-taking signals, backchanneling, and mirroring. Depend-
ing on the context of the situation, such behavior patterns may vary considerably, and
social signals need to be interpreted accordingly. In state-of-the-art training systems,
such phenomena have not been in focus as such systems are at the most concerned
only with the user’s nonverbal signals.

In this article, we present a system, Nonverbal behavior Analyzer (NovA), for au-
tomating the annotation process using real-time social signal processing techniques in
combination with interaction modeling concepts. The system was originally developed
as part of the TARDIS [Anderson et al. 2013] EU-project. TARDIS aims to help young
people improve their social skills during job interviews by providing a training environ-
ment with a virtual recruiter. The proposed system also provides concepts and tools for
future research in behavior analysis in human—human and especially human—agent
interactions. By analyzing both the user’s behavioral cues and the agent’s interaction
cues, the system allows us to automatically annotate a social human—agent interaction.
Such cues are computed in real time during the interaction by using sensing devices,
such as a Microsoft Kinect to recognize behavioral characteristics, and by recording
the agent’s verbal and nonverbal behavior. Furthermore, scenario-specific meta infor-
mation is logged to improve the analysis of the situation by considering conversational
context. Figure 1 gives an overview on the architecture of our system. We see the main
contributions of this work in:

—A wide range of real-time multimodal social cue recognition algorithms for automated
annotations. Because we aim to automate the annotation process of human behavior,
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Fig. 1. The general architecture of the NovA system. It recognizes social cues from human behavior with
sensors, as well as agent behavior and context information from an interaction modeling component. Addi-
tionally, bidirectional cues that are based on behavior of both interlocutors are processed. This information
is used by the NovA System to analyze and annotate the interaction automatically.

we created a set of general real-time social cue recognizers for multiple modalities.
This set is built on a plugin system that allows recognizers to be turned on or off
depending on the user’s needs and available hardware. The recognizers have been
developed in cooperation with psychologists and social-coaching trainers. They are
also customizable for specific needs in various scenarios. Once adjusted, recogniz-
ers will return objective and comparable observations, which are essential for the
automated labeling process.

—Annotation of agent behavior, dialog context, and bidirectional interaction cues. A
crucial problem is that the simple occurrence of a behavioral cue does not necessarily
allow us to make straightforward assumptions about the user’s intentions. As an
example, a smile can be a sign of happiness (which is assumed by most systems),
but could, for example, also be an expression of embarrassment (also see McKeown
et al. [2015]). Therefore, to interpret behavioral cues correctly, the dialog context has
to be taken into account. If the agent is telling a funny joke and the user reacts with
a smile, one could assume that the agent amuses the user. If the agent discourages
the user, but he or she still smiles, it is more likely that the user is overplaying
the situation. In addition, there are tightly coordinated behaviors that are elicited
by two or several interlocutors. Such behaviors, called bidirectional cues, include
phenomena, such as grounding, mutual gaze, mirroring, or backchanneling, that
are relevant to the analysis of dialogue dynamics. To be able to correctly interpret
behavior signals, it is highly important to annotate not only the user’s, but also the
agent’s behaviors.

—Context-aware analysis of the interaction by considering meta information, such as
current topics or conditions. Another aspect that has to be considered is the influ-
ence of the conversational context on the assessment of behaviors. Although some
behaviors are appropriate in one situation, they might not be in another. To give
an example: A high amount of hand movements during a job interview might be
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interpreted as a sign of engagement when the candidate is talking about his or her
hobbies. As a consequence, the candidate’s behavior would result into a positive as-
sessment by the interviewer. However, a candidate who is fidgeting with his or her
hands while responding to a difficult question might instead be evaluated negatively
because the candidate’s behavior might be taken a sign of nervousness. In our sys-
tem, context information is used to influence the model for the automated analysis
of the user’s behavior.

—Real-time inferring of social attitudes based on probabilistic models to receive im-
plicit information. Information on the users’ social attitude, such as their level of
attentiveness, is typically conveyed by more than one signal behavior at a time. We
therefore suggest the use of probabilistic models to infer social attitudes based on
multiple inputs, such as (bidirectional) multimodal behavior cues and context infor-
mation. Creating such continuous outputs helps in pointing out the most relevant
incidents of a social interaction, which is especially worth aspiring to in social coach-
ing environments. This information is further suited to be used as real-time input
for an agent to react to the user’s current social attitude.

—Automated analysis and visualization of discrete and continuous annotations and
automated statistical analysis tests of the interaction. We created a graphical user
interface for the visualization of detected behaviors. Inspired by classical annotation
tools, it presents tier-based labeling. Additionally, it also features continuous time-
line diagrams, bar and pie charts, heat maps, and social attitude outputs to point
out characteristics encountered in interpersonal interaction in a fully automated
manner. Experts might use such information when counseling users about their
behaviors in coaching scenarios.

In the next section, we review related work in the area of annotation tools, auto-
mated behavior analysis, and interaction modeling. Next, we introduce the TARDIS
job interview game to illustrate a use-case application that makes use of our general
architecture and concepts. We then describe our four main components: the social cue
recognition module, the interaction modeling module, the social attitude component,
and the analysis and annotation tool that serves as a coaching user interface. Finally,
we discuss experiences from evaluating our use-case application in a field study at a lo-
cal school that showed that a combination of the suggested concepts leads to significant
improvements in coaching compared to traditional methods.

2. RELATED WORK

Our proposed system combines work on annotation tools with technologies to auto-
matically analyze human behavior, as well as on interaction modeling techniques. The
user interface of NovA was inspired by existing annotation tools and makes use of
multiple tracks to code relevant social features. However, unlike conventional annota-
tion tools, our system performs the segmentation and labeling of the data completely
automatically. NovA distinguishes from earlier work on automated behavior analysis
by considering not only the behavior of the user, but also that of the agent and the
dynamics that arise during the conversation in a social training scenario. In our work,
we further investigate interaction and conversation context for the improved analysis
and annotation of human—agent conversations.

Progress in the field of analyzing human social behavior has been boosted by a
variety of annotation tools that facilitate the labeling of corpora at different levels
of granularity following a predefined coding scheme. Examples include European dis-
tributed corpora project Linguistic ANotator (Elan) [Wittenburg et al. 2006], ANotation
of VIdeo and Language (Anvil) [Kipp 2013], and Exmaralda [Schmidt 2004], which offer
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layer-based tracks to insert time-anchored labeled segments. Another example is
FEELtrace [Cowie et al. 2000], a tool that allows an observer to track the emotional
content of an audio-visual stimulus over time based on activation-evaluation space. A
newer edition of FEELtrace is the General trace (Gtrace) [Cowie et al. 2012], with the
ability to let people use their own dimensions and scales. While it is unquestionable
that these tools offer much help in describing audio-visual material with a high level
of detail, they offer only little automation. However, since creating descriptions for
several hours of interaction remains an extremely time-consuming task, methods to
automate the coding process are highly desirable.

