
Mutation Testing as a Safety Net

for Test Code Refactoring

Ali Parsai, Alessandro Murgia, Quinten David Soetens, and Serge Demeyer
Antwerp Systems & Software Modelling (Ansymo)

University of Antwerp
Middelheimlaan 1

2020 Antwerp, Belgium
ali.parsai@student.uantwerpen.be,

{alessandro.murgia; quinten.soetens; serge.demeyer}@uantwerpen.be

Abstract

Refactoring is an activity that improves the internal
structure of the code without altering its external be-
havior. When performed on the production code, the
tests can be used to verify that the external behavior
of the production code is preserved. However, when
the refactoring is performed on test code, there is no
safety net that assures that the external behavior of
the test code is preserved.
In this paper, we propose to adopt mutation testing
as a means to verify if the behavior of the test code is
preserved after refactoring. Moreover, we also show
how this approach can be used to identify the part of
the test code which is improperly refactored.

1 Introduction

Refactoring is “the process of changing a software
system in such a way that it does not alter the ex-
ternal behavior of the code yet improves its internal
structure” [7]. If applied correctly, refactoring im-
proves the design of software, makes software easier
to understand, helps to find faults, and helps to de-
velop a program faster [7]. However, the process of
refactoring is not always performed flawlessly [10, 22],
leading to faults being introduced into the refactored
code due to mistakes made by developers, or using

automated refactoring tools that do not preserve the
behavior of the code. Thus, there is a need for a
safety net that saves developers when they refactor
improperly the test code.

Refactoring does not only target the production
code, but it also actively involves the test code. Ide-
ally, in object-oriented systems, for each production
class, we have a related counterpart in the test sec-
tion. As a consequence, the size of the test suite in-
creases linearly with the size of the system. This sce-
nario is particularly common in software systems de-
veloped using test-driven development, since it leads
to a rapid development of test suites [2]. In this con-
text, it is important to also refactor the test code to
keep it synchronized with the evolution of the pro-
duction code and avoid its quality erosion [21].

Refactoring of the production code can be done
with less risks using a test suite, since it provides a
safeguard against regressions during software trans-
formation [25]. Tests ensure that the production code
preserves its external behavior pre- and post- refac-
toring. On the contrary, there is no widely-accepted
method to verify if a refactored test suite preserves
its external behavior. Several studies point out the
peculiarities of test code refactoring [23, 24, 4, 20].
However, none of them provided an operative method
to guarantee that such refactoring was preserving the
behavior of the test. To address this shortcoming, we

1

ar
X

iv
:1

50
6.

07
33

0v
1

 [
cs

.S
E

]
 2

4
Ju

n
20

15

propose the adoption of mutation testing as a safety
net for test code refactoring.

Mutation testing provides a repeatable and scien-
tific approach to measure the quality of the test code.
It consists of two phases: First, generating faulty
versions of the code by injecting a single fault into
the code (creating a mutant) and then, executing the
test suite on this faulty version of the code to deter-
mine the outcome. The output of mutation testing is
a quality metric (mutation coverage) defined by the
percentage of the faults that resulted in failure of at
least one test (killed mutants) by the total number
of created mutants. This metric is proven to simu-
late the faults realistically [1, 9]. This is due to the
fact that the faults introduced by each mutant are
modeled after the common mistakes developers often
make [8].

A correctly performed refactoring of the test code
should not change its external behavior, and conse-
quently its mutation coverage should remain unal-
tered. For this reason, we propose to calculate muta-
tion coverage of each class in the production code pre-
and post- refactoring of the test code. The compari-
son between both reveals whether the refactoring had
any effect on the tests covering that class. Moreover,
this approach points out the location of the injected
faults helping to spot easily which part of the test
code was improperly refactored.

To validate our approach we run the experiments
on two projects. The first project is a simple system
created ad hoc to show how mutation testing is capa-
ble of identifying a change in the external behavior of
a refactored test. The second project is used to ver-
ify our approach in a real open source system with a
refactored test suite.

