Graphalytics:
A Big Data Benchmark for Graph-Processing Platforms

Mihai Capota
Delft University of Technology
m.capota@tudelft.nl

Arnau Prat-Pérez
Universitat Politécnica de
Catalunya
aprat@ac.upc.edu

ABSTRACT

Graphs are increasingly used in industry, governance, and
science. This has stimulated the appearance of many and
diverse graph-processing platforms. Although platform di-
versity is beneficial, it also makes it very challenging to select
the best platform for an application domain or one of its im-
portant applications, and to design new and tune existing
platforms. Continuing a long tradition of using benchmark-
ing to address such challenges, in this work we present our
vision for Graphalytics, a big data benchmark for graph-
processing platforms. We have already benchmarked with
Graphalytics a variety of popular platforms, such as Giraph,
GraphX, and Neo4j.

1. INTRODUCTION

Graph data is increasingly used in industry, governance,
and science. Generic big data processing platforms, such as
Hadoop, can process graphs, but are generally slow for chal-
lenging graph-processing algorithms [3, 4] or graph datasets [4,
7]. Consequently, many competing graph-processing plat-
forms, such as Giraph and GraphX, have recently emerged.
Selecting the right platform for a particular application is
a difficult process, because performance depends not only
on the processing platform, but also on the workload, that
is, the algorithm being executed and the graph data itself.
Benchmarking graph-processing platforms is thus an impor-
tant and timely topic. Several studies have compared the
performance of graph processing platforms [3, 4, 7] using
multiple algorithms and/or datasets, but the de facto bench-
marking standard is currently Graph500, which is limited to
a single algorithm applied to a synthetic graph model. In
this work, we present our vision for Graphalytics, a big data
benchmark for graph-processing platforms.

We envisage that Graphalytics will be used to benchmark
mostly distributed processing platforms, like Giraph, be-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Tim Hegeman
Delft University of Technology
t.m.hegeman@tudelft.nl

Orri Erling
OpenLink Software, U.K.

oerling@openlinksw.com

Alexandru losup
Delft University of Technology

a.iosup@tudelft.nl

Peter Boncz
CWI, Amsterdam, The
Netherlands.
p.boncz@cwi.nl

cause they are best suited for running data-intensive algo-
rithms on large datasets (we also refer to them as “graph
programming frameworks”). However, we also support in
Graphalytics traditional graph databases and include an im-
plementation for one such platform, Neo4j. Furthermore, we
plan to support databases for RDF semantic web data and
are working on implementing support for OpenLink Virtu-
0s0, a popular RDF database.

Benchmarking big-data graph-processing platforms is chal-
lenging both methodologically and practically [6]. Defining
the workload is a methodological challenge: the algorithms
should be meaningful for real-world processing, but also
stress the choke points of the systems under test; and the
datasets should be representative of real-world graphs, but
also be suitable for processing on systems of different scales.
The algorithms used so far in graph-processing benchmarks
are either simplistic, such as the BFS traversal algorithm
used in Graph500, or detailing operations that are specific to
(distributed) graph databases [1, 16]. They do not match the
diverse operations and algorithms seen in distributed graph-
processing platforms [4]. Similarly, an analysis of choke
points, which exists for graph database operations [16], is
still lacking for distributed graph-processing platforms. The
datasets used in Graph500 are generated with a synthetic
structure, R-MAT, which requires extensions to represent
well the detailed interconnections and attributes present in
the real graphs [10, 17].

Benchmarking also raises numerous practical challenges:
designing a benchmarking system that can accommodate
new graph-processing platforms. Academic studies generally
rely on custom experimental setups that are not portable to
new platforms. A benchmarking harness that supports a
variety of graph-processing platforms could reduce signifi-
cantly the engineering effort needed for benchmarking new
platforms or in new environments.

Our vision is to address these and other [6, 9] methodologi-
cal and practical challenges in Graphalytics, a benchmarking
effort that assembles expertise from the Linked Data Bench-
mark Council (LDBC) and the Standard Performance Eval-
uation Corporation (SPEC) communities. Toward creating
an universal benchmark for graph-processing platforms, in
this work our contribution is two-fold:

1. We present the Graphalytics benchmark design (Sec-
tion 2). We focus on three important steps forward:
toward a choke point analysis for selecting algorithms,

toward a scalable graph generator whose output mim-
ics the characteristics of real-world graphs, and toward
a benchmarking harness with an API that enables de-
velopers of graph-processing platform to easily inte-
grate their platforms into the benchmark.