Techniques for the automated analysis of social behavior patterns were pioneered by
Pentland and his group at MIT Media Lab with the development of wearable devices, so-
called sociometers, to capture people’s verbal and nonverbal signals. They investigated
not only the social behaviors of people engaged in face-to-face conversations [Curhan
and Pentland 2007], but also analyzed interaction patterns from larger groups of people
using smartphones with dedicated sensors [Pentland 2007]. To analyze social behav-
iors, a large variety of verbal and nonverbal cues have been taken into account. Dong
et al. [2007] analyze speech activity and fidgeting (i.e., the amount of movement in a
person’s hands and body) to detect functional roles in a group. Hung and Gatica-Perez
[2010] studied audio cues (such as overlapping speech), video cues (such as motion
energy), and audio-visual cues (such as the amount of movement during speech) to
determine the level of group cohesion in meetings. Methods have been developed to
detect social attitudes from various modalities including facial expressions [Sandbach
et al. 2012], gestures [Caridakis et al. 2006; Michelet et al. 2012; Mahmoud et al. 2013],
speech [Vogt et al. 2008], postures [Kleinsmith and Bianchi-Berthouze 2011], and phys-
iological measurements [Kim and André 2008]. Nakano and Ishii [2010] developed a
method to assess user engagement from eye gaze in user—-agent interactions. Thompson
and Bohus [2013] developed a system that supports feature annotation for model build-
ing using a variety of machine learning techniques. Also, multimodal approaches to
improve emotion recognition accuracy have been reported, mostly by exploiting audio-
visual combinations [Camurri et al. 2005; Scherer et al. 2012; Sebe et al. 2006; Gunes
et al. 2008]. Results suggest that integrated information from audio and video leads
to improved classification reliability compared to a single modality. Even though the
role of context has been recognized in the area of social signal processing [Pantic et al.
2005], work that actually exploits context information to improve recognition rates is
rare. An example includes the work by Conati and Maclaren [2009] who describe a tu-
tor agent that makes use of a Bayesian network for interpreting the learner’s behavior.
Following bio-sensor and user interface (Ul) inputs, as well as context in the form of
previously prompted personality traits, the system tries to infer the emotions of the
learner. The Virtual Human Toolkit [Hartholt et al. 2013] provides social signal anal-
ysis combined with dialogue act-based generation of nonverbal agent conversational
behavior. Context information is used to refine the analysis of social signals. Although
this is modeled within dialogue acts, our approach uses an explicit interaction model
to represent contextual information (e.g., discourse phase or agent states). An example
of how context is used for improving social signal processing can be found in Morency
et al. [2007]. By considering specific types of questions, they achieved improvements in
recognizing head movements in a human—agent interaction. The SEMAINE [Schroder
et al. 2012] platform focuses on the analysis of emotions in an interactive communica-
tive setting. There, visual and acoustic signals in speech and listening phases during
an interaction with a virtual agent are analyzed. In our approach, we consider an ex-
tended set of modalities for the analysis of user behavior. Furthermore, by applying a
more fine-grained interaction dialogue model and control, we extend the analysis to
bidirectional behavior and discourse context information.



Fig. 2. Player experience, scenario, and welcome game phase.

3. APPLICATION SCENARIO

In the following, we present our approach by means of an illustrative example ap-
plication. The EU-funded project TARDIS! attempts to support young adults in job
interviews by developing a scenario-based serious game with virtual agents acting as
recruiters. One large issue that Europe faces is the rising number of young people
who are not in employment, education, or training (NEETs). NEETSs often have un-
derdeveloped socioemotional and interaction skills [Hammer 2000], such as a lack of
self-confidence, a lack of a sense of their own strengths, or social anxiety [Pan et al.
2012]. This often leads to problems in various critical situations, such as job inter-
views, where they need to convince the recruiter of their fit with a company. To address
this issue, many European countries have specialized inclusion centers meant to aid
young people in securing employment through coaching by professional practitioners.
Unfortunately, such an approach is expensive and time-consuming. Considering this,
technology-enhanced solutions, such as digital games, present themselves as viable
and advantageous alternatives to the existing human-to-human coaching practices.

The TARDIS Social Cue Training Game is an approach for supporting young adults
in job interviews. It employs gaming techniques and methods to motivate adolescents
and young adults to improve their social skills. For the game, we make use of the
virtual character Gloria, as seen in Figure 2, that has been developed by Charamel
GmbH. The scenario is set up in a virtual environment modeled to resemble a typical
office environment (see Figure 2, right side).

The game is structured similarly to a job interview. It features three interview phases,
namely Welcome, Company Presentation, and Strength and Weaknesses. Prior to the
Welcome phase, the user is given a short introduction into how the system works. At
the start of the game, the user is also asked to provide some information about general
skills and background (see Figure 2, left side, top). This information is used throughout
the game to adapt the flow of the interview to the user’s profile. For example, if the

ITraining young Adult’s Regulation of emotions and Development of social Interaction Skills - http:/tardis-
project.eu.
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Fig. 3. Social cue action cards for each game phase.

user states that she is experienced in a specific language, the game will ask questions
related to her expertise in that area.

While playing the game, the participant is asked to adapt to specific social task
situations that are related to the game phase. The Welcome phase is related to the
social task of presenting one self. The subsequent phase of Company Presentation is
related to the task of listening carefully, and the last phase (Strength and Weaknesses)
is related to conversation about the user’s profile. The user is expected to adapt her
behavior to each phase. The kind of behavior that is appropriate to a specific phase
is described on physical game cards (see Figure 3). Each game card contains several
social cues that the user should or should not perform. For example, the Welcome card
instructs the user to (i) smile, (ii) hold eye contact, (iii) use open gestures, (iv) speak
lively, and (v) don’t freeze up. These social cues have been identified by experts (e.g.,
social workers and job recruiters).

The cards are given to the user prior to the interaction. During the game, the virtual
agent informs the user before each phase which game card is relevant in the upcoming
phase and only proceeds with the interview once the user acknowledges having read the
game card (Figure 2, left side, bottom). Furthermore, the behaviors are also displayed
directly on the game screen using graphical symbols (see Figure 4). These symbols
change in appearance depending on whether the user performed the underlying social
cue or not. For example, if the user shows an appropriate amount of smiling during the
Welcome phase, the smile symbol gets highlighted.

To encourage adequate behaviors, the system also scores users based on their perfor-
mance. More precisely, every time a user behaves in compliance with the game card,
(i.e., performs a requested social cue), she receives a point toward the total score. Some
of the cues have to be performed (or not performed) for the whole duration of the inter-
view phase (which represents the conversational context; e.g., do not freeze up). After
a game session, a professional job interview coach gives feedback on how to improve
with help of the NovA coaching tool that will be described in later sections.

4. SOCIAL CUE RECOGNITION

As a first step for the automated analysis of user behavior, we created a set of social
cue recognizers. Our system uses the Social Signal Interpretation Framework? (SSI)

Zhttp://openssi.net.
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Fig. 4. Reward for smiling during the Welcome phase.
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[Wagner et al. 2013], which offers capabilities to record, analyze, and recognize human
behavior in real time. In particular, SSI supports the parallel and synchronized process-
ing of data from multiple sensory devices, such as cameras, multichannel microphones,
and various physiological sensors. It further supports the fusion of multiple channels
and machine learning techniques and synchronization between multiple computers.
Figure 5 gives an overview on the functionality of the SSI Framework.

For our system, we make use of various sensory devices to capture human behavior
data. One important sensor for the detection of social signals in human behavior is a
depth camera, specifically the Microsoft Kinect, which has a number of advantages:
It is rather low-cost, it does not require any time-consuming configuration, and it is
relatively robust against lighting conditions. Furthermore, there are software develop-
ment kits for skeleton and face tracking available for the Kinect sensor that provide
a good starting point for human behavior analysis. SSI also enables the easy integra-
tion of more sophisticated sensors, such as a motion capture suit (e.g., Xsens MVN), to
achieve more robust tracking. Figure 6 shows the system’s interface for the recording



Fig. 6. Recording and processing of social signals in real-time. This instance is showing the skeleton, tracked
by a Microsoft Kinect; the RGB image with facial feature detection, including smiles; the audio intensity,
pitch, and pitch direction; the signal-to-noise ratio, and the audio energy.

of user data. It illustrates the skeleton and face tracking, RGB video, and audio feature
capturing.

Our system supports continuous, as well as event-based annotations. In the case
of continuous annotations, a value referring to a particular attribute, such as the
distance between the two hands of a person or the orientation of the head, is computed
continuously over time. For event-based annotations, we integrated a mechanism that
triggers an event each time when the beginning or the end of a social cue is detected.
In this process, the event recognizers act on a rather strictly defined level.

These events are additionally saved in an XML-based structure including a synchro-
nized timestamp and the event’s duration for later offline analysis. The next subsections
describe modules for social cue recognizers in different modalities. Because our system
is modular, recognizers can be turned off if specific modalities are not of interest for an
analysis or required hardware is not available. Furthermore, fine-tuning recognizers
to specific conditions and needs is possible by adjusting simple options.

4.1. Gesture and Posture Detection

For event-based gesture and posture analysis, we make use of the Full Body Interaction
(FUBI) system [Kistler et al. 2012], which has been integrated into our framework.
Overall, three categories of body postures and gestures are supported by FUBI where
more complex behaviors are detected as ensembles of more elementary behaviors:

1. Static postures: These describe specific relations between the tracked joints and
consequently the configuration of a part of the skeleton. An example is the “catapult
stance,” where both hands are positioned behind the head with the elbows facing
outward.

