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ABSTRACT

Real-time dataflow analysis techniques for multiprocessor
systems ignore that the execution of tasks belonging to dif-
ferent operation modes are mutually exclusive. This results
in more resources being reserved than strictly needed and a
low resource utilization.

In this paper we present a dataflow analysis approach
which takes into account that tasks belonging to different
modes often execute mutually exclusive. Therefore less re-
sources need to be reserved to satisfy a throughput con-
straint and a higher processor utilization can be obtained.
Furthermore, we introduce a lock which is used to enforce
mutual exclusive execution of tasks during a mode transi-
tion when beneficial. The effects of mutual exclusive exe-
cution are included in a Structured Variable-Rate Phased
Dataflow (SVPDF) temporal analysis model which is used
to determine whether adding a lock results in satisfaction
of the throughput constraint. This model is generated from
a sequential input specification of the application such that
deadlock-free execution, even after the addition of locks, is
guaranteed.

The applicability and benefits of the approach are demon-
strated using a WLAN 802.11g application which switches
between a detection and a decoding mode. It is shown that
the use of two locks improves the worst-case response times
of 3 tasks such that they can share the same processor, which
improves the utilization of this processor and frees 2 other
processors.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation—complexity measures, performance measures

General Terms

Design, Theory, Verification
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1. INTRODUCTION
Dataflow analysis is suitable for the derivation of the min-

imum throughput of modal real-time stream processing ap-
plications that are executed on run-time scheduled multipro-
cessor systems [25]. An example of modal applications are
packet-based software-defined radio applications that con-
tain a detection and a decoding mode. An application can
remain in a mode for an indefinite amount of time.
In these applications the tasks that execute, often dif-

fer per application mode. However, after a mode switch
some tasks of the previous mode might still execute a few
iterations as a result of data from a previous mode that is
still in the First-In-First-Out (FIFO) buffers and because a
pipelined scheduling strategy is employed.
The effects of mode changes on the schedulability of a

task set executed on single processor systems have been ex-
tensively studied [8,15,16,19,22]. These works require that
mode change control software in the kernel of the operating
system takes care that a new mode change is not started
during a mode change. An exception are dataflow analy-
sis techniques [5, 6, 17, 26] which do allow the start of mode
changes during a mode change. Furthermore, these tech-
niques are intended for multiprocessor systems.
Tasks in different modes are often not active at the same

time and can therefore share resources without interfering
with each other. Dataflow analysis techniques can be used
to analyze this resource sharing for systems in which bud-
get schedulers [18, 25] are applied. These budget schedulers
guarantee a minimum budget during a replenishment in-
terval and thereby guarantee that always, thus also during
mode transitions, at least a minimum amount of processor
time is reserved for the execution of each task. As a re-
sult a single Worst-Case Response Time (WCRT) can be
derived per task at design time. Throughput analysis of the
task graph is based on these WCRTs. The reservation of
the resources simplifies this analysis drastically. However,
dataflow analysis techniques neglect that resources can be
shared when tasks do not interfere which can result in a low
utilization of the processors and often more processors will
be reserved than what would be needed when the mutual
exclusive execution of tasks in different modes would have
been taken into account.
In this paper we present a dataflow analysis approach

which takes into account that tasks execute mutually ex-
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clusive in different modes, which results in a lower resource
reservation and a higher processor utilization. To enforce
mutual exclusive execution when it is beneficial, a new lock
is introduced. This lock allows parallel execution of a group
of tasks, but enforces serial execution between groups. The
lock is inserted by a compiler, which transforms a sequential
specification of the application into a parallel task graph
and an SVPDF model [6]. The lock is inserted in such a
way that all tasks can still execute in the same order as
in the sequential input specification; therefore deadlock free
execution is guaranteed. The generated SVPDF model is a
dynamic dataflow model in which mutual exclusion can be
expressed. This SVPDF model is used to determine whether
addition of a lock results in satisfaction of the throughput
constraint and is used to compute the required buffer capac-
ities.

The remainder of this paper is outlined as follows. First
we position our contribution relative to related work in Sec-
tion 2. In Section 3 we present the basic idea behind our
approach. The different types of mutual exclusivity that
we distinguish are described in Section 4. That mutual ex-
clusivity results in tighter WCRTs is shown in Section 5.
The realization of our lock is described in Section 6. Fur-
thermore, it is shown that the generated parallel task graph
that includes locks is always deadlock-free. Modeling mu-
tual exclusivity in an SVPDF model of the application is
explained in Section 7. The applicability and benefits in
terms of throughput and processor utilization for a WLAN
application are discussed in Section 8. Finally, the conclu-
sions are stated in Section 9.

2. RELATED WORK
In this section we compare our lock with locks described

in literature and discuss other approaches to handle and
analyze mode switches.

Mutual exclusive access to resources is obtained by mak-
ing use of locks. Such locks are usually implemented with
atomic read-modify-write operations such as test-and-set and
load-link-store conditional [4]. These locks are unsuitable for
real-time systems because they are based on a retry mecha-
nism which makes them non-starvation-free [10]. Starvation-
free versions of locks do exist but often incur a much higher
overhead. Examples of starvation-free locks are the Bakery
lock [11] and Szymanski’s mutual exclusion algorithm [20].
The lock proposed in this paper is starvation-free but does
not introduce a high overhead. Key differences with other
locks are that the proposed lock enforces an order in which
groups of task can acquire the lock.

Ordinary load and store operations are used in the Bakery
lock and Szymanski’s mutual exclusion algorithm to guaran-
tee mutual exclusive access. These locks require that sequen-
tial consistency [12] is supported as the memory consistency
model by the multiprocessor hardware. FIFO buffers can
also be realized using ordinary load and store operations [14].
However they require a much weaker memory consistency
model [23] that only guarantees that writes issued by a pro-
cessor complete in the order that they are issued and that
read and writes that access the same memory do not over-
take each other. Circular buffer [2] implementations have
been proposed that can be seen as a generalization of these
FIFO buffers because they allow multiple readers and writ-
ers. The lock proposed in this paper is based on the same
principles as these circular buffers.