2. We present real-world results obtained with the cur-
rent tools of the Graphalytics benchmark (Section 3).
The results include a performance analysis of the data
generator, results from benchmarking three generic and
graph-processing platforms, and statistics about the
evolution of code quality.

2. GRAPHALYTICS: OUR VISION

Our partners in LDBC are helping us develop Graphalyt-
ics using a choke-point based design. We analyze processing
platforms to identify low-level technical challenges encoun-
tered during graph processing and include in Graphalytics
the workloads that stress the choke points. In addition to
representative real-world datasets [4], we include in Graph-
alytics synthetic datasets generated using the LDBC Social
Network Benchmark (SNB) data generator (Datagen) [18].
While developing Graphalytics, we are also enhancing Data-
gen with the capability of mimicking the structure of arbi-
trary real-world datasets. Additionally, Graphalytics fea-
tures an advanced benchmarking harness that offers a uni-
fied execution environment for all graph processing plat-
forms, and consistent reporting that facilitates comparisons
between all possible combinations of platforms, datasets,
and algorithms.

2.1 Choke Points

In order to make a benchmark representative, one should
base its design on a survey of real-life scenarios and datasets.
Such an approach transplants real-life workloads into a syn-
thetic, isolated, benchmark setting. However, relying purely
on the analysis of existing workloads one may fall victim to
a kind of tunnel vision: it may lead to benchmarking only
those tasks that already are being performed using existing
graph data management systems, thereby excluding tasks
where currently technology currently is not yet useful.

Besides allowing the systematic comparison of existing
systems, benchmark design can also have the goal of ad-
vancing the state of the art, and stimulating the emergence
of new kinds of systems. Therefore, a “choke-point” based
methodology for benchmark design was devised in the LDBC
project. The main idea is to involve system architect experts
in database design, typically people who were involved in de-
signing existing systems, to identify the crucial technological
challenges that they are struggling with. These challenges
are called “choke points”. When devising the benchmark
workload with scenarios based on real-world usage, the tech-
nical experts again assess in how far these scenarios cover
the identified choke points. This may lead to introducing
additional complexities in the scenarios. In case of Grapha-
lytics some of the choke points we have identified are:

Excesive network utilization. Graph database sys-
tems and programming frameworks can either use a single-
server or distributed approach, where the latter have an abil-
ity to scale the system resources with the complexity of the
task. This is an attractive property, however it comes at
the price of having to distribute graph computations over
multiple machines and communicate between them. Con-

sequently, network messages need to be sent and received,
and if the communication needs of all nodes and their CPU
exceed the available network capacity, the system becomes
network work bound and ceases to scale. As such, graph
workloads call for methods that may reduce the network
communication in distributed algorithms. Examples of pos-
sible directions are replication schemes, data compression,
and advanced (e.g., min-cut) graph partitioning methods.
Large graph memory footprint. Graph database sys-
tems often prefer to work in main memory, the main reason
being that the complex structure of graphs makes it hard to
use sequential or block-based access methods; hence graph
algorithms tend to prefer random access memory (RAM).
With reference to the previous point, single-server systems
by design have a limitation in the amount of RAM such that
for them the compact representation of graphs directly af-
fects their scalability. Hence, there is a drive for new and
compact graph storage and compression and summarization
algorithms that allow to store more data in less RAM.
Poor access locality. The lack of temporal and spatial
locality in many graph algorithms, even when only consid-
ering RAM based systems provides system level challenges.
Modern computers are known not to perform well on inten-
sive random-access workloads, because RAM latencies are
high in comparison with CPU clock speeds and therefore
the ability of on-chip caches to reduce the amount of mem-
ory access is quite important. Further, the emergence of
flash storage (and in the further future persistent memory
as well) provides opportunities to scale beyond RAM, but
such platforms in fact even more strongly punish workloads
without locality. As such, we foresee a tendency to optimize
graph processing methods by looking at the fine-grained ac-
cess patterns, and making them more local in terms of tem-
poral locality on the small block (cache line) level.
Skewed execution intensity. Graph algorithms in dis-
tributed systems typically work in iterative fashion, often
with synchronization barriers in between. Therefore, it im-
portant to assure that the diverse computing nodes at each
iteration have exactly the same amount of work, in order
to get full resource usage and achieve linear scalability. Of-
ten, when handling complex graph processing tasks, on real-
world graphs, which are highly interconnected by also highly
correlated in nature, one observes a skew in the workload,
however. Additionally, iterative algorithms often have a
varying workload in the diverse iterations, e.g., those that
compute a converging metric (e.g., PageRank or clustering)
in the later iterations typically perform less work (e.g., less
vertices in the graph remain active). Depending on what
the stopping condition of the algorithm is, there can some-
times be many of such final iterations with little work. In
such situations, the network latency and synchronization
very easily becomes dominant over CPU cost, and decreases
the overall efficiency of the system. Given this choke point,
possible techniques that may arise are: adaptive graph re-
partitioning or replication to achieve better work balance,
or the use of asynchronous distributed query processing,
and/or adaptive switching of distributed computation to
central computation to handle iterations with little work.
These choke points are just illustrations and are not final.
The idea of LDBC is to design the Graphalytics workload
such that all these issues arise at some point, thereby re-
warding innovative systems that in the future will address
these challenges.