The paper has the following structure. Section 2
reports the background notions related to mutation
testing. Section 3 describes the research approach
adopted. Section 4, discusses the results of our re-
search. Section 5 presents the threats to validity.
Section 6 reports the related work. Finally, section 7
summarizes our findings.

2 Background

This section describes the typical quality metrics of
the test code, and background information related to
mutation testing. In addition, it provides an overview
of the implementation of mutation testing in Lit-
tleDarwin1.

2.1 Simple Coverage Metrics

There are simple coverage metrics available to esti-
mate the quality of a test suite [28]. Statement cov-
erage determines the percentage of executed state-
ments by test code. In a similar fashion, Branch cov-
erage determines the percentage of the branches of
code that are executed by the test code. A branch is
created in a program when a control statement (e.g.
if or switch statements) provides two or more paths
of execution. These metrics provide an overview of
the quality of the test suite in an easily attainable
manner; Yet, they are inadequate in their purpose of
estimating quality [26]. Even a 100% branch coverage
would leave a lot of room for a fault to escape [13].
Furthermore, branch coverage is also a poor measure
to determine a detailed map of the weaknesses in a
test suite because first, it lacks the ability to discover
which type of faults are being caught, and which are
not; and second, it is difficult for practical tools to
trace the execution paths during the runtime of com-
plicated software systems. Thus, these metrics are
not adequate enough to discover small mistakes in
the test code, and to trace back the change in behav-
ior to the faulty code.

2.2 Mutation Testing

Mutation testing is the process of injecting faults
into software, and counting the number of intentional
faults which make at least one test fail. The idea of
mutation testing was first mentioned in a class paper
by Lipton [16] and later developed by DeMillo, Lip-
ton and Sayward [6]. The first implementation of a
mutation testing tool was done by Timothy Budd in
1980 [3]. This procedure is executed in the follow-
ing manner: First, faulty versions of the software are

1http://littledarwin.parsai.net/

2

Figure 1: Mutation testing procedure

created by introducing a single fault into the system
(Mutation). This is done by applying a known trans-
formation on a certain part of the code (Mutation
Operator or Mutator). The more mutants generated
for a class, the more chance that we detect a change
in behavior. After generating the faulty versions of
the software (Mutants), the test suite is executed on
each one of these mutants. If there is an error or fail-
ure during the execution of the test suite, the mutant
is regarded as killed. On the other hand, if all tests
pass, it means that the test suite could not catch the
fault and the mutant has survived. This procedure
demands a green test suite —a test suite in which all
the tests pass— to run correctly. An overview of this
procedure can be observed in Figure 1.

Mutation Coverage =
Killed Mutants

All Mutants
(1)

The final result is calculated using Equation 1.
This metric provides a more detailed image of the
quality of a test by emphasizing test results. This
makes sure that the kind of faults simulated by mu-
tation operators are covered by the test; Therefore
reducing the chance of missing such faults in the fi-
nal product.

2.3 LittleDarwin

LittleDarwin1 is a mutation testing tool created by
the first author. This tool is designed to offer an
alternative framework for those who need to apply

Operator Description
Example

Before After

AOR-B Replaces a binary arithmetic operator a + b a− b
AOR-S Replaces a shortcut arithmetic operator + + a −− a
AOR-U Replaces a unary arithmetic operator −a +a
LOR Replaces a logical operator a& b a | b
SOR Replaces a shift operator a >> b a << b
ROR Replaces a relational operator a >= b a < b
COR Replaces a binary conditional operator a && b a || b
COD Removes a unary conditional operator ! a a
SAOR Replaces a shortcut assignment operator a ∗ = b a / = b

Table 1: LittleDarwin mutation operators

mutation testing to complex systems; but it is capa-
ble of analyzing simple systems as well. LittleDarwin
is designed to be independent from the testing struc-
ture. As a result, LittleDarwin demands much less
compatibility from the target system in order to per-
form its analysis. Thus, it can be run on any build
structure no matter how complex it is, given following
conditions:

1. The build process must be able to run the test
suite.

2. The build process must return non-zero if any
tests fail, and zero if it succeeds.

3. The build process must be sufficiently fast in or-
der to keep the total run time practical.

LittleDarwin is designed in an expandable way, so
that interested developers can develop their own mu-
tation components and still use the structure of the
main software to run the mutation analysis. This
broadens the scope of its applicability. In its cur-
rent version, LittleDarwin supports mutation testing
of Java programs.