Techniques for the prevention of overloads that result in

violation of theWCRTs during the transition between modes
on single processor systems have been deeply investigated
in the real-time literature [8, 16, 22] and a survey of mode
change protocols for static priority preemptive scheduled
systems can be found in [15]. Most of these protocols de-
lay the start of tasks during a mode change. Some of these
works are geared towards servers of which budget sched-
ulers are a subclass [19]. All these approaches assume that
a subsequent mode change is not started before the previous
mode change completes. Furthermore, they are only appli-
cable for acyclic task graphs while the method described in
this paper can handle cyclic task graphs and overlapping
mode changes are supported. Cycles in the task graphs are
a result of data dependencies and of the use of buffers with
a bounded capacity.
Classical dataflow models such as Homogeneous Synchro-

nous Dataflow (HSDF), Synchronous Dataflow (SDF) [13]
and Cyclo-Static Dataflow (CSDF) [3] can only model static
applications, i.e. applications of which their synchroniza-
tion behavior is independent of the input data. Therefore,
these models are unsuitable for the modeling of modal ap-
plications. However, the recently introduced Variable-Rate
Phased Dataflow (VPDF) [26] and Scenario-Aware Dataflow
(SADF) [17, 21] models are suitable to describe modal ap-
plications. Generation of a parallel task graph and a corre-
sponding structured version of the VPDF model, which is
called SVPDF, is presented in [6]. An advantage of this ap-
proach is that the task graph and the corresponding analysis
model are deadlock-free. In this paper we present the mod-
eling of mutual exclusivity execution in the SVPDF model.
This model is used to show that an admissible worst-case
schedule exists that satisfies the throughput constraint im-
posed by the periodic source of the application. A sched-
ule is admissible if all tasks do not execute before sufficient
data and space is available. The production moments of the
data in this worst-case schedule are upper bounds on the
production moments of the tasks in all possible (aperiodic)
run-time schedules. The SVPDF model is generated by a
compiler from a sequential description of the application in
the OIL language.
The dataflow analysis techniques discussed in this paper

are applicable in combination with budget schedulers [25].
Budget schedulers are a subclass of servers that guarantee a
minimum cycle budget in a replenishment interval. In [25]
it has been shown that the worst-case effects of run-time
task scheduling by budget schedulers can be included in fir-
ing durations of the actors of dataflow graphs. A budget
scheduler with priorities is introduced in [18] which allows
reducing the WCRT of one task at the cost of an increased
WCRT of the other tasks. Most budget schedulers are work-
conserving and as a result allocated budget for a task that
is not used by this task becomes available for other tasks.
The budget schedulers used in this paper are a subclass

of the servers used in [19]. The approach in [19] adapts the
parameters of the server during a mode transition by a sep-
arate mode change controller in the scheduling kernel. The
approach described in this paper does apply a different ap-
proach in which parameters of the scheduler are implicitly
adapted due to the fact that resources are not used anymore
by some of the tasks after a mode transition. Furthermore,
the activation and deactivation of tasks is a responsibility
of the tasks themselves and is part of the description of the
application. This description is a sequential program with
while-loops and if-conditions instead of tasks with schedul-
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(a) τa τb τc

Rabc

(b) τa τc

Rac

(c) τb τc

Rbc

Figure 1: Replenishment interval of mutually exclusive tasks

ing parameters and a separate description of the behavior
of a mode change controller. Another important observa-
tion is that we are dealing with a multiprocessor system and
therefore the implementation of a (centralized) mode change
controller would not be straightforward.

3. BASIC IDEA
In this section we present the basic idea behind our ap-

proach. With a didactic example we illustrate that the
WCRTs of repetitively executed tasks can be reduced and
a higher minimum throughput is obtained if information
about mutually exclusive execution is taken into account.
We derive these tasks from a sequential program in which
if-conditions and while-loops are used to describe modes and
mode transitions. Tasks execute data-driven such that vari-
ations in execution time can be exploited [9]. We show
the counterintuitive effect that tasks resulting from differ-
ent while-loops or branches of an if-then-else statement do
not necessarily execute mutually exclusive. We explain why
mutual exclusivity can be enforced with locks without in-
troducing deadlock as a result of that the tasks in the task
graph are generated from a sequential program. We further-
more explain the modeling of the sequence constraints that
result from a lock in an SVPDF model. This model is used
for throughput analysis.

That the WCRTs of tasks can be reduced by taking into
account that tasks execute mutually exclusive is illustrated
with Figure 1. In Figure 1a one replenishment interval is
shown of a budget scheduler in which three slices are avail-
able for respectively the execution of tasks τa, τb, and τc.
These tasks execute until they exhaust their budget after
which they continue their execution in the subsequent re-
plenishment interval. A task voluntarily suspends its exe-
cution in case it is not enabled because there is insufficient
input data or output space to start the execution of the task
after which a task switch occurs. In our example we will as-
sume a budget of one, two, and two time units for tasks τa,
τb, and τc respectively.

The replenishment interval is reduced in case τa and τb ex-
ecute mutually exclusive. The length of the replenishment
interval becomes three in case only task τa executes and four
in case that only τb executes, as shown in Figure 1b and
Figure 1c respectively. A reduction of the replenishment in-
tervals of the tasks results in a reduction of the WCRTs, as
directly follows from the WCRT equation [24] in Equation 1.
In this equation ψi is the WCRT, Ri the replenishment in-
terval, xi the Worst-Case Execution Time (WCET), and Bi

the budget of τi.