2. Gestures with linear movement: These describe a linear movement with a partic-
ular direction and speed of one or more joints. An example includes the lean forward
posture shift, where the position of the joint corresponding to the torso is moving
forward.

3. Combined postures and gestures: These consist of a set of static postures and/or
gestures with linear movement that are combined according to specific time constraints.
An example includes the start of an opening-up procedure [Pease 1988], which consists
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Table |. Expressivity Features as Calculated by the Social Cue Recognition Module

Audio Feature Description

Energy/Power Represents the dynamic properties of a movement (e.g., weak vs. strong). It is
calculated from the first derivative of the motion vectors in all three dimensions

Fluidity Differentiates smooth movements from jerky ones. This feature aims to capture

the continuity between movements. It is calculated as the sum of the variance of
both hands’ motion vectors’ norms

Spatial extent Modeled as the space used for gesturing in front of the recorded person. It is
calculated as the maximum Euclidean distance of the position of the two hands

Overall Represents the quantity of the movement (passive vs. active). It is calculated as

activation the sum of the motion vectors’ norm of both hands

Temporal Represents the duration of a gesture (short vs. sustained). The duration of each

extent gesture is computed from the starting and end points synchronized with the

recording time in the SSI framework

of a posture with arms and legs crossed followed by a posture with legs uncrossed and
feet placed in a neutral position.

To this end, we defined a set of behavioral primitives, which includes the absolute
and relative positions of the hands/feet, the distance between hands/feet, the absolute
and relative positions of the elbows/feet, touches of the body with the hands, and head
movements. Based on the behavioral primitives, we created a repertoire of:

1. Typical hand positions: Hands together at a particular height of the body, neck
touch with left/right hand, head touch with left/right hand, head touch with both hands

2. Characteristic leg configurations: Standing or sitting with legs apart, closed, or
crossed

3. Characteristic arm configurations: Standing or sitting with spread arms at a
particular height of the body, arms close to body at a particular height, arms stemmed
in hips, and arms behind the head with elbows facing outward

4. Common postures for the upper trunk: Leaning forward and leaning backward

5. Common head movements: Looking away, head nods, head shakes, head tilts

FUBI comes with an XML-based posture and gesture specification language that
enables a declarative definition of postures and gestures to be recognized in a particular
application using the FUBI framework. In our previous work [Baur et al. 2013a], we
investigated the reliability of our predefined set of FUBI recognizers, achieving a mean
detection rate of 88.64%

4.2. Movement Expressivity

In addition to a mechanism for the detection of postures and gestures, our system
provides measurements for their quality in terms of expressivity features. Based on
the work by Wallbott [1998] and Caridakis et al. [2006], we decided to compute the
expressivity features seen in Table I as indicators of how a person is perceived.

4.3. Facial Expressions

For detecting head poses and facial expressions, we make use of the capabilities of
the Microsoft Kinect SDK, as well as the Intraface Face Tracker [Xiong and De la
Torre 2013] and Fraunhofer’s Shore [Ruf et al. 2011] (see Figure 6). We implemented
threshold-based trigger mechanisms for the realization of specified events. To detect
smile occurrences, we use the facial expression “happy” computed by Shore. Once this
facial expression exceeds a certain intensity threshold, our system reports a smile
occurrence. Smiles are important social cues because they are able to convey a broad
range of emotions in addition to happiness, such as friendliness, anxiety, and others
[Kraut and Johnston 1979; Harrigan and Taing 1997].
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Fig. 7. Detection of face regions using eye tracking glasses within our system for humanoid robots (with
human-like faces), virtual characters, and humans.

4.4. Eye Tracking

To further investigate gaze behavior in human—agent interaction, we implemented sup-
port for eye-tracking devices in form of the Eyetribe® and SMI* stationary eye trackers
and Eye-Tracking Glasses (ETGs) in our online recognition module. The ETGs are
equipped with an additional camera showing the user’s point of view, which, combined
with algorithms for facial feature detection (see Section 4.3) enable us to detect and
analyze the interlocutor’s face from the user’s perspective as well as determine the
user’s gaze type.

Figure 7 shows an example of this approach: matching gaze coordinates to specific
gaze areas. Pease [1988] discriminates three basic types of gazing in a social interaction:
Power gaze (green triangle above eyes), social gaze (blue triangle between eyes and
mouth), and intimate gaze (red triangle between eyes and chest).

Business/ Power gaze: When having discussions on a business level (e.g., a job inter-
view or a negotiation), one can imagine a triangle on the other person’s forehead. By
keeping the gaze directed at this area, a serious atmosphere is created and the other
person senses that one means business. If the gaze does not drop below the level of the
other person’s eyes, one is able to maintain control of the interaction.

Social gaze: When the gaze drops below the other person’s eye level, a social atmo-
sphere develops. Experiments into gazing reveal that during social encounters the eyes
also look in a triangular area on the other person’s face; in this case, between the eyes
and the mouth. It is nonaggressive and shows comfort.

Intimate gaze: The gaze is across the eyes and below the chin to other parts of the
person’s body. In close encounters, it is the triangular area between the eyes and the
chest, and, for distant gazing, from the eyes to the crotch. Men and women use this
gaze to show interest in each other, and those who are interested will return the gaze.

The analysis of the type of gaze behavior when creating mutual gaze with others pro-
vides further insights. This information can be used, for example, in training scenarios
where prolonged use of the business gaze is of high importance, as in job interviews.

4.5. Voice Features

Another aspect of nonverbal behavior is paralanguage. Even without knowledge about
what a person is actually saying, the way somebody raises her voice, for example,
facilitates a high amount of implicit information. Table II shows the range of audio
cues that our recognition system is able to compute in real time. To compute the audio
features’ intensity, loudness, pitch, and energy, we use OpenSMILE [Eyben et al. 2013].
Other features are calculated using PRAAT [Boersma and Weenink 2005; de Jong and
Wempe 2009] algorithms. Both systems have been integrated into the SSI Framework

S3http://theeyetribe.com/.
4http://www.smivision.com/.
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Table Il. Audio Features Recognized by the Social Cue Recognition Module

Audio Feature Description

Voice activity Presence or absence of voice

Intensity, loudness, energy Energy-based features of the audio signal

Pitch value The pitch (F0) of the audio signal

Jitter, shimmer, voice breaks, Quality-of-voice features [Boersma and Weenink 2005] computed

harmonicity from pitch

Length of speech segments The duration in seconds of the user’s speech segments
determined by voice activity detection

Speech rate Rate of user’s speech [Boersma and Weenink 2005]

to process all features in real time. Relevant parts (e.g., only when the user is speaking)
are segmented by voice activity detection to calculate features on utterances of speech.
We further integrated the Microsoft Speech Platform into our system to allow key
word detection for simple answers and backchanneling, as well as agent and scene
control. For example, a user can tell the agent when to proceed with the interaction
after finishing a specific given task or give simple answers like yes or no to alternate
the interaction flow (see Section 5).

5. INTERACTION MANAGEMENT

The application’s interaction management, as well as the agent’s multimodal dialog
behavior, are modeled with the VisualSceneMaker authoring software [Gebhard et al.
2012; Mehlmann and André 2012]. VisualSceneMaker has been specifically designed
for the rapid development and prototyping of interactive performances with artificially
intelligent agents, such as conversational embodied characters [Mehlmann et al. 2011]
and social or collaborative robots [Mehlmann et al. 2014].

We decided to use VisualSceneMaker because it offers two significant advantages
over other approaches for interaction and dialog management that we have taken into
consideration.

First, VisualSceneMaker’s modeling concepts intuitively support recording the
agents’ behavior as well as meta information about the dialog state and discourse
context at any point of the interaction. Second, VisualSceneMaker’s software archi-
tecture easily supports the integration of the other main software components of our
system to which it can propagate information regarding the agent’s behavior in real
time. This enables the subsequent analysis and visualization of the user’s behavior in
alignment with the agent’s behavior as recognized by the social cue recognition module.