Dataset Nodes Edges Gl CC Avg. CC Asrt. g R
Amazon 0.3M 12M 0.2361 04198 0.0027 g =
Youtube 1.IM 3.0M 0.0062 0.0808 -0.0369 2 .
LiveJournal 4AM 35M 0.1253 0.2843 0.0452 &8 g
Patents 3.8M 16.5M 0.0671 0.0757 0.1332 "% pamgen i Datagen
Wikipedia 24M 5.0M 0.0022 0.0526 -0.0853) Zeta el Geometric

1 2 5 B)egrezg 50 100 200 1 Dsegree 10 20

Table 1: Characteristics of real graphs.

2.2 Data Generation

The choke points described depend not only on the algo-
rithms but also on the data. Besides the size of the dataset,
a comprehensive benchmark must also consider other fea-
tures observed in real data, such as the node degree distri-
bution or structural properties like the clustering coefficient
or the degree of assortativity, as these can severely affect
the performance of the systems under test. For example, a
graph with a large clustering coefficient (which indicates the
presence of a community structure) opens interesting pos-
sibilities such as to be laid out in memory to have better
cache locality [18].

By observing real data, we see that real graphs are diverse
with regard to these characteristics. In Table 1, we show the
characteristics of a set of real datasets', including their size,
their global and average clustering coefficient and their de-
gree of assortativity. We note that there is not a particular
dominant configuration, but the configuration space is het-
erogeneous. We also analyzed the degree distributions of
these graphs, by fitting them with several existing models:
Zeta, Geometric, Weibull and Poisson. We observed that,
depending on the graph, the best fitting model changed, be-
ing sometimes very different from the shape of the observed
degree distribution as in the case of the Amazon graph.

Ideally, for a graph analytics benchmark one would de-
sire a comprehensive battery of real graphs with different
characteristics, mainly for two reasons: the first is that us-
ing real graphs reinforces the credibility of the benchmark,
specially if these come from different domains, as a domain
based classification of the benchmarked systems is later pos-
sible. Second, it allows to properly characterize the behavior
of the systems when these characteristics are scaled indi-
vidually, allowing to enclose the scenarios where the tested
systems perform well (both in terms of the data and the
algorithms executed). However, as shown in Table 1, real
graphs are very diverse, and finding a set of them covering
a rich enough configuration space is not feasible in practice,
thus in Graphalytics we propose to complement the usage of
real graphs with synthetic graphs that follow the characteris-
tics observed in real data. For this reason, we propose using
Datagen [16], the data generator used in the LDBC Social
Network Benchmark. Datagen is an evolution of the S3G2
Data Generator [15], which simulates the activity of a social
network realistically, where nodes are structurally correlated
based on their attributes. Furthermore, it is built on top
of Hadoop, thus being capable of generating large datasets
using commodity clusters. Datagen fulfills many of the re-
quirements of a data generator for Graphalytics: it generates
a social network, which is easy to understand for the users of
the benchmark; it can produce very large datasets, which is
necessary as our target systems are typically used for large
scale data analysis; and it is deterministic, guaranteeing re-

'"Downloaded from SNAP http://snap.stanford.edu

Figure 1: Node degree of Datagen graphs compared
to Zeta and Geometric models.

producible results and fair comparisons.