ψi “ xi ` pRi ´Biq

R

xi

Bi

V

(1)

During a mode transition it might occur that τa finishes at
the end of its slice and immediately after that a mode switch
occurs after which τb starts its execution. However, this does
not result in a longer WCRT for τa and τb than Rac and Rbc

respectively, as will be explained in Section 5.

z = 0 ;
loop {

loop{
f (out x , out y , z ) ;
g (x ) ;

} while ( x ) ;

loop{
h(out w, out z , y ) ;
k (w) ;

} while (w) ;
} while (1 ) ;

(a) Code example

vf vg

vh vk

yz

x

w

(b) SVPDF model

Figure 2: Mutual exclusion of while-loops

The tasks are derived by a multiprocessor compiler from
a sequential program of which an example is shown in Fig-
ure 2a. Each while-loop in this program corresponds to a
mode of the application. After parallelization a task graph is
obtained. This task graph can be modeled with the SVPDF
model in Figure 2b. Every function in the sequential pro-
gram corresponds to one task in the task graph and every
task corresponds to one actor in the SVPDF model. These
actors are represented by nodes in the SVPDF model. Every
variable in the sequential program is converted in a circular
buffer and each circular buffer corresponds to at least one
edge in the SVPDF model.
To understand the example it is sufficient to assume that

the SVPDF model in Figure 2b has an HSDF-like behavior,
i.e., actors can only fire if at least one token is present on all
its inputs and a token is produced on all outputs when an
actor finishes its firing. We can therefore conclude from this
model that actor vf and vh cannot fire at the same time as
a result of the cycle with one token in the model. This cycle
is a result of that function h in the second while-loop cannot
start before the value y of the first while-loop becomes avail-
able. Also, function f cannot execute for successive execu-
tions before the value z from the second while-loop becomes
available. However, we can also conclude from the model
that actor vg and vk can fire at the same point in time be-
cause they are not part of a cycle with a single token. They
can fire at the same time if there is an input token present
for vg and vk, which can occur after vf has produced a token
on each of its outputs and as a result vh fires and produces
a token for vk before vg finishes its execution. A similar
situation can occur during the execution of the task graph
after τf has produced a data item for τg and then a mode
switch occurs.
Figure 3a illustrates intuitively that executions of tasks

that belong to different modes can execute simultaneously
during a mode transition. Locks can be used to prevent that
tasks belonging to different modes execute simultaneously.
This situation is shown in Figure 3b. This figure also shows
the counterintuitive effect that the mode transition will in
some case occur earlier despite that less tasks execute in
parallel during a transition. The reason is that the WCRTs
of the tasks can be reduced by making use of the knowledge
that they execute mutual exclusively. This results in an
improvement of the minimum throughput as computed with
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Figure 3: Processor usage during a mode switch

dataflow analysis.
Mutual exclusive execution is usually only enforced be-

tween tasks that execute on the same processor. Therefore
even if locks are applied, a mode transition usually starts
on different processors at different moments in time. As a
result, tasks belonging to different modes will execute on
different processors at the same moment in time. The lock
presented in this paper can also be used to enforce mu-
tually exclusive execution of tasks on different processors
which might be beneficial because it can reduce contention
at shared memory ports and thereby reduce the execution
times of the tasks. However, this option will not be detailed
in this paper.

The enforcement of mutual exclusivity with locks results
in additional constraints on the order in which the tasks can
execute. These constraints are modeled with the red edges
in the SVPDF model in Figure 2b. These edges form a cycle
with one token and as a result the firings of all actors in a
block do not overlap with firings of actors in another block.
However the actors in a block can still fire concurrently.

The locks are added in the tasks in such a way that dead-
lock does not occur. This is possible because the tasks and
the task graph are derived from a sequential program which
is deadlock-free by definition. Therefore we can insert the
acquires and releases of the locks according to the order de-
fined by the sequential program that is still a valid order.
Other execution orders of the tasks do not result in a dif-
ferent functional behavior of the tasks because we can rely
on the fact that the task graph that we create can be repre-
sented as a functionally deterministic dataflow model.

v0

2T

v1

2T

v2

T

(a) Without lock

v0

T

v1

T

v2

T

(b) With lock

Figure 4: HSDF model before and after adding a lock

Adding locks can reduce the WCRTs of the tasks but does
not necessarily improve the throughput of the application.
The reason is that the lock enforces besides mutual exclu-
sivity also the execution order as defined in the sequential
program. This execution order might not be the order that
results in the maximum throughput even in the case that

the WCRTs are reduced. For ease of understanding we il-
lustrate this with an HSDF example instead of an SVPDF
model. In Figure 4a an HSDF model is shown in which ac-
tor v0 and v1 execute on one processor and v2 on another
processor. The WCETs of the actors is T and ψ0 and ψ1 is
then 2T under the assumption that each actor has a budget
T . In this case the throughput is determined by the cycle
with the highest cycle mean which is 2T . Figure 4b corre-
sponds to the case that τ0 and τ1 execute mutually exclusive
as a result of a lock and that in the sequential program first
the function that corresponds to τ0 is executed before the
function corresponding with τ1. As a result of the lock ψ0

and ψ1 are reduced to T . However, because the lock enforces
an execution order, additional edges should be added in the
HSDF model which are dotted and colored red in Figure 4b.
These additional edges increase the maximum cycle mean to
3T and reduce the throughput to 1

3T
. This shows that the

decision whether adding a lock is beneficial requires global
analysis of the dataflow model.