In the following, we explain how VSM has been integrated into the overall soft-
ware architecture and how data are exchanged between VisualSceneMaker and the
other main software components. Subsequently, we explain how the modeling concepts
of VisualSceneMaker are taken advantage of for automatically recording the virtual
character’s behavior and discourse context during an interactive performance for the
visualization and high-level recognition with NovA.

5.1. Software Architecture Overview

Figure 8 depicts the essential parts of our application’s software architecture. It shows
the different software components and knowledge bases of VisualSceneMaker and their
integration with the other software components described in this article.

The Modeling Environment (Figure 8 @) consists of a visual editor tool that is used
by the authors to visually and textually specify the interaction and dialog behavior
of the agents. Dialog content is described with a Scenescript (Figure 8 (1) that re-
sembles a movie script and consists of the agent’s utterances and stage directions for
controlling gestures, postures, gaze, and facial expressions. The Scenescript syntax is
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Fig. 8. The software architecture of VisualSceneMaker integrating the main components of our application.

basically a generic specification format for multimodal behavior and can be created
either manually by an author or automatically by external generation modules. While
manually written Scenescripts are commonly used for the prototyping of interactive
performances in an early stage of development, they can easily be replaced by an ar-
tificially intelligent dialogue planning component that allows even more emergence
and variability while often requiring less effort for the specification of behavior. The
possibility of using placeholders in scenes may be exploited to create scenes in a hy-
brid way between fixed authored scene content and variable content, such as retrieved
information from user interactions, sensor input, or generated content from knowl-
edge bases. The interaction logic and dialog structure are modeled with a Sceneflow
(Figure 8 (2), which is a hierarchical and concurrent state chart variant specifying the
logic and temporal order according to which scenes from the Scenescript are played
back and commands of the underlying programming language are executed.

The Execution Environment (Figure 8 ®) is responsible for executing the interaction
model that has been specified earlier (Figure 8 @). For this purpose, it relies on a
run-time interpreter software (Figure 8 (3) that is able to directly call functions of the
underlying implementation language to exchange information with the other software
components. The most important example of such an external functionality in our
application is the NovA Logger component (Figure 8 ). This component provides a
variety of logging functions that are explicitly called from within the interaction model
by the authors or automatically called by the Sceneflow interpreter at specific points of
the execution to let the NovA system know about the context, content, and progress of
the current interactive performance. This information is then used for labeling context
within the NovA user interface. Furthermore, the logger is also used to record events
and activities for online processing with the Social Cue Recognition module.

The Integration Environment (Figure 8 (©) includes those software components
that are integrating VisualSceneMaker with the software components in the Appli-
cation Environment (Figure 8 @©). The interface to the Social Cue Recognition module
(Figure 8 (®) is used with an event handler (Figure 8 (?) that is responsible for receiv-
ing and processing user input events from the recognition modules in the application
environment and to translate them for an adequate reaction in the sceneflow inter-
preter. The communication with the character engine (Figure 8 (%) is realized with
a Sceneplayer (Figure 8 (@), which is responsible for translating the generic behavior
specifications of the Scenescript into the respective action set of the character engine.
It communicates with the character engine via a notification protocol that first re-
quests certain activities of the virtual characters, such as text-to-speech synthesis or
animation scheduling, and afterward awaits their execution by the character engine.
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Fig. 9. A simplified version of the interaction design used in our demonstrator application illustrating
different ways to supply the NovA software with information about the agent’s behavior and the various
kinds of dialogue context knowledge.

5.2. Recording Agent Behavior

Modeling concepts of VisualSceneMaker intuitively support the recording of informa-
tion about the agent’s behavior, the various kinds of dialog context knowledge, and
the progress of the interaction. For example, each parallel process represents a certain
responsibility in the model, such as a cognitive or autonomous behavioral process, and
may be represented as an individual track in the NovA user interface. Furthermore,
the hierarchical decomposition of the model implicitly creates a hierarchy of dialog con-
texts, and the sequential composition usually characterizes the sequence of consecutive
dialog phases within a certain context. Consequently, the parallel, hierarchical, and
sequential structuring of the model usually already implies or prescribes the way that
dialog context and meta information has to be supplied to NovA. Thus, the structure of
the interaction model resembles the annotation scheme and vice versa. Consequently,
based on the modeling concepts of VisualSceneMaker, different mechanisms may be
used to provide the NovA system with information about the agent’s behavior and con-
text knowledge. These mechanisms work analogous to the mechanisms used for the
generation of behavior and the structuring of the interaction model. We now illustrate
these different mechanisms in more detail by explaining different parts of a simplified
version of the dialogue structure used in our demonstrator application, which is shown
in Figure 9.

First, the author of an interactive performance may use a variety of predefined
function calls to the NovA Logger from within the Sceneflow and the Scenescript. These
commands may be used to log the agent’s verbal and nonverbal behavior, cognitive
or emotional states, and arbitrary meta information about the state of the dialog or
expectations for user reactions. These calls to the NovA Logger produce events that are
recorded in an event structure for later annotation, as well as for the automatic analysis
of the user’s reactions to certain actions and his behavior at certain points in time or
during individual dialog phases. In addition, these events are propagated to the same
event board as the behavioral cue events created by the social cue recognition module.
Such events are further processed for a variety of purposes. For example, the temporal
alignment of the agent’s nonverbal behavior with the user’s behavior is automatically
analyzed and evaluated in the social attitude detection module described in Section 6.
In the virtual job interview application of the TARDIS project described in Section 3,
we use the logger’s functionality to record the agent’s nonverbal behavior as well as
the current condition of the dialog during a job interview. The performance of the job
candidate during different dialogue phases is automatically analyzed and subsequently
presented to and discussed with the user. Figure 9 shows a simplified extract of the
interaction model in this application. The dialogue is divided into four consecutive
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Fig. 10. An author may use logging directives within a Scene to provide NovA with arbitrary meta
information.

conditions (Figure 9 €)—Cy). An event is generated via a call to the logger function at
the start and end of each of the conditions. In the Welcome phase (Figure 9 (), the agent
first infers some general knowledge about the job candidate (Figure 9 @) (2), such as the
user’s name and age, and afterward welcomes the candidate. The Welcome phase ends,
and the execution proceeds with the Questions phase (Figure 9 @)), in which the agent
asks a range of questions regarding the capabilities of the job candidate (Figure 9 (3)).
Then, each single question is again recorded via a call to the NovA Logger to be able
to analyze the user’s physiological and nonverbal reactions to each individual question
subsequent to the interview. The dialogue ends with a Smalltalk phase (Figure 9 ©))
in which the agent commends the candidate’s performance, gives some feedback, and
says goodbye (Figure 9 (3@).

In addition to using function calls to the NovA logger in the Sceneflow, an author
may also specify arbitrary logging directives in a Scene. Figure 10 shows an example
in which an author uses log directions directly in the textual description of a Scene
to explicitly create events whenever the agent provokes a certain emotional reaction
in the user. These emotion-eliciting events and the user’s prompt emotional reactions
are later automatically analyzed with NovA to find out if they have achieved their
purpose by upsetting the user. In the example on the left side in Figure 10, three kinds
of information will be logged: (i) What the agent is saying (with start and end time),
(i1) the occurrence of a nonverbal behavior (smile), and (iii) meta information that this
sentence is a compliment. Tags are defined in a dictionary and depend on the character
rendering engine.

5.3. Detecting Bidirectional Cues

In addition to the explicit recording of information using specific actions in a Scene or
function calls to the NovA logger in the Sceneflow, there is a further implicit mechanism
used to provide information to the NovA system. While a Scene is scheduled on the
character engine, the scheduling algorithm notifies the start and end event of each ges-
ture animation, facial expression, or synthesis of a spoken utterance to the Sceneplayer,
which then automatically forwards these events to the NovA system. When a user is
performing a specific social cue, a possible question for the analysis of this behavior is
if this social cue is a response to a stimulus. For example, does the user nod his head
because she is trying to encourage the interlocutor in what they are currently talking
about? Rich et al. [2010] investigated four bidirectional cues—namely, backchannel-
ing, mutual and directed gaze, and adjacency pairs. We adapted these for our anal-
ysis as a starting point, but we nevertheless want to mention that in inter-human
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Fig. 11. The Sceneplayer implicitly records the beginning and the end of utterances and nonverbal behaviors.
This allows setting them in relation to the user’s social cues. Considering temporal alignment allows the
creation of bidirectional cues, such as mirroring or mutual gaze.

interaction, there are many more of such bidirectional cues that have to be considered.
Examples are mirroring, declarative pointings, or turn-taking signals. Combining the
agent events with events received from the Social Cue Recognition module (Section 4)
enhances the automated analysis and annotation process.