In total, there are 9 mutation operators imple-
mented in LittleDarwin. These mutators are collec-
tively known as the minimal set. The description of
each mutator along with an example can be found in
Table 1.

3 Experimental Setup

As described before, the problem we try to solve is
to detect improper refactoring. So, we aim to pro-

3

Figure 2: UML class diagram of the toy project

vide an operative method to verify whether or not
the refactoring activity has changed the external be-
havior of the test suite. To achieve this, we examine
two cases:

• A use case where an ’improper’ refactoring of the
test code changes the testing behavior.

• A use case where a ’proper’ refactoring of the
test code does not change the testing behavior.

Two projects are selected as our cases. First, we
create a toy project to exhibit the ability of muta-
tion testing to highlight a change in the behavior of
the test suite. We use the same project to demon-
strate the usage of mutation testing to identify the
improperly refactored part of the test code. Second,
we use an open source project to verify how our ap-
proach can be applied on real refactorings that affect
the test code.

Each project has two versions: pre- and post- refac-
toring. For each version, we use JaCoCo2 to calculate
statement and branch coverage, and LittleDarwin to
run mutation testing.

Figure 4: Extract Class refactoring in the test code
of Codec

3.1 Toy Project

We designed a simple project inspired by the example
proposed by Fowler, et al.[7, p. 207]. In Figure 2 we
show the UML class diagram related to the produc-
tion code of this project. In Figure 3 we report the
two versions of the test code: pre- and post- refac-
toring.

The test pre- refactoring suffers from two code
smells (1) conditional statement that checks the
type of the input variable [7], and (2) assertion
roulette [15]. In the test post- refactoring these code
smells are removed by introducing three separate test
methods. Here, we simulate the introduction of a
naive mistake (Figure 3, red area): during the op-
eration of copy & paste the developer did not cor-
rectly adapt the method salaryManagerTest(). In
the post- refactoring version, instead of the correct
value of 2500, the value is set to be 1500. This mis-
take is introduced to show (in Section 4) how muta-
tion testing can detect behavior change and be used
to trace back improperly refactored tests.

3.2 Real Project

We analyze the open source project Codec3. Us-
ing Ref-Finder [11], we identify which refactorings
were performed during its evolution and among them
which ones affected the test code. All of them were
manually validated. Moreover, during the manual
inspection few other refactorings were added to the
list.

Table 2 reports all test refactorings identified. As
we can see CodecBasicsTest is involved in several
types of refactorings. One of the relevant refactor-
ings in terms of test reengineering was the extraction

2http://www.eclemma.org/jacoco/
3http://github.com/addthis/codec/

4

Figure 3: Test class pre- and post- refactoring

5

of several nested classes from CodeBasicTest, which
was later on followed by a further extract class refac-
toring (Figure 4). In this refactoring, two extra test
classes were created to incorporate assertions related
to their corresponding classes in the production code,
thus eliminating assertion roulette and god class code
smells in CodecBasicsTest.

In the toy project the refactoring does not affect
the production code. For this reason we were able
to verify on the same version of the production code
whether the refactoring of the test code preserved its
external behavior. In a real project like Codec, refac-
torings and other maintenance activities co-occur in
production and test code. In this scenario, we can-
not verify if the refactored test suite is changing its
behavior due to production code change. For this
reason, we had to introduce an alternative version of
Codec in our experiment, in which the refactoring is
restricted to the test code. To accomplish this task,
we had to go through the history of the project and:

1. Identify when a refactoring is performed on the
test suite.

2. Back port this refactoring to the previous version
of system

3. Create an alternative version of the system
where the production code is the same, but the
test code is refactored. We call this the post-
clean- refactoring version.

At the end of the process, we have two versions of
the system: pre- refactoring and post-clean- refactor-
ing. Both versions have the same production code,
but differ in the refactoring of the test suite. These
two versions are the ones we use to verify whether
the test refactoring modifies its external behavior.