4. TYPES OF MUTUAL EXCLUSIVITY
In this paper we distinguish between two types of mutual

exclusivity: intra-iteration and inter-iteration mutual exclu-
sivity.
Tasks are intra-iteration mutually exclusive if there is no

overlap in their execution within one iteration of a while-
loop. An example of such mutual exclusivity is an if-else-
statement in which during one iteration of the loop either
functions in the if-branch or the else-branch execute, but
not both. Another example is if there is a data-dependency
between two statements, preventing them from executing
simultaneously.
Tasks can also be inter-iteration mutually exclusive. This

means that tasks derived from functions located in the same
while-loop do not execute simultaneously when considering
different loop iterations. An example of this type would be
two functions where the first function writes to a variable
read by the second function and vice-versa. In an SVPDF
model such a case can be found if there is a block, modeling
a while-loop, having two actors on a cycle with one token on
that cycle. Tasks that are intra-iteration mutually exclusive
do not have to be inter-iteration mutually exclusive. For
example the two branches of an if-else-statement are intra-
iteration mutually exclusive but due to a pipelined execution
they do not need to be inter-iteration mutually exclusive. In
such a case tasks from both branches can execute in different
iterations of the surrounding while-loop simultaneously.
If tasks in a task graph have intra-iteration and inter-

iteration mutual exclusivity, this can be exploited by the
method introduced in this paper. If tasks are both intra
and inter-iteration mutually exclusive, they always execute
mutually exclusive. The derived SVPDF model can be used
to determine which tasks are mutually exclusive by searching
cycles having one token on them. Exploiting this informa-
tion does not require a change in the task graph. If such
cycles do not exist, the lock introduced in Section 6 can be
used to enforce mutual exclusivity and thus to create mutual
exclusivity.

5. IMPROVED RESPONSE TIME
In this section we show that reduced replenishment inter-

vals can be substituted in the WCRT equation given that
some of the tasks scheduled by a budget scheduler are de-
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activated during a mode change and others are activated.
We will make use of the fact that a budget scheduler allo-
cates budgets to the tasks in a fixed cyclic order. We also
make use of the property that a task returns control to the
scheduler when not enabled.

As described in Section 3 it can be the case that during
a mode transition all tasks scheduled on a processor use
their time-slice immediately after each other. Therefore, the
situation as depicted in Figure 1a can occur. This suggests
that Rabc should be used in Equation 1 which is however not
always the case. Instead the shorter replenishment Rac and
Rbc intervals can be used for τa and τb respectively while for
τc the longer interval Rabc must be used.

The reason that a shorter replenishment interval can be
used for τa and τb is that they are mutual exclusive and
because the WCRT is defined as the maximum time be-
tween enabling and finish of task. We will make use of case-
distinction to show that a valid bound on the WCRT is com-
puted in case we use the reduced replenishment intervals in
Figure 1b and Figure 1c in Equation 1 for the computation
of ψa and ψb.

It is given that τa and τb execute mutually exclusive.
Therefore we know that before a mode change only one of
these tasks is active. As a consequence we can assume that
Rac and Rbc are valid replenishment intervals for τa and τb,
respectively.

When a mode change occurs there can be a transition from
the first mode in which τa is active to the second mode in
which τb is active. After τa finishes its execution it will yield
the processor. As a result τb will receive its budget in Rbc

time. A similar situation occurs for the transition from the
second mode in which τb is active to the first mode in which
τa is active. Here τa will receive its budget in Rac time after
τb finishes its last execution in the previous mode.

Because in all the possible cases the budgets become avail-
able for τa and τb in respectively Rac and Rbc we conclude
that correct WCRTs are obtained when they are used in
Equation 1.
For τc the situation is different than for τa and τb. For

this task it can only be guaranteed that Bc is available in
every Rabc because between two slices for τc there can be an
execution of τa and τb while τc is enabled.
The same reasoning as applied in this section can be used

to proof similar results for the case that an arbitrary number
of mutual exclusive tasks are scheduled together with an
arbitrary number of tasks that are not mutual exclusive.

6. MUTUAL EXCLUSIVITY LOCK
This section describes our realization of the lock and the

code generation done by our automatic parallelization tool.
Furthermore, it presents the proof that the lock insertion
method described in this section does not introduce dead-
lock.

6.1 Realization
We first describe the realization of a lock that is suitable

for the most basic case which is when two tasks are made
mutually exclusive. We then extend this realization for an
arbitrary number of tasks. Finally, we explain an additional
generalization to make the lock suitable for mutual exclusive
execution of groups of tasks.
An OIL program with two modes in which each mode con-

sists of one function is shown in Figure 5a. In this program
the function f is executed for an unknown number of times

loop {
loop{

x = f ( ) ;
} while ( . . .) ;

loop{
g ( x ) ;

} while ( . . .) ;
} while (1 ) ;

(a) OIL program

τf

τg

bx

(b) Task graph

acqMut(L0, 0, τf )
. . .
relMut(L0, 0, τf )

acqMut(L0, 1, τg)
. . .
relMut(L0, 1, τg)

(c) Lock usage

Figure 5: Example containing two modes

after which function g is executed for an unknown number
of times. This is repeated forever. The loop conditions are
left implicit in order to simplify the example. This program
is converted into the parallel task-graph shown in Figure 5b,
where task τf is extracted from function f . Buffer bx is ex-
tracted from variable x .
The realization of the lock is inspired by the implemen-

tation of circular buffers [1, 2]. These buffers can be im-
plemented with ordinary load and store operations instead
of atomic read-modify-write operations which is needed to
make them starvation-free. These atomic read-modify-write
operations are not needed because each shared variable that
is used in the buffer implementation is updated by only one
task.
Similar to a circular buffer, the lock can be used by a

task by calling two functions: acqMut , and relMut . This is
illustrated in Figure 5c. The arguments to these functions
are a lock identifier, the execution order and a reference to
the task. For every lock it holds that tasks using the same
execution order argument can execute simultaneously while
tasks with a different execution order argument execute in
the order indicated by this argument.
The implementation of the lock consists of a head and a

tail pointer for each task using the lock. The head pointer
of a task is incremented during an acqMut call and the tail
pointer is incremented during a relMut call. When the point-
ers reach the end of the array they wrap around to the be-
ginning of the array. Before a head pointer can be updated
to a next location it must be verified that no tail pointer of
an other task points to that location, i.e. the acqMut call
blocks until this is the case. If the function acqMut blocks,
a yield call is executed indicating to the scheduler that the
next task can now use its budget by resuming its execution.