The example in Figure 11 illustrates how the NovA system combines behaviors of
the user and the agent, as well as the context, to detect bidirectional cues. Following
the example in Figures 9 ¢, and 10, VisualSceneMaker provides the information that
the actual discourse context is the condition smalltalk. Furthermore, according to the
agent’s scene script, the system is provided with the meta information that the agent’s
actual utterance is a compliment. The agent is looking at the user’s face directly before
starting to speak. If the user returns the gaze within a certain timespan (1.6 seconds,
according to Rich et al. [2010]) by looking at the agent’s face, the system will label
a successful mutual gaze. Similarly, the system recognizes the mirroring of a smile.
For example, as the agent shows a smile and the user smiles back within a predefined
timespan, as visualized in Figure 11, this bidirectional behavior (mirroring) will also be
labeled. A high number of bidirectional cues increases the dynamics of a conversation
and is considered to reflect high engagement, which will be discussed in the next section.
Additionally, because meta information about the topic and the utterance are present,
the automated analysis of such social cues is enhanced by including this information.
In this case, the system would suggest that this is a friendly and polite smile, as this
is a natural and expected reaction to a compliment. Performing or not performing
such expected behaviors also impacts the system’s calculation of social attitudes, as
described in the next section.

6. INFERRING HIGHER LEVEL SOCIAL ATTITUDES

To analyze the user’s social attitude, we combine social cues, bidirectional behavior, and
context information. To determine such higher level concepts, we suggest the use of
a probabilistic model, more specifically Dynamic Bayesian Networks (DBN) [Murphy
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2002], which are updated online using the social cues detected by the Social Cue
Recognition module and the agent cues received from the Interaction modeling module
as evidences. We illustrate the functionality using Engagement as an example, which
is a good indicator of critical situations in social interactions. This approach might also
be used to compute other social attitudes (e.g., dominance, self-efficacy, rapport) in an
analogous way.

According to Sidner and colleagues [Sidner et al. 2004], Engagement “is the process
by which two (or more) participants establish, maintain and end their perceived connec-
tion during interactions they jointly undertake.” In a day-to-day sense, engagement is
related to showing attention and interest in a conversation. For example, Pease [1988]
provides a number of examples to demonstrate how engagement is portrayed by body
postures and movements. Typically, engagement is shown by an orientation of the body
and the face toward the interlocutor, whereas an orientation of the body and face away
from the interlocutor may be interpreted as a sign of disengagement. Furthermore, cre-
ating a high amount of mutual and directed gaze, backchanneling, and adjacency pairs
indicates a high amount of engagement [Rich et al. 2010]. There are also specific hand
gestures that reveal whether a listener is engaged or not. For example, engaged people
typically touch their chin without bracing the head. A slight variation of this gesture
would, however, reveal the opposite. Bored people may also touch their chin. But in this
case, the hand typically fully braces the head [Pease 1988]. As seen in these examples,
nonverbal signals cannot be straightforwardly interpreted in every case. Considering
that the interpretation of nonverbal behavior is often hard to read even for humans, an
automatic recognition of social attitudes from low-level social signals is a particularly
challenging task. An important aspect of how humans interpret nonverbal signals cor-
rectly is the context of the situation. As a consequence, to automate the analysis and
interpretation of low- and high-level features, context-awareness is of vast importance.
Based on the inputs of the interaction management component, we make use of the
discourse and interaction context to improve the interpretation of nonverbal behavior.
A typical network designed to recognize Engagement consists of several unconditional,
observed nodes that describe the evidences and probabilities monitored by the social
cue recognition module and the interaction modeling component and are constantly
updated by the system in real time. These evidence nodes feed into conditional nodes
that estimate a higher level statement based on the recognized cues. Observed as well
as conditional nodes lead to the final child node, which models a social attitude. The
Bayesian networks used in our system can be modeled with existing tools, such as Ge-
Nle.? Figure 12 shows the diagram of a simplified Bayesian network meant to recognize
Engagement.

Social cues, as well as the agent’s behavior cues and the perceived context informa-
tion, are represented with unconditional parent nodes (Arms Crossed, Overall Activa-
tion, Lean Forward, Look Away, Head Nod, ..., Agent Speaking, Agent looking at user,
..., Context). Bidirectional cues are represented by hybrid nodes that are influenced
by agent and user behavior and the alignment of both, as described in Section 5.3. For
easier illustration, only Mutual Gaze and Backchanneling are presented in the figure.
Unconditional and hybrid nodes are updated by the Social Cue Recognition component
and the interaction modeling tool in real time. These parent nodes influence inter-
connected conditional nodes that represent subconcepts (Participation Cues, Behavior
Cues), which finally lead into the outcome Engagement node. The network is recalcu-
lated every update cycle (e.g., every 500ms). The output of the network delivers a value
between 0.0 and 1.0, which represents a continuous assertion about the presence of

5http://genie.sis.pitt.edu/.
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Fig. 12. A simplified illustration of a Bayesian network to determine engagement while considering bi-
diretional and context information.

the modeled social attitude. A Bayesian network can also have multiple final states,
or, alternatively, multiple networks can be calculated in parallel.

An important concept behind inferring higher level social attitudes is to make it
easier to point out critical incidents during the interaction. For example, this could help
a social coach in a post-interaction analysis find critical situations faster. The outputs of
the social attitude detection are annotated alongside other behavioral and interaction
cues in NovA’s user interface. Illustrating examples will be given in Section 7.4. As a
prospect for future research, another imaginable use case for the high-level outputs
of this component is providing an agent with the possibility to react and adapt to the
user’s behavior more naturally in real time.

7. NOVA’S USER INTERFACE

The graphical UI of NovA [Baur et al. 2013b] was developed following the requirements
of tools for annotating human social interactions. It offers automated annotations on
multiple tracks based on a user-defined coding scheme that has been, in our case,
adapted to the situation of a human—agent dialogue. It visualizes specific behavior pat-
terns of the interaction and the relation between the user’s and the agent’s behaviors.
Figure 13 gives an overview on the graphical user interface. The next subsections take
a more detailed look at the specific modules of the UI.

7.1. Video Panel

The video panel (Figure 13(A)) plays back the recordings of the interaction. For the
recording of the user, traces for each joint of the skeleton may be shown on demand
in the video by manually selecting them. Their movement is visualized in three di-
mensions, whereby the z-value is represented by the corresponding alpha value in the
trace. In addition to the Kinect video and additional high-quality camera recordings
of the user, NovA is also capable of playing back the video and audio recording of the
agent, which allows a direct reference between both interlocutors.

It further supports the playback of point-of-view videos (e.g., from ETGs; see
Figure 14). Users also have the option to create heat maps based on eye tracking
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Fig. 13. NovA’s graphical user interface. In this instance, data for a user and a virtual agent have been
loaded. It shows both recordings (A), pie charts for expressiveness features (B), movement heat-maps (C), the
waveform graph with voice activity detection events (G), the timeline graph showing automatically created
annotations of behavioral cues (F), the hands height graph (E), and the agent behavior graph showing the
agent’s speech and animation outputs (H).

Fig. 14. An instance of NovA’s video panel showing two videos: a user wearing eye tracking glasses (left
video) when interacting with a virtual agent. Additionally, his point-of-view video (right video) is shown
with a heat-map overlay based on eye tracking data. The buttons present from left to right: last section, last
annotation, play/pause, stop, record, open, next annotation, next section.

data to analyze gaze behavior. By further adding an additional video (e.g., a record-
ing from another perspective), NovA is capable of synchronously replaying up to four
videos at a time. When selecting a particular point in any of the graphs, the video
position moves to the corresponding point in time so that videos and graphs are always
synchronized. It is also possible to directly jump to the next/last annotation, as well as
next/last section.
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Fig. 15. Examples of pie chart diagrams for energy and the height of the user’s hands that visualize user
behavior for a selected section. The figure also shows movement heat maps for two alternative scenes,
showing differences in gesticulation. The left user kept his hands basically calm and spread apart, while the
right user was fidgeting a lot with his hands.