4 Results

In this section we show how mutation coverage is able
to highlight whether or not a test refactoring causes
a modification of its external behavior. For the toy
project we compute mutation coverage along with

Refactoring Target Class Instances

Remove Parameter CodecGenericsTest 1
Add Parameter CodecGenericsTest 1
Rename Method CodecRWOnlyTest 1
Move Method CodecBasicsTest 1
Extract Nested Class CodecBasicsTest 12
Extract Class CodecBasicsTest 1
Rename Class CodecBasicsTest 1
Remove Control Flag CodecBasicsTest 1
Replace Magic Number with Constant CodecTest 2
Replace Magic Number with Constant CodecUtilTest 1
Replace Magic Number with Constant CodecObjectSubclassTest 1

Table 2: Refactorings in Codec test code

Figure 5: Percentage of passing tests, statement and
branch coverage and mutation coverage for all classes
of the toy project

percentage of passed tests, statement and branch cov-
erage to prove that these approaches are not suitable
for detecting a change in the test behavior. For the
Codec project, we limit our analysis to mutation cov-
erage.

4.1 Toy Project

The toy project has a refactoring of the test code.
One of the refactorings was improperly done: a fault
was introduced in salaryManagerTest. Here we
compute the three metrics that are generally used to
evaluated test quality: percentage of passing tests,
statement and branch coverage and mutation cover-
age. The results are presented in figure 5. Here we
can see:

• Percentage of passing tests. In both pre-
refactoring and post- refactoring versions, all

6

tests passed. The wrongly refactored method
salaryManagerTest was not detected.

• Statement, and branch coverage. Both met-
rics grant a 100% coverage for the pre- and
post- refactoring versions. Also in this case
salaryManagerTest was not detected as a faulty
refactored test.

• Mutation coverage. For the mutation analy-
sis, LittleDarwin introduced two mutants in the
production code by replacing the operators +

with - and vice-versa (figure 6). In the pre-
refactoring version, one of these mutants was
killed, resulting in a 50% mutation coverage.
Whereas, in the post- refactoring version both
mutants survived, resulting in a 0% mutation
coverage. The different mutation coverage is the
first hint that the refactoring changed the exter-
nal behavior of the test code.

Investigating on which mutant changed the sta-
tus of the test (passing to not passing or
vice versa), we trace the problem back to
salaryManagerTest. Finally, comparing the
two versions of the test code we identify the
fault4.

4.2 Real Project

The Codec project presents realistic refactorings ap-
plied to the test suite. In this project we do not com-
pute the metrics number of passing tests, statement
and branch coverage since these were were inadequate
to highlight a change of behavior due to test refactor-
ing. For the Codec project, by only computing the
mutation coverage, we obtain the results in figure 7.
As we can see the number of mutants killed (or sur-
vived) in pre- and post-clean- refactoring is the same.
This implies that all refactorings, including the ma-
jor ones, were properly performed, since they did not
change the external behavior of the test code.

4 The manual analysis of two version of system is practical
for small projects where the developer has a complete under-
standing of the code. In larger projects, it can be performed
automatically using a dynamic analysis tool to find out the re-
lationship between the tests and the classes of the production
code.

Figure 6: The mutant that changes the status pre-
and post- refactoring in the toy project

Figure 7: Mutation coverage for each class of the
Codec project

7

5 Threats To Validity

In this section we present the threats to validity of
our study according to the guidelines reported in [27].

Threats to internal validity concern confounding
factors that can influence the obtained results. In
this study, the mutation coverage depends on the set
of mutation operators used in mutation testing pro-
cess. As a consequence, the ability of mutation test-
ing in detecting behavioral changes is limited by the
type of operators adopted. To alleviate this prob-
lem, we used the standard set of mutation operators
that most mutation testing tools support [19] since
they are able to reflect the mistakes commonly in-
troduced by developers. In case of Object-Oriented
Programming languages, an additional set of muta-
tion operators were designed by Ma et al. [12] to
model mistakes specific to these languages. Using
these operators would lead to more accurate results
by introducing the support for new types of mistakes.
This increased accuracy might be necessary in case
of software systems that make use of Object-Oriented
Programming structures widely throughout the code.
Another threat stems from the masking effect pro-
vided by multiple failings tests. This happens when
a mutant is killed in the original version with the fail-
ure of some tests, and the behavioral change causes
another test to fail on the same mutant. In this case,
the mutant would not change status, and therefore,
the mutation coverage would stay the same. Solving
this problem is not trivial and requires more research
on the subject.