However, in order to match the needs of Graphalytics, we
need to extend Datagen’s functionality in the following way:

Multiple degree distributions: In its current version,
Datagen supports only a single distribution following that
observed by the engineers of Facebook [19]. To support
the ability to generate graphs of different characteristics,
we have extended Datagen with the capability to dynami-
cally reproduce different distributions by means of plugins.
We have already implemented those for the Zeta and Geo-
metric distribution models, but more will be added in the
future as more real graphs are analysed. Figure 1 shows the
actual degree distribution of two graphs generated follow-
ing the Zeta (o = 1.7) and Geometric (p = 0.12) distribu-
tions respectively, compared to the expected result. We see
that Datagen can reliably reproduce these two distributions.
Furthermore, for those graphs whose distributions cannot be
theoretically modeled, we have implemented a plugin to feed
Datagen with empirical data to be reproduced, in a similar
way Datagen already does for the Facebook distribution.

Different structural characteristics: The current out-
put of Datagen has an average clustering coefficient of about
0.1 with a negative degree assortativity. These are a con-
sequence of the correlated edge generation process imple-
mented in Datagen and cannot be determined a priori. In
Table 1 we see that, in real graphs, the values of average
clustering coefficient range from 0.05 to 0.63, and we ob-
serve graphs either with positive or negative assortativity.
As explained above, these structural characteristics highly
influence some of the choke points, thus being able to config-
ure them is of high importance. Therefore, for Graphalytics
we plan is to extend the current windowed based edge gener-
ation process of Datagen, to allow the generation of graphs
with a target average clustering coefficient, but also to de-
cide whether the assortativity is positive or negative, while
preserving the degree distribution of the graph. We envision
this process as a post processing step where the graph is it-
eratively rewired until the desired values are achieved, in a
hill climbing fashion. For similar techniques on this topic
please refer to [8] and [20].

2.3 Advanced Benchmarking Harness

In addition to the choke-point based design and integra-
tion with Datagen, the main advantage of Graphalytics over
previous graph processing performance evaluation tools is
its advance benchmarking harness which facilitates the ad-
dition of new datasets, algorithms, and platforms, as well as
the actual performance evaluation process, including result
collection and reporting.

Figure 2 presents an overview of the Graphalytics ar-
chitecture. The Benchmark Core module implements the
benchmark harness that binds together Graphalytics. There
is a Platform-specific algorithm implementation module for

http://snap.stanford.edu

Report
Generator

g | Configuration

R

Output System
Validator Monitor

Platform-specific
algorithm
implementation

Graph processing
platform

Dataset
Generator

Figure 2: Graphalytics architecture.

each supported platform. The System Monitor is responsi-
ble for gathering resource utilization statistics from the SUT.
The Output Validator checks the outcome of the benchmark
to ensure correctness. The Report Generator produces the
main outcome of Graphalytics, a detailed report on the per-
formance of the SUT during the benchmark, which includes
all relevant configuration information. Additionally, Graph-
alytics has a database for Datasets, which includes precon-
figured graphs ready to be used with Graphalytics. Further-
more, users can generate using the Datagen Data Generator
new synthetic datasets to suit the requirements of their ap-
plications. The design also includes a database for Results
that is hosted by us online and accepts results submissions
from Graphalytics users.

We plan to stabilize the development of Graphalytics and
offer an API that will enable third party developers to port
our benchmark to their graph processing platforms. From a
high-level perspective, adding a new platform to Graphalyt-
ics consists of implementing the algorithms, adding a dataset
loading method, providing a workload processing interface,
and logging the information required for results reporting.

For users, benchmarking with Graphalytics involves four
steps. Add graphs. We provide a set of graphs for download
through the Graphalytics website. We also provide configu-
ration files associated with these graphs. Alternatively, users
can generate synthetic graphs using Datagen. In this case,
users must write their own configuration files. Configure
the platform. Users must setup the platforms and configure
Graphalytics according to this. For example, for platforms
running on top of Hadoop, the HADOOP_HOME path must be
set. Choose the workload. By default, Graphalytics runs
all the algorithms implemented on all configured graphs. If
users want to run a subset of the algorithms, they must
define a run that includes only the algorithms and graphs
of interest. Run the benchmark. Graphalytics includes a
Unix shell script that triggers the execution of the bench-
mark. After the execution completes, the benchmark report
is available in the local file system.