0 1 2

τg τf

(a) Initial pointers

0 1 2

τg τf τf

(b) Head τf updated

0 1 2

τg τf

(c) Tail τf updated

0 1 2

τg τg τf

(d) Head τg updated

0 1 2

τg τf

(e) Tail τg updated

0 1 2

τg τfτf

(f) Wrapping head τf

Figure 6: Head and tail pointer updates for a lock consisting
of two tasks

For the two tasks τf and τg in the example from Figure 5
an array with three elements is allocated. The pointers are
initialized as shown in Figure 6a. The head pointer is vi-
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sualized as pointing upwards and the tail pointer as point-
ing downwards. Initially the head pointer of τf is the only
pointer that can be updated without violating the rule that
the head pointer may not point to the same array element as
the tail pointer of an other task. Thus the acqMut call of τf
updates the head pointer of τf , as shown in Figure 6b. After
the relMut call of τf also the tail pointer is incremented as
shown in Figure 6c. From this figure we can now conclude
that only the head pointer of τg can be incremented, see
Figure 6d. After function g is executed its relMut call will
update the tail pointer of τg as shown in Figure 6e. At this
point only the head pointer of τf can be updated after which
this pointer will wrap around to the begin of the array as
shown in Figure 6f. These steps can be repeated forever.

loop {
loop{

f ( ) ;
} while ( . . .) ;
loop{

g ( ) ;
} while ( . . .) ;
loop{

h ( ) ;
} while ( . . .) ;

} while (1 ) ;

(a) OIL program

0 1 2

τg τf

3

τh

(b) Lock pointer initialization

Figure 7: Example containing three modes

The in the previous paragraph described lock can be made
suitable for n tasks in a relatively straightforward way. This
lock requires an array with n ` 1 locations. Figure 7 shows
such a program containing three modes where all details
about variables are left out for clarity. The corresponding
task graph consists of three tasks and is omitted here due to
its simplicity. The initialization of the pointers of the lock
is depicted in Figure 7b. The conditions under which the
pointers are allowed to be incremented remains as described
in the previous paragraph.

loop {
loop{

x = f ( ) ;
y = g ( ) ;

} while ( . . .) ;
loop{

h(y ) ;
} while ( . . .) ;

} while (1 ) ;

(a) OIL program

τf

τg

τh

bx

by

(b) Task graph

acqMut(L0, 0, τf )
. . .
relMut(L0, 0, τf )

acqMut(L0, 0, τg)
. . .
relMut(L0, 0, τg)

acqMut(L0, 1, τh)
. . .
relMut(L0, 1, τh)

(c) Lock usage

Figure 8: Example usage of the lock having groups of tasks

This lock can be generalized to support groups of tasks
which execute mutually exclusive with other groups of tasks.
An example of an OIL program in which such mutual ex-
clusion can be exploited is shown in Figure 8a. In the OIL
program there are two modes but now with two functions f
and g in the first mode and one function, h, in the second
mode. We construct a task graph from it as shown in Fig-
ure 8b. That the tasks derived from the functions f and g

can execute simultaneously can be seen in Figure 8c. Here,

0 1 2

τh τf ,τg

(a) Initial pointers

0 1 2

τh τf τgτg

(b) Head τg updated

0 1 2

τh τf ,τgτf ,τg

(c) Head τf updated

0 1 2

τh τf τgτf

(d) Tail τg updated

0 1 2

τh τf ,τg

(e) Tail τf updated

0 1 2

τf ,τgτhτh

(f) Head τh updated

Figure 9: Head and tail pointer updates for a lock consisting
of two groups of tasks

the execution order parameter of these tasks is both zero, in-
dicating there is no constraint between the tasks. The main
modification of the lock is that the pointers of the tasks that
belong to the same group, point initially to the same loca-
tion and these pointers can be incremented independently
of the position of the other pointers that belong to the same
group.

Since there are two groups in this example an array of
three elements is created, one element for each group and
a free one. The initial locations for the pointers are set
according to the defined rules and are shown in Figure 9a.
Tasks τf and τg both belong to the same group and can both
move their head. Task τg performs this movement first as
shown in Figure 9b. Now there are two options; the head of
τf or tail of τg. The first option is shown in Figure 9c. Now
both tasks can only update their tail in an arbitrary order
for example first τg and then τh as shown in Figure 9d and
Figure 9e. At this point the only possible movement is the
head of τh as illustrated in Figure 9f. This sequence of head
and tail updates can be repeated indefinitely.

6.2 Code Generation
We now show how such a lock can be used by an automatic

parallelization tool such that tasks execute mutually exclu-
sive. The code between the calls to the functions acqMut

and relMut executes mutually exclusive as dictated by the
rules outlined in the previous section.
For the simple example with two functions in two modes

as shown in Figure 5, the implementation of the extracted
tasks is shown in Figure 10. The acqMut function is the
first statement in the outer while-loop and the relMut func-
tion is the last function such that the first inner loop is
mutually exclusive with the second inner loop. The execu-
tion order argument is derived from the order of the state-
ments in the sequential OIL program. Because f is before g ,
task τf has number zero and τg number one. Basically, an
intra-iteration dependency is added between f and g . If the

do{
acqMut (L0 , 0 , τf ) ;
acqProd (bx ) ;
do{

wr i t e (bx , f ( ) ) ;
} while ( . . .) ;
re lProd (bx ) ;
relMut (L0 , 0 , τf q

} while (1 ) ;

(a) Generated code of τf

do{
acqMut (L0 , 1 , τg ) ;
acqCons (bx ) ;
do{

g ( read (bx ) ) ;
} while ( . . .) ;
re lCons (bx ) ;
relMut (L0 , 1 , τg ) ;

} while (1 ) ;

(b) Generated code of τg

Figure 10: Tasks resulting from Figure 5
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loop {
x = f ( ) ;
i f ( . . .){

g (x ) ;
} else {

h(x ) ;
}

} while (1 ) ;

(a) OIL program

τf

τg τh

bx

(b) Task graph

vf

vg vh

(c) Sequential program
order

Figure 11: Mutual exclusion in a model application de-
scribed by a conditional-statement

lock wraps back to execution order number zero, an inter-
iteration dependency is added.