7.2. Panels with Descriptive Statistics

The UI of NovA is capable of generating a variety of descriptive statistics. Examples
include expressiveness features, absolute and relative duration of gestures (e.g., the
duration of open in comparison to closed gestures), relative height of hands, and audio
features. Statistics are visualized, for example, by pie chart diagrams that represent
proportions between the single classes, as seen in Figure 13(B) and Figure 15(A).
These charts refer, depending on the user’s specification, either to a chosen timespan
or dialogue condition or, alternatively, to the complete recording.

In addition, NovA visualizes motion data, aggregated over time with heat maps
(Figure 14 right and Figure 15(B)). For example, the light points in Figure 15(B) show
the most frequent positions of selected joints (head, left/right hand) within a certain
time interval.

7.3. Timeline Panel

NovA supports both continuous and event-based annotations. Consequently, NovA’s
timeline panel includes two kinds of tracks:

1. Tracks that correspond to behavioral characteristics collected frame by frame,
such as motion energy (Figure 13(D)) or the height of the hands (Figure 13(E)), and

2. Tracks that correspond to events, such as the occurrence of particular postures
and gestures (Figure 13(F)), Speech (Figure 13(QG)), or Agent Behavior (Figure 13(H)).

7.3.1. Continuous Annotation. In the case of continuous annotations, a value referring to
a particular feature of a behavior is computed at each point in time. For example, the
expressiveness parameters introduced in Section 4.2 are computed frame-by-frame.
Figure 13(D) displays the energy for selected joints of the user. The single joints are
distinguished by different colors. The user’s movements can be easily recognized by the
peaks in the curves, where higher peaks indicate more energetic movements.

Furthermore, the height and distance of particular joints, such as the hand joints,
are calculated frame by frame. For instance, we make use of a height-of-hands graph
(see Figure 16) that visualizes the height of both hands in relation to the torso. Values
above zero refer to movements above the torso, such as head touches, whereas values
below zero indicate that the person is keeping his hands down. The distance-of-hands
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Fig. 16. Continuous annotation of the hands’ height in relation to the torso and to each other.

graph, which visualizes the distance between the two hands of a person in the x and
z dimension, looks similar. Peaks in this graph represent a large distance between the
two hands, whereas points close to zero on the y axis indicate that the two hands are
close to each other. The distance-of-hands graph may also be regarded as a measure-
ment for the spatial extent of hand gestures. The height-of-hands and the distance-of-
hands graphs also allow us to explore how the two hands of a person are synchronized
with each other.

Another example of a frame-by-frame annotation is the representation of the wave-
form corresponding to the audio signal (Figure 13(G)). Phases with high peaks indi-
cate high intensity (e.g., a loud voice), whereas phases without peaks represent silent
phases. Currently, the audio signal is used to determine whether the analyzed person
is speaking or listening, which is also represented with event-based annotations.

7.3.2. Event-Based Annotation. In the case of event-based annotation, the annotations
are triggered by specific events corresponding to particular user or agent behaviors
or bidirectional behaviors. According to McKeown and Sneddon [2014], the standard
method for annotating data is to have fixed and known time segments associated
with a descriptive label. In our system, agent events deliver start and end boundaries
automatically, as they are triggered by the interaction modeling component. However,
to recognize and label the user’s behaviors, our event recognizers use strictly defined
rules to detect event boundaries: The FUBI framework for gesture recognition tries to
to map predefined concatenations of poses, which have to be performed in a certain
chronological sequence. These strict definitions do not leave space for interpretation
because requirements for the gesture event are either met or missed. The same applies
to eye tracking events because the inspection of a region of interest within the face is
a boolean decision. For facial expression events, we rely on a pretrained module with
thresholds that have been shown to perform well in practical applications.

Figure 13(F) shows the tracks for the selected user behaviors, where the single tracks
refer to a particular behavior type. To be able to analyze relationships between the be-
haviors of the user and the agent, two separate sets of tracks have been included. The
user set contains annotations for the following behavior types by default: hand-to-head
gestures, upper-body gestures, head poses, leg postures, and body shifts. The set for the
agent contains speech annotations (e.g., spoken text) and behavior annotations (e.g.,
played animations). Annotation schemes are fully customizable to the user’s needs.
Therefore, a user of the system can choose the cues that belong to a certain category
of behavior types and also add or remove cues. Self-defined FUBI gesture recogniz-
ers will automatically be added to the annotation scheme by default. Each annotation
includes additional information, as shown in Figure 17, that may be displayed on
demand. Depending on whether the category of the annotation is a gesture/posture,
a voice activity, or an action by the agent, information windows vary. For gestures,
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Fig. 17. Detailed information for each annotation depends on the annotation being a gesture/posture (left),
a spoken utterance (middle), or agent behavior (right).

calculated expressiveness parameters, as well as descriptions of possible interpreta-
tions are shown (Figure 17, left). Voice activity annotations include calculated audio
features (with differences to mean values) for the specific utterance (Figure 17, cen-
ter). Agent behavior annotations contain either the full content of a spoken utterance
or the displayed animation (Figure 17, right). In the case of recognition errors or the
necessity of adding additional annotations that are not covered by the automated cod-
ing procedure, NovA offers the possibility of manually adding or deleting event-based
annotations or editing their temporal position and duration with intuitive mouse ges-
tures. Furthermore, we created export functions for event-based annotations to other
tools like ELAN or to SSI machine learning annotations for training models based on
labeled data.

7.4. lllustrating Examples

In this section, we present two examples to illustrate behavior analysis in NovA.
Figure 18 illustrates how the system determines the level of engagement of the user,
showing the interface with detected annotation labels and continuous graphs.

On the left (a), the participant has an open body posture while looking toward the
agent and orientating his body in the same direction; (b) shows the user in a neutral
position. The right part of the figure (¢) demonstrates the outcome when the participant
uses body language specific to low engagement (see Section 6), such as leaning back,
looking away, and crossing the arms. In this instance, bar charts represent the outcome
of the engagement recognition for each calculation, which is performed every second.

The second example shows a typical interaction with a virtual agent. Referring to our
description in Section 5, the agent behavior timeline (Figure 19(a)) shows annotations of
the agent’s speech and animation events, while the annotations of the user’s behavior
are presented alongside on the lower timeline (Figure 19(b)). The segments below
the engagement graph (Figure 19(c)) represent the different conditions/phases of the
interaction, received from the interaction modeling component. As seen in Figure 19,
the interaction starts with a Welcome phase. While the participant begins with closed
body language, she partly opens up during the Welcome phase as she continues talking
with the agent, which raises the level of engagement. When it comes to the phases
Elaboration and Questions & Answers, she turns back to a half-closed body posture
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Fig. 18. Comparison of detected cues for high (a), medium (b), and low engagement (c).

Fig. 19. Analysis of a bidirectional interaction with a virtual agent. The figure illustrates the tracks that
show the logged behavior from the agent (a), the user (b), and the engagement graph (c¢) with automatically
created annotations of phases (Welcome, Elaboration, Questions & Answers, and Smalltalk).
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Table IlI. Procedure of User Study over 3 Days

\ Experimental Group (EG) \ Control Group (CG)
Day 1 | Mock Job Interview Mock Job Interview
Day 2 | interaction with training system | training with printed job interview guide
Day 3 | mock job interview mock job interview

by crossing one arm in a side position. Finally, the agent tells her she did well, and
she turns to talk with the experimenters in the room, smiling and showing an open
posture, which increases the detected engagement.

The data from this example were picked from real-world recordings that were taken
within the TARDIS project. In the next section, we describe our experiences with the
system in field study.