3. GRAPHALYTICS AFTER 9 MONTHS:
EXPERIMENTAL RESULTS

Although Graphalytics is still in an early phase of devel-
opment, it has already enabled us to enrich our previous
graph benchmarking results with new datasets and plat-
forms. Moreover, it enables us to benchmark platforms on
different clusters and collect the results without minimal
configuration and no source code modifications.

3.1 Datagen scalability

—~ 34| Cluster
L ¥ H| — Single
(9] 5]
e Yo}
[-
N
o
T
2 T T T T T T

100 200 500 1000 2000 5000
Edges (Millions)

Figure 3: Scalability of Datagen.

For Graphalytics we are only interested in a subset of
the social network data generated by Datagen, namely the
person-knows-person graph, so we disabled the generation
of other data. Figure 3 shows the times to generate in-
creasingly larger graphs, on two different systems. The
first system consists of a small cluster with 4 nodes, each
of them with an Intel Xeon E5530 2.40 GHz 4-core CPU,
32 GiB RAM and 2 TB HDD each. The second is a single
node, more modern machine with 2 Intel Xeon E5-2630 v3
2.40 GHz 8-core CPUs, 256 GiB RAM and a 2 TB HDD. In
the first case, executions were performed using 8 cores, while
in the second where done using 16 cores, as these configura-
tions provided the best performance. On the one hand, the
single node machine is faster than the cluster for smaller
graphs, were computation is mostly CPU bound. It can
generate a 1.3B edge graph in about 3 hours. This means
thats with a relatively affordable machine, one can gener-
ate graphs of a considerable size. On the other hand, even
though the cluster is slower for smaller graphs, it provides
better scalability when data size grows as the computations
become I/O bound, thanks to the greater disk bandwidth
provided by the four disks. Therefore, one can increase the
size of a cluster horizontally with relatively cheap hardware
to generate large datasets.

3.2 Supported Algorithms and Platforms

We have included so far in Graphalytics five algorithms
that are representative for real-world usage and stress the
choke points of platforms. The general statistics (STATS)
algorithm counts the numbers of vertices and edges in the
graph and computes the mean local clustering coefficient.
The breadth-first search (BFS) algorithm traverses the
graph starting from a seed vertex, visiting first all the neigh-
bors of a vertex before moving to the neighbors of the neigh-
bors. The connected components (CONN) algorithm de-
termines for each vertex the connected component it belongs
to. The community detection (CD) algorithm detects
groups of nodes that are connected to each other stronger
than they are connected to the rest of the graph [12]. The
graph evolution (EVO) algorithm predicts the evolution
of the graph according to the “forest fire” model [11].

We provide in Graphalytics implementations for the fol-
lowing four graph-processing platforms. Hadoop MapRe-
duce is an Apache open-source project implementing the
MapReduce programming model introduced by Google [2].
Specifically, we use Hadoop MapReduce version 2, which
runs on top of the Hadoop YARN resource manager. Gi-
raph is an Apache open-source project implementing the
Pregel programming model introduced by Google [14]. In
Pregel, a type of bulk synchronous parallel processing (BSP),
computation is vertex-centric and progresses in steps sepa-

Graph500 23 Patents SNB 1000
0 F F
0 6ye E e 1564 @
CFe 99 e 27 TR g
T e & C* e
| E E 10 E
10" = L)
v F F
o E g 6196 Ko 6298 3
e X 8
o F F
10" - = =
10 r r
N 8243 E E
g 10* -) 46.47 c 1208 [= 26.78 g
ERN T T S | SR z
2oy o s ° Y
10" = = =
10° I I
¥ 10112 F F 5038
10° * F 29.43 F L m
10° 4 F1 26 323 191 5
10 e e
10‘ _: F F
10° 'S 'S 86349
o F F .
v Foo 157 Kl a
10 —i_— i_— &Y 82 i_—
10" = = =