Threats to construct validity focus on how accu-
rately the observations describe the phenomena of
interest. For our experiment, the elements of inter-
est are (1) the ability of mutation testing in veri-
fying whether test code refactoring was improperly
performed and in that case (2) which section of the
test code is the cause. We used a real project as well
as our toy project to cover element (1), while the ex-
periment on the toy project also contained element
(2). Even though the toy project is very small, its
improper refactoring is still valuable since represen-
tative of a common mistake.

Threats to external validity correspond to the gen-
eralizability of our results. In this experiment we

use only two projects. Although one of them was
representative of a real open source project, actively
maintained and developed by a commercial company,
it is desirable to replicate this study taking into more
projects; especially the ones where the test code was
modified with refactorings different from the one we
considered.

Threats to reliability validity correspond to the de-
gree to which the result depends on the used tools.
We depend on Ref-Finder and manual inspection to
discover the refactoring of the test code in our real
project case. There is a possibility that we miss some
refactorings or make mistakes in this process. We
counter this chance by checking our list of refactor-
ings against the code changes between two versions.
We also depend on the tools JaCoCo (to calculate
statement and branch coverage) and LittleDarwin (to
calculate mutation coverage). The outcome of Ja-
CoCo has been manually verified due to the simple
nature of our toy project. The outcome of LittleDar-
win has been tested and explored in the first author’s
masters thesis [19].

6 Related Work

Our study refers to the adoption of mutation testing
in the context of test refactoring. For this reason we
present the related work divided in two parts.

6.1 Mutation Testing

One of the articles that performs a comprehensive
analysis of the subject is Jia et al. 2011 [8]. This ar-
ticle is a literature survey that tries to summarize a
huge amount of information about the process of mu-
tation testing, performance, practicality, etc. Offutt
et al. in [17] discuss the history of mutation testing
and the state of the art, and provides insight into the
future of the field. A good reference for analysis of
the mutation testing tools for Java is Delahaye et al.
2013 [5]. In the mentioned article, mutation test-
ing tools for Java are compared based on efficiency,
compatibility with current technologies and multiple
other factors.

8

Previous studies discuss mutation testing from dif-
ferent point of views. However, none of them propose
the adoption of mutation testing to analyze the be-
havior preservation in the context of test refactoring.

6.2 Test Refactoring

The concept of refactoring and behavior preservation
was introduced for the first time by Opdyke [18].
However, this work does not differentiate between
refactoring of the test code and refactoring of pro-
duction code. Later on, several studies discovered
and investigated the peculiarity test code refactor-
ing. van Deursen et al. were the first to highlight
the characteristics of test refactoring by providing a
list of test code smells and test-oriented refactorings
[23]. van Deursen and Moonen identified how refac-
toring can affect the test code [24]. Counsell et al.
extend the testing taxonomy of van Deursen using
the inter-dependencies of the refactoring types [4].
Pipka proposed the Test-first Refactoring approach
for adapting unit tests according to software changes
[20].

All the previous does not provide a clear descrip-
tion on how to refactor the tests in a safe manner.
They lack an operative manner for verifying if test
code refactoring modifies its external behavior. In
our work we address this shortcoming proposing mu-
tation testing as safety net for test code refactoring.
We describe how to use mutation coverage to obtain
an operative evaluation of the behavior preservation
of the refactored test.