8. USE CASE STUDY AND DISCUSSION

We evaluated the performance of the system’s single components as part of our previous
work in various studies and conditions [Gebhard et al. 2014; Baur et al. 2013a; Damian
et al. 2013; Porayska-Pomsta et al. 2014]. To show the usefulness of the system for
coaching, we decided to evaluate the approach as a whole and—most importantly—in
the field with pupils and practitioners, instead of in a controlled lab study. The highlight
of our approach is the integration of social signal processing techniques with interaction
modeling in combination with an easy-to-use visualization interface. Consequently, we
found it important to evaluate the visualization and analysis tools not in isolation, but
as parts of an integrated interactive system.

To evaluate the impact of the training and coaching system, we conducted a study
over the course of 3 days at a modern secondary school (Mittelschule Stadtbergen, Augs-
burg, Germany) using the TARDIS game application presented in Section 3. Within
the TARDIS game, NovA serves to analyze the learner’s social cues when interacting
with a virtual recruiter during a virtual job interview training with respect to dialogue
dynamics and context information.

The participants in the study were 20 pupils (10 male and 10 female) in their final
or prefinal graduation year, aged between 13 and 16 (mean = 14.37; SD = 0.94) who
had been categorized by their teachers as being at risk of exclusion. Most of them
already started looking for employment. Two professional career counselors from the
Career Service of Augsburg University volunteered to support us in the study. The
main objective of the system was to evaluate the impact of the TARDIS game and
the NovA coaching interface on the pupils. Furthermore, we were also interested in
seeing the reception such a system receives from both students and teachers to get a
first impression of the feasibility of a long-term deployment of technology-enhanced
training systems in schools.

8.1. Procedure

The user study was conducted over the course of 3 days. An overview of the procedure
can be seen in Table III. For each session, pupils were picked up from their classroom.

On the first day, each student participated in a mock job interview led by one of
the professional career trainers (see Figure 20). Career trainers were instructed to be
as objective as possible and to focus on the nonverbal behavior of the participants.
Two interviews were carried out in parallel in separate rooms, with each lasting for
approximately 7 minutes. After each mock interview, both career trainers and pupils
filled in questionnaires A and B respectively (presented later). The purpose of these
first interviews was to establish a baseline regarding the job interview performance of
the pupils before their interaction with the system.
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Fig. 20. Mock interviews were performed on day 1 and 3 with professional career counselors.

Fig. 21. Setup of the system with a participant acting with the TARDIS Game and during the debriefing
session with the NovA user interface.

—Questionnaire A: On a 7-point Likert scale career trainers rated the pupil’s (i) overall
performance, (ii) recommendation for the job based on his or her behavior, (iii) appro-
priate usage of smiles, (iv) appropriate usage of eye contact, (v) appropriate usage of
gestures, as well as the pupil’s (vi) nervousness, (vii) interest, and (viii) focus.

—Questionnaire B: Pupils rated on a 7-point Likert scale whether they thought they
(i) performed well in the interview, (ii) were nervous, (iii) used a lot of filler words such
as “er” or “uhm”, (iv) were not focused, (v) were aware of their nonverbal behavior,
and (vi) performed appropriate nonverbal behavior.

On the second day, pupils were randomly assigned to either the Control Group (CG)
or the Experimental Group (EG) (N(CG) =9, 5 female, 4 male; N(EG) = 10, 4 female,
6 male). The data of one participant in the CG had to be removed due to extraordinary
circumstances on the first day of the study resulting in nervous and unfocused behavior
(accompanying a friend to the hospital after a minor accident before her first session).

The EG interacted with the TARDIS Game and the NovA coaching interface. The
system was installed in two typical class rooms, which allowed parallel sessions. The
participants were seated at a school desk on which a 22-inch monitor was positioned.
A Microsoft Kinect was placed behind the monitor at a height of approximately 1.5 m
from the ground and a distance of 1.5 m from the participant. During the interaction
with the training game (see Figure 21, left), the user was wearing a SHURE WH20
microphone that was paired with a TASCAM US322 audio interface. Recordings were
performed on desktop computers with Intel Core i7-3930k processors. Each training
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Table IV. Mean Values of Control Group (CG) and Experimental
Group (EG) on First and Third Day

Day 1 Day 3
CG EG CG EG

Questionnaire A
Overall performance | 4.44 490 | 5.33*  6.20"
Recommendation 4.55 4.70" | 5.33 6.20"

Smiles 4.44 4.20* | 5.33 5.70*
Eye contact 4.44 4.60% | 5.66 5.70%
Gestures 3.60 2.80 |4.00 4.10
Nervousness 4.33 4.00% | 3.55 2.70*
Interest 5.00 5.00 |5.55 5.80
Focus 5.00 5.10 | 5.55 5.90

Questionnaire B
Overall performance 4.66 4.60 |5.33 5.20

Nervousness 4.77 4.20% | 4.33 2.20*
Use of filler words 4.88 3.40 |4.22 3.00
Not focused 2.77 3.10 | 2.44 2.40

Aware of n.v. behavior | 5.00 5.00 |5.77 5.40
Performed n.v. behavior | 5.22 4.70 | 5.77 5.10

session lasted for about 15 minutes, split between game interaction and debriefing.
During the session, their nonverbal behavior was recorded and analyzed by the system.
A debriefing phase followed each interaction with the game. In this phase, a researcher
assisted the pupils in reviewing the interaction using the NovA coaching interface (see
Figure 21, right). However, the researcher was only allowed to repeat the information
already provided by the system and provide no further interpretation. This was done
to avoid having the expertise of the researchers impact the study.

Pupils in the CG were reading a printed job interview guide® for the same amount
of time that the EG interacted with the system. The written guide was published
by a renowned German youth advisory institution with which the school regularly
cooperates for their employment preparation classes.

On the third day, a second set of mock job interviews with the professional career
trainers was conducted with each participant. Pupils of both groups (EG and CG) were
brought to the career trainers in random order, and the trainers were unaware to which
condition the pupils were assigned during the second day. After each mock interview,
career trainers and pupils filled in the same questionnaire they filled in during day 1
(Questionnaires A and B, respectively). This allowed us to make a direct comparison of
the participants’ performance between day 1 and 3.

8.2. Results

Overall, we recorded 40 mock-interviews and 10 interactions with the TARDIS system.
Analyzing the first day of our experimental setup, no significant differences were found
in questionnaires A and B using the independent two-tailed t-test to compare pupils
who were later assigned to either join the EG or CG. These results suggest that there
were no prior differences between the groups in their rating by the career counselors
as well as in their self-assessment. Table IV shows the mean values of the rating on
the first and third days. Questionnaire A was filled in by the counselors, questionnaire
B by the participants. Significant differences between groups on a particular day are

Shttps://www.aok-on.de/bayern/berufseinsteiger/beruf-zukunft/koerpersprache-im-vorstellungsgespraech/.
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Fig. 22. Practitioners’ ratings of day 1 (left) and day 3 (right) comparing CG and EG. Dimensions marked
with * present significant differences between the two groups.
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Fig. 23. Practitioners’ ratings of CG (left) and EG (right) across days 1 and 3. Dimensions marked with *
present significant differences between the two days.

printed in bold and marked with *. Significant differences within groups between days
are printed in italic and marked with *.

Comparing the two groups again after the third day revealed interesting insights.
Pupils who interacted with the training system were rated better by the career coun-
selors on all dimensions compared to the CG (see Table IV). (Please note that a
lower score for nervousness is considered better.) An independent two-tailed t-test
with Bonferroni-Holm error-adjusted significance levels yielded statistically signifi-
cant differences for the career counselor’s ratings on overall performance (p = 0.004,
a = 0.006). A strong trend was also found for the recommendation dimension
(p = 0.012, @ = 0.007). Figure 22 summarizes the findings for Questionnaire A. For
the pupils’ self-assessment, results show that members of the CG rated themselves
slightly better than the EG although not significantly.

To evaluate the improvement of performance for each group individually, we com-
pared the results within groups between days 1 and 3 (see Figure 23).