J J PR T J N J J PRI
e@"“ @av‘\tk ap?\e‘&“ o GW“ G‘”Q‘\tr\a?“ew oot 0\(99w\ @av\\tl\@"w& o
Platform

Figure 4: Runtimes for all implementations of all
algorithms running on Graph500 23, Patents, and
SNB 1000 graphs. Missing values indicate failures.
Logarithmic vertical axis.

rated by synchronization barriers. All vertices execute the
same function in parallel during a computation step, using as
input messages received from other vertices. GraphX [21] is
a graph-processing library built on top of the generic Apache
Spark distributed processing platform. GraphX represents
graphs as Spark resilient distributed datasets (RDDs) and
provides built-in operation such as retrieving the number
and degree of vertices. Additionally, GraphX supports iter-
ative algorithms implemented according to the Pregel pro-
gramming model. Neo4j is an open-source non-distributed
graph database. We include it in Graphalytics to provide
perspective on the performance and scalability of the dis-
tributed platforms we benchmark. Neo4j is not able to pro-
cess graphs larger than the memory of a single machine,
but its performance is generally the best due to its non-
distributed nature.

3.3 Results for the Supported Platforms

In Figure 4, we summarize the runtimes of the currently
supported Graphalytics platforms on several graphs. The
runtime measures the complete execution of an algorithm,
from job submission to result availability, but does not in-
clude ETL. Comparing ETL times of different platforms is
left as future work. For MapReduce, Giraph, and GraphX
we use 11 machines with 24 GiB RAM and dual Xeon E5620
CPUs, of which 10 are used for HDFS and computation, and
1 is used as a master node for Hadoop, ZooKeeper, and our
benchmarking system. Neo4j is benchmarked on a machine
with 192 GiB RAM and dual Xeon E5-2450 v2 CPUs.

Analyzing the results, we note that GraphX is significantly
slower that Giraph for the CONN algorithm (~ 3x), al-
though our implementation uses the built-in GraphX con-
nected components algorithm. At the same time, GraphX
is unable to process some of the workloads that Giraph can

Graph500 23 Patents SNB 1000

272
® 2508
.

1§7

10° -
n
a 10°
w
£ 2
X< 10

51

* 1081
g 64

L]

A o

108
: 15 2 2P

o T
oy Ty

13
[}

10' e

T T T e I T T T e I T T T T
S o Sk W S o
G e \4\69?@6 WP e e W"’WA WP e @ ‘m)‘?@d e
Platform

Figure 5: Thousands of traversed edges per sec-
ond (kTEPS) for all implementations of CONN al-
gorithm running on Graph500 23, Patents, and SNB
1000 graphs. Missing values indicate failures. Log-
arithmic vertical axis.

process, indicated by missing values in the figure. This is
surprising considering they both use the Java virtual ma-
chine and should be using similar amounts of memory. At
the same time, MapReduce can process all the workloads,
if given enough time. In our experiments, MapReduce can
be two orders of magnitude slower than Giraph and GraphX
(e.g., respectively 6179 s, 86 s, and 99 s for BFS on Graph500).
However, MapReduce does not need to keep graph data in
memory during processing and thus does not crash even
when processing the largest workload. Due to time con-
straints, MapReduce was not able to complete some algo-
rithms on Graph500.

In Figure 5, we show the CONN performance of all plat-
forms using the traversed edges per second (TEPS) metric.
The size of the processed graph is included in this metric,
which reveals the influence of the graph characteristics on
performance. For example, we note that Giraph is more than
an order of magnitude faster computing the connected com-
ponents in the SNB 1000 graph than in the Patents graph
(6272 KTEPS vs. 364 kKTEPS).

3.4 BFS onaDBMS

We use the OpenLink Virtuoso column store to exper-
iment with performance dynamics of BFS graph traversal
in a DBMS. Virtuoso features column-wise compression,
vectored execution, and intra-query parallelism with opti-
mized partitioned aggregation. Virtuoso supports SQL and
SPARQL and offers an SQL extension for transitive traver-
sal, which we use in this experiment. The operation counts
the reachable vertices starting from a single point (vertex
ID 420). The query is:

select count (*) from (select spe_to from
(select transitive t_in (1) t_out (2) t_distinct
spe_from, spe_to from sp_edge) derived_table_1

where spe_from = 420) derived_table_2;

The transitive modifier of derived_table_1 causes each value
of the output column spe_to to be recycled as a binding
for spe_from, the input column for deriving the next set of
reachable vertices. The state of the computation is kept in a
partitioned hash table, with one thread reading/writing each
partition, with an exchange operator between the lookup of
outbound edges and the recording of the new border, as the
source and target of any edge most often fall in a different
partition.