A similar generation of code can be done for if-statements.
In Figure 11a a simple OIL program with an if-statement is
shown and the obtained task graph after parallelization is
shown in Figure 11b. Both tasks τg and τh read from a buffer
bx. The order from the sequential program is visualized in
Figure 11c. Because the if-else-statement has two branches,
the two possible orders can occur as shown.

Statements in different branches of an if-else-statement
must be in one group if they use the same lock. This is be-
cause deadlock can occur otherwise because there is no se-
quential order defined between statements in two branches.
However, statements in the if-branch are already intra-iteration
mutually exclusive with statements in the else-branch. State-
ments in one branch can be made mutually exclusive using
a second lock.

do{
acqMut (L0 ,

0 , τf ) ;
acqProd (bx ) ;
wr i t e (bx ,

f ( ) ) ;
re lProd (bx ) ;
relMut (L0 ,

0 , τf ) ;
} while (1 ) ;

(a) Task τf

do{
acqMut (L0 ,

1 , τg ) ;
acqCons (bx ) ;
i f ( . . .) {

g ( read (bx ) ) ;
}
re lCons (bx ) ;
relMut (L0 ,

1 , τg ) ;
} while (1 ) ;

(b) Task τg

do{
acqMut (L0 , 1 , τh ) ;
acqCons (bx ) ;
i f ( . . .) {}
else {

h( read (bx ) ) ;
}
re lCons (bx ) ;
relMut (L0 , 1 , τh ) ;

} while (1 ) ;

(c) Task τh

Figure 12: Generated tasks from Figure 11a including a lock

Assume that we indicate that functions g and h should
execute mutually exclusive with function f . Note here that g
and h are already intra-iteration mutually exclusive, but not
inter-iteration and thus an overlap in execution can occur as
a result of pipelining. After adding these functions as one
group in a lock they also execute inter-iteration mutually
exclusive. After adding the lock the implementation of the
tasks becomes as shown in Figure 12. The acqMut call in
these tasks is again the first statement in the while-loop and
the relMut is the last statement. This ensures again that
the entire loop body is mutually exclusive with the loop
body of other tasks. Note here that also the acquire and
release functions for the buffers are placed around the if-
statement. This enables the derivation of an SVPDF model
and guarantees a deadlock-free execution when no mutual
exclusivity locks are used.

6.3 Deadlock-freedom
In this section we explain in more detail why the inser-

tion of the acquire and release calls for the locks will not
introduce deadlock.

loop {
f ( ) ;
g ( ) ;
h ( ) ;
k ( ) ;

} while (1 ) ;

(a) OIL program

vf

vg

vh

vk

(b) Constraints in the
sequential program

vf

vg

vh

vk

(c) Constraints result-
ing from two locks

Figure 13: Sequential program consisting of four functions.
Ordering is enforced in the model by partially preserving the
sequential ordering

That the resulting task graph will always be deadlock-free
is explained using the OIL program shown in Figure 13a.
The ordering constraints resulting from the sequential pro-
gram are shown in Figure 13b. Assume that we require that
the tasks that result from the functions f , g , and h should
execute mutually exclusive as well as that the tasks that
result from the functions g , h and k should execute mutu-
ally exclusive. To achieve this we make use of two locks.
The first lock enforces the execution order f , g , h, and then
f again in the next iteration. This is modeled by the red
edges in Figure 13c. The second lock enforces the execution
order g , h, k and then g again in the next iteration. This
is modeled by the blue edges in Figure 13c. Each time we
refer to the next iteration an initial token is placed on the
corresponding edge.
That the resulting task graph will remain deadlock-free

after locks are added can be seen as follows. When a num-
ber of groups of statements in a loop is made mutual exclu-
sive, intra-iteration dependencies are added between these
groups. As presented in Section 6, these intra-iteration de-
pendencies are added in such a way that they follow the or-
der of the statements in the sequential specification. These
added intra-iteration dependencies can thus never make the
sequential schedule inadmissible. In Figure 13c dependen-
cies are added for example from function f to function g and
from function g to function k . The sequential schedule of
Figure 13b shows that function g is scheduled after f and
function k after g . Therefore, after adding the constraints
of the lock, the sequential schedule is still admissible.
Second, when making groups of statements mutual exclu-

sive, an inter-iteration dependency is added from the last
group back to the first group. In the sequential schedule we
have that the first statement of a loop executes after the last
statement of the previous iteration of that loop. A group of
statements can by definition never contain a statement that
occurs earlier or later in the sequential specification than this
first or last statement respectively. Adding an inter-iteration
dependency between the last mutual exclusive group to the
first group can thus never invalidate the sequential schedule.
Consider for example the dependency in Figure 13c that pre-
scribes that function f in iteration i`1 can only be executed
after function h in iteration i is finished. This dependency
does not invalidate the sequential schedule because in this
schedule, function h in iteration i executes before function
k in iteration i which on its turn executes before function f

in iteration i` 1.
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7. SVPDF MODEL
In this section it will be shown that a corresponding SVPDF

temporal analysis model can always be derived from a se-
quential OIL program in which the locks are specified. An
SVPDF model is based on the VPDF model in which addi-
tional structure is added in the form of hierarchical blocks
to enable efficient analysis. We first introduce the SVPDF
model and its derivation from an OIL program without con-
sidering the locks. This is followed by the modeling of the
constraints that result from the locks. In this section the
modeling approach is shown for one lock, but the modeling
of multiple locks is analogous to the modeling of one lock.