7 Conclusion and Future Work

Test code refactoring is an important maintenance
activity performed to keep it synchronized with pro-
duction code and avoid its quality erosion [21]. For
the test code has been identified ad hoc refactoring
types and peculiar design smells [23]. Nowadays,
refactoring of the test code is riskier than the one
performed on the production code. Indeed, the lat-
ter benefits from the safety net provided by the test
suite. On the other hand, test code refactoring does

not have an equivalent safeguard to assure that ex-
ternal behavior of the test code is preserved.

In this paper, we propose mutation testing as a
safety net for test code refactoring. By conducting
the empirical experiments on two projects, we show
that mutation testing is (1) suitable for identifying a
change on the external behavior of a refactored test
and (2) can be used to identify which part of the
test code was improperly refactored. However, our
approach is limited by the fact that the refactoring
must be restricted to the test code. Any change to
production code would result in a different set of mu-
tants which makes the comparison between two ver-
sions much harder. However, the developer can avoid
this problem by doing the refactoring in two separate
phases; First on the production code, and then on the
test code. In this case, the behavioral change of the
production code can be detected using the test suite,
and then our method can be still applied.It is worth
noting that the reliability of this process to detect be-
havior changes depends on the accuracy of mutation
testing which, in turn, depends on the type of muta-
tion operators that are used. A different set of muta-
tion operators would lead to different mutants being
generated, resulting in a different detection ability for
the process.

In this empirical study, we take into account a
small open source project. In the future, we plan to
extend this analysis to several other projects with a
modified test code. In particular, we will investigate
projects where the common test refactorings are per-
formed [23, 14]. There is a lack of empirical studies
on evaluation of the proposed test code smells in dif-
ferent different setups (e.g. industrial settings). This
can be investigated alongside our method of detect-
ing improper refactorings in these setups, quantifying
the probability of occurrence of such code smells, and
assessing the risks of refactoring the code to eliminate
such smells. In addition, we plan to create a dataset
with seeded improper refactorings that can be used
as a test bench.

9

Acknowledgment

This work is sponsored by the Institute for the Pro-
motion of Innovation through Science and Technol-
ogy in Flanders through a project entitled Change-
centric Quality Assurance (CHAQ) with number
120028.

References

[1] J.H. Andrews, L.C. Briand, and Y. Labiche. Is
mutation an appropriate tool for testing exper-
iments? [software testing]. In Software Engi-
neering, 2005. ICSE 2005. Proceedings. 27th In-
ternational Conference on, pages 402–411, May
2005.

[2] K. Beck. Test Driven Development: By Exam-
ple. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[3] T. A. Budd. Mutation Analysis of Program Test
Data. PhD thesis, New Haven, CT, USA, 1980.
AAI8025191.

[4] S. Counsell, R.M. Hierons, R. Najjar, G. Loizou,
and Y. Hassoun. The effectiveness of refactoring,
based on a compatibility testing taxonomy and
a dependency graph. In Testing: Academic and
Industrial Conference - Practice And Research
Techniques, 2006. TAIC PART 2006. Proceed-
ings, pages 181–192, Aug 2006.

[5] M. Delahaye and L. du Bousquet. A comparison
of mutation analysis tools for java. In Quality
Software (QSIC), 2013 13th International Con-
ference on, pages 187–195, July 2013.

[6] R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
Hints on test data selection: Help for the practic-
ing programmer. Computer, 11(4):34–41, April
1978.

[7] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley Longman Pub-
lishing Co., Inc., 1999.

[8] Y. Jia and M. Harman. An analysis and survey
of the development of mutation testing. Software

Engineering, IEEE Transactions on, 37(5):649–
678, Sept 2011.

[9] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst,
R. Holmes, and G. Fraser. Are mutants a valid
substitute for real faults in software testing?
Technical Report UW-CSE-14-02-02, University
of Washington, 2014.

[10] M. Kim, D. Cai, and S. Kim. An empirical in-
vestigation into the role of api-level refactorings
during software evolution. In Proceedings of the
33rd International Conference on Software En-
gineering, ICSE ’11, pages 151–160, New York,
NY, USA, 2011. ACM.

[11] M. Kim, Gee M., Loh A., and Rachatasumrit
N. Ref-finder: A refactoring reconstruction tool
based on logic query templates. In Proceedings
of the Eighteenth ACM SIGSOFT International
Symposium on Foundations of Software Engi-
neering, FSE ’10, pages 371–372, New York, NY,
USA, 2010. ACM.