The dataset is SNB 1000. The query execution profile
shows 2.28 x 10° random lookups (getting the outbound
edges of a vertex), with 2.89 x 10® edges end points vis-
ited. The query takes 7 s on a 12-core, 24-thread dual Xeon
E5-2630 (2.3 GHz). This gives a rate of 41.3 MTEPS. The

CPU utilization is 1930% (out of 2400% max). The CPU
profile indicates 33% of cycles on the hash table containing
the border, 10% for the exchange operator (get partition
hash of a vector, split into per partition vectors by hash)
and the remaining 57% for column store random access and
decompression.

3.5 Code Quality

Traditional benchmarks are a set of specifications (pro-
cess, benchmarking kernels, input data, etc.) accompanied
by reference implementations for the supported platforms.
Unfortunately, while the standards of the specifications have
constantly improved, the standards for the reference imple-
mentations have not. We believe that modern software engi-
neering practices should be used: in Graphalytics, the code
for the reference implementations is accompanied by code
quality reports, such as code complexity, bugs discovered
through static analysis, etc.

All significant modifications to Graphalytics are peer re-
viewed by developers and are automatically tested by our
Jenkins continuous integration server. Furthermore, all code
commits are statically analyzed by SonarQube, which au-
tomatically signals regressions, such as an increase in the
number of potential bugs.

4. RELATED WORK

We have already compared, throughout this work, the
Graphalytics benchmark with other benchmarks proposed
for graph-processing [7, 13, 22]. In summary, Graphalytics
is much more comprehensive and ambitious than previous
work: it supports more diverse and realistic datasets [4, 16],
more diverse and realistic algorithms [4], and reference im-
plementations for more platforms (preliminary results ob-
tained for 10 platforms [4, 5]). Moreover, Graphalytics in-
cludes in its vision a fundamental understanding of choke
points, extensions to the dataset generation, and an ad-
vanced benchmarking harness that will evolve into a public
databased of useful results.

5. CONCLUSION

Benchmarking graph-processing platforms enables system
comparison, tuning, and (re-)design for increasingly more
domains. Responding to a dearth of comprehensive bench-
marking approaches for graph-processing platforms, in this
work we have proposed our vision: Graphalytics.

Conceptually, Graphalytics focuses on diverse datasets
and algorithms, and methodologically it greatly extends the
shortcomings of related work. Novel from previous work,
including our own, Graphalytics focuses on a fundamental
understanding of choke points, extensions to the dataset gen-
eration, and an advanced benchmarking harness that will
evolve into a public database of useful results.

The Graphalytics vision is also pragmatic. The refer-
ence Graphalytics implementation covers currently 4 pop-
ular platforms, and will soon include 6 more platforms for
which we already have shown proof-of-concept implemen-
tations [4, 5]. All reference implementations follow an ad-
vanced software engineering process, in which software qual-
ity metrics are monitored through continuous integration.
Graphalytics aims to become an accepted benchmarking stan-
dard by both the LDBC and the SPEC Research Group
communities, and attract further implementations from the

creators of graph-processing platforms themselves. Grapha-
lytics is hosted at http://graphalytics.ewi.tudelft.nl.

6. REFERENCES

[1] M. Dayarathna and T. Suzumura. Graph database
benchmarking on cloud environments with xgdbench. Autom.
Softw. Eng., 21(4):509-533, 2014.

[2] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2004.

[3] B. Elser and A. Montresor. An evaluation study of BigData
frameworks for graph processing. In IEEE International
Conference on Big Data, pages 60-67. IEEE, Oct. 2013.

[4] Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella,
and T. L. Willke. How Well Do Graph-Processing Platforms
Perform? An Empirical Performance Evaluation and Analysis.
In IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 395-404. IEEE, May 2014.