Pupils of the EG were rated better on all dimensions by the career counselor on the
third day compared to the first day (see Table IV). Performing paired two-tailed t-tests
(again with Bonferroni-Holm error-adjusted significance levels) revealed significant
differences for the dimensions recommendation (p = 0.005, « = 0.006), overall per-
formance (p = 0.006, « = 0.007), nervousness (p = 0.006, « = 0.007), eye contact
(p=0.007, « = 0.010), and smiles (p = 0.012, « = 0.013). Pupils’ self-reports revealed
significant differences on the nervousness dimension only (p = 0.001 « = 0.008), with
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participants rating themselves as being less nervous on the third day compared to the
first day.

Pupils of the CG were not rated significantly better in any category when comparing
day 3 to day 1 (see Table IV). Also, no significant improvements were found in the
self-reported questionnaires.

For the experimental group, we further asked about the participant’s impressions
right after interacting with the system on day 2:

—User Experience Questionnaire: Pupils rated on a 7-point Likert scale whether they
(1) found the video self-reflection with the NovA Coaching interface useful, (ii) had
the impression that they learned from the self-reflection, (iii) would use the training
system for job preparation, (iv) found the gaming cards helpful, and (v) had fun
playing the game.

The participants rated that they had fun playing the game with a mean result of 5.6,
which we consider a good result for a training and learning environment. The pupils
further rated the helpfulness of the game cards highly (mean = 6.4), which suggests
that pupils are thankful for direct guidelines for specific conversational topics, which
we assumed by designing the application. Pupils rated that they would use the system
at home to prepare for a real job interview with a mean = 6.1. The post-interview with
the NovA coaching interface also received high ratings for helpfulness (mean = 5.7)
and learning effect (mean = 5.5).

8.3. Discussion

The analysis of the questionnaire data on the first day of our experiment revealed
no significant differences, which suggests that the pupils were comparable in their
job interview performance. We can thus consider differences observed on the third
day between the groups to be caused by the training completed on the second day. In
general, both groups improved from the first day to the third. This is not surprising,
considering the fact that all participants received some sort of training in job interviews
over the course of 3 days. However, only for the EG were the differences significant.
Furthermore, comparing the two groups on the third day, the EG was rated significantly
better in terms of overall performance than the CG. This suggests that the technology-
enhanced training had a greater effect on the pupils’ job interview performance than
the traditional method. We consider this encouraging, especially since the reading
material the CG was using on the second day is issued by a respectable local youth
organization and is regularly used by our cooperating school.

These findings are also reflected by the within-group analysis of both groups com-
paring the first and the third day of our experiment. Although both groups were rated
better by the career counselors on the third day, only the EG showed significant differ-
ences on the dimensions in terms of overall performance, recommendation for the job,
smiles, eye contact, and nervousness. Because the goal of any job interview training
technique is to increase the user’s chances for employment, we consider these results
as motivating. The only statistical difference found in the pupils’ ratings was the self-
reported nervousness of the EG. This is also interesting because it indicates that the
virtual job training environment might help users feel more comfortable during job
interviews. The system also left a good impression on the teachers who stated “us-
ing the system, pupils seem to be highly motivated and able to learn how to improve
their behavior.” As a possible reason for this, they mentioned the technical nature
of the system, which “transports the experience into the pupil’s own world” and the
technology-enhanced debriefing phase “makes the feedback much more believable.”

Pupils seemed to like interacting with the system as well. One participant even
asked for permission to photograph the game cards so she would be able to study them
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at home. Furthermore, that particular pupil had a job interview after her session on
the second day, which led to a successful employment at a local fashion store chain.
Although we certainly cannot draw any conclusion regarding the impact of the training
on this fortunate outcome, it only goes to show how pertinent such training exercises
are for this particular user group. Especially during the debriefing phase with the
NovA coaching interface, pupils seemed eager to explore the effects of their behavior. A
participant stated: “It was weird to see myself in the software in the beginning. At first I
didn’t want to watch it, but in the end it was really helpful. I tried to be less nervous, and
I concentrated on my posture and facial expressions in the second role-play interview.”
We believe if pupils were exposed to the system for a longer period of time, their job
interview performance could be improved even more than shown by our experiment.

Even though we showed the suitability and effectiveness of our system with the
use-case job interview application, we would like to point out that the techniques and
concepts could be generalized to other scenarios involving not only virtual characters
but also physical robots or other intelligent conversational agents. Examples are smart
homes, automotive systems, elderly care, education, or similar areas. While such adap-
tations require adjustments in the interaction scripts and Sceneplayer communication
protocols to the respective system and, depending on the scenario, adaptations in the
social cue recognition module, the overall concept remains the same.

We also would like to address some of the weaknesses of the system that still need
to be considered. A large problem when analyzing user behavior is recognition perfor-
mance. Compared to offline classification, our social cue recognizers are required to
work in real time for as many users as possible, independent of sex, age, body size, or
other factors. We designed all recognizers to work user-independently, but neverthe-
less, they are still limited by hardware restrictions to some extent. That said, subtle
movements are hard to automatically detect with the current hardware available if
we do not want to put extra sensors on the users’ bodies. Body-worn sensors possibly
lead to high intrusion and also cause additional stress, and therefore we tried to avoid
them as much as possible. For the TARDIS game especially, we used game cards to
give advice on how to behave during different phases of an interview. This is, on the
one hand, helpful for users of the system because they learn what behavior they should
show, but, on the other hand, it limits the amount of social cues from which we can infer
social attitudes. For the selection and the automated high-level interpretation of social
cues, we rely on various models extracted from social theories. These models may vary
in integrity and controversiality, but they deliver a practical starting point for the au-
tomated analysis of human nonverbal behavior. Context information described in this
article is limited to the actual conversation. It is also possible to consider classical con-
text information from the area of mobile computing, such as location- and time-based
information for the analysis of interaction in future work.

9. CONCLUSION

In this article, we presented a system for the automated analysis and annotation of
social interactions between humans and conversational agents. To consider the inter-
action context during the interpretation of social cues, the system combines a social cue
recognition module with an interaction modeling component. The social cue recognition
module extracts human behavioral cues in real time, while the agent’s interaction cues
are logged by an interaction modeling component. In addition, the interaction modeling
component allows us to track meta information on the dialogue, such as the topic of
the conversation.

By combining this information, our system infers higher level social attitudes to point
out the most critical parts of the interaction, but also to allow the agent to adapt to the
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user. This is used to automatically label corpora and to create automated statistical
analyses.

As a use case, we presented the TARDIS project, in which the nonverbal behavior
of young job seekers is analyzed while interacting with a virtual recruiter. In a field
study, we showed that a combination of real-time behavior recognition and visualization
are useful in social coaching. Participants who interacted with the system improved
significantly compared to the control group that used traditional preparation methods.
In this project, NovA’s primary use is the recognition of behaviors, as well as debriefing
and post-hoc analysis of social interactions. It allows users to reflect on their behavior
and thus learn to perform better in social situations. Furthermore, it helps to point out
significant differences in behavior over different phases of an interaction.

Our system supports researchers from multiple disciplines to design interaction stud-
ies with conversational agents to get deeper insight into human behavior in modern
Human-Computer Interface (HCI) applications. Also, automated behavioral analy-
sis and coding can help researchers in the annotation of corpora by reducing their
workload.

Even though automated annotation from social signal processing techniques pro-
vides many advantages for objective labeling of corpora, it is still a young discipline
that relies on the availability of accurate sensory devices. For specific sensors, such
as ETGs, the necessity of wearing them can lead to a high intrusion factor that may
have negative influences on the naturalness of the interaction. Furthermore, the sen-
sor setup requires a certain expertise to assure correct tracking, which is necessary for
automated recognition. Given the fact that modern sensors have difficulties detecting
subtle movements, it is not possible at this stage to recognize all nuances of human
behavior. To address this, our system can be extended with new devices and algorithms
using plug-ins. Furthermore, our annotation interface supports manual annotations
for any cues that are not covered by automated recognition. Nevertheless, the current
recognizers deliver a huge amount of information on human behavior, which is an im-
portant step toward entirely automated multimodal analysis and annotation of human
behavior in interactions.

To maximize our contribution to the research community, we made the NovA user
interface available for download at Attp://openssi.net/nova. Furthermore, all recogni-
tion modules have been integrated in the OpenSSI Framework (http://openssi.net/).
Visual Scenemaker is also open source and available for download at htips://
github.com/Scene Maker/VisualScene Maker.
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