In this paper we only consider the derivation of the SVPDF
model for scalar variables. However, actors in this model can
be extended with phases indicating a sequence of how many
tokens need to be consumed or produced every firing of an
actor [7]. This number of tokens is based on the synchro-
nization done by tasks. The modeling of mutual exclusivity
can be done in a similar way as described in this paper for
this more expressive model. For ease of understanding we
therefore omit the phase information from the model.

An SVPDF model is a directed graph G “ pV,E, P, δ, ρq.
Here V is a set of actors and pvi, vjq P E is the set of edges,
with vi, vj P V . Actors in an SVPDF model are not auto-
concurrent, meaning that at most one firing of an actor can
occur simultaneously. An actor can fire if one token is avail-
able on each of its input edges and after ρ time a token is
produced on each of its output edges, with ρ : V Ñ N. The
number of initial tokens on an edge is given by δ : E Ñ N.

An SVPDF model is structured into blocks with port ac-
tors on the edges of a block. A block is characterized by
a parameter p P P . A parameter p defines the number of
consecutive firings of actors in that block in respect to the
actors surrounding that block. The value of p is unknown
during analysis and can be infinite. A block only introduces
structure and does not fire itself. Port actors are used to
provide communication between actors in and outside of a
block. A port actor either converts a token on an input edge
directed from outside of a block inwards to p tokens on its
output edges or it converts p tokens to one token if the di-
rection of the edges is from inside a block to outside of that
block. A more detailed explanation of the SVPDF model
and port actors can be found in [6].

A task graph without mutual exclusive tasks can be mod-
eled as an SVPDF model as follows. For every task an actor
is included in the model. Every buffer is modeled by two
oppositely directed edges where tokens on the edge from the
producer to the consumer represent the full locations in the
buffer and tokens on the other edge, empty locations. The
initial tokens on this edge equals the buffer capacity. For ev-
ery while-loop in the OIL program a block is included in the
model. If a task contains this loop, the actor corresponding
with this task is a (nested) child of the block corresponding
with this loop. Blocks are nested analogously to the struc-
ture of while-loops in the OIL program. The value of the
parameter characterizing a block corresponds to the number
of iterations of the while-loop.

We now show that the lock as generated by the method in-
troduced in this paper can be modeled in an SVPDF model.
Two cases can be distinguished in the generation of the lock,
either groups of tasks in one while-loop are made mutu-
ally exclusive, or these groups are distributed over multiple
while-loops.

We first consider the most simple case of two groups of

vf vg

(a) Model of two
tasks

vf v1s

vg

vh

v1e

(b) Model of three tasks divided into
two groups

vf vg

(c) Model of two tasks in two
loops

vf

vg

vh

(d) Model of two groups of tasks
in two loops

Figure 14: SVPDF models corresponding with mutually ex-
clusive tasks

tasks in one while-loop, where each of the groups consists
of only one task. When tasks are made mutually exclusive
this can be represented by a cycle through the corresponding
actors with one initial token on that cycle. This is illustrated
by Figure 14a which contains two actors corresponding with
two mutually exclusive tasks. Between these two actors a
cycle is added consisting of two oppositely directed edges
representing the ordering constraints enforced by the lock.
The initial token on the bottom edge indicates the task that
is enabled first by the lock, i.e. the task corresponding with
the first function in the sequential ordering specified by the
OIL program.
When there are multiple tasks in a group no single cy-

cle can be created anymore in the model because tasks in
a group can execute simultaneously. Therefore, for every
group consisting of more than one task two additional ac-
tors are added to the model. The first actor represents that
all tasks in a group can start after the tasks in the previ-
ous group have finished. The second actor represents that
the next group can only start after all actors in the current
group have finished their firing. This is illustrated in Fig-
ure 14b in which there are two groups of tasks. The first
group contains only one task, and thus no additional ac-
tors are required. The second group contains two tasks and
thus two corresponding actors. Two additional actors are
now added. Actor v1s allows both actors vg and vh to start
because separate edges pv1s, vgq and pv1s, vhq are added. Ac-
tor v1e enforces that both actors are finished before actors
in the next group can fire, which is again actor vf in the
figure. This is modeled by an edge from every actor in the
group to actor v1e.
When groups of tasks belonging to different while-loops,

the corresponding actors are in different blocks. The ap-
proach described above must then be modified such that
the correct rate conversion occurs by means of port actors.
A port actor is added whenever a constraint following from
the lock generation crosses a while-loop boundary and thus
results in a rate-conversion. Figure 14c shows an example of
two groups of which the corresponding tasks are in different
while-loops. In the example a group consists of one task,
and thus one actor. In the figure the cycle from actor vf
to vg and back crosses four block boundaries and thus four
port actors are added. These port actors model that a task
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mutex ( detectHeader ) ( decodeHeader ) ;
mutex ( detectHeader decodeHeader ) ( f f t ) ;

source ADC @ 250 kHz ;

loop{
loop{

detectHeader (ADC, out vh , out h) ;
i f ( vh ){

NSym’ = decodeHeader (h) ;
}

} while ( ! vh ) ;
n = 0 ;
loop{

x = f f t (ADC) ;
y = demap(x ) ;
z = de int (y ) ;
w = convDecode ( z ) ;
c r c (w) ;
n ’ = n + 1 ;

} while (n < NSym) ;
} while (1 ) ;

Figure 15: Simplified WLAN application

in the corresponding while-loop can execute until the loop
condition becomes false. The initial token that indicates
which actor can initially start is placed before the port actor
which is located on the outer-most block corresponding with
the first while-loop in the ordering defined by the sequential
specification. In the figure this token is placed before the
port actor on the top in the left block, assuming that the
left block corresponds to the first while-loop.