[5] Y. Guo, A. L. Varbanescu, A. Iosup, and D. H. J. Epema. An
empirical performance evaluation of gpu-enabled
graph-processing systems. In CCGRID, pages 927-932, 2015.
(in print, available online: http://www.pds.ewi.tudelft.nl/
~iosup/perf-eval-gpu-graph-processinglbccgrid.pdf).

[6] Y. Guo, A. L. Varbanescu, A. Iosup, C. Martella, and T. L.
Willke. Benchmarking Graph-Processing Platforms: A Vision.
In ACM/SPEC International Conference on Performance
Engineering (ICPE), pages 289-292. ACM Press, 2014.

[7] M. Han, K. Daudjee, K. Ammar, M. T. Ozsu, X. Wang, and
T. Jin. An Experimental Comparison of Pregel-like Graph
Processing Systems. In VLDB, 2014.

[8] C. Herrera and P. J. Zufiria. Generating scale-free networks
with adjustable clustering coefficient via random walks. arXiv
preprint arXiv:1105.3347, 2011.

[9] A. Iosup, A. L. Varbanescu, M. Capotd, T. Hegeman, Y. Guo,
W. L. Ngai, and M. Verstraaten. Towards Benchmarking IaaS
and PaaS Clouds for Graph Analytics. In Workshop on Big
Data Benchmarking (WBDB), Potsdam, Germany, 2014.

[10] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, C. Faloutsos, and
Z. Ghahramani. Kronecker graphs: An approach to modeling
networks. J Mach Learn Res, 11:985-1042, 2010.

[11] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time:
Densification laws, shrinking diameters and possible
explanations. In ACM SIGKDD, 2005.

[12] I. X. Y. Leung, P. Hui, P. Lid, and J. Crowcroft. Towards
real-time community detection in large networks. Phys. Rev. E,
79:066107, Jun 2009.

[13] Y. Lu, J. Cheng, D. Yan, and H. Wu. Large-Scale Distributed
Graph Computing Systems: An Experimental Evaluation. In
VLDB, 2014.

[14] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A System for Large-Scale
Graph Processing. In ACM International Conference on
management of data (SIGMOD), page 135. ACM Press, 2010.

[15] M. Pham, P. A. Boncz, and O. Erling. S3G2: A scalable
structure-correlated social graph generator. In TPCTC, 2012.

[16] A. Prat-Pérez and A. Averbuch. Benchmark design for
navigational pattern matching benchmarking. Deliverable
3.3.34, LDBC, October 2014. [Online] Available:
http://1ldbc.eu/sites/default/files/LDBC_D3.3.34.pdf.

[17] A. Prat-Pérez and D. Dominguez-Sal. How community-like is
the structure of synthetically generated graphs? In GRADES,
pages 7:1-7:9. ACM, 2014.

[18] A. Prat-Pérez, D. Dominguez-Sal, and J. Larriba-Pey. Social
based layouts for the increase of locality in graph operations. In
International Conference on Database Systems for Advanced
Applications (DASFAA), 2011.

[19] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The
anatomy of the facebook social graph. arXiv preprint
arXiv:1111.4503, 2011.

[20] E. Volz. Random networks with tunable degree distribution and
clustering. Physical Review E, 70(5):056115, 2004.

[21] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica.
GraphX: A Resilient Distributed Graph System on Spark. In
GRADES, pages 1-6. ACM Press, 2013.

[22] Y. Zhao, K. Yoshigoe, M. Xie, and S. Zhou. Evaluation and
Analysis of Distributed Graph-Parallel Processing Frameworks.
Journal of Cyber Security and Mobility, 3:289-316, 2014.

http://graphalytics.ewi.tudelft.nl
http://www.pds.ewi.tudelft.nl/~iosup/perf-eval-gpu-graph-processing15ccgrid.pdf
http://www.pds.ewi.tudelft.nl/~iosup/perf-eval-gpu-graph-processing15ccgrid.pdf
http://ldbc.eu/sites/default/files/LDBC_D3.3.34.pdf

	Introduction
	Graphalytics: Our Vision
	Choke Points
	Data Generation
	Advanced Benchmarking Harness

	Graphalytics after 9 Months:Experimental Results
	Datagen scalability
	Supported Algorithms and Platforms
	Results for the Supported Platforms
	BFS on a DBMS
	Code Quality

	Related Work
	Conclusion
	References