[12] Yu-Seung Ma, Yong-Rae Kwon, and J. Offutt.
Inter-class mutation operators for java. In Soft-
ware Reliability Engineering, 2002. ISSRE 2003.
Proceedings. 13th International Symposium on,
pages 352–363, 2002.

[13] B. Marick. Experience with the cost of differ-
ent coverage goals for testing. In Proc. Pacific
Northwest Soft. Quality Conf, pages 147–164,
1991.

[14] G. Meszaros. XUnit Test Patterns: Refactoring
Test Code. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2006.

[15] L. Moonen, van Deursen A., Zaidman A., and
Bruntink M. On the interplay between software
testing and evolution and its effect on program
comprehension. In Software Evolution, pages
173–202. Springer Berlin Heidelberg, 2008.

[16] A. J. Offutt and R. H. Untch. Mutation test-
ing for the new century. chapter Mutation 2000:
Uniting the Orthogonal, pages 34–44. Kluwer
Academic Publishers, Norwell, MA, USA, 2001.

10

[17] J. Offutt. A mutation carol: Past, present and
future. Information and Software Technology,
53(10):1098 – 1107, 2011. Special Section on
Mutation Testing.

[18] W. F. Opdyke. Refactoring Object-oriented
Frameworks. PhD thesis, Champaign, IL, USA,
1992. UMI Order No. GAX93-05645.

[19] A. Parsai. Mutation analysis: An indus-
trial experiment. Master’s thesis, University of
Antwerp, 2015.

[20] J. U. Pipka. Refactoring in a ’test firs’-
world. In Proc. Int’l Conf. eXtreme Program-
ming and Flexible Processes in Software Engi-
neering, 2002.

[21] B.V. Rompaey, Bois B.D., and Demeyer S. Im-
proving test code reviews with metrics: a pilot
study. Technical report, Technical report, Lab
On Re-Eng., University of Antwerp, 2006.

[22] G. Soares, R. Gheyi, D. Serey, and T. Mas-
soni. Making program refactoring safer. Soft-
ware, IEEE, 27(4):52–57, July 2010.

[23] A. van Deursen, L. Moonen, A. Bergh, and
G. Kok. Refactoring test code. In Proc. Int’l
Conf. eXtreme Programming and Flexible Pro-
cesses in Software Engineering), pages 92–95,
2001.

[24] van Deursen A. and Moonen L. The video store
revisited – thoughts on refactoring and test-
ing. In Proc. Int’l Conf. eXtreme Programming
and Flexible Processes in Software Engineering,
pages 71–76, 2002. Alghero, Sardinia, Italy.

[25] F. Vonken and A. Zaidman. Refactoring with
unit testing: A match made in heaven? In Re-
verse Engineering (WCRE), 2012 19th Working
Conference on, pages 29–38, Oct 2012.

[26] Y. Wei, B. Meyer, and M. Oriol. Is branch
coverage a good measure of testing effective-
ness? In Bertrand Meyer and Martin Nordio, ed-
itors, Empirical Software Engineering and Veri-
fication, volume 7007 of Lecture Notes in Com-
puter Science, pages 194–212. Springer Berlin
Heidelberg, 2012.

[27] R. K. Yin. Case Study Research: Design and
Methods. Applied Social Research Methods.
SAGE Publications, 2003.

[28] H. Zhu, P. A. V. Hall, and J. H. R. May. Software
unit test coverage and adequacy. ACM Comput.
Surv., 29(4):366–427, December 1997.

11

	1 Introduction
	2 Background
	2.1 Simple Coverage Metrics
	2.2 Mutation Testing
	2.3 LittleDarwin

	3 Experimental Setup
	3.1 Toy Project
	3.2 Real Project

	4 Results
	4.1 Toy Project
	4.2 Real Project

	5 Threats To Validity
	6 Related Work
	6.1 Mutation Testing
	6.2 Test Refactoring

	7 Conclusion and Future Work