Finally, groups of tasks in multiple while-loops can also
contain multiple tasks per group. This is illustrated in Fig-
ure 14d where the second group contains two tasks. Here
the port actors are also used to indicate the simultaneous en-
abling of tasks in a group and the waiting until all tasks in a
group are finished. Thus, these port actors are used instead
of the two additional actors inserted for the case shown in
Figure 14b.

8. CASE-STUDY
In this section we illustrate the approach presented in this

paper by means of a simplified WLAN 802.11g receiver ap-
plication of which the OIL program is shown in Figure 15.
First a header must be detected by the detectHeader func-
tion in an input stream delivered by a source ADC execut-
ing time-triggered at 250 kHz. After a header is found it is
decoded by the decodeHeader function and then NSym sym-
bols in the received packet are decoded by the functions in
the second inner while-loop. In this loop, first a symbol is
transformed by an fft into the frequency domain. The result-
ing data is then demapped, deinterleaved and convolutional
decoded. Finally, a CRC check is performed to verify the
correctness of the resulting data.

From this WLAN application a task graph is extracted
by the compiler with seven tasks and seven buffers. The
periodic source imposes a throughput constraint of 250 kHz
which corresponds to a period of 4µs.

In this example we assume that the detectHeader, decode-
Header and fft task execute on the same processor and a
WCET of 3µs, 1µs, and 3µs, respectively. If we allocate
a budget of 0.5µs in a replenishment interval of 1.5µs for
these tasks then it follows from Equation 1 that the WCRT
of the detectHeader task is equal to 9µs. Because the period
of the source is 4µs we can immediately conclude that the
throughput constraint cannot be met.

By inserting a lock we can reduce the WCRT of the detect-
Header, decodeHeader and the fft task. We can indicate in
an OIL program by means of the mutex keyword that tasks
must execute mutually exclusive, as shown in Figure 15. The
parameters behind this keyword are groups of tasks and each
group of tasks is encapsulated by brackets. In the WLAN
specification in Figure 15 there are two groups of tasks be-
hind the first mutex keyword. The first group contains the
detectHeader task and the second group the decodeHeader

task. As a result of the lock only one of these tasks execute
at any point in time on the processor and their execution
order will be the order from the OIL program. Behind the
second mutex keyword there are two groups of tasks with
in the first group the detectHeader task and decodeHeader

task and in the second group the fft task. As a result these
three tasks obtain a WCRT equal to their WCET. These
WCRTs are low enough to meet the throughput constraint
given that the buffers are sized properly by making use of
the SVPDF model of the application.

The SVPDF model of the WLAN application is shown in
Figure 16. The source is not shown for clarity of the figure.
In this figure the red dotted arrows denote the edges added
to enforce mutual exclusivity between the detectHeader, de-
codeHeader and the fft tasks and between the detectHeader

and decodeHeader tasks. The remaining tasks all run on a
separate processor and therefore have aWCRT equal to their
WCET which are, in application order starting with demap,
2.5µs, 3µs, 2.5µs and 4µs for crc. With this SVPDF model
buffer sizes are computed for δh, δhv, δx, δy, δz, δw, δNSym

of 1, 1, 2, 2, 2, 2, and 1, respectively.

δh

δx δy δz δw

detect
Header

demap deint crc
conv

decode

δNSym

fft

δhv

decode
Header

Figure 16: SVPDF model of the application in Figure 15

Figure 17 shows an execution trace derived with a dataflow
simulator given the WCRTs when mutual exclusive execu-
tion is enforced. The numbers in the traces indicate the
invocation number of the tasks. The trace is shown for a
packet size of 3 symbols. As a result of the applied locks the
detectHeader, decodeHeader, and fft task can execute on the
same processor as is visualized in the trace for Processor1,
instead of that 3 processors are required. This improves the
utilization of one processor and frees two other processors.
The execution of the application is pipelined and tasks be-
longing to different modes execute on different processors at
the same point in time despite that locks are applied. The
trace shows for example that the detectHeader and deint

execute in parallel.
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Figure 17: Execution trace of the WLAN application from Figure 15 with mutual exclusivity applied

9. CONCLUSION
In this paper we presented a dataflow analysis approach

that takes into account that tasks execute mutually exclu-
sive which results in reduced worst-case response times and
an improved processor utilization. We furthermore intro-
duced a starvation-free lock which allows us to enforce mu-
tual exclusive execution of tasks. This lock allows parallel
execution of tasks in a group of tasks but enforces sequential
execution between groups of tasks. A key difference with ex-
isting locks is that groups of tasks can only acquire the lock
in a predefined order.

We furthermore showed that mutual exclusive execution
of tasks can be modeled in an SVPDF model which is used
for checking whether after adding locks the throughput con-
straint is satisfied. This model is generated by a compiler
from a sequential OIL program that describes the modal
real-time stream processing application.

We also showed that the resulting parallel task graph is
deadlock-free despite that additional constraints are intro-
duced that enforce an execution order of groups of tasks as a
result of the locks. The task graph is deadlock free because
lock statements are added such that no constraints are in-
troduced that prevent the execution order as defined by the
sequential program.

That the introduction of our lock in an application can
improve the processor utilization is demonstrated using a
WLAN application. In this application 2 locks are intro-
duced. Insertion of these locks reduced the worst-case re-
sponse times such that 3 tasks can share the same processor
which improves the utilization of this processor and frees 2
other processors.

Though we expect that the programmer has often a good
idea about which tasks should be made mutually exclusive,
an algorithm which determines which task should be made
mutually exclusive is considered interesting future work.
